

Incentivizing Stable Path Selection in Future Internet Architectures

Simon ScherrerMarkus LegnerAdrian PerrigStefan SchmidETH ZurichUniversity of Vienna

PERFORMANCE 2020

4 November 2020

Central Question of Our Paper: Stability of Path-Aware Networks (PAN)

- Vision: Path-Aware Network (PAN) architectures allow
 load-adaptive path selection by end-hosts ⇒ increase resource utilization
- **Concern:** Load-adaptive path selection leads to **oscillation** if performed on the basis of outdated information.

With end-host path selection, f_{11} might have to follow path I_1 - N_1 - N_3 - E_1

Inter-Domain Viability of Stable Path-Selection Strategies?

• Game-theoretic question:

Will the path-selection strategies (PSS) designed for stable path selection be adopted by self-interested sources?

Do these stable path-selection strategies form a Nash equilibrium?

Non-Oscillatory PSS

- Non-Oscillatory PSS proposed by Fischer and Vöcking (2009):
 - Path-switching probability is linear in load difference of paths
 - Linear coefficient has to respect a system-dependent upper bound to guarantee convergence
- Other PSS such as MATE (2002), Proportional Sticky Routing (2002), TeXCP (2005) etc. are structurally equivalent
 - Key idea: Reduce the migration rate between paths such that there is a strong congruence between perception and reality of the network state

Game-Theoretic Framework: Dynamic Routing Game

Selfish sources will only adopt PSS that form **PSS equilibria**:

- PSS equilibrium:
 - A strategy is a PSS equilibrium strategy
 - iff given that every end-host in the network adopts the strategy,

there is no other strategy that allows an individual end-host to reduce its cost

Do Non-Oscillatory PSS Constitute PSS Equilibria?

No!

- Universal adoption of non-oscillatory PSS makes adoption of oscillatory PSS worthwhile
- Stable path selection cannot be achieved by relying purely on end-hosts
 ⇒ Incentivize stable path selection with *mechanisms*

Incentive-Compatible Stabilization Mechanisms

- Idea:
 - Mechanism should alter the cost of PSS (with monitoring, punishments, requirements, etc.) such that a non-oscillatory PSS becomes a PSS equilibrium strategy
- We design two stabilization mechanisms and formally prove their incentive compatibility:
 - FLOSS mechanism (presented here)
 - CROSS mechanism (see in paper)

- Idea:
 - Using path during a certain time interval requires a *registration* (no registration ⇒ packets are dropped)
 - Registrations are selectively granted:
 - Loyal end-hosts (end-hosts using the path in the current interval) always get a registration for the next interval
 - The amount of registrations available to end-hosts from other paths is limited ⇒ restrict arbitrary path migration
 - Enforce migration volume per interval to iteratively achieve equal load

Summary

Scheme	Stability	End-Host Path Selection	Incentive Compatibility
AMP (2003)			
ReplEx (2006)			
Homeostasis (2009)			
HALO (2014)			
Proportional Sticky Routing (2002)			
MATE (2002)			
Kelly & Voice (2005)			
TeXCP (2005)			
Fischer & Vöcking (2009)			
OPS (2017)			
FLOSS (2020)			
CROSS (2020)			

Our paper presents a game-theoretic framework that allows to analyze whether

- a path-selection strategy is adopted by rational end-hosts (Does it form a PSS equilibrium?)
- a stabilization mechanism is incentive-compatible

Game-theoretic perspective is important to consider in path-aware Internet architectures!