ETH zürich

Network Security Group Department of Computer Science

ALBUS: a Probabilistic Monitoring Algorithm to Counter Burst-Flood Attacks

Simon Scherrer, Adrian Perrig ETH Zürich

Jo Vliegen, Arish Sateesan, Nele Mentens* KU Leuven, *Leiden University

Hsu-Chun Hsiao National Taiwan University

SRDS 2023, Marrakech

Goal: Guarantee availability of network resources under malicious traffic from many sources

PoseidonRippleJaqenCOLIBRIACC-Turbo(Zhang et al. 2020)(Xing et al. 2021)(Liu et al. 2021)(Giuliari et al. 2021)(Alcoz et al. 2022)

Goal: Guarantee availability of network resources under malicious traffic from many sources

PoseidonRippleJaqenCOLIBRIACC-Turbo(Zhang et al. 2020)(Xing et al. 2021)(Liu et al. 2021)(Giuliari et al. 2021)(Alcoz et al. 2022)

DDoS Defense System

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

+ Limited memory + Efficient processing

- Limited accuracy

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection + Limited memory + Efficient processing - Limited accuracy Link capacity Flow sending rate Time Reset Rese For each flow: Reset period Estimated Expected flow volume flow volume >in period so far over period Suspicious flow!

ETH zürich

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

ETH zürich

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

Suspicious flow!

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

+ Limited memory + Efficient processing - Limited accuracy

ETH zürich

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

 $\text{Recall} = \frac{\text{Reported malicious bursts}}{\text{Malicious bursts}}$

 $\label{eq:Precision} \mbox{Precision} = \frac{\mbox{Reported malicious bursts}}{\mbox{Reported bursts}}$

$\text{Recall} = \frac{\text{Reported malicious bursts}}{\text{Malicious bursts}}$	$Precision = \frac{Precision}{Precision} + Pr$
Recall 🛧	Precision 🔥
100%	100%
*	+

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

3/19

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

3/19

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

3/19

How Can We Better Detect Malicious Bursts?

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8 \cdots $f_{1475286}$

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8 \cdots $f_{1475286}$

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8 \cdots $f_{1475286}$

ETH zürich

A leaky bucket reports a flow that sends more than $\gamma w + \beta$ during a time window with arbitrary width w

A leaky bucket reports a flow that sends more than $\gamma w + \beta$ during a time window with arbitrary width w

 γ = Leakage rate = Flow base rate

A leaky bucket reports a flow that sends more than $\gamma w + \beta$

- during a time window with arbitrary width w
- γ = Leakage rate = Flow base rate
- β = Bucket volume = Burstiness allowance

A leaky bucket reports a flow that sends more than $\gamma w + \beta$

- γ = Leakage rate = Flow base rate
- β = Bucket volume = Burstiness allowance

A leaky bucket reports a flow that sends more than $\gamma w + \beta$

- γ = Leakage rate = Flow base rate
- β = Bucket volume = Burstiness allowance

A leaky bucket reports a flow that sends more than $\gamma w + \beta$

- γ = Leakage rate = Flow base rate
- β = Bucket volume = Burstiness allowance

A leaky bucket reports a flow that sends more than $\gamma w + \beta$

- γ = Leakage rate = Flow base rate
- β = Bucket volume = Burstiness allowance

But: A leaky bucket can only monitor a single flow at a time!

nent of Computer Science

Flows:
$$f_1$$
 f_2 f_3 f_4 f_5 f_6 f_7 f_8 \cdots $f_{1475286}$

	LB 1		LB 2		LB 3		LB 4		LB 256	
ucket ers:										

Leaky-bucket counters:

How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

Eviction criterion:

If LB net inflow turns negative

How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8 \cdots $f_{1475286}$

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Question:

How to find the most bursty flow among the background flows of a leaky-bucket counter?

Question: How to find the most bursty flow among the background flows of a leaky-bucket counter?

Question: How to find the most bursty flow among the background flows of a leaky-bucket counter?

Question: How to find the most bursty flow among the background flows of a leaky-bucket counter?

Probabilistic decay (Yang et al. 2019)

Department of Computer Science

10/19

ment of Computer Science

ment of Computer Science

ETH zürich

How Does ALBUS Work?

ETH zürich

How Does ALBUS Work?

ETH zürich

How Does ALBUS Perform Under Burst-Flood Attacks?

How Does AI BUS Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

How Does AI BUS Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

How Does AI BUS Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

How Does ALBUS Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Department of Computer Science

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

ALBUS

Network Security Group Department of Computer Science

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

Yes. ALBUS has low computational complexity:

Yes. ALBUS has low computational complexity:

Single hash computation

Yes. ALBUS has low computational complexity:

Single hash computation

No counter-array iterations

Yes. ALBUS has low computational complexity:

Single hash computation

No counter-array iterations

No associative arrays

Yes. ALBUS has low computational complexity:

Single hash computation

No counter-array iterations

No associative arrays

⇒ ALBUS is hardware-friendly

Yes. ALBUS has low computational complexity:

Single hash computation

No counter-array iterations

No associative arrays

 \implies ALBUS is hardware-friendly

FPGA implementation for Xilinx Virtex UltraScale+ FPGA:

Hardware design of a LB-BC combination

Yes. ALBUS has low computational complexity:

Single hash computation

No counter-array iterations

No associative arrays

⇒ ALBUS is hardware-friendly

FPGA implementation for Xilinx Virtex UltraScale+ FPGA:

 $\begin{array}{l} \textit{Throughput:}\\ \texttt{200 million packets}\\ \textit{per second}\\ \sim \texttt{560 Gbps!} \end{array}$

Hardware design of a LB-BC combination

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

CountMin-Sketch Count-Sketch

And the operation of th	Fixed tim	e-windows
Suspecieus ferul	Child advance spatial standing of the spatial standing	nn Countrille Statut au Count Statut for dimension or promoting - Longe Statut (Countril St

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

CountMin-Sketch Count-Sketch

	5-001100005
Etild allevar spanne nanty se tra slightlen a unad anny a filter for and the start of the star	Countral Status and Count Status for denoting processing - united Status of Burst Faced Attack Burst Status and Barst Rous Burst and process Burst and process Rout and process Rout and process Rout and process Rout and process

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

CountMin-Sketch Count-Sketch

Fixed time-	windows
The rank for a spectrum of the	American and Cauce Starts for detection and the starts of the starts of the starts the starts of the starts of the starts Bear View Free Area: Bear View Fre
FILADA DISTRICT.	**

Accuracy trade-off	\vdash
Additional program and an additional program and additional program	

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

ETH zürich

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

17/19

Additional Material

How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows

How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows p =Count-modification probability

How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows

p = Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)

Probabilistic decay identifies large background flows

p =Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)

BC contains flow f with probability $q_f(1) = \min\left(1, \frac{\text{Volume of flow } f}{\text{Volume of all flows } \neq f}\right)$

Probabilistic decay identifies large background flows

p =Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)

BC contains flow f with probability $q_f(1) = \min\left(1, \frac{\text{Volume of flow } f}{\text{Volume of all flows } \neq f}\right)$

Probabilistic decay identifies large background flows

p =Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)

BC contains flow f with probability $q_f(1) = \min\left(1, \frac{\text{Volume of flow } f}{\text{Volume of all flows } \neq f}\right)$

Probabilistic decay identifies large background flows

p =Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)

BC contains flow f with probability $q_f(1) = \min\left(1, \frac{\text{Volume of flow } f}{\text{Volume of all flows } \neq f}\right)$

Probabilistic decay identifies large background flows p =Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)

BC contains flow f with probability $q_f(1) = \min\left(1, \frac{\text{Volume of flow } f}{\text{Volume of all flows} \neq f}\right)$

Probabilistic decay identifies large background flows

p =Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)

BC contains flow f with probability $q_f(1) = \min\left(1, \frac{\text{Volume of flow } f}{\text{Volume of all flows} \neq f}\right)$

Probabilistic decay identifies large background flows p =Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)

BC contains flow f with probability $q_f(1) = \min\left(1, \frac{\text{Volume of flow } f}{\text{Volume of all flows} \neq f}\right)$

Probabilistic decay identifies large background flows p =Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)

BC contains flow f with probability $q_f(1) = \min\left(1, \frac{\text{Volume of flow } f}{\text{Volume of all flows} \neq f}\right)$

