PILA: Pervasive Internet-Wide Low-Latency Authentication

Cyrill Krähenbühl Markus Legner Silvan Bitterli Adrian Perrig Department of Computer Science ETH Zurich, Switzerland

1. July 2021

Motivation •	Trust Amplification 0	PILA	Use Cases 0000	Conclusion 00
	N	lotivation		
• T	rust on first use (TOFU) • every on-path entity ca): n attack	Strong Authenti	cation
			OW TCF Lowest	E Crypt t Level of Security on

м	ot	TV.	a	tι	on	
	~~		-	•••	····	

Trust Amplificat

PILA 00 Use Cases

Conclusion

- Trust on first use (TOFU):
 - every on-path entity can attack
 - cannot reliably detect attacks

IVI	ot	IV	at	ion

Trust Amplificat

PILA

Use Cases

Conclusion

- Trust on first use (TOFU):
 - every on-path entity can attack
 - cannot reliably detect attacks
 - cannot pinpoint attacker

Trust Amplificati

PILA 00 Use Cases

Conclusion

- Trust on first use (TOFU):
 - every on-path entity can attack
 - cannot reliably detect attacks
 - cannot pinpoint attacker
- Strong Authentication:
 - based on PKI (Web PKI or DNSSEC)

Trust Amplificati

PILA 00 Use Cases

Conclusion

- Trust on first use (TOFU):
 - every on-path entity can attack
 - cannot reliably detect attacks
 - cannot pinpoint attacker
- Strong Authentication:
 - based on PKI (Web PKI or DNSSEC)
 - name-based authentication

Trust Amplificati

PILA 00 Use Cases

Conclusion

- Trust on first use (TOFU):
 - every on-path entity can attack
 - cannot reliably detect attacks
 - cannot pinpoint attacker
- Strong Authentication:
 - based on PKI (Web PKI or DNSSEC)
 - name-based authentication
 - requires configuration

Trust Amplificati

PILA 00 Use Cases

Conclusion

- Trust on first use (TOFU):
 - every on-path entity can attack
 - cannot reliably detect attacks
 - cannot pinpoint attacker
- Strong Authentication:
 - based on PKI (Web PKI or DNSSEC)
 - name-based authentication
 - requires configuration
- Can we fill the gap between TOFU and strong authentication?

Trust Amplificati

PILA 00 Use Cases

Conclusion

- Trust on first use (TOFU):
 - every on-path entity can attack
 - cannot reliably detect attacks
 - cannot pinpoint attacker
- Strong Authentication:
 - based on PKI (Web PKI or DNSSEC)
 - name-based authentication
 - requires configuration
- Can we fill the gap between TOFU and strong authentication?
 - PILA **improves** the base layer for encryption on the Internet

Motivation	Trust Amplification	PILA	Use Cases	Conclusion
O	O	●○	0000	00
	Go	als		

 ${\rm Authentication\ should\ } \dots$

• be widely applicable

Motivation	Trust Amplification	PILA	Use Cases	Conclusion
O	O	●o	0000	00
	Go	bals		

 ${\rm Authentication\ should\ } \dots$

- be widely applicable
- be low-latency

Motivation	Trust Amplification	PILA	Use Cases	Conclusion
O	O	●○	0000	00
		Goals		

- be widely applicable
- be low-latency
- require no user interaction

Trust Amplification

PILA •0 Use Cases 0000 Conclusion 00

Goals

We propose *PILA*: <u>Pervasive Internet-Wide Low-Latency Authentication</u>

- be widely applicable
- be low-latency
- require no user interaction

Μ	0	t	i	v	а	t	i	0	n
0									

Trust Amplificatio

PILA •0 Use Cases 0000 Conclusion 00

Goals

We propose *PILA*: <u>Pervasive Internet-Wide Low-Latency Authentication</u>

PILA ...

 uses IP-address-based authentication

- be widely applicable
- be low-latency
- require no user interaction

Μ	ot	i	va	ti	0	n
0						

PILA ●0 Use Cases

Conclusion 00

Goals

We propose *PILA*: <u>Pervasive Internet-Wide Low-Latency Authentication</u>

PILA ...

- uses IP-address-based authentication
- has a minimal latency overhead

- be widely applicable
- be low-latency
- require no user interaction

Μ	0	t	i١	//	а	t	i	0	r
0									

PILA ●0 Use Cases

Conclusion 00

Goals

We propose *PILA*: <u>Pervasive Internet-Wide Low-Latency Authentication</u>

PILA ...

- uses IP-address-based authentication
- has a minimal latency overhead
- automatically generates and fetches certificates

- be widely applicable
- be low-latency
- require no user interaction

Μ	0	t	i	v	а	t	i	0	I
0									

PILA ●0 Use Cases 0000 Conclusion 00

Goals

We propose *PILA*: <u>Pervasive Internet-Wide Low-Latency Authentication</u>

PILA ...

- uses IP-address-based authentication
- has a minimal latency overhead
- automatically generates and fetches certificates
- increases security of TOFU key establishment (only used if strong authentication protocols are not available)

- be widely applicable
- be low-latency
- require no user interaction

Motivation	Trust Amplification	PILA	Use Cases	Conclusion
0	0	0•	0000	00

CERT

Motivation	Trust Amplification	PILA	Use Cases	Conclusion
0	0	0•	0000	00

- IANA/RIRs as trust anchor
- AS issues short-lived certificates for an IP address to endpoints

/lotivation	Trust Amplification	PILA	Use Cases	Conclusion
)	0	0•	0000	00

- IANA/RIRs as trust anchor
- AS issues short-lived certificates for an IP address to endpoints
- AS misbehavior (i.e., equivocation) is detectable and cryptographically provable

lotivation	Trust Amplification	PILA	Use Cases	Conclusion
)	0	0•	0000	00

- IANA/RIRs as trust anchor
- AS issues short-lived certificates for an IP address to endpoints
- AS misbehavior (i.e., equivocation) is detectable and cryptographically provable
- ASes are curious but cautious

lotivation	Trust Amplification	PILA	Use Cases	Conclusion
)	0	00	0000	00

- IANA/RIRs as trust anchor
- AS issues short-lived certificates for an IP address to endpoints
- AS misbehavior (i.e., equivocation) is detectable and cryptographically provable
- ASes are curious but cautious
- Flexible PKI choice (e.g., control-plane PKI in SCION)

- Remote Login (SSH)
- Secure Session-Establishment (TLS)
- Query-Response (DNS)

Aotivation	Trust Amplification	PILA	Use Cases	Conclusion
>	0	00	0000	00

Server at 1.1.1.1 wants to authenticate itself to the client

Motivation	Trust Amplification	PILA	Use Cases	Conclusion
C	0	00	0000	00

Server periodically fetches short-lived certificate from its local certificate service

Motivation	Trust Amplification	PILA	Use Cases	Conclusion
O	O	oo	○●○○	00
In parallel:	SS			

• SSH_{PILA} Handshake (reply contains the certificate)

Motivation	Trust Amplification	PILA	Use Cases	Conclusion
0	0	00	0000	00

In parallel:

- SSH_{PILA} Handshake (reply contains the certificate)
- Client fetches AS certificate for 1.1.1.1

Motivation	Trust Amplification	PILA	Use Cases	Conclusion
0	0	00	0000	00

In parallel:

- SSH_{PILA} Handshake (reply contains the certificate)
- Client fetches AS certificate for 1.1.1.1
- Regular SSH Handshake (reply contains the public key)

Motivation	Trust Amplification	PILA	Use Cases	Conclusion
0	0	00	0000	00

If the $\mathsf{SSH}_\mathsf{PILA}$ handshake fails, the client requests a proof that the server does not support PILA

Notivation	Trust Amplification O	PILA oo	Use Cases ○○○●	Conclusion 00
	SS	SH PILA		
	Pro	cessing Delay		

Average processing times of SSH_{PILA} operations in ms at the client, server, and certificate service:

	Client	Server	Certificate Service
Handshake Overhead	0.8	0.1	-
GetEPCert	-	1.0	17.0
GetASCert	4.3	-	8.3
GetProof	0.6	-	5.1

- Increase security through trust amplification
- PILA offers a new minimum level for fully automatic low latency key establishment
- Implementation and evaluation of PILA in combination with SSH, TLS, and DNS

Μ	01	ti	va	ti	0	n
0						

Trust Amplificat

PILA 00 Use Cases 0000 Conclusion

Thank you!

Cyrill Krähenbühl Network Security Group Department of Computer Science ETH Zürich

cyrill.kraehenbuehl@inf.ethz.ch