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Fast-moving DNS security landscape
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Rate limiting as a universal defense
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Rate limiting as a universal defense that expands DoS attack surface!
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Adversarial congestion on inter-server channels
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www.victim-domain? —> TIMEOUT/SERVFAIL

t3r.victim-domain? —> NXDOMAIN 
dv7.victim-domain? —> NXDOMAIN 
. . .

www   A   127.0.0.1 
victim-domain 

Can disrupt access to victim domain via shared resolver

*.wc  A   127.0.0.2 
1e4.wc.victim-domain? —> NOERROR 
ji0.wc.victim-domain? —> NOERROR 
. . .
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Adversarial congestion on inter-server channels

9

www.victim-domain? —> TIMEOUT/SERVFAIL
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ff.attacker-domain? 
ff    NS   ns1 
      NS   ns2 
      NS   ns3 
       . . . 
ns1   NS   ns1-1 
      NS   ns1-2 
      NS   ns1-3 
       . . . 
ns2   NS   ns2-1 
       . . .

attacker-domain 

89% of top-100K domains hosted by 3rd-party DNS [Kashaf et al., IMC’20]

Can disrupt access to victim domain via shared resolver
Can leverage amplification, esp. when the attacker can access victim nameserver

www   A   127.0.0.1 
victim-domain 
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Adversarial congestion on inter-server channels
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Can disrupt access to victim domain via shared resolver
Can leverage amplification, esp. when the attacker can access victim nameserver
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Resolver

Client
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Nameserver

www.any-domain? —> TIMEOUT/SERVFAIL

x.attacker-domain? —> NOERROR 
y.attacker-domain? -> NOERROR 
. . .

Forwarder

x   A   127.0.0.3 
y   A   127.0.0.4 
. . .

attacker-domain 

Can disrupt access to all domains via shared forwarder

>90% open resolvers are forwarders [Nawrocki et al., CoNEXT’21]
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Adversarial congestion on inter-server channels
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Real-world risk of adversarial congestion is high
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100Ks of authoritative nameservers with IRL <= 500 [Deccio et al., 2019]
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40 resolvers with IRL <= 1500 (default by 8.8.8.8)
Generally higher ERL, but more uncertain cases (best-effort estimates)

Ingress/egress rate limiting (RL) measurement on 45 open resolvers
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Design intuitions for mitigation
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Design intuitions for mitigation
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Design intuitions for mitigation
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Fair queuing (FQ) as a principled solution
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Fair queuing (FQ) as a principled solution
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Fair queuing (FQ) as a principled solution
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MOPI-FQ (Multi-Output Pseudo-Isolated Fair Queuing)
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Simplified bit-by-bit round-robin per output channel —> max-min fairness

Queue for 
channel A 213122
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round tails
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TT+1T+2 1 T+1
2 T+2
3 T
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MOPI-FQ (Multi-Output Pseudo-Isolated Fair Queuing)
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Simplified bit-by-bit round-robin per output channel —> max-min fairness

1323121 B

Order-preserving scheduling across channels —> confine queuing delay

213122 A

2333 C

Scheduling in two directions  
based on query arrival time
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MOPI-FQ (Multi-Output Pseudo-Isolated Fair Queuing)
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Simplified bit-by-bit round-robin per output channel —> max-min fairness

Order-preserving scheduling across channels —> confine queuing delay

Dynamic allocation of queues from shared pool —> minimise space overhead

HHH… …

Space complexity: "(n + q) Time complexity: "(log(n))
: #output channels 

: overall queue depth

n
q
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DCC (DNS Congestion Control) overview 
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DCC (DNS Congestion Control) overview 
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DCC signalling
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In general, blindly policing a client can cause collateral damage 

—> another architectural DoS vector
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DCC signalling
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Evaluation of DCC prototype
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Strawman DCC

Table 2.A summary of client settings for evaluating DCC un-
der different adversarial congestion scenarios. The 2nd and
3rd columns indicate when a client starts and stops sending
queries in the 60-seconds measurement window. The last
column indicates the client’s query patterns (Figure 2) used
in the corresponding scenarios (Figure 8).

Client Start End QPS Query Pattern
Heavy 0 60 600 WC (a,b,c) or NX (b)
Medium 0 50 350 WC (a,b,c)
Light 20 60 150 WC (a,b,c)

Attacker 10 60 1100 or 50 WC (a), NX (b) or FF (c)

and whose message at the front has the earliest arrival time
among all queues, to be sent out.

We call the resulting scheduling algorithmMOPI-FQ,which
is short for multi-output pseudo-isolated fair queuing, since
all output channels are scheduled independently in that their
fairness and output order are preserved but their queues are
allocated from a shared resource pool (hence not fully iso-
lated from each other). MOPI-FQ is both space-efficient, re-
quiring ! ( |O| + ") storage where " is the total number of
queuedmessages, and time-efficient, supporting! (#$%( |O|))
enqueue and dequeue operations. We provide a detailed al-
gorithm specification and analysis in Appendix B.

5 Implementation and Evaluation
We have developed a prototype of DCC in C++. The non-
invasive architecture of DCC allows it to be retrofitted into
existing DNS software or implemented as a standalone pro-
gram that intercepts the original resolver’s DNS traffic. We
chose the latter approach because it allows DCC to be de-
ployed on the same host running the resolver or on a sep-
arate host as a middlebox. This requires a portable way for
DCC to track outgoing resolver queries and associate them
with the responsible clients.

We realize this query attribution function (Section 3.2.1)
by repurposing the EDNS Client Subnet option [17] to in-
clude the client’s IP address, source port, and DNS request
ID. In particular, we modify the BIND resolver to include
this EDNS option in every outgoing query generated by the
resolution of a client request, and let DCC strip off this option
when sending out queries to upstream DNS servers.

For traffic interception, we use libnetfilter_queue and
set up two separate queues for incoming and outgoing DNS
messages with the corresponding iptables rules. To avoid
an interception loop—the outgoing queries processed by DCC
are captured by libnetfilter_queue again—we use the
raw socket AF_PACKET to send out DCC queries, which comes
with the extra performance benefit of kernel bypassing.

All runtime state of DCC (see Table 1) can be efficiently
managed by hash tables and we realize them using the stan-
dard C++ std::unordered_map. For MOPI-FQ scheduling,
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(a) Attacker exploiting the WC query pattern.
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(b) Attacker and heavy client exploiting the NX query pattern.
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(c) Attacker exploiting the FF amplification pattern.

Figure 8. Client dynamics in different adversarial conges-
tion scenarios summarized in Table 2. The effective QPS is
measured by the ratio of successful responses (NOERROR or
NXDOMAIN), with the exception that it is calculated from
the actual queries received by our nameserver in case the at-
tacker uses FF amplification pattern. For each scenario, the
left and right subplots show results for a vanilla BIND re-
solver and a DCC-enabled resolver, respectively.

we implement the data structures specified in Appendix B
with customized memory management.

In addition to the main thread driven by libnetfilter,
our prototype uses a separate thread for MOPI-FQ dequeue
operations and another thread for periodically purging the
state of inactive clients or servers.

Evaluation Setup. With the prototype, we evaluate a DCC-
enabled resolver’s attack resilience and performance over-
heads. All our DNS servers and clients are deployed in the
DigitalOcean cloud using VMs with dedicated virtual CPUs
(two cores at 2.6GHz) and 8GB RAM. Our resolver and au-
thoritative nameservers run BIND 9.

For MOPI-FQ configuration, we set the capacity of each
output queue as 100, the maximum number of per-queue

10
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Query Pattern

WC
WC

Req Rate
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1000Medium

Light
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Table 2.A summary of client settings for evaluating DCC un-
der different adversarial congestion scenarios. The 2nd and
3rd columns indicate when a client starts and stops sending
queries in the 60-seconds measurement window. The last
column indicates the client’s query patterns (Figure 2) used
in the corresponding scenarios (Figure 8).

Client Start End QPS Query Pattern
Heavy 0 60 600 WC (a,b,c) or NX (b)
Medium 0 50 350 WC (a,b,c)
Light 20 60 150 WC (a,b,c)

Attacker 10 60 1100 or 50 WC (a), NX (b) or FF (c)

and whose message at the front has the earliest arrival time
among all queues, to be sent out.

We call the resulting scheduling algorithmMOPI-FQ,which
is short for multi-output pseudo-isolated fair queuing, since
all output channels are scheduled independently in that their
fairness and output order are preserved but their queues are
allocated from a shared resource pool (hence not fully iso-
lated from each other). MOPI-FQ is both space-efficient, re-
quiring ! ( |O| + ") storage where " is the total number of
queuedmessages, and time-efficient, supporting! (#$%( |O|))
enqueue and dequeue operations. We provide a detailed al-
gorithm specification and analysis in Appendix B.

5 Implementation and Evaluation
We have developed a prototype of DCC in C++. The non-
invasive architecture of DCC allows it to be retrofitted into
existing DNS software or implemented as a standalone pro-
gram that intercepts the original resolver’s DNS traffic. We
chose the latter approach because it allows DCC to be de-
ployed on the same host running the resolver or on a sep-
arate host as a middlebox. This requires a portable way for
DCC to track outgoing resolver queries and associate them
with the responsible clients.

We realize this query attribution function (Section 3.2.1)
by repurposing the EDNS Client Subnet option [17] to in-
clude the client’s IP address, source port, and DNS request
ID. In particular, we modify the BIND resolver to include
this EDNS option in every outgoing query generated by the
resolution of a client request, and let DCC strip off this option
when sending out queries to upstream DNS servers.

For traffic interception, we use libnetfilter_queue and
set up two separate queues for incoming and outgoing DNS
messages with the corresponding iptables rules. To avoid
an interception loop—the outgoing queries processed by DCC
are captured by libnetfilter_queue again—we use the
raw socket AF_PACKET to send out DCC queries, which comes
with the extra performance benefit of kernel bypassing.

All runtime state of DCC (see Table 1) can be efficiently
managed by hash tables and we realize them using the stan-
dard C++ std::unordered_map. For MOPI-FQ scheduling,
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(a) Attacker exploiting the WC query pattern.
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(b) Attacker and heavy client exploiting the NX query pattern.
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(c) Attacker exploiting the FF amplification pattern.

Figure 8. Client dynamics in different adversarial conges-
tion scenarios summarized in Table 2. The effective QPS is
measured by the ratio of successful responses (NOERROR or
NXDOMAIN), with the exception that it is calculated from
the actual queries received by our nameserver in case the at-
tacker uses FF amplification pattern. For each scenario, the
left and right subplots show results for a vanilla BIND re-
solver and a DCC-enabled resolver, respectively.

we implement the data structures specified in Appendix B
with customized memory management.

In addition to the main thread driven by libnetfilter,
our prototype uses a separate thread for MOPI-FQ dequeue
operations and another thread for periodically purging the
state of inactive clients or servers.

Evaluation Setup. With the prototype, we evaluate a DCC-
enabled resolver’s attack resilience and performance over-
heads. All our DNS servers and clients are deployed in the
DigitalOcean cloud using VMs with dedicated virtual CPUs
(two cores at 2.6GHz) and 8GB RAM. Our resolver and au-
thoritative nameservers run BIND 9.

For MOPI-FQ configuration, we set the capacity of each
output queue as 100, the maximum number of per-queue
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Table 2.A summary of client settings for evaluating DCC un-
der different adversarial congestion scenarios. The 2nd and
3rd columns indicate when a client starts and stops sending
queries in the 60-seconds measurement window. The last
column indicates the client’s query patterns (Figure 2) used
in the corresponding scenarios (Figure 8).

Client Start End QPS Query Pattern
Heavy 0 60 600 WC (a,b,c) or NX (b)
Medium 0 50 350 WC (a,b,c)
Light 20 60 150 WC (a,b,c)

Attacker 10 60 1100 or 50 WC (a), NX (b) or FF (c)

and whose message at the front has the earliest arrival time
among all queues, to be sent out.

We call the resulting scheduling algorithmMOPI-FQ,which
is short for multi-output pseudo-isolated fair queuing, since
all output channels are scheduled independently in that their
fairness and output order are preserved but their queues are
allocated from a shared resource pool (hence not fully iso-
lated from each other). MOPI-FQ is both space-efficient, re-
quiring ! ( |O| + ") storage where " is the total number of
queuedmessages, and time-efficient, supporting! (#$%( |O|))
enqueue and dequeue operations. We provide a detailed al-
gorithm specification and analysis in Appendix B.

5 Implementation and Evaluation
We have developed a prototype of DCC in C++. The non-
invasive architecture of DCC allows it to be retrofitted into
existing DNS software or implemented as a standalone pro-
gram that intercepts the original resolver’s DNS traffic. We
chose the latter approach because it allows DCC to be de-
ployed on the same host running the resolver or on a sep-
arate host as a middlebox. This requires a portable way for
DCC to track outgoing resolver queries and associate them
with the responsible clients.

We realize this query attribution function (Section 3.2.1)
by repurposing the EDNS Client Subnet option [17] to in-
clude the client’s IP address, source port, and DNS request
ID. In particular, we modify the BIND resolver to include
this EDNS option in every outgoing query generated by the
resolution of a client request, and let DCC strip off this option
when sending out queries to upstream DNS servers.

For traffic interception, we use libnetfilter_queue and
set up two separate queues for incoming and outgoing DNS
messages with the corresponding iptables rules. To avoid
an interception loop—the outgoing queries processed by DCC
are captured by libnetfilter_queue again—we use the
raw socket AF_PACKET to send out DCC queries, which comes
with the extra performance benefit of kernel bypassing.

All runtime state of DCC (see Table 1) can be efficiently
managed by hash tables and we realize them using the stan-
dard C++ std::unordered_map. For MOPI-FQ scheduling,
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(a) Attacker exploiting the WC query pattern.
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(b) Attacker and heavy client exploiting the NX query pattern.
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(c) Attacker exploiting the FF amplification pattern.

Figure 8. Client dynamics in different adversarial conges-
tion scenarios summarized in Table 2. The effective QPS is
measured by the ratio of successful responses (NOERROR or
NXDOMAIN), with the exception that it is calculated from
the actual queries received by our nameserver in case the at-
tacker uses FF amplification pattern. For each scenario, the
left and right subplots show results for a vanilla BIND re-
solver and a DCC-enabled resolver, respectively.

we implement the data structures specified in Appendix B
with customized memory management.

In addition to the main thread driven by libnetfilter,
our prototype uses a separate thread for MOPI-FQ dequeue
operations and another thread for periodically purging the
state of inactive clients or servers.

Evaluation Setup. With the prototype, we evaluate a DCC-
enabled resolver’s attack resilience and performance over-
heads. All our DNS servers and clients are deployed in the
DigitalOcean cloud using VMs with dedicated virtual CPUs
(two cores at 2.6GHz) and 8GB RAM. Our resolver and au-
thoritative nameservers run BIND 9.

For MOPI-FQ configuration, we set the capacity of each
output queue as 100, the maximum number of per-queue
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Strawman DCC

Table 2.A summary of client settings for evaluating DCC un-
der different adversarial congestion scenarios. The 2nd and
3rd columns indicate when a client starts and stops sending
queries in the 60-seconds measurement window. The last
column indicates the client’s query patterns (Figure 2) used
in the corresponding scenarios (Figure 8).

Client Start End QPS Query Pattern
Heavy 0 60 600 WC (a,b,c) or NX (b)
Medium 0 50 350 WC (a,b,c)
Light 20 60 150 WC (a,b,c)

Attacker 10 60 1100 or 50 WC (a), NX (b) or FF (c)

and whose message at the front has the earliest arrival time
among all queues, to be sent out.

We call the resulting scheduling algorithmMOPI-FQ,which
is short for multi-output pseudo-isolated fair queuing, since
all output channels are scheduled independently in that their
fairness and output order are preserved but their queues are
allocated from a shared resource pool (hence not fully iso-
lated from each other). MOPI-FQ is both space-efficient, re-
quiring ! ( |O| + ") storage where " is the total number of
queuedmessages, and time-efficient, supporting! (#$%( |O|))
enqueue and dequeue operations. We provide a detailed al-
gorithm specification and analysis in Appendix B.

5 Implementation and Evaluation
We have developed a prototype of DCC in C++. The non-
invasive architecture of DCC allows it to be retrofitted into
existing DNS software or implemented as a standalone pro-
gram that intercepts the original resolver’s DNS traffic. We
chose the latter approach because it allows DCC to be de-
ployed on the same host running the resolver or on a sep-
arate host as a middlebox. This requires a portable way for
DCC to track outgoing resolver queries and associate them
with the responsible clients.

We realize this query attribution function (Section 3.2.1)
by repurposing the EDNS Client Subnet option [17] to in-
clude the client’s IP address, source port, and DNS request
ID. In particular, we modify the BIND resolver to include
this EDNS option in every outgoing query generated by the
resolution of a client request, and let DCC strip off this option
when sending out queries to upstream DNS servers.

For traffic interception, we use libnetfilter_queue and
set up two separate queues for incoming and outgoing DNS
messages with the corresponding iptables rules. To avoid
an interception loop—the outgoing queries processed by DCC
are captured by libnetfilter_queue again—we use the
raw socket AF_PACKET to send out DCC queries, which comes
with the extra performance benefit of kernel bypassing.

All runtime state of DCC (see Table 1) can be efficiently
managed by hash tables and we realize them using the stan-
dard C++ std::unordered_map. For MOPI-FQ scheduling,
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(a) Attacker exploiting the WC query pattern.
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(b) Attacker and heavy client exploiting the NX query pattern.
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(c) Attacker exploiting the FF amplification pattern.

Figure 8. Client dynamics in different adversarial conges-
tion scenarios summarized in Table 2. The effective QPS is
measured by the ratio of successful responses (NOERROR or
NXDOMAIN), with the exception that it is calculated from
the actual queries received by our nameserver in case the at-
tacker uses FF amplification pattern. For each scenario, the
left and right subplots show results for a vanilla BIND re-
solver and a DCC-enabled resolver, respectively.

we implement the data structures specified in Appendix B
with customized memory management.

In addition to the main thread driven by libnetfilter,
our prototype uses a separate thread for MOPI-FQ dequeue
operations and another thread for periodically purging the
state of inactive clients or servers.

Evaluation Setup. With the prototype, we evaluate a DCC-
enabled resolver’s attack resilience and performance over-
heads. All our DNS servers and clients are deployed in the
DigitalOcean cloud using VMs with dedicated virtual CPUs
(two cores at 2.6GHz) and 8GB RAM. Our resolver and au-
thoritative nameservers run BIND 9.

For MOPI-FQ configuration, we set the capacity of each
output queue as 100, the maximum number of per-queue
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Table 2.A summary of client settings for evaluating DCC un-
der different adversarial congestion scenarios. The 2nd and
3rd columns indicate when a client starts and stops sending
queries in the 60-seconds measurement window. The last
column indicates the client’s query patterns (Figure 2) used
in the corresponding scenarios (Figure 8).

Client Start End QPS Query Pattern
Heavy 0 60 600 WC (a,b,c) or NX (b)
Medium 0 50 350 WC (a,b,c)
Light 20 60 150 WC (a,b,c)

Attacker 10 60 1100 or 50 WC (a), NX (b) or FF (c)

and whose message at the front has the earliest arrival time
among all queues, to be sent out.

We call the resulting scheduling algorithmMOPI-FQ,which
is short for multi-output pseudo-isolated fair queuing, since
all output channels are scheduled independently in that their
fairness and output order are preserved but their queues are
allocated from a shared resource pool (hence not fully iso-
lated from each other). MOPI-FQ is both space-efficient, re-
quiring ! ( |O| + ") storage where " is the total number of
queuedmessages, and time-efficient, supporting! (#$%( |O|))
enqueue and dequeue operations. We provide a detailed al-
gorithm specification and analysis in Appendix B.

5 Implementation and Evaluation
We have developed a prototype of DCC in C++. The non-
invasive architecture of DCC allows it to be retrofitted into
existing DNS software or implemented as a standalone pro-
gram that intercepts the original resolver’s DNS traffic. We
chose the latter approach because it allows DCC to be de-
ployed on the same host running the resolver or on a sep-
arate host as a middlebox. This requires a portable way for
DCC to track outgoing resolver queries and associate them
with the responsible clients.

We realize this query attribution function (Section 3.2.1)
by repurposing the EDNS Client Subnet option [17] to in-
clude the client’s IP address, source port, and DNS request
ID. In particular, we modify the BIND resolver to include
this EDNS option in every outgoing query generated by the
resolution of a client request, and let DCC strip off this option
when sending out queries to upstream DNS servers.

For traffic interception, we use libnetfilter_queue and
set up two separate queues for incoming and outgoing DNS
messages with the corresponding iptables rules. To avoid
an interception loop—the outgoing queries processed by DCC
are captured by libnetfilter_queue again—we use the
raw socket AF_PACKET to send out DCC queries, which comes
with the extra performance benefit of kernel bypassing.

All runtime state of DCC (see Table 1) can be efficiently
managed by hash tables and we realize them using the stan-
dard C++ std::unordered_map. For MOPI-FQ scheduling,
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(a) Attacker exploiting the WC query pattern.
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(b) Attacker and heavy client exploiting the NX query pattern.
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(c) Attacker exploiting the FF amplification pattern.

Figure 8. Client dynamics in different adversarial conges-
tion scenarios summarized in Table 2. The effective QPS is
measured by the ratio of successful responses (NOERROR or
NXDOMAIN), with the exception that it is calculated from
the actual queries received by our nameserver in case the at-
tacker uses FF amplification pattern. For each scenario, the
left and right subplots show results for a vanilla BIND re-
solver and a DCC-enabled resolver, respectively.

we implement the data structures specified in Appendix B
with customized memory management.

In addition to the main thread driven by libnetfilter,
our prototype uses a separate thread for MOPI-FQ dequeue
operations and another thread for periodically purging the
state of inactive clients or servers.

Evaluation Setup. With the prototype, we evaluate a DCC-
enabled resolver’s attack resilience and performance over-
heads. All our DNS servers and clients are deployed in the
DigitalOcean cloud using VMs with dedicated virtual CPUs
(two cores at 2.6GHz) and 8GB RAM. Our resolver and au-
thoritative nameservers run BIND 9.

For MOPI-FQ configuration, we set the capacity of each
output queue as 100, the maximum number of per-queue
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DoS vulnerabilities are pervasive in DNS

Availability dilemma: rate limiting as countermeasure and enabler of DoS

DCC provides a principled and generic defense framework

Thank you!  
Questions?

Contact: huayi.duan@inf.ethz.ch Check paper for details

mailto:huayi.duan@inf.ethz.ch

