

 DNS Congestion Control in Adversarial Settings

Huayi Duan, Jihye Kim, Marc Wyss, and Adrian Perrig

November 6, 2024
SOSP’24, Austin,TX, USA

Network Security Group
Department of Computer Science

/ 32

Fast-moving DNS security landscape

2

Attacker

DNS as tool for DoS

- Reflection

VictimDNS servers

/ 32

Fast-moving DNS security landscape

3

Recursive
ResolverAttacker

DNS as tool for DoS

- Reflection

Authoritative
Nameserver

DNS as target for DoS

- Pseudo-Random SubDomain

/ 32

Fast-moving DNS security landscape

4

Recursive
ResolverAttacker

DNS as tool for DoS

- Reflection

- DNSBomb, SP’24
- TsuKing, CCS’23
- CAMP, SEC’24
- …

Authoritative
Nameserver

DNS as target for DoS

- Pseudo-Random SubDomain

- NXNSAttack, SEC’20
- TsuNAME, IMC’21
- CAMP, SEC’24
- …

Victim

Large
amplification effect

/ 32

Rate limiting as a universal defense

5

ingress egress

Recursive
Resolver

Client
Authoritative
Nameserver

Authoritative
NameserverClient

Upper bound individual entity’s impact

upstreamdownstream

/ 32

Rate limiting as a universal defense

6

Recursive
Resolver

Client
Authoritative
Nameserver

Authoritative
NameserverClient

Client ingress

Upper bound individual entity’s impact

ingress egress

upstreamdownstream

/ 32

Rate limiting as a universal defense that expands DoS attack surface!

7

Recursive
Resolver

Client
Authoritative
Nameserver

Authoritative
NameserverClient

Result in logical inter-server channel with limited capacity

200K

300K 1500

Client

500

500

200K

/ 32

Adversarial congestion on inter-server channels

8

Attacker
Recursive
Resolver

Client

Authoritative
Nameserver

www.victim-domain? —> TIMEOUT/SERVFAIL

t3r.victim-domain? —> NXDOMAIN
dv7.victim-domain? —> NXDOMAIN
. . .

www A 127.0.0.1
victim-domain

Can disrupt access to victim domain via shared resolver

*.wc A 127.0.0.2
1e4.wc.victim-domain? —> NOERROR
ji0.wc.victim-domain? —> NOERROR
. . .

/ 32

Adversarial congestion on inter-server channels

9

www.victim-domain? —> TIMEOUT/SERVFAIL

Attacker
Recursive
Resolver

Client

Authoritative
Nameserver

ff.attacker-domain?
ff NS ns1
 NS ns2
 NS ns3
 . . .
ns1 NS ns1-1
 NS ns1-2
 NS ns1-3
 . . .
ns2 NS ns2-1
 . . .

attacker-domain

89% of top-100K domains hosted by 3rd-party DNS [Kashaf et al., IMC’20]

Can disrupt access to victim domain via shared resolver
Can leverage amplification, esp. when the attacker can access victim nameserver

www A 127.0.0.1
victim-domain

*.wc A 127.0.0.2

/ 32

Adversarial congestion on inter-server channels

10

Can disrupt access to victim domain via shared resolver
Can leverage amplification, esp. when the attacker can access victim nameserver

Attacker
Recursive
Resolver

Client

Authoritative
Nameserver

www.any-domain? —> TIMEOUT/SERVFAIL

x.attacker-domain? —> NOERROR
y.attacker-domain? -> NOERROR
. . .

Forwarder

x A 127.0.0.3
y A 127.0.0.4
. . .

attacker-domain

Can disrupt access to all domains via shared forwarder

>90% open resolvers are forwarders [Nawrocki et al., CoNEXT’21]

/ 32

Adversarial congestion on inter-server channels

11

Recursive
Resolver

Forwarder

Client Client

Recursive
Resolver

ClientForwarder

Client

Authoritative
Nameserver

Authoritative
Nameserver

Authoritative
NameserverForwarder

Client

Is an inherent vulnerability in DNS architecture!

/ 32

Real-world risk of adversarial congestion is high

12

100Ks of authoritative nameservers with IRL <= 500 [Deccio et al., 2019]

�,��� ���,��� ���,���� ����,���� �#��')�!#
��# ��$�������&*�'!�(�%�'�(��$#��

�

�

��

�

�

	�
�$

*#
)�$

��'
�(
$"
+�
'(������

������
������
������

40 resolvers with IRL <= 1500 (default by 8.8.8.8)
Generally higher ERL, but more uncertain cases (best-effort estimates)

Ingress/egress rate limiting (RL) measurement on 45 open resolvers

/ 32

Design intuitions for mitigation

13

Congestion control at downstream
Client

ANSClient Resolver

Attacker

/ 32

Design intuitions for mitigation

14

Per-client egress query RL?

Congestion control at downstream
Per-client ERL: 10

Client

ANSClient

Channel capacity: 100

10

Resolver

Attacker
150

/ 32

Design intuitions for mitigation

15

Per-client egress query RL?

- Not work-conserving

Congestion control at downstream
Per-client ERL: 10

150

Client

ANSClient

Channel capacity: 100

5
15

10

Resolver

30

Attacker

/ 32

Design intuitions for mitigation

16

Per-client egress query RL?

- Not work-conserving

- No guaranteed access

Congestion control at downstream
Per-client ERL: 10

150

Client
9×

ANSClient
9×

Channel capacity: 100

5
x

100—x
Resolver

30

Attacker

/ 32

Design intuitions for mitigation

17

Per-client egress query RL?

- Not work-conserving

- No guaranteed access

Congestion control at downstream

150

Detect and police suspicious sender?

Client

ANSClient

Channel capacity: 100

5
35

Resolver

30

Attacker

/ 32

Design intuitions for mitigation

18

Per-client egress query RL?

- Not work-conserving

- No guaranteed access

Congestion control at downstream
Client

ANS

Attacker
5×

Client

Channel capacity: 100

5

30

x

100—x

Detect and police suspicious sender?

- Attacker can mimic benign clients

Resolver

30

/ 32

Fair queuing (FQ) as a principled solution

19

Worst-case guarantees of fair access
Client

ANS

Client

Client Resolver

1

2

3

1 1

2 2 2

3

/ 32

Fair queuing (FQ) as a principled solution

20

Why unique in DNS?

- No 1:1 relation between in & out msg

Worst-case guarantees of fair access
Client

ANS

Client

Client Resolver

1

2

3

1 1 1

3

/ 32

Fair queuing (FQ) as a principled solution

21

Why unique in DNS?

- No 1:1 relation between in & out msg

- Many distinct output channels

Worst-case guarantees of fair access
Client

ANS

Client

Client Resolver

ANS

ANS

/ 32

Fair queuing (FQ) as a principled solution

22

Why unique in DNS?

- No 1:1 relation between in & out msg

- Many distinct output channels

- Fairness for individual channels

Worst-case guarantees of fair access
Client

ANS

Client

Client Resolver

ANS

ANS

/ 32

Fair queuing (FQ) as a principled solution

23

Client

ANS

Client

Client Resolver
Why unique in DNS?

- No 1:1 relation between in & out msg

- Many distinct output channels

- Fairness for individual channels

Worst-case guarantees of fair access ANS

ANS

Different from multi-server/queue/interface/resource FQ

/ 32

MOPI-FQ (Multi-Output Pseudo-Isolated Fair Queuing)

24

Simplified bit-by-bit round-robin per output channel —> max-min fairness

Queue for
channel A 213122

Pointers to

round tails

A

TT+1T+2 1 T+1
2 T+2
3 T

Latest rounds

of clients 1—3

/ 32

MOPI-FQ (Multi-Output Pseudo-Isolated Fair Queuing)

25

Simplified bit-by-bit round-robin per output channel —> max-min fairness

1323121 B

Order-preserving scheduling across channels —> confine queuing delay

213122 A

2333 C

Scheduling in two directions
based on query arrival time

0.5

0.8

1.4

1.1

/ 32

MOPI-FQ (Multi-Output Pseudo-Isolated Fair Queuing)

26

Simplified bit-by-bit round-robin per output channel —> max-min fairness

Order-preserving scheduling across channels —> confine queuing delay

Dynamic allocation of queues from shared pool —> minimise space overhead

HHH… …

Space complexity: "(n + q) Time complexity: "(log(n))
: #output channels

: overall queue depth

n
q

/ 32

DCC (DNS Congestion Control) overview

27

Query

Answer

I/O
 Shim

 MOPI-FQ
 Scheduling

I/O
 S

hi
m

Response

Request

Original
Resolver Client

Upstream
Server

DCC-enabled resolver

/ 32

DCC (DNS Congestion Control) overview

28

Pre-queue Policing

Anomaly Monitoring

Query

Answer

I/O
 Shim

 MOPI-FQ
 Scheduling

I/O
 S

hi
m

Response

Request

Original
Resolver Client

Upstream
Server

DCC-enabled resolver

Signals generated on special events and encoded as EDNS option in response

/ 32

DCC signalling

29

In general, blindly policing a client can cause collateral damage

—> another architectural DoS vector

Client

Resolver

Attacker

Forwarder ANS

/ 32

DCC signalling

30

DCC-enabled
Resolver

DCC-enabled
Forwarder

Client

Attacker ANS

Client

Signals propagated backwards to enable fine-grained control

/ 32

Evaluation of DCC prototype

31

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

Strawman DCC

Table 2.A summary of client settings for evaluating DCC un-
der different adversarial congestion scenarios. The 2nd and
3rd columns indicate when a client starts and stops sending
queries in the 60-seconds measurement window. The last
column indicates the client’s query patterns (Figure 2) used
in the corresponding scenarios (Figure 8).

Client Start End QPS Query Pattern
Heavy 0 60 600 WC (a,b,c) or NX (b)
Medium 0 50 350 WC (a,b,c)
Light 20 60 150 WC (a,b,c)

Attacker 10 60 1100 or 50 WC (a), NX (b) or FF (c)

and whose message at the front has the earliest arrival time
among all queues, to be sent out.

We call the resulting scheduling algorithmMOPI-FQ,which
is short for multi-output pseudo-isolated fair queuing, since
all output channels are scheduled independently in that their
fairness and output order are preserved but their queues are
allocated from a shared resource pool (hence not fully iso-
lated from each other). MOPI-FQ is both space-efficient, re-
quiring ! (|O| + ") storage where " is the total number of
queuedmessages, and time-efficient, supporting! (#$%(|O|))
enqueue and dequeue operations. We provide a detailed al-
gorithm specification and analysis in Appendix B.

5 Implementation and Evaluation
We have developed a prototype of DCC in C++. The non-
invasive architecture of DCC allows it to be retrofitted into
existing DNS software or implemented as a standalone pro-
gram that intercepts the original resolver’s DNS traffic. We
chose the latter approach because it allows DCC to be de-
ployed on the same host running the resolver or on a sep-
arate host as a middlebox. This requires a portable way for
DCC to track outgoing resolver queries and associate them
with the responsible clients.

We realize this query attribution function (Section 3.2.1)
by repurposing the EDNS Client Subnet option [17] to in-
clude the client’s IP address, source port, and DNS request
ID. In particular, we modify the BIND resolver to include
this EDNS option in every outgoing query generated by the
resolution of a client request, and let DCC strip off this option
when sending out queries to upstream DNS servers.

For traffic interception, we use libnetfilter_queue and
set up two separate queues for incoming and outgoing DNS
messages with the corresponding iptables rules. To avoid
an interception loop—the outgoing queries processed by DCC
are captured by libnetfilter_queue again—we use the
raw socket AF_PACKET to send out DCC queries, which comes
with the extra performance benefit of kernel bypassing.

All runtime state of DCC (see Table 1) can be efficiently
managed by hash tables and we realize them using the stan-
dard C++ std::unordered_map. For MOPI-FQ scheduling,

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(a) Attacker exploiting the WC query pattern.

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(b) Attacker and heavy client exploiting the NX query pattern.

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(c) Attacker exploiting the FF amplification pattern.

Figure 8. Client dynamics in different adversarial conges-
tion scenarios summarized in Table 2. The effective QPS is
measured by the ratio of successful responses (NOERROR or
NXDOMAIN), with the exception that it is calculated from
the actual queries received by our nameserver in case the at-
tacker uses FF amplification pattern. For each scenario, the
left and right subplots show results for a vanilla BIND re-
solver and a DCC-enabled resolver, respectively.

we implement the data structures specified in Appendix B
with customized memory management.

In addition to the main thread driven by libnetfilter,
our prototype uses a separate thread for MOPI-FQ dequeue
operations and another thread for periodically purging the
state of inactive clients or servers.

Evaluation Setup. With the prototype, we evaluate a DCC-
enabled resolver’s attack resilience and performance over-
heads. All our DNS servers and clients are deployed in the
DigitalOcean cloud using VMs with dedicated virtual CPUs
(two cores at 2.6GHz) and 8GB RAM. Our resolver and au-
thoritative nameservers run BIND 9.

For MOPI-FQ configuration, we set the capacity of each
output queue as 100, the maximum number of per-queue

10

WC

50

Query Pattern

WC
WC

Req Rate

FF

Strawman or
DCC-enabled

Resolver
ANS

1000Medium

Light

Attacker

Heavy

Strawman or

(BIND 9)
(BIND 9)

/ 32

Evaluation of DCC prototype

31

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

Strawman DCC

Table 2.A summary of client settings for evaluating DCC un-
der different adversarial congestion scenarios. The 2nd and
3rd columns indicate when a client starts and stops sending
queries in the 60-seconds measurement window. The last
column indicates the client’s query patterns (Figure 2) used
in the corresponding scenarios (Figure 8).

Client Start End QPS Query Pattern
Heavy 0 60 600 WC (a,b,c) or NX (b)
Medium 0 50 350 WC (a,b,c)
Light 20 60 150 WC (a,b,c)

Attacker 10 60 1100 or 50 WC (a), NX (b) or FF (c)

and whose message at the front has the earliest arrival time
among all queues, to be sent out.

We call the resulting scheduling algorithmMOPI-FQ,which
is short for multi-output pseudo-isolated fair queuing, since
all output channels are scheduled independently in that their
fairness and output order are preserved but their queues are
allocated from a shared resource pool (hence not fully iso-
lated from each other). MOPI-FQ is both space-efficient, re-
quiring ! (|O| + ") storage where " is the total number of
queuedmessages, and time-efficient, supporting! (#$%(|O|))
enqueue and dequeue operations. We provide a detailed al-
gorithm specification and analysis in Appendix B.

5 Implementation and Evaluation
We have developed a prototype of DCC in C++. The non-
invasive architecture of DCC allows it to be retrofitted into
existing DNS software or implemented as a standalone pro-
gram that intercepts the original resolver’s DNS traffic. We
chose the latter approach because it allows DCC to be de-
ployed on the same host running the resolver or on a sep-
arate host as a middlebox. This requires a portable way for
DCC to track outgoing resolver queries and associate them
with the responsible clients.

We realize this query attribution function (Section 3.2.1)
by repurposing the EDNS Client Subnet option [17] to in-
clude the client’s IP address, source port, and DNS request
ID. In particular, we modify the BIND resolver to include
this EDNS option in every outgoing query generated by the
resolution of a client request, and let DCC strip off this option
when sending out queries to upstream DNS servers.

For traffic interception, we use libnetfilter_queue and
set up two separate queues for incoming and outgoing DNS
messages with the corresponding iptables rules. To avoid
an interception loop—the outgoing queries processed by DCC
are captured by libnetfilter_queue again—we use the
raw socket AF_PACKET to send out DCC queries, which comes
with the extra performance benefit of kernel bypassing.

All runtime state of DCC (see Table 1) can be efficiently
managed by hash tables and we realize them using the stan-
dard C++ std::unordered_map. For MOPI-FQ scheduling,

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(a) Attacker exploiting the WC query pattern.

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(b) Attacker and heavy client exploiting the NX query pattern.

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(c) Attacker exploiting the FF amplification pattern.

Figure 8. Client dynamics in different adversarial conges-
tion scenarios summarized in Table 2. The effective QPS is
measured by the ratio of successful responses (NOERROR or
NXDOMAIN), with the exception that it is calculated from
the actual queries received by our nameserver in case the at-
tacker uses FF amplification pattern. For each scenario, the
left and right subplots show results for a vanilla BIND re-
solver and a DCC-enabled resolver, respectively.

we implement the data structures specified in Appendix B
with customized memory management.

In addition to the main thread driven by libnetfilter,
our prototype uses a separate thread for MOPI-FQ dequeue
operations and another thread for periodically purging the
state of inactive clients or servers.

Evaluation Setup. With the prototype, we evaluate a DCC-
enabled resolver’s attack resilience and performance over-
heads. All our DNS servers and clients are deployed in the
DigitalOcean cloud using VMs with dedicated virtual CPUs
(two cores at 2.6GHz) and 8GB RAM. Our resolver and au-
thoritative nameservers run BIND 9.

For MOPI-FQ configuration, we set the capacity of each
output queue as 100, the maximum number of per-queue

10

WC

50

Query Pattern

WC
WC

Req Rate

FF

Strawman or
DCC-enabled

Resolver
ANS

1000Medium

Light

Attacker

Heavy

Strawman or

(BIND 9)
(BIND 9)

Attacker joins

/ 32

Evaluation of DCC prototype

31

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

Strawman DCC

Table 2.A summary of client settings for evaluating DCC un-
der different adversarial congestion scenarios. The 2nd and
3rd columns indicate when a client starts and stops sending
queries in the 60-seconds measurement window. The last
column indicates the client’s query patterns (Figure 2) used
in the corresponding scenarios (Figure 8).

Client Start End QPS Query Pattern
Heavy 0 60 600 WC (a,b,c) or NX (b)
Medium 0 50 350 WC (a,b,c)
Light 20 60 150 WC (a,b,c)

Attacker 10 60 1100 or 50 WC (a), NX (b) or FF (c)

and whose message at the front has the earliest arrival time
among all queues, to be sent out.

We call the resulting scheduling algorithmMOPI-FQ,which
is short for multi-output pseudo-isolated fair queuing, since
all output channels are scheduled independently in that their
fairness and output order are preserved but their queues are
allocated from a shared resource pool (hence not fully iso-
lated from each other). MOPI-FQ is both space-efficient, re-
quiring ! (|O| + ") storage where " is the total number of
queuedmessages, and time-efficient, supporting! (#$%(|O|))
enqueue and dequeue operations. We provide a detailed al-
gorithm specification and analysis in Appendix B.

5 Implementation and Evaluation
We have developed a prototype of DCC in C++. The non-
invasive architecture of DCC allows it to be retrofitted into
existing DNS software or implemented as a standalone pro-
gram that intercepts the original resolver’s DNS traffic. We
chose the latter approach because it allows DCC to be de-
ployed on the same host running the resolver or on a sep-
arate host as a middlebox. This requires a portable way for
DCC to track outgoing resolver queries and associate them
with the responsible clients.

We realize this query attribution function (Section 3.2.1)
by repurposing the EDNS Client Subnet option [17] to in-
clude the client’s IP address, source port, and DNS request
ID. In particular, we modify the BIND resolver to include
this EDNS option in every outgoing query generated by the
resolution of a client request, and let DCC strip off this option
when sending out queries to upstream DNS servers.

For traffic interception, we use libnetfilter_queue and
set up two separate queues for incoming and outgoing DNS
messages with the corresponding iptables rules. To avoid
an interception loop—the outgoing queries processed by DCC
are captured by libnetfilter_queue again—we use the
raw socket AF_PACKET to send out DCC queries, which comes
with the extra performance benefit of kernel bypassing.

All runtime state of DCC (see Table 1) can be efficiently
managed by hash tables and we realize them using the stan-
dard C++ std::unordered_map. For MOPI-FQ scheduling,

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(a) Attacker exploiting the WC query pattern.

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(b) Attacker and heavy client exploiting the NX query pattern.

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(c) Attacker exploiting the FF amplification pattern.

Figure 8. Client dynamics in different adversarial conges-
tion scenarios summarized in Table 2. The effective QPS is
measured by the ratio of successful responses (NOERROR or
NXDOMAIN), with the exception that it is calculated from
the actual queries received by our nameserver in case the at-
tacker uses FF amplification pattern. For each scenario, the
left and right subplots show results for a vanilla BIND re-
solver and a DCC-enabled resolver, respectively.

we implement the data structures specified in Appendix B
with customized memory management.

In addition to the main thread driven by libnetfilter,
our prototype uses a separate thread for MOPI-FQ dequeue
operations and another thread for periodically purging the
state of inactive clients or servers.

Evaluation Setup. With the prototype, we evaluate a DCC-
enabled resolver’s attack resilience and performance over-
heads. All our DNS servers and clients are deployed in the
DigitalOcean cloud using VMs with dedicated virtual CPUs
(two cores at 2.6GHz) and 8GB RAM. Our resolver and au-
thoritative nameservers run BIND 9.

For MOPI-FQ configuration, we set the capacity of each
output queue as 100, the maximum number of per-queue

10

WC

50

Query Pattern

WC
WC

Req Rate

FF

Strawman or
DCC-enabled

Resolver
ANS

1000Medium

Light

Attacker

Heavy

Strawman or

(BIND 9)
(BIND 9)

Light client joins

/ 32

Evaluation of DCC prototype

31

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

Strawman DCC

Table 2.A summary of client settings for evaluating DCC un-
der different adversarial congestion scenarios. The 2nd and
3rd columns indicate when a client starts and stops sending
queries in the 60-seconds measurement window. The last
column indicates the client’s query patterns (Figure 2) used
in the corresponding scenarios (Figure 8).

Client Start End QPS Query Pattern
Heavy 0 60 600 WC (a,b,c) or NX (b)
Medium 0 50 350 WC (a,b,c)
Light 20 60 150 WC (a,b,c)

Attacker 10 60 1100 or 50 WC (a), NX (b) or FF (c)

and whose message at the front has the earliest arrival time
among all queues, to be sent out.

We call the resulting scheduling algorithmMOPI-FQ,which
is short for multi-output pseudo-isolated fair queuing, since
all output channels are scheduled independently in that their
fairness and output order are preserved but their queues are
allocated from a shared resource pool (hence not fully iso-
lated from each other). MOPI-FQ is both space-efficient, re-
quiring ! (|O| + ") storage where " is the total number of
queuedmessages, and time-efficient, supporting! (#$%(|O|))
enqueue and dequeue operations. We provide a detailed al-
gorithm specification and analysis in Appendix B.

5 Implementation and Evaluation
We have developed a prototype of DCC in C++. The non-
invasive architecture of DCC allows it to be retrofitted into
existing DNS software or implemented as a standalone pro-
gram that intercepts the original resolver’s DNS traffic. We
chose the latter approach because it allows DCC to be de-
ployed on the same host running the resolver or on a sep-
arate host as a middlebox. This requires a portable way for
DCC to track outgoing resolver queries and associate them
with the responsible clients.

We realize this query attribution function (Section 3.2.1)
by repurposing the EDNS Client Subnet option [17] to in-
clude the client’s IP address, source port, and DNS request
ID. In particular, we modify the BIND resolver to include
this EDNS option in every outgoing query generated by the
resolution of a client request, and let DCC strip off this option
when sending out queries to upstream DNS servers.

For traffic interception, we use libnetfilter_queue and
set up two separate queues for incoming and outgoing DNS
messages with the corresponding iptables rules. To avoid
an interception loop—the outgoing queries processed by DCC
are captured by libnetfilter_queue again—we use the
raw socket AF_PACKET to send out DCC queries, which comes
with the extra performance benefit of kernel bypassing.

All runtime state of DCC (see Table 1) can be efficiently
managed by hash tables and we realize them using the stan-
dard C++ std::unordered_map. For MOPI-FQ scheduling,

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(a) Attacker exploiting the WC query pattern.

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(b) Attacker and heavy client exploiting the NX query pattern.

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(c) Attacker exploiting the FF amplification pattern.

Figure 8. Client dynamics in different adversarial conges-
tion scenarios summarized in Table 2. The effective QPS is
measured by the ratio of successful responses (NOERROR or
NXDOMAIN), with the exception that it is calculated from
the actual queries received by our nameserver in case the at-
tacker uses FF amplification pattern. For each scenario, the
left and right subplots show results for a vanilla BIND re-
solver and a DCC-enabled resolver, respectively.

we implement the data structures specified in Appendix B
with customized memory management.

In addition to the main thread driven by libnetfilter,
our prototype uses a separate thread for MOPI-FQ dequeue
operations and another thread for periodically purging the
state of inactive clients or servers.

Evaluation Setup. With the prototype, we evaluate a DCC-
enabled resolver’s attack resilience and performance over-
heads. All our DNS servers and clients are deployed in the
DigitalOcean cloud using VMs with dedicated virtual CPUs
(two cores at 2.6GHz) and 8GB RAM. Our resolver and au-
thoritative nameservers run BIND 9.

For MOPI-FQ configuration, we set the capacity of each
output queue as 100, the maximum number of per-queue

10

WC

50

Query Pattern

WC
WC

Req Rate

FF

Strawman or
DCC-enabled

Resolver
ANS

1000Medium

Light

Attacker

Heavy

Strawman or

(BIND 9)
(BIND 9)

Attacker blocked

/ 32

Evaluation of DCC prototype

31

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

Strawman DCC

Table 2.A summary of client settings for evaluating DCC un-
der different adversarial congestion scenarios. The 2nd and
3rd columns indicate when a client starts and stops sending
queries in the 60-seconds measurement window. The last
column indicates the client’s query patterns (Figure 2) used
in the corresponding scenarios (Figure 8).

Client Start End QPS Query Pattern
Heavy 0 60 600 WC (a,b,c) or NX (b)
Medium 0 50 350 WC (a,b,c)
Light 20 60 150 WC (a,b,c)

Attacker 10 60 1100 or 50 WC (a), NX (b) or FF (c)

and whose message at the front has the earliest arrival time
among all queues, to be sent out.

We call the resulting scheduling algorithmMOPI-FQ,which
is short for multi-output pseudo-isolated fair queuing, since
all output channels are scheduled independently in that their
fairness and output order are preserved but their queues are
allocated from a shared resource pool (hence not fully iso-
lated from each other). MOPI-FQ is both space-efficient, re-
quiring ! (|O| + ") storage where " is the total number of
queuedmessages, and time-efficient, supporting! (#$%(|O|))
enqueue and dequeue operations. We provide a detailed al-
gorithm specification and analysis in Appendix B.

5 Implementation and Evaluation
We have developed a prototype of DCC in C++. The non-
invasive architecture of DCC allows it to be retrofitted into
existing DNS software or implemented as a standalone pro-
gram that intercepts the original resolver’s DNS traffic. We
chose the latter approach because it allows DCC to be de-
ployed on the same host running the resolver or on a sep-
arate host as a middlebox. This requires a portable way for
DCC to track outgoing resolver queries and associate them
with the responsible clients.

We realize this query attribution function (Section 3.2.1)
by repurposing the EDNS Client Subnet option [17] to in-
clude the client’s IP address, source port, and DNS request
ID. In particular, we modify the BIND resolver to include
this EDNS option in every outgoing query generated by the
resolution of a client request, and let DCC strip off this option
when sending out queries to upstream DNS servers.

For traffic interception, we use libnetfilter_queue and
set up two separate queues for incoming and outgoing DNS
messages with the corresponding iptables rules. To avoid
an interception loop—the outgoing queries processed by DCC
are captured by libnetfilter_queue again—we use the
raw socket AF_PACKET to send out DCC queries, which comes
with the extra performance benefit of kernel bypassing.

All runtime state of DCC (see Table 1) can be efficiently
managed by hash tables and we realize them using the stan-
dard C++ std::unordered_map. For MOPI-FQ scheduling,

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(a) Attacker exploiting the WC query pattern.

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(b) Attacker and heavy client exploiting the NX query pattern.

� �� 	�
� �� �� �
�

���

	��

��

���

���

��

���

���

���

����

�
��

�
�
)
 +

�
��

�
�

� �� 	�
� �� �� �
��� ��	 ��� �� ��� ���

�"�&(���) #���(��%$�(�

���

��	

���

��

���

���

�))��!�' ���+, ��� *# � ��)

(c) Attacker exploiting the FF amplification pattern.

Figure 8. Client dynamics in different adversarial conges-
tion scenarios summarized in Table 2. The effective QPS is
measured by the ratio of successful responses (NOERROR or
NXDOMAIN), with the exception that it is calculated from
the actual queries received by our nameserver in case the at-
tacker uses FF amplification pattern. For each scenario, the
left and right subplots show results for a vanilla BIND re-
solver and a DCC-enabled resolver, respectively.

we implement the data structures specified in Appendix B
with customized memory management.

In addition to the main thread driven by libnetfilter,
our prototype uses a separate thread for MOPI-FQ dequeue
operations and another thread for periodically purging the
state of inactive clients or servers.

Evaluation Setup. With the prototype, we evaluate a DCC-
enabled resolver’s attack resilience and performance over-
heads. All our DNS servers and clients are deployed in the
DigitalOcean cloud using VMs with dedicated virtual CPUs
(two cores at 2.6GHz) and 8GB RAM. Our resolver and au-
thoritative nameservers run BIND 9.

For MOPI-FQ configuration, we set the capacity of each
output queue as 100, the maximum number of per-queue

10

WC

50

Query Pattern

WC
WC

Req Rate

FF

Strawman or
DCC-enabled

Resolver
ANS

1000Medium

Light

Attacker

Heavy

Strawman or

(BIND 9)
(BIND 9)

Fairness maintained

/ 32

Concluding remarks

32

DoS vulnerabilities are pervasive in DNS

Availability dilemma: rate limiting as countermeasure and enabler of DoS

DCC provides a principled and generic defense framework

Thank you!
Questions?

Contact: huayi.duan@inf.ethz.ch Check paper for details

mailto:huayi.duan@inf.ethz.ch

