

RHINE: Robust and High-performance Internet Naming with E2E Authenticity

Huayi Duan, Rubén Fischer, Jie Lou, Si Liu, David Basin, and Adrian Perrig

NSDI 2023, Boston

Domain Name System (DNS) — Internet's phonebook and beyond

Network Security Group Department of Computer Science

18.221.195.49

Versatile system supports

- load balancing
- content delivery
- email exchange (MX)
- service discovery (SRV)
- customised apps (TXT)
- ...

DNS in a fast-moving threat landscape

DNS in a fast-moving threat landscape

Dai et al. From IP to Transport and Beyond: Cross-Layer Attacks Against Applications. SIGCOMM'21 Dai et al. The Hijackers Guide To The Galaxy: Off-Path Taking Over Internet Resources. SEC'21

Network Security Group Department of Computer Science

DNS attacks affect the entire Internet

DNS security today — Secure channel

DNS security today — Secure channel limitation

Channel security \Rightarrow E2E data authenticity

Network Security Group Department of Computer Science

DNS security today — Secure channel limitation

On-path data manipulation exists

- **ISPs** [Randall et al.; IMC'21] -----
- Open resolvers [Jeman et al.; DSN'19] -

Network Security Group Department of Computer Science

DNS security today — DNSSEC

Offline data signing

Data authentication with chain of trust

Network Security Group Department of Computer Science

Network Security Group Department of Computer Science

* http://rick.eng.br/dnssecstat/, retrieved on April 12, 2023

DNS security today — DNSSEC limitations

No E2E guarantee in practice

DNS security today — DNSSEC limitations

Complex and fragile

*DNSSEC Outages and Validation Failures, https://ianix.com/pub/dnssec-outages.html

- [1455504478] unbound[10562:0] info: validation failure <geekpac.com. A IN> no keys have a DS with algorithm DSA from 216.218.132.2 for key geekpac.com. while building chain of trust
- [1461807469] unbound[9788:0] info: validation failure <slim-shirt.com. A IN>: no keys have a DS with algorithm DSA-NSEC3-SHA1 from 149.210.161.148 for key slim-shirt.com. while building chain of trust
- [1416399790] unbound[6665:0] info: validation failure <www.root-dnssec.org. A IN>: no keys have a DS with algorithm RSASHA1 from 199.43.133.53 for key
- [1532015786] unbound[52909:0] info: validation failure <www.bsws.de. A IN>: signer name mismatches key name from 80.86.183.57 for DS www.bsws.de.
- [1390966241] unbound[6793:0] info: validation failure <uofk.edu. NS IN>: DS hash mismatches key from 41.67.20.4 for key uofk.edu. while building chain of
- [1405129714] unbound[32474:0] info: validation failure <viagrakopen.net. NS IN>: DNSKEY RRset did not match DS RRset by name from 93.180.70.53 and

- .xn--y9a3aq Armenia (November 2015)
- .zm Zambia (December 2015)

- .hr Croatia (October 2015)
- .mil US Military (December 2015)
- .ntt Japanese gTLD (September 2017)
- .bw Botswana (October 2017)
- .lidl new gTLD (December 2017)
- .schwarz new gTLD (December 2017)
- .tm Turkmenistan (September 2022)
- .na Namibia (October 2022)
- .xn--qxam Greek IDN (November 2022)
- .mx Mexico (April 2023)

- internetsociety.org, isoc.org (June 2015)
- af.mil (June 2015)
- nasa.gov (August 2015)
- NICMX (August 2015)
- abuse.ch (February 2017)
- internetsociety.org (February 2017)
- danyork.com (February 2017)
- Godaddy (domaincontrol.com) DNS (Marc)
- nist.gov (June 2021)
- lequipe.fr (June 2021)
- slack.com (September 2021)
- europa.eu (December 2021)

Rethinking authentication in hierarchical naming system

Desiderata:

E2E data authentication Simple and robust Backward compatible

Rethinking authentication in hierarchical naming system

Observation:

Authentication of **zone delegation** vs. **zone data**

New architecture with opportunities

Simpler data authentication

Easier client adoption

No child-parent sync

But also problems — better or worse security?

Malicious/compromised CA

But also problems — how to bootstrap?

Certificate issuance requires zone/domain ownership validation

But also problems — how to bootstrap?

Certificate issuance requires zone/domain ownership validation

Dai et al. Let's Downgrade Let's Encrypt. CCS'21 Schwittmann et al. Domain Impersonation is Feasible: A Study of CA Domain Validation Vulnerabilities. EuroSP'19 Borgolte et al. Cloud Strife: Mitigating the Security Risks of Domain-Validated Certificates. NDSS'18

But also problems — how to bootstrap?

Circular dependency!

RHINE overview

Robust trust model with *checks and balances*

Network Security Group Department of Computer Science

RHINE overview

Robust trust model with *checks and balances* Delegation Transparency (DT) to track global *delegation status*

RHINE overview

ETH zürich

RHINE protocols — Secure delegation setup

Circular dependency broken by parent engagement

RHINE protocols — Secure delegation setup

Circular dependency broken by parent engagement

RHINE protocols — Secure delegation update

Independent security management without parent sync (in most cases)

RHINE protocols — DT aggregation

log requests

Secure consensus based on Logres*

*Joel et al. A Formally Verified Protocol for Log Replication with Byzantine Fault Tolerance. SRDS'20

RHINE security

Network Security Group Department of Computer Science

Trusted

hard to analyse!

RHINE security

Formally verified using the Tamarin prover

Main property: E2E data authenticity for delegated zones

Network Security Group Department of Computer Science

RHINE deployability

Entity	End	Recursive	Auth	Zone	
	User	Resolver	NS	Owner	
Operations	 Truststore maintenance Cert & data verification 	 Query, validation, and caching of security records 	 Serve security records 	 Data signing Key rollover No key sync 	
Comparison	DoT/DoH	DNSSEC	DNSSEC	DNSSEC	
Infrastructure	DNS				
Compatibility	(RHINE can co-exist with DoT/DoH)				

simpler

comparable /reusable

RHINE deployability

Entity	End User	Recursive Resolver	Auth NS	Z Ov	one wner	CA	Logger
Operations	 Truststore maintenance Cert & data verification 	 Query, validation, and caching of security records 	 Serve security records 	 Data signing Key rollover No key sync 	 Request and update cert (and dlgt status) 	 Cert issuance Update attestation 	DT
Comparison	DoT/DoH	DNSSEC	DNSSEC	DNSSEC	ACME Client	ACME Server	СТ
Infrastructure Compatibility	DNS (RHINE can co-exist with DoT/DoH)			Web PKI (DT loggers as a subset of CT loggers)			

simpler

comparable	
/reusable	ех

extra effort

RHINE prototype evaluation

Setup

- Servers: 8-core CPU (2.6GHz), 16GB RAM
- Network: 1Gbps, RTT=100 ms

Resolver throughput:

- Cache hit ratio: 80%
- Zones: 120K 2LDs/3LDs
- Query generator: dnsperf

RHINE prototype evaluation

Setup

- Servers: 8-core CPU (2.6GHz), 16GB RAM
- Network: 1Gbps, RTT=100 ms

Resolver throughput:

- Cache hit ratio: 80%
- Zones: 120K 2LDs/3LDs
- Query generator: dnsperf

Capped by DT consensus

Certificate issuance rate: ~20M RHINE certs / day > ~6M TLS certs / day

*Merkle Town: https://ct.cloudflare.com/

Summary and outlook

Secure Internet needs **E2E-secure** name resolution RHINE offers robust E2E authenticity, formally verified RHINE is **deployable** today

Summary and outlook

Secure Internet needs **E2E-secure** name resolution RHINE offers robust E2E authenticity, formally verified RHINE is **deployable** today

Next steps: Experimental deployment High-availability with **SCION**

Network Security Group Department of Computer Science

SCION SCALABILITY, CONTROL, AND ISOLATION **ON NEXT-GENERATION NETWORKS**

Summary and outlook

Secure Internet needs **E2E-secure** name resolution RHINE offers robust E2E authenticity, formally verified RHINE is **deployable** today

Next steps: Experimental deployment

High-availability with **SCION**

Thank you! Questions?

Contact: huayi.duan@inf.ethz.ch