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Abstract

In this paper, we consider the design of a policy-based
routing system and the role that link state might play. Look-
ing at the problem from a link-state perspective, we propose
Centaur, a hybrid routing protocol combining the benefits
of both link state and path vector. Through analytical and
experimental studies, we demonstrate Centaur’s potential
in achieving rich policy expressiveness and high network
availability. Our work shows that it is possible to combine
link-state and path-vector approaches into a practical and
efficient algorithm for policy-based routing.

1. Introduction

Path-vector routing is known for its slow conver-
gence [12]. Link-state routing might seem comparatively
advantageous by virtue of its faster convergence. However,
link-state routing has been eschewed in a policy-based
routing protocol design (such as inter-domain routing), due
to its inability to support routing policies [5]. Consequently,
most new inter-domain routing protocols have to implement
policies through path-vector approaches, unavoidably bear-
ing the limitation of inherent slow convergence.

In this paper, we revisit the design of a policy-based
routing protocol and the role that link state might play, and
show that it is possible to preserve the advantages of link-
state routing while maintaining policy expressiveness. We
start from a link-state protocol framework to inherit its fast
convergence, and modify critical components of a traditional
link-state protocol by using concepts from path vector to
support routing policies. Using this framework, we design
Centaur, a hybrid protocol between link state and path vector
for reliable policy-based routing, as sketched below:

i) Network data model. Each node maintains a node-
specific topology view, with each link in the topology
annotated by routing policy predicates. A node N ’s topology
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view encodes only policy-compliant paths from N to other
nodes in the network. This ensures that Centaur respects
routing policies while preserving topology privacy.

ii) Link state announcement. Akin to LVA [4], Centaur
employs link-level announcements as opposed to path-level
announcements used in path vector. Differing from complete
link-state flooding in traditional link-state protocols, in Cen-
taur a node N passes onto a neighbor the link-state updates
of only those links residing on policy-compliant paths. Such
a selective link announcement enables rich routing policies,
privacy, and scalability.

iii) Local solver. Instead of Dijkstra, a simpler algorithm
is used to derive the policy-compliant paths.

Differing from HLP [18], LVA [4] and BGP-RCN [15]
which also intend to enhance routing convergence by inte-
grating link-state elements, Centaur notably enables routing
policies via communicating only enriched link-state updates.

As an initial step, the current Centaur focuses on ex-
changing routing information between different Autonomous
Systems (ASes), and aims to support basic routing polices,
i.e., route filtering and ranking, under standard “customer/
provider/ peering” business relationships. For simplicity, we
logically define a “node” in a Centaur topology as a sub-
domain where the border routers have consistent exterior
routing policies.

Through analytical and experimental studies, we demon-
strate Centaur’s potential in supporting rich routing policies
while exhibiting better convergence and scalability than
BGP. We hope this work will serve as a building block for
future policy-based routing system design, and expand the
design space of next generation routing protocols.

2. Challenges

In this section, we first highlight the fundamental chal-
lenges in adding policies to traditional link-state protocols
(§2.1). Then we derive a key observation to motivate Centaur
design (§2.2).

2.1. Basic Cases

Different Topologies. The correctness of link-state proto-
cols depends on all nodes in the network having the same



view of the topology. Any discrepancy in the view of the
network can cause routing loops in link-state protocols, as
Figure 1 illustrates. Since path filtering policies essentially
result in topology hiding, link-state protocols cannot imple-
ment filter policies in their current forms.

Topology A’s view B’s view

Figure 1. Loop in nodes with different topologies. Either
A’s or B’s topological view contains only one path to C.
To send a packet to C, A has to use B as the next hop,
while B would send the packet back to A since B is
not aware of the other path to C. This example shows
that even on a simple topology, it is easy to form routing
loops when nodes have different topologies.
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Figure 2. Example topologies.

Diverse Policies. In traditional link-state protocols, all
nodes in the network must use an identical algorithm to
compute the paths, e.g., Dijkstra to compute the shortest
paths. Therefore, the path ranking function has to be the
same for all nodes, implying the lack of independence in
path ranking policies; otherwise loops can arise.

To illustrate, consider the example in Figure 2 where node
D is the only destination of interest. Suppose that due to
local policies, C intends not to use its link C ↔ D (the
notation ↔ indicates a bidirectional link) to reach D and
does not announce it to node A. However in traditional link-
state routing, node D announces this link to B and B floods
it everywhere, whereby eventually A learns the link C ↔ D
from B, although C intends to hide it. If A and C choose
different paths depicted as the dashed arrows in Figures 2(b)
and 2(c) to reach D (conforming to their local policies),
a loop will arise between A and C when either A or C
attempts to send packets to D.

2.2. Analysis and Key Observation

We first define the terms downstream and upstream as
follows.

Definition 1: In a routing path containing nodes N1 and
N2 to a destination, if N1 is closer to the destination than
N2, N1 is downstream of N2 and N2 is upstream of N1 in
the given path.

With policy-based path hiding and ranking, given a link-
state topology an upstream node may derive some paths
that do exist in the topology but actually violate policies
of the downstream nodes on the path (not being used by
downstream nodes). This can potentially result in routing
loops. For example in Figure 2, path 〈A,C, D〉 exists in A’s
topology view though it violates C’s policy. However, node
A does not know its downstream node C’s routing path for
reaching D, and hence cannot perform loop detection (an
upstream node A will discard using a downstream path that
already contains A).

This leads to an unsurprising yet motivating observation:
Observation 1: Routing loops can be effectively avoided

if the upstream node U knows the downstream path so that
U can perform loop detection.

Therefore, the problem of policy expression involves
augmenting the link-state topology knowledge in each node
with enough information to reflect the fact that only a subset
of the paths in the link-state topology are policy-compliant
routing paths (that are actually used by downstream nodes).

3. Centaur Overview

In this paper, we present Centaur in the context of
traditional single-path routing for simplicity. §3.1 first sum-
marizes Centaur features inherited from both link-state and
path-vector paradigms. Then §3.2 sketches the high-level
protocol flow and basic components of Centaur.

3.1. A Hybrid of Link State and Path Vector

Properties Derived from Link State. Akin to LVA [4],
Centaur resembles link state in both topological representa-
tion of the network data model and link-level announcements
(as opposed to path-vector announcements). In link-state
protocols, nodes externally announce individual links, and
internally maintain a consistent topology map from which
routing paths are derived. Centaur retains this link-level
announcement and topological representation, to achieve
faster convergence and lower update overhead compared to
path vector, as explained below.

In Centaur, when a route fails, nodes withdraw the specific
link that caused the failure in the update message, rather
than the entire route. The update message thus provides the
exact fault location. Based on this root cause information,
other nodes can avoid exploiting alternative paths in their
Routing Information Bases (RIBs) that also contain this
failed link [6], [15]. By announcing individual links, Cen-
taur can effectively eliminate a large amount of redundant
information among the routing messages. For example, a



link that is on multiple paths needs only to be announced
once.

Properties Derived from Path Vector. Centaur resembles
path vector in both the way it implements policies, and the
way it avoids loops. To enable policies, Centaur employs
both link filters and local path rankings. Consequently, the
topology views are different across different nodes. Cen-
taur prevents loops despite the above topology and policy
diversity, because each node N announces to an upstream
node U only the best path that N uses by itself to reach a
certain destination (policy-compliant path). In this way, U
knows the path used by the downstream node, which satisfies
Observation 1.

3.2. Protocol Overview

To better illustrate the basic concepts, we will go through
a simple example in Figure 3 which enumerates the locally
maintained routing states and routing-related operations for
all the nodes in Figure 2(a)’s topology. For simplicity, we
only consider the routing updates flowing from bottom up
in the figure.

3.2.1. Link State Announcement.
Per Observation 1, we require that only the policy-compliant
paths which are actually used by downstream nodes can be
derived from the link-state topology. Therefore, we impose
the first restriction that a node N announces only the links
in the paths that N uses itself. We define such links as
downstream links. Downstream links are directed, with
the direction from upstream pointing to downstream. Also,
similar to BGP, destination nodes are explicitly marked in
the announcements, associated with the prefixes owned by
the destination nodes (which correspond to ASes in the inter-
domain routing).

For example in Figure 3, node D announces downstream
links D → B and D → C used to reach destinations
B and C (where → denotes a directed link). Node B
further announces to A only the links contained in its locally
selected paths as presented in Figure 3.

Suppose C intends to hide its local link C → D from A to
reach D. Note that B cannot announce link C → D, because
B only learned a directed link D → C from D (different
from C → D). Consequently, node A cannot derive a
policy-violating path (that is not used by downstream nodes)
〈A,C, D〉 as it can in Figure 2(b).

We define the above way of only propagating directed
downstream links as downstream link announcement,
which contrasts to the link flooding approach in traditional
link-state protocols. As demonstrated above, downstream
link announcement enables link filtering and path ranking
policies while preventing loops (we discuss more complex
cases in §3.2.4).
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Figure 3. A simple example of Centaur operations
and states. A gray node denotes the root of a P-
graph. Nodes with underscores in the downstream link
announcements are marked as destinations.

3.2.2. Network Data Model.
On receiving the downstream links from a neighbor N , the
local node L stores them in its RIB as a directed graph
rooted at N . We call such graph a P-graph (policy graph). In
Centaur, a node stores in its RIB a P-graph per neighbor built
from the downstream links exported by each neighbor. After
the local node L selects its own path for each destination
(as we show in §3.2.3), L constructs its local P-graph
from the selected path set and stores its local P-graph.
Figure 3 shows the P-graphs for all the nodes in Figure 2(a)’s
topology. The P-graph data structure facilitates reassembling
the downstream paths from the received downstream links,
as presented below. §4.2 details the graph construction
algorithm.

3.2.3. Local Solver.
Based on the downstream links learned from neighbors (as
well as its own adjacent links), a local node L selects its
own paths according to local ranking policies, and further
announces the resulting downstream links. A straightforward
path selection approach would be to first find all possible
paths derivable from the local topology view and then choose
the most preferred ones. Relevant algorithms are specified
in §4.2 with the complexity analysis in §6.3.

Since the links exported by a neighbor (say N ) are from
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Figure 4. Permission List example. A gray node de-
notes the root of a P-graph.

the downstream paths that N uses, and N selects only one
path for each destination (we assume single-path routing),
the local node L can reconstruct exactly the same path
set used by N from N ’s downstream link announcements,
which satisfies Observation 1 and enables loop detection.

3.2.4. Permission List.
Downstream link announcements (§3.2.1) ensure that a
P-graph contains only the links in policy-compliant down-
stream paths. However, in some scenarios policy-violating
paths may still be derivable from the P-graph.

To illustrate, we extend the example in Figure 3 by adding
a destination D

′
as Figure 4(a) depicts. Suppose C prefers

〈C,A, B, D〉 to reach D (rather than 〈C, D〉), but intends to
use 〈C, D, D

′〉 to reach D
′

in which case C → D becomes
a downstream link and is announced to A. The P-graph of
C is now as Figure 4(b) depicts, and a policy-violating path
〈C,D〉 can be derived from the P-graph based on which A
can further construct a policy-violating path 〈A,C, D〉.

In general, the presence of a multi-homed node (node with
more than one parent, e.g., D in Figure 4(b)) in the P-graph
will cause all its children including itself to have multiple
derivable paths (both policy-compliant and -violating) from
the root of the P-graph. For example, learning the P-graph in
Figure 4(b) (more precisely, the corresponding link set) from
neighbor C, the upstream node A cannot tell which one of
the paths is actually used by C to reach D, thus breaching
Observation 1. Our approach is to embed the restrictions via
Permission Lists onto appropriate links to further eliminate
policy-violating paths. A permission list on a link is basically
a set of paths that can use this link. §6.1 further proves the
policy expressiveness with Permission Lists.

An example is shown in Figure 4(c). The Permission List
specifies that only the path in which (i) the “Destination is
D
′
” and (ii) the “Next Hop of the multi-homed node (i.e.,

D) is D
′
” is policy-compliant.

4. Centaur Details

In this section we first elaborate on Permission List (§4.1),
the key data structure in Centaur. We then present the

operational algorithms on the P-graphs (§4.2), and finally
describe the protocol flow of Centaur (§4.3).

4.1. Permission List Specification

A Permission List is attached to a link A → B when
B becomes multi-homed in a certain P-graph, set by the
creator of the P-graph during its local P-graph construction.
For example in Figure 4(c), C sets a Permission List to
link C → D since node D becomes multi-homed (has more
than one parent) in C’s local P-graph. The Permission List
of a link A → B represents the set of all and only derivable
policy-compliant paths, denoted by PA→B , that pass through
A → B in a P-graph.

To represent the path set PA→B , a naive way is to create
one entry in the Permission List for every policy-compliant
path that traverses the link A → B. This exhaustive
per-path encoding is theoretically useful in demonstrating
the expressiveness of Permission Lists (§6.1). In practice,
Permission List entries can be simplified by using a per-
dest-next encoding, where each policy-compliant path can
be represented by a 〈Destination, NextHop〉 pair. More
specifically, given a link l = A → B (B is the multi-homed
node), each policy-compliant path p containing link l can be
uniquely identified by the destination of path p, and the next
hop of B in path p. It is not difficult to prove that per-dest-
next encoding has the same descriptiveness as exhaustive
per-path encoding.1

Hence, PA→B can be a list of 〈Destination, NextHop〉
pairs rather than full path descriptions. In a Permission List,
destinations with the same next hop can be grouped into
one pair entry where the Destination field is actually a
list of destinations. Clearly, the size of a Permission List
(the number of destinations in it) is bounded by the number
of downstream destinations in a given P-graph. Fortunately,
evaluation results in §5 indicate that the Permission List size
can be much smaller in realistic scenarios. In addition, we
can also adopt simple compression schemes (such as Bloom
Filters) to compactly represent a list of destinations.

4.2. P-graph Operations

In this subsection we specify the two major operations
on a P-graph: deriving paths from a P-graph assembled
from a neighbor’s downstream link announcements, and
constructing a local P-graph with Permission Lists from
a locally selected path set. In §6.3 we analyze the time
complexity of the algorithms.

Derive paths from P-graph. In Centaur, we need to derive
policy-compliant paths instead of shortest paths. Given the
directed links and Permission Lists in a P-graph, it ensures
that there is only one policy-compliant path for each desti-
nation derivable from the P-graph (in the single-path routing

1. Due to space limitation, we defer the proof to the full version.



Table 1. DerivePath algorithm to derive the path for a
given destination D in a P-graph

line action
1 Set currentNode = D

//Backtrace to the root
2 while currentNode != root
3 if currentNode.multiHomed == false
4 traversedRoute.add(currentNode)
5 currentNode = currentNode.getParent()
6 else
7 for each link l pointing to currentNode
8 if l.permissionList.Permit(D,currentNode)
9 currentNode = currentNode.getParent(l)
10 traversedRoute.add(currentNode)
11 break
12 return traversedRoute

case). To reconstruct the path for a certain destination, the
DerivePath algorithm simply starts from the destination
node and follows the parent chain in the P-graph under
Permission List restrictions, until the root of the P-graph
is reached. Table 1 describes the DerivePath algorithm.

Construct Local P-graph with Permission Lists. For
each destination D, the local node first derives all the paths
to D from the RIB as well as its local adjacent links (if any),
and then applies local preferences to select the best path
for D, and finally adds the links in the path to the local
P-graph. If a multi-homed node B appears after adding a
link l = A → B in path p for reaching destination D, the
algorithm updates (or creates) the Permission List of l with
an entry set to 〈DestList.Add(D), Next : N〉 where N
is the next hop of B in path p. Table 2 summarizes such
BuildGraph algorithm.

Table 2. BuildGraph algorithm to construct a P-graph.

line action
1 for each destination D
2 pathSet = getAllPath(RIB,D)
3 path = localPreference(pathSet)
4 for each link l = A → B in path
5 graph.Add(l)
6 if B.inDegree > 1
7 l.permissionList.Add(D, B.getNextHop(path))

4.3. Centaur Protocol Flow

Notation. In Centaur, a node A maintains a local P-graph,
denoted by GA. Let N(A) stand for the set of A’s neigh-
bors. Node A also stores in its RIB the P-graph assem-
bled from each neighbor’s downstream links announce-
ments, denoted by GBÞA, ∀B ∈ N(A). A policy tuple
〈ImpA, ExpA, P refA〉 of node A contains the import and

export filters operating on links, and local preference to rank
candidate paths.

We formulate the protocol flow in two phases as follows.

4.3.1. Initialization Phase.
Step 1. During initialization, a node A first becomes aware
of its adjacent links and constructs the corresponding down-
stream links pointing to B, ∀B ∈ N(A). Before advertising
these links, A employs export filters to hide certain links
from some neighbors according to A’s local policies.
Step 2. On receiving downstream link announcements
from a neighbor B, a node A first removes the links which
point to A itself (X → A|X ∈ N(A)) for loop elimination,
and also employs import filters (ImpA) to remove unde-
sired links according to A’s local policies. Subsequently,
A organizes and stores the links received from B as a
P-graph in A’s RIB, denoted by GBÞA. Using our notation,
during initialization (the \ operator represents the standard
set difference operator):

GBÞA = ImpA

`
ExpB(GB)\{X → A|X ∈ N(A)}´

Step 3. A node then evokes a BuildGraph procedure
(Table 2) based on the P-graphs in its RIB as well as its
local adjacent links to create its local P-graph.

Step 4. After constructing the local P-graph, a node A
keeps on announcing the links from the P-graph pruned by
export filters. Differing from Step 1, in this step node A an-
nounces not only its adjacent links, but also the downstream
links learned from A’s neighbors; and if needed, a link is
associated with a Permission List. In both Steps 1 and 4,
destination nodes (prefixes in practice) are marked in the
link announcements.

4.3.2. Steady Phase.
Step 5. After the initialization phase, a node N in the
network sends update messages incrementally on a per-link
basis when a change of a certain link state occurs due to
either link failures or policy changes (say, a link is no longer
in any of N ’s preferred paths).

Let ∆B denote the links added or removed in node B’s
locally selected path set. In order to calculate ∆B , when
constructing its local P-graph, node B needs to associate
a counter with every link in the P-graph, recording how
many selected paths contain each given link. When the
counter value of a certain link decreases to zero (indicating
no selected path contains this link any longer), the link is
included in ∆B as to be removed.

Just like in the initialization phase, both the sender B of
the update and the receiver A of the update messages apply
their respective export and import filters to ∆B . Let G

′
i be

the updated version of P-graph Gi. Node R then merges
the received changes into GBÞA which already exists in
A’s RIB. Let G

′
BÞA stand for A’s updated view of GBÞA.

G
′
BÞA is calculated as follows:

G
′
BÞA = ImpA

`
ExpB(∆B)\{C → A|C ∈ N(A)}´ ∪GBÞA



During updating the P-graph, if a previously multi-homed
node turns into single-homed, a corresponding Permission
List is removed. Similarly, a Permission List will be created
if a multi-homed node appears.

5. Evaluation and Implementation

In this section, we evaluate the scalability of Centaur by
experimenting with measured AS topologies, and implement
a prototype on the Distcomm platform [1] to show Centaur’s
rapid convergence and overhead reduction from BGP.

5.1. Methodology

We consider two major metrics for the evaluation: (i) the
communication overhead of routing update messages, and
(ii) the convergence time after link failures. In the following
we explain each key component in our evaluation in turn.

Input Topologies and Policies. Our simulation is con-
ducted on three sources of topologies. First, we use multiple
inter-AS topologies obtained from both CAIDA [7] and He
et. al [8] ( “HeTop”), annotated with business relationships
on the links. Both CAIDA and HeTop take RouteViews [9]
snapshots as input, and infer business relationships between
nodes. HeTop augments its inference with various other
data sources, and finds more peering links. Due to space
limitation, we present only one topology from each of
CAIDA and HeTop; experiments on other topologies yield
similar observations. We summarize the characteristics of
selected topologies in Table 3. We also use BRITE [13] to
generate topologies for running a prototype of Centaur on
the DistComm platform [1].

Throughout our experiments, all the update message prop-
agation and path derivation will follow the business policies
annotated in the input topologies. Since it is an open problem
to accurately infer the intra-AS structure and policy, the best
we can do is to model each AS as a node in the network.

Table 3. Characteristics of input topologies.

Name/Date Node/Link Peering/Provider/Sibling
CAIDA/ Sep’07 26022/ 52691 4002/ 48457/ 232
HeTop/ May’05 19940/ 59508 20983/ 38265/ 260

Communication Overhead. We consider the message
count metric, which represents the number of messages that
need to be generated because of an event such as a link
going down. We also present the sizes and population the
Permission Lists.

Convergence Time. To study the dynamic convergence
behavior of Centaur, we implement a prototype of Centaur
to make direct comparison with standard path-vector and
link-state protocols (BGP and OSPF in our experiment). We

Table 4. Structural characteristics of P-graphs.

CAIDA HeTop
No. of links 40339 32006

No. of Permission Lists 14437 12219

Table 5. # entries of Permission Lists.

# entries=1 # entries=2 # entries=3 # entries> 3
CAIDA 0.7% 91.9% 7% 0.6%
HeTop 0.7% 92.9% 6.4% 0.1%

study the convergence time required for the network to get
re-stabilized (i.e. no further update messages are sent) after
we randomly remove or add a link in the network.

5.2. Measurements with AS Topologies

For each node in a given AS topology, we first derive a
complete path set reaching all other nodes in the topology,
according to the standard business relationship. Then we
build the local P-graph for each node from its path set. Ta-
ble 4 presents the average number of links with Permission
Lists, and Table 5 presents the distribution of the number
of entries (pairs of destination list and next hop) in one
Permission List. Note that we do not count the number of
total destinations contained in Permission Lists, since we
assume all the destinations in one destination list of a single
entry can be compactly represented using Bloom Filters.

In Figure 5 we measure the number of update messages
triggered as an immediate result of a single link failure
(averaged over all possible link failures for each AS). In
this example we do not consider the cascading effects of
propagating updates. The results indicate Centaur incurs
roughly 100 to 1000 times fewer update messages.

5.3. Prototype and Results

We implement Centaur on the DistComm platform. Dist-
Comm is a session-level BGP simulator built on the SSFNet
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code base [2]. Unfortunately our current computing resource
cannot run the prototype on a large number of nodes simul-
taneously, therefore we use the BRITE topology generator
to create a network topology with 500 nodes. Though
imperfect, the results from such a small topology still present
interesting convergence and update behaviors of Centaur, as
well as Centaur’s potential in much larger topologies.

Since Centaur is a policy-based routing protocol, we infer
the standard “customer-provider” business relationships be-
tween nodes using the location of the nodes in the topology.
We set the nodes at the center of the topologies (the nodes

with largest degrees) to be Tier-1 provider, the nodes below
them to be Tier-2 and so forth.

To measure the convergence behavior of Centaur, we let a
500 node topology stabilize and then we sequentially “flip”
each link in the topology, i.e., first remove the link and
wait till the routing protocol converges; then bring the link
back up and wait for the convergence again. After each
flip we measure the total count of messages sent and the
duration time required to re-stabilize. We ignore the CPU
delay while the link delays are generated automatically in
the BRITE topology file. They are set randomly between 0
and 5 milliseconds.

Figure 6 shows the CDF of convergence time of both
protocols. Clearly Centaur converges much faster than BGP
almost all the time. In Figure 7, we compare the network
load of flipping links against OSPF. We observe that Centaur
converges with fewer message count than OSPF for 82% of
the cases. This can be explained by noting that OSPF does
not implement policies, so every link’s information needs
to be transmitted over every other link in the network. To
investigate Centaur’s potential in larger topologies, we create
topologies of various sizes and cold start the protocols until
they stabilize. In Figure 8, we give the update overhead
of Centaur and BGP under different topology sizes given
a routing update event. It is apparent that Centaur presents
more distinct advantage on larger topologies.

6. Properties and Limitations

In §5, we experimentally evaluate Centaur’s convergence
rate and communication overhead. In this section we further
analytically investigate Centaur’s policy expressiveness, pri-
vacy, and computational complexity.

6.1. Policy Expressiveness

In path vector, an important means of implementing
routing policies is through selective path announcement.
For example, by announcing only a selected subset of its
available paths, a node N can realize filtering policy and
path ranking policy (hiding the undesirable paths). We claim
that:

Claim 1: Along with the basic import/export filters and
local preferences, the Permission Lists are capable of cap-
turing the full policy expressiveness of selective path an-
nouncement in path vector.

Proof: We start with proving the policy expressiveness
of exhaustive per-path encoding (§4.1). Consider that a node
N announces a path p to an upstream node U . This routing
behavior can be described by the Permission List entry of
link U → M : p. This proves that by using exhaustive per-
path policy encoding, selective Permission Lists can achieve
all policies carried by any selective path-vector set. Since
per-path and per-dest-next Permission Lists are equivalent,
the claim follows.



Limitation. Note that there are other classes of policies
that can be implemented beyond selective path announce-
ment. For example in BGP, peering agreements and commu-
nity attributes can be employed to implement more flexible
and complicated policies. In the future work, we intend to
consider how Centaur can implement these policies, and how
Centaur can cope with iBGP-like intra-domain infrastructure
to implement finer-grained policies.

6.2. Privacy

It may appear that Centaur forces nodes to directly
reveal both topology connectivity (via P-graphs) and routing
policies (via Permission Lists). We show that in fact this does
not happen. We make the following observations:

Claim 2: Due to the routing constraints carried in the
Permission Lists, Centaur reveals the same topological in-
formation to BGP. If a routing policy is disclosed by the
Permission Lists in Centaur, it can also be uncovered in
BGP with additional complexity. Therefore Centaur does
not expose more topological privacy nor policy privacy
compared to path-vector protocols.

Proof: For the ease of explanation, we consider exhaus-
tive per-path encoding. Each entry in the Permission Lists
exactly corresponds to a path vector, thus establishing a one-
to-one mapping between the derivable path set in Centaur
to the selected path set in path vector protocols. Since both
Centaur and path vector protocols contain the same path set,
the derivable topological information is identical.

Suppose the routing information in Centaur is now propa-
gated in the form of path vectors. Then we can construct ex-
actly the same P-graph and Permission Lists as those in Cen-
taur from the given path vector set using the BuildGraph
procedure (Table 2). This proves that we can learn the same
amount of policies through the constructed Permission Lists,
with the additional complexity of constructing a P-graph
from the given path vector set.

A positive and important note is that, the Permission Lists
do not necessarily leak a specific node’s policy. For example
in Figure 4(c), the Permission List on link C → D forbids
the traffic to destination D via that link. However, it might
be the policy of several possible nodes, such as A or C.

From the claim above we can also derive an interesting in-
sight as follows: From the perspective of routing information
expressed, Centaur is equivalent to a path vector protocol
that includes root cause notification and in which the format
of the information passed between nodes is compressed.

6.3. Computational Complexity

In Centaur, the set of paths are implicitly encoded in a
graph topology, thus it introduces additional computational
overhead in constructing the graph and deriving paths from
the graph. Suppose a P-graph has |E| links. The time

complexity of BuildGraph procedure (Table 2) is given by
O(|E|α), where α is the time complexity of inserting a sin-
gle link into a graph, which depends on the implementation
of the graph data structure (e.g., adjacent links or matrix).
The time complexity of DerivePath algorithm (Table 1) is
given by O(d× i), where d is the length of the path and i
is the in-degree of a node in the path.

Also note that, in Centaur each node needs to maintain
the P-graph data structure and the space complexity depends
on different implementations of the graph data structure. As
we pointed in §4.1, the Permission List can be efficiently
compressed. Also, the result in Table 5 indicates that the
size of a Permission List in practice is small.

6.4. (De)Aggregation and Isolation

Centaur mainly addresses the dissemination of routing
updates, which is orthogonal to the granularity of the routing
updates. In Centaur, a node can announce its owned prefixes
at any aggregate or de-aggregate level in the same way
as BGP. For example in Fig 2(a), node D (presumably
corresponding to an AS) can announce separate fine-grained
prefixes for D’s multiple sub-nets (in which case node D can
be logically split into multiple “node”s in the topology views
in Centaur), or one single aggregate prefix representing the
whole domain. By choosing appropriate prefix aggregation
levels, Centaur can achieve routing update isolation in the
same way as BGP does.

7. Related Work

In this section we first examine related efforts on link-
state routing, then summarize other lines of endeavors for
designing a new routing protocol.

Link-State Attempts. In LVA [4], the authors use link
vectors to achieve better scalability than link-state protocols.
However unlike Centaur, LVA does not implement rich
policies. White et al. suggest using the combination of path
vector, topological graph overlay, and SoBGP [19]. The
graph overlay is however applied on top of standard path-
vector BGP as a layer of additional information, whereas
in Centaur the graph topology is central to the routing
algorithm. BGP-RCN also provides link-level failure infor-
mation. However, it is built on top of BGP, the additional
link-level information must be piggybacked onto path-level
update messages.

In HLP [18], the authors propose to divide the Internet
into two levels: a top level running BGP and a bottom level
running a link-state protocol. They provide isolation and
scalability using the two-level hierarchy, and provide fast
convergence by relying on the link-state portion. However,
HLP requires exceptions for complex policies and cannot
express policies in the link-state level. Furthermore, HLP
can be orthogonal to our work in the sense that we can



envision to replace BGP by Centaur at the top level in HLP
where routing policies exist.

Multi-Path Routing. Researchers also explored multi-
path routing for enhancing network availability [10], [11],
[14], [17], [20], [22]. While most previous multi-path routing
efforts are built upon path vector and orthogonal to our study,
we anticipate Centaur may better support multi-path routing
since it can propagate multiple paths for a destination in a
more compact and scalable way.

Source Routing. Other researchers also advocated source-
route based approaches [3], [16], [21], [23], where the
edge routers or even end users can specify the relaying
nodes along the forwarding path. Using such source routing
relieves the core routers of computing the paths for desti-
nations, however it hampers the ISPs’ ability to control the
traffic.

8. Conclusion and Future Work

In this paper we demonstrate the feasibility of adopting
a new link-state perspective for designing a policy-based
routing protocol. Using a standard link-state protocol model
as the starting point, we derive Centaur, a hybrid proto-
col which supports rich policies by integrating path-vector
functionality. We show analytical and experimental results
indicating that Centaur is a promising approach to enhancing
network availability with good scalability. We hope this work
can open new research directions on designing policy-based
routing incorporating a link-state perspective.
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