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Abstract— Today’s Internet hosts are threatened by large-scale
Distributed Denial-of-Service (DDoS) attacks. The Path Identi-
fication (Pi) DDoS defense scheme has recently been proposed
as a deterministic packet marking scheme that allows a DDoS
victim to filter out attack packets on a per packet basis with high
accuracy after only a few attack packets are received [40].

In this article, we propose the StackPi marking, a new packet
marking scheme based on Pi, and new filtering mechanisms.
The StackPi marking scheme consists of two new marking
methods that substantially improve Pi’s incremental deployment
performance: Stack-based marking and Write-ahead marking.
Our scheme almost completely eliminates the effect of a few
legacy routers on a path, and performs2–4 times better than the
original Pi scheme in a sparse deployment of Pi-enabled routers.
For the filtering mechanism, we derive an optimal threshold
strategy for filtering with the Pi marking. We also develop a
new filter, the PiIP filter , which can be used to detect IP spoofing
attacks with just a single attack packet.

Finally, we discuss in detail StackPi’s compatibility with
IP Fragmentation, applicability in an IPv6 environment, and
several other important issues relating to potential deployment
of StackPi.

Index Terms— Security, system design, distributed denial of
service defense, DDoS.

I. Introduction

I-A. IP Spoofing and DDoS Attacks

Internet security is of critical importance to our society,as
the government and economy increasingly rely on the Internet
to conduct their business, and people use the Internet as a
convenient vehicle for simplifying a wide range of tasks,
from banking to shopping. Unfortunately, the current Internet
infrastructure is vulnerable to a Distributed Denial of Service
(DDoS) attack. Because DDoS attacks typically rely on com-
promising a large number of hosts to generate traffic to a single
destination, the severity of DDoS attacks will likely increase as
greater numbers of poorly secured hosts are connected to high-
bandwidth Internet connections. For example, an attacker who
could compromise the popular SETI@Home [32] distributed
computation software, or any popular P2P client, would be
able to harness several hundreds of thousands of hosts to
generate traffic for an attack.

The weakness of the current Internet infrastructure that
facilitates DDoS attacks is the inability for a packet recipient
to authenticate that packet’s claimed source IP address. In
other words, an attacker can intentionally modify, orspoof,
the source address of the packets it sends from a compromised
host. Two examples of DDoS attacks that rely on IP address
spoofing are:

• TCP SYN Flooding: In this attack, an attacker sends TCP
SYN packets as if to initiate a TCP connection with its
victim. These SYN packets contain spoofed source IP
addresses, which cause the victim to waste resources that
are allocated to half-open TCP connections which will
never be completed by the attacker [9].

• Reflector Attack: In this attack described by Paxson [30],
the attacker attempts to overwhelm the victim with traffic,
by using intermediate servers to amplify the attacker’s
bandwidth and/or hide the attacker’s origin. The attacker
simply sends requests to the intermediate server with
a spoofed source IP address matching the victim’s IP
address. The intermediate server only sees that a number
of requests are supposedly coming from the victim, and
so sends its responses to the victim. When properly coor-
dinated, a group of attackers can cause a flood of packets
to hit the victim, without sending any packets directly to
the victim itself. To amplify the traffic, the attacker selects
intermediate servers whose responses to the spoofed
requests are larger than the requests themselves. For
example, in DNS server based reflector attacks, attackers
send short DNS lookup requests (50 bytes each), whose
replies can be over a thousand bytes long, thus giving
the attacker a 20-fold traffic amplification. Other popular
reflectors are Internet game servers, where attackers can
use similar methods to gain two orders of magnitude of
traffic amplification [21].

These types of DDoS attacks, which use large amounts
of traffic to disable a victim server, are the focus of this
article. However, source IP address spoofing is also used in
many other attacks. An attacker who wants to evade source
IP address based packet filtering will use source IP spoofing.
Finally, some DDoS attacks do not rely on source IP address
spoofing, because the attacker simply does not care whether
or not the machine that it has compromised is implicated in
the attack, so long as the attacker itself remains unknown.
However, as source IP address filtering mechanisms become
widely deployed (e.g., the Pushback framework [17], [25]),it
is likely that attackers will have to resort to source IP address
spoofing to increase the effectiveness of their attacks.

I-B. Desired Properties of Defense Mechanisms against
DDoS Attacks

Because the current Internet infrastructure has few capabilities
to defend against DDoS attacks, we need to design a new
network level defense mechanism against these attacks. In
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particular, a good solution to defend against these attacks
should satisfy the following properties:

• Fast response: The solution should be able to rapidly
respond to and defend against attacks. Every second
of Internet service disruption causes economic damage.
We would like to immediately enable blocking of attack
traffic.

• Scalable: Some attacks, such as TCP SYN flooding,
involve a relatively small number of packets. However,
many DDoS attacks are large scale and involve thousands
of distributed attackers. A good defense mechanism must
be effective against low packet count attacks, but also
scale up to handle large-scale attacks.

• Victim filtering: Some DDoS defense schemes in the
literature assume that once the attack path is revealed,
upstream routers will install filters in the network to drop
attack traffic. This is a weak assumption because such a
procedure may be slow, since the upstream ISPs have no
incentive to offer this service to non-customer networks
and hosts. A defense mechanism should enable sites to
perform local filtering, which is especially effective if the
attack does not cause network congestion.

• Efficient: The solution should have very low processing
and state overhead for routers and, to a lesser degree,
victim servers.

• Support incremental deployment: The solution is only
useful and practical if it provides a benefit when only
a subset of routers in the network implement it. As an
increasing number of routers deploy the scheme, there
should be a corresponding performance increase.

Many of the current DDoS defense schemes address only a
subset of these properties. We review these schemes in detail in
Section VII. Our Pi scheme satisfies all of the above properties.

I-C. Our Contributions

This article makes the following contributions. We propose
the StackPi marking, a new packet marking scheme based
on Pi, and new filtering mechanisms. The StackPi marking
scheme consists of two mew marking methods that sub-
stantially improve Pi’s incremental deployment performance:
Stack-based marking and Write-ahead marking. Our scheme
almost completely eliminates the effect of legacy routers when
they constitute less than 20% of the topology, and performs
2–4 times better than the original Pi scheme [40]. For the
filtering mechanism, we derive an optimal threshold strategy
for endhosts and edge servers for filtering based on the Pi
marking. We also develop a new filter, thePiIP filter, which
can be used to detect IP spoofing attacks with a single
attack packet. We also examine the conflicts between IPv4
fragmentation and Pi marking, and Pi deployment in an IPv6
environment.

The remainder of this article is organized as follows: In
Section II we review the essential elements of the Pi scheme.
In Section III we introduce our improvements to the Pi scheme,
and evaluate them in Section IV. In Section V, we describe
the PiIP filter, and in Section VI we discuss IP Fragmentation,
IPv6 deployment and other issues. In Section VII we describe

related work in the DDoS defense literature. Finally, we
conclude in Section VIII.

II. Overview of Pi
In this section, we present the key design elements of the
Path Identification (Pi) scheme. A full description of Pi can
be found in an earlier work [40].

II-A. Pi Properties

The Pi DDoS defense scheme is composed of a packet marking
algorithm that encodes a completePath Identifier(Pi) in each
packet; and a packet filtering algorithm, that determines how a
DDoS victim will use the markings of the packets it receives
to identify and filter attack packets. The uniqueness of Pi lies
in the fact that the Pi marking scheme is deterministic at the
path level: all packets traversing the same path receive the
same marking. Because each packet contains the complete
path marking, and the marking for a path is unchanging, then
the victim need only identify a single attack packet or flow
(through some high level algorithm based on packet contents
or flow behavior) in order to block all subsequent packets
arriving from the same path, and presumably, from the same
attacker. The next two sections describe the details of how Pi
marking and filtering work.

II-B. The Pi Marking Scheme

The Pi marking scheme defines how the Pi-marks are gen-
erated as a packet traverses the routers along its path to its
destination. Each Pi enabled router marksn bits into the IP
Identification field of every packet it forwards — wheren is
a global constant equal to either 1 or 2. The IP Identification
field is broken into⌊16/n⌋ sections, and each router marks
its n bits into the section indexed by the packet’s current
TTL modulo ⌊16/n⌋. Because the IP Identification field is
16 bits in length, each Pi-mark can hold markings from the
last 8 (n = 2) or 16 (n = 1) routers away from the packet’s
destination — a new router marking simply overwrites the
marking of a previous router.

Our research on Pi shows that the markings of the last 8 or
16 routers suffice for filtering out the majority of DDoS traffic,
even though many different paths carry the same marking.
Our analysis of the Internet map [7] and the Skitter traceroute
maps [8] indicates that the average Internet path length is
roughly 15, which is almost double the number of hops that
the n = 2 bit scheme can hold. Thus, the victim receives the
markings from only the last 8 routers in then = 2 bit scheme.
We find that the filtering power of Pi improves if we prevent
the local domain routers from marking, thus preserving the
markings from routers further away. For example, if the last
3 hops are routers within our domain, we assume that we can
configure them not to mark packets destined for our domain.
Internet packets would thus carry the markings from routers
4 to 11 hops away (assuming ann = 2 marking scheme).

It is critically important that the individual router’s markings
have as high an entropy as possible, so that the probability of
two distinct paths sharing — or, colliding at — the same Pi
marking is as small as possible. For this reason, the router’s
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marking bits are computed as the lastn bits of the MD5 hash
of the current router’s IP address concatenated with the last-
hop router’s IP address. A Pi enabled router would cache its
marking bits for each interface to avoid recalculating the hash
for each forwarded packet.

The original Pi mark works well in a network where all
routers implement Pi marking. Unfortunately, performance
degrades substantially iflegacy routers are present, as they
decrement the TTL but do not mark the packet. In this article,
we introduce two new techniques that greatly enhance the
performance of Pi in the presence of legacy routers: the
Stack marking and the Write Ahead improvement, which we
describe in Section III.

II-C. The Pi Filtering Scheme

The Pi filtering scheme defines how a DDoS victim uses the
Pi-marks of the packets it receives to accept the least amount
of attack traffic while accepting the most amount of legitimate
traffic. The simplest Pi filtering scheme is as follows: upon
identifying a particular Pi-mark as belonging to an attacker (by
observing malicious behavior in a packet or flow of packets
sharing a Pi mark), the victim dropsall subsequent packets
bearing the same Pi-mark. Unfortunately, because there area
constant number of Pi marks (216), as the number of attackers
increases it is more and more likely that any given Pi mark
will receive some attack packets, hence causing all legitimate
user traffic to be dropped as well. This effect is calledmarking
saturation.

To cope withmarking saturation, the victim needs to have
more flexibility in deciding whether or not to reject all packets
with a particular Pi-mark. This flexibility can be defined in
terms of a threshold: a value measured as the maximum
allowable ratio of attack packets bearing a particular Pi mark
to the total number of packets arriving with that Pi mark. In
a threshold filter, the victim will only drop all packets witha
particular Pi-mark if the ratio of attack to total traffic on that
Pi-mark equals or exceeds the threshold value.

III. StackPi: A New Marking Scheme for Pi
The Pi marking scheme presented in the previous section
performs well under the idealistic assumption that all routers
in the Internet implement it. However, one of the criterion for
a DDoS defense presented in Section I-B was that the scheme
support incremental deployment; where not all routers in the
Internet participate in the marking algorithm. In this section,
we first explain the weakness of the original Pi marking
algorithm (referred to as theTTL markingalgorithm), and then
present two new schemes,Stack markingand routerwrite-
ahead, which both dramatically improve Pi’s incremental
deployment performance.

III-A. Incremental Deployment Issues

An important property in the Pi marking scheme is that all
packets traversing the same path produce a single marking.
This property relies on there being enough routers in a given
path to completely overwrite the IP Identification field with
their markings. Because the IP Identification field is initialized

by the end-hosts (the attackers in the case of a DDoS attack),
any bits that are not overwritten by the routers in the path can
be used by an attacker to change between different markings.
In the ideal scenario of 100% deployment of the marking
scheme, this effect is limited only to short paths. However,
as the percentage of non- marking (legacy) routers increases,
the likelihood of completely overwriting the IP Identification
field correspondingly diminishes. In fact, TTL marking is
particularly vulnerable to this effect, because of the factthat
legacy routers decrement the TTLs of the packets that they
forward. Thus, a single legacy router can cause a section of
the IP Identification field to go unmarked, at least until the
TTL pointer wraps around again. However, with ann = 2
bit scheme, this requires 8 more hops to be present in the
path, the 8th of whichmust not be a legacy router. These
unmarked sections are calledmarking holesbecause they often
go unfilled and leave attacker initialized bits in the Pi marking.
We show the impact of legacy routers on TTL marking in
Section IV.

III-B. Stack Marking

The intuition behind Stack marking is the same as that for
TTL marking: in order to generate a path identifier that is
representative of a particular path from a source to a destina-
tion in the Internet, each router along the path must contribute
some small amount of information whose aggregate among the
routers of the path will be the Pi marking. However, instead
of using the packet’s TTL to aggregate the markings from
different routers, each router instead treats the IP Identification
field as though it were a stack.1 Upon receipt of a packet, a
router shifts the IP Identification field of the packet to the
left by n bits and writes its marking bits (calculated in the
same way as in TTL marking) into the least significant bits
that were cleared by the shifting (as shown in Figure 1). In
other words, the router simplypushesits marking onto the
stack. Because of the finite size of the Identification field, the
n most significant bits, which represent the oldest mark in the
packet, are lost in this process; just as in TTL marking. In
fact, Stack marking and TTL marking are equivalent in the
case of 100% deployment.

The differences between TTL and Stack marking become
evident when legacy routers are introduced into the topology.
Unlike TTL marking, which interacts poorly with legacy
routers because of its reliance on the packet’s TTL which is
modified by legacy routers, Stack marking does not rely on
the TTL, and hence, has no interaction with legacy routers
at all. There are no longer anymarking holesbecause each
marking router places its mark adjacent to the last marking
router’s mark, in the least significant bits of the IP Identifi-
cation field. Completely marking the whole field using Stack
marking requires only that there be⌊16/n⌋ non-legacy routers
anywhere in the path.

1To be precise, the StackPi markings are treated as awindowed stack,
since the oldest markings are displaced by new markings, butpush andpop
operations still manipulate the most recently added markings.
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Fig. 1. The basic Stack Marking Scheme. This figure shows how the Pi mark evolves as the packet traverses routers R1 through R9. Initially, the marking
field contains arbitrary data. In this example, each router marks with n = 2 bits and the field has space for four router markings.

III-C. Router Write-Ahead

Stack marking eliminates the interaction between Pi-enabled
routers and legacy routers that is present in TTL marking.
However, Stack marking is still limited in that a path which has
too few marking routers will still result in end-host initialized
bits arriving at the victim; which allows attackers to shift
between different Pi markings. We can add an extra step to our
marking scheme to improve this situation slightly. We already
assume that each router knows the IP address of the last-hop
routers or hosts from which it receives packets (this knowledge
is necessary for generating the marking bits of each router,
as explained in Section II-B). If we also assume that each
router knows the IP address of the next-hop routers or hosts
to which it is forwarding packets, then the router is capableof
marking the packetson their behalf. All the router needs to do
is substitute its own IP address for the last-hop IP address and
the next-hop IP address for its IP address when calculating the
bits to mark (of course, the results of this calculation should
also be cached so that they need not be repeated for each
forwarded packet). This second marking is calledWrite-ahead
marking.

The benefits of Write-ahead marking are immediately ev-
ident when considering a Pi-enabled router followed by a
legacy router in a path. In this case, the Pi-enabled router
will mark not only for itself but also for the next-hop router,
the legacy router, so that its marks will be included as well.

There is, however, a slight complication with the Write-
ahead scheme: what happens when two Pi-enabled routers are
adjacent to each other in a path? It would be a waste of space
for the second Pi enabled router to add its own mark to the
packet, since the first Pi-enabled router would have added
that mark already. Therefore, we are forced to change our
scheme slightly to accommodate this situation. Upon receipt
of a packet, a routerpeeks(the process of looking at the item
in the top of the stack without modifying the stack itself)
at the least significantn bits and compares the marking it
finds there to what its own marking would be. If the markings
are identical, then the router will assume that the last hop
router is Pi-enabled and has already marked the field on the
current router’s behalf. In this case, the current router will
skip pushing its own marking and will only push the next-

hop router’s marking onto the stack. If the topmost marking
is different from what the router’s marking would be, then
the router will assume that the last-hop router was a legacy
router and will push its own marking as well as the next-
hop router’s marking onto the stack. There is a chance that
a legacy router placed between two Pi-enabled routers will
go undetected if it has the same marking as the Pi-enabled
router after it; this probability is equal to1

2n wheren is the
number of bits in each router’s marking. Figure 2 shows an
example of the stack based scheme with write ahead. However,
even if a legacy router is missed in the Write-ahead scheme,
there is no wasted space in the IP Identification field; it is
simply as though the Write-ahead scheme was not used at all.
Therefore, the Stack marking scheme with Write-ahead is a
strict improvement over the stack marking scheme alone.

It is possible to build a mechanism that would allow a router
to detect that its last-hop neighbor in a path is a legacy router.
This mechanism would allow a router to simply push its own
markings onto the stack without incurring the1

2n probability
that the last Pi-enabled router’s marking is identical to the
current router’s marking (causing the current router not toadd
its own markings, as discussed above). Such a mechanism
could be as simple as noting a variation in the least-significant
bits of the incoming Pi mark between packets arriving on the
same interface and from the same last-hop (as determined by
the Link Layer address). This mechanism works because a
non-legacy (Pi-enabled) router wouldalwaysmark the same
bits into the packet, resulting in the same bits arriving to the
next hop router. Thus, a variation in the least significant bits
observed in the Pi-mark of a specific last-hop router indicates
that at least that last-hop router is a legacy router. Unlikethe
Write-ahead scheme proposed above, this scheme may result
in extra markings being added to the stack in the particular
scenario where there exists a layer-2 network between three
or more Pi-enabled routers. The layer-2 routers will rewrite
the Link Layer addresses of packets, which may cause one Pi-
enabled router to see different Pi marks (generated by the other
two Pi-enabled routers) appear on the same interface with the
same Link Layer address. To avoid the uncertainties with this
legacy router detection scheme, we use the standard write-
ahead scheme presented above in our subsequent simulations.
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IV. Analysis and Evaluation of the StackPi
Improvements
In this section, we evaluate the performance of the Pi scheme
under a simulated DDoS attack. We first review the DDoS
attack model that we use in our simulations. We then derive
an equation for the optimal value of the Pithreshold filter
under attacks of varying severity and evaluate its performance.
Finally, we evaluate the effect of the StackPi marking improve-
ments on Pi’s incremental deployment performance.

IV-A. DDoS Attack Model

In order to model Pi’s performance under a DDoS attack, we
must have some way for the DDoS victim to identify attack
packets, so that it can bootstrap the Pi filter. Unfortunately,
this requires the simulation of a higher-level algorithm that
is likely to be dependent on the content of the traffic (HTTP
or DNS etc.) to make its classifications. Simulating such an
algorithm is beyond the scope of this article.

To compensate for this, we model our DDoS attack in two
phases: thelearning phaseand theattack phase. In the learning
phase, the victim is considered omniscient, and can determine,
for each packet received, whether that packet originated from
an attack or a legitimate user. This phase of the attack is
used to simulate the effect of a high-level traffic and content
analysis algorithm, without specifying the algorithm itself. The
knowledge gained in the learning phase is used to bootstrap
the Pi filter with the Pi markings of known attackers. In the
attack phase, the victim can no longer differentiate attackand
user packets and is forced to use the Pi filter to make accept or
drop decisions for every packet it receives. All of the results
presented are taken during the attack phase. The length of the
learning phase is 3 packets per legitimate user and 30 packets
per attacker. The length of the attack phase is 20 packets per
legitimate user and 200 packets per attacker.

For our experiments, we use Burch and Cheswick’s Internet
Mapping Project [6], [16] topology and the Skitter Project
topology distributed by Caida [8].2

2Due to space limitations, we only show the results from the Skitter Map
topology.

Our DDoS simulations proceed as follows: a certain number
of pathsare selected, at random, from the topology file and
assigned to be either attack or legitimate user paths. All ofthe
DDoS simulations have 5,000 legitimate users and vary the
number of attackers. We use ann = 2 bit marking scheme
and assume, as discussed in Section II-B, that the last three
hops of any path are under the victim’s ISP control and thus,
do not add their marks to the packet. The results presented are
the averages of 6 runs of each attack.

IV-B. Threshold Filtering Performance in StackPi

Recall from Section II-C that the threshold value of the Pi filter
is used to give a DDoS victim some flexibility in deciding
whether or not to drop all packets arriving with a particularPi
mark by setting a minimum acceptable level of user traffic
to that Pi mark. We showed in earlier work [40] that the
greater the severity of the attack, the better higher threshold
values performed. In this section, we derive the formula for
the optimal threshold value as a function of attack and user
traffic, and confirm the optimality of our result using our DDoS
simulation.

In order to quantify the performance of the Pi filter, we
first define two metrics, representing the two different types
of errors a Pi filter can make:false positives, where legitimate
users’ packets are dropped; andfalse negatives, where attack-
ers’ packets are accepted. For the purpose of our evaluation,
we refer to the following two metrics: theuser acceptance
ratio; which is 1 minus the false positive rate, and theattacker
acceptance ratio; which is exactly the false negative rate. We
define these two metrics in terms of the following simulation
variables:

pj - The total number of packets sent by entityj
vj - The total number of packets sent byj accepted by the

victim.
The acceptance ratio,aj , for a given entityj is defined as:

aj =
vj

pj

Thus, for the set of all users,U , and all attackers,A, the
acceptance ratios are defined asaU = vU

pU
and aA = vA

pA
for

the users and attackers, respectively.
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Fig. 3. Performance Comparison of threshold values.

Under a DDoS attack, the victim would like to maximize
the user acceptance ratio and minimize the attacker acceptance
ratio. The two acceptance ratios are correlated in threshold
filtering schemes, as a decrease in one can result in the increase
of the other. The goal of the victim, then, is to maximize the
difference between the two ratios:

∆ =
vU

pU

−
vA

pA

which we refer to as,∆, the acceptance ratio gap. The
acceptance ratio gap is a useful metric to determine how
a particular StackPi filter performs relative to other filters
or to no filter at all. Without Pi marking and filtering, the
victim can only make accept/drop decisions at random, which
intuitively gives an equal user and attacker acceptance ratio,
or an acceptance ratio gap of zero. Relative to other filters,a
better filter has a higher acceptance ratio gap.

In order to maximize the acceptance ratio gap, we must find
an optimal threshold value. We derived the optimal threshold
value as follows:

fi =

{

1 if
pUi

pAi

< pU

pA
,

0 otherwise.

topt =
pU

pA

The details of the derivation are in the Appendix.
This result indicates that in order to maximize the

acceptance ratio gap, unless the ratio of user traffic to attack
traffic at a particular Pi mark is greater than the ratio of user
traffic to attack trafficover all Pi marks, then all packets
bearing that marking should be dropped. Because we prefer
to deal with thresholds as percentages, we normalize our
optimal threshold value to be:

topt =
pU

pA + pU

To calculate the value of the threshold the victim uses the
information from packets in the learning phase of the DDoS

attack to set the value of the threshold in the attack phase
of the DDoS attack. Figure 3 shows the performance of the
optimal threshold filter relative to select constant threshold
values for attacks of increasing severity. Each of the constant
threshold value curves is tangential to the curve of the optimal
threshold and intersecting at a single point on the curve where
the optimal value of the threshold equals the value of the
constant threshold.

IV-C. Legacy Router Analysis

We now apply the optimal threshold filter to the two mark-
ing schemes: the TTL marking scheme from the earlier Pi
work [40] and the StackPi marking scheme introduced in
Section III. Figures 4 and 5 show the acceptance ratio gaps
for the TTL and StackPi marking schemes, respectively, under
increasing percentages of legacy routers.3

The TTL marking scheme performs as expected (and sim-
ilarly to its performance in [40]), with a roughly constant
decrease in performance per added percent of legacy routers.
This confirms our assertion from Section III-A thatmarking
holesgenerated by legacy routers go mostly unfilled, and result
in more Pi markings per attacker and hence, less filtering
accuracy at the victim.

The situation is much improved using the StackPi marking
scheme. The slow performance degradation at low percentages
of legacy routers is due to two phenomenon. The first is
the elimination of the marking holes due to the stack based
marking. Because most paths contain more routers than there
is space for in the IP Identification field, when some routers
stop marking, other routers’ marks simply take their place.
The second phenomenon is the effect of the write-ahead
improvement. At low percentages of legacy routers, it is
likely that a legacy router will appear between two Pi-enabled
routers. In this case, the write-ahead improvement allows for
that legacy router’s markings to be included by the Pi-enabled
router appearing before it, so the legacy router has no effect
on the Pi mark for that path. As the percentage of legacy
routers goes beyond 60%, these two effects are minimal, and
the performance degradation per percent increase in legacy
routers is equivalent between the TTL and StackPi marking
schemes.

Overall, the StackPi marking scheme outperforms the TTL
marking scheme at all percentages of legacy routers, par-
ticularly the low percentages. With StackPi marking, the Pi
scheme provides some DDoS protection, even when as little
as 20% of routers in the Internet implement the scheme.

3Unfortunately, our algorithm for introducing legacy routers into the topol-
ogy results in a uniform distribution, which may be unrealistic. It is more
likely that clumps of routers in a path - perhaps belonging to aparticular
organization - will be updated over a short period of time. A uniform
distribution also biases the results in favor of the StackPimarking scheme
because it is more likely that a single legacy router, rather than a series of
them, will appear in a uniform distribution. We are working onexperiments
that utilize different distributions to model the occurrence of legacy routers
in the network topology.
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Fig. 4. TTL marking incremental deployment performance.
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Fig. 5. StackPi marking incremental deployment performance.

V. PiIP Filter: Filtering on the < Pi Mark,
Source IP Address> Tuple
The optimal threshold filtering we describe in Section IV-B is
a great general filtering technique with low filtering overhead.
In this section, we present a more powerful filter, the PiIP
filter, which can detect IP spoofing attacks on a per-packet
basis. Recent work has shown that IP spoofing is possible
in at least a quarter of the ASes of the Internet [4] and this
remains a useful vector for attackers launching DDoS attacks.
In this section, we limit our focus to spoofing attacks where
the attacker tries to spoof an IP address that is not from the
same network as the attacker itself.

V-A. PiIP Filter Design

The key observation is that assuming relatively stable Internet
forwarding paths, packets originating from an IP network will
arrive at the destination with a small set of distinct Pi marks.
Conversely, assuming that the Pi marks are approximately
uniformly distributed, a given Pi mark will only be pro-
duced by a relatively small number of origin networks. These
assumptions hold in particular for networks where packets

traverse sufficiently many Pi routers such that all bits in the
IP identification field are marked.

We observe that packets from a given IP network will all
arrive at the destination with a small number of distinct Pi
marks — we can use this to design a powerful filter to reject
packets with spoofed IP addresses. We consider the following
setup. During peace time (when a server is not under attack),
the server stores the tuple< Pi mark, source IP address>, or
<Pi,IP> for short.4

When the server is under attack, it uses the<Pi,IP>
database to filter out packets with spoofed source IP addresses.
For each incoming packet, the server checks whether the
<Pi,IP> tuple of the arriving packet matches an entry in the
database; if the tuple does not match the corresponding entry
in the database, it rejects the packet. A nice feature of thisPiIP
filter is that the server can filter out the very first malicious
attacker packet. However, the forwarding path of a legitimate
receiver may change and the arriving packet’s<Pi,IP> tuple
may not be in the database. Thus, the application writer needs
to consider the output of the PiIP filter as ahint on whether the
source IP address is spoofed or not. As long as the server has
sufficient capacity, questionable packets may also get served,
and if the packet originator turns out to be a legitimate user,
the server can add the<Pi,IP> tuple to its database. Note that
the PiIP filter cannot be used to detect IP spoofing attacks if
the IP address in the packet is not in the database. We have
several ways to address this issue. Because packets from the
same network (even if not from the same IP addresses) usually
have the same Pi mark, from the Pi mark of one IP address
we can derive the Pi mark of other IP addresses on the same
network.

V-B. PiIP Filter Evaluation

To evaluate the performance of the PiIP filter, we compute the
probability of a false negative, i.e., the probability an attacker
can send a packet with a spoofed IP address that the victim
accepts. A false negative occurs if the attacker spoofs the IP
address of an end-host that happens to have the same Pi mark
as the attacker itself. It is clear that the PiIP filter performs best
if a given IP address has very few possible Pi marks, and if Pi
marks are well distributed. For example, assuming uniformly
distributed Pi marks and assuming that a given IP address has
4 possible Pi marks for a certain destination, an attacker has
a 4/216 = 1/214 probability to spoof the IP address to that
destination so that its packet will be accepted.

We conduct the following experiment: each end-host sends
10 packets with non-spoofed source IP addresses to the
victim to build the<Pi,IP> tuple database. Figure 6 shows
a histogram of the number of Pi markings with a particular
number of unique IP addresses that map to them (note that
the y-axis is logarithmic). The histogram shows us that the IP
addresses are somewhat uniformly distributed over the possible
Pi marks, with the large majority of Pi marks having 1 to 4

4Since in general all packets from a network have the same Pi marks,
the server can store the network address instead of the source IP address.
However, for simplicity we discuss the case where the server stores the IP
address.
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unique IP addresses that map to them and very few Pi marks
with greater than 20 unique IP addresses that map to them.
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Fig. 6. Histogram of the frequency of Pi marks with a particular number of
IP addresses that map to them, after 10 packets are sent from each end-host
in the Internet Map topology.

Given this distribution, we can calculate the probability that
a randomly chosen end-host from the topology will succeed
in spoofing the IP address of another end-host. Because we
are dealing with a topology that only contains a small subset
of all the possible legitimate IP addresses, we assume that
our attacker has access to a list of the unique IP addresses
of all end hosts in our topology and selects addresses from
this list when spoofing a packet. We begin by calculating the
probability that an attacker with a particular IP address,k,
will succeed in spoofing a packet that will be accepted by
the filter. This probability depends on how many Pi markings
have been recorded at the victim for addressk. We define
the set ofn distinct Pi markings recorded for addressk as
{m0,m1, . . . ,mn}. For each Pi mark recorded at the victim
for IP addressk, there is a set of other IP addresses that also
map to the same Pi mark. If the attacker were to spoof any of
these, the attack packet would be accepted by the filter. Thus,
the probability of an attacker with IP addressk successfully
spoofing is:

Pk =

∑n

i=0
uniqueIPs(mi, k)

N

where theuniqueIPs() function returns the number of unique
IP addresses that map to Pi markmi, excluding IP address
k as well as any duplicates between function calls, andN
represents the number of end-hosts in the topology; which is
the size of the list of possible IP addresses that the attacker
can spoof. Given the probability of an attacker with a specific
IP address of successfully spoofing a packet, we can now
calculate the probability of an attacker with a random IP
address successfully spoofing:

P =

∑N

k=0
Pk

N

Using the values from the 10 packet bootstrapping experiment,
we calculated this probability to be 0.005 for the Internet Map
topology and 0.003 percent for the Skitter topology. Although

this result is two orders of magnitude worse than the ideal
case, it still shows that in real topologies an attacker has a
very small chance to successfully spoof another IP address
that is not from the same network as the attacker.

VI. Discussion
The Pi scheme has great potential as a DDoS and IP spoofing
defense mechanism. In this section, we discuss a number of
issues and extensions relating to Pi that could substantially im-
prove on the results we have obtained thus far. In Section VI-
A we discuss an extension to the StackPi marking scheme
that allows routers to mark with a variable number of bits.
In Section VI-B we show how Pi-IP filters can be used to
implement a form of standard IP traceback. In Section VI-
C we discuss Pi’s compatibility with IP fragmentation. In
Section VI-D we explain briefly how Pi can be applied in an
IPv6 environment. Finally, in Section VI-E we discuss why the
Pi scheme is fundamentally different from other IP traceback
schemes from a deployment perspective.

VI-A. Variable Bit Marking

Thus far, we have assumed that the Pi marking scheme has
a global parametern, which is the number of bits that each
router uses to mark a single link. We may gain more space
efficiency if routers are allowed to choose for themselves a
particularn to use for marking. For example, in the current
Pi marking scheme, a router with only two interfaces would
mark two bits in the packet, although that router does not
truly affect the path at all, since it can be abstracted simply
as a link between its last-hop and next-hop neighbors. In a
variable bit marking scheme, such a router would not mark the
packet. Each router would calculate its ownn, possibly as a
function of the number of interfaces it has. We are working on
simulations that incorporate the variable bit marking scheme
into Pi.

VI-B. Enabling Traceback with PiIP filters

A properly bootstrapped PiIP filter (as described in SectionV)
can be used to perform standard traceback, that is, complete
path reconstruction from a packet’s destination to its sender.
When a destination receives a packet that is flagged because
its source IP address does not match its Pi marking in the
Pi-IP filter’s database, the victim can consult the databaseto
generate a list of IP addresses that correspond to the packet’s
Pi mark. The victim can then determine the path by simply
executingtraceroute and recording the path.5 Although
this method does not guarantee a unique path to the packet’s
origin (there may be multiple IP addresses that map to the
same Pi mark), it does greatly reduce the space of potential
attackers.

VI-C. Compatibility with IP Fragmentation

Placing a deterministic marking in the IP Identification field
of every packet in the network is incompatible with the cur-
rent IPv4 fragmentation mechanism (except under very strict
network assumptions such as no packet reordering or loss).

5This process will not accurately reconstruct asymmetric paths.
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Despite the fact that fragmented traffic represents between
0.25% and 0.75% of packets in the Internet [36] [33], we
must at least consider a mechanism to allow Pi to coexist
with fragmentation.

We offer a solution, proposed by Vern Paxson, that routers
only mark packets that will never get fragmented and that
are not fragments themselves. The latter class is simple to
identify, as these packets will have a non-zero Fragment Offset
field in their header or amore fragments flag which is
set. Determining which packets will never get fragmented
is more challenging. The simplest classification is those IP
packets that have theDo Not Fragment (DF) bit set in the
Flags field of the IP header. This classification is adequate for
servers with a majority of TCP traffic – as most modern TCP
implementations set theDF bit by default [39], as specified by
the Path MTU Discovery standard in RFC 1191 [27]. During a
DDoS attack, a server can easily filter out packets that do not
match this classification and are thus not marked. We show the
percent of markable traffic from a 31 day trace of packets from
the Lawrence Berkeley Lab DMZ in Table I. From Table I,
we see that if an attacker intentionally does not set theDF bit
to evade marking, filtering out those packets at the victim will
only adversely affect 1.76% of legitimate traffic.

Unfortunately, theDF classification is inadequate for UDP
traffic, which has a much smaller percent of traffic that
carries theDF bit. Without the DF bit, classifying packets
that will never be fragmented is no longer 100% accurate. An
alternative method would be to only mark UDP traffic that is
smaller than the smallest Maximum Transmission Unit (MTU)
for common Internet traffic links. A widely accepted value for
this is 576 bytes [5], however, lower MTU links are possible
and perhaps likely, with the expected proliferation of web-
enabled phones. In either case, the networking community will
need to agree on a specific value before Pi can be deployed
to protect UDP specific services.

Packet Classification Percent markable
TCP with DF 98.24%
UDP with DF 26.69%

UDP ≤576b or DF Set 87.12%
UDP ≤250b or DF Set 79.06%
UDP ≤100b or DF Set 64.75%

TABLE I

PERCENT OF PACKETS THAT CAN BE MARKED BY CLASSIFICATION.

AVERAGE OVER31 DAYS OF TRAFFIC FROMLAWRENCE BERKELEY LAB

DMZ, M AY 1-31, 2003.

VI-D. StackPi in IPv6

Although the Pi scheme has been specifically designed for
deployment in IPv4, its principal ideas are equally applicable
in an IPv6 environment. The IPv6 protocol does not support
en-route packet fragmentation, and thus does not have an
equivalent field to the IP Identification field of IPv4. There
are, however, two possibilities for marking space in IPv6:
in the flow identification field or in a hop-by-hopoption.
The advantage of marking in the flow identification field of
the header is that because the field is part of the standard

header, router markings will not add to the packet’s size (which
might cause the packet to exceed the MTU of an intermediate
network and be dropped). The flow identification field is 20
bits in length, which allows more routers to include their
markings in each Pi-mark.6 Of course, this is not the purpose
that the flow identification field was meant to serve [12].

The other option is to include the Pi marking in a hop-by-
hop option inserted by the first Pi enabled router in the path.
The benefit of this approach is that the length of the option
need not be limited to 20 bits, as is the flow identification
field. However, inserting such an option into the packet may
cause it to exceed the MTU of a link somewhere along the
path. In either case, DDoS protection is a critical feature that
should be present at the network level, and IPv6’s current
limited deployment makes it a good candidate for modification
to include the Pi scheme.

VI-E. Incentives for Deployment

Previous DDoS defense mechanisms do not provide a good
incentive structure to foster adoption. For example, consider
the benefits to an ISP deploying ingress filtering [13]. That
ISP protects other ISPs’ customers from its own customers,
as ingress filtering stops its customers from spoofing their
source IP address. Ingress filtering does not directly benefit
the customers of the ISP, yet it introduces more complexity,
higher router management overhead, lower performance due
to filtering, and potential customer problems (when some
legitimate customer’s packets get filtered out).

In contrast, the Pi scheme offers very good incentives for
deployment that encourage adoption. First of all, if an ISP de-
ploys Pi marking on all its routers, a customer can immediately
start using the filtering techniques we describe in this article
to determine from where the attack traffic enters its ISP’s
topology. As we demonstrate in Section IV-C, a victim can
already perform filtering if only 20% of the routers implement
Pi marking. Ideally, this creates a market pressure for ISPs
to deploy Pi enabled routers. If ISPs want to deploy Pi, this
creates an incentive for router manufacturers to produce Pi-
enabled routers. We anticipate that the benefits of Pi will
produce these market incentives that drive deployment. The
main difference with previous techniques is that Pi deployment
immediately benefits the customers of an ISP, and helps those
customers defend against DDoS attacks.

VI-F. Changing Pi Marks

One of the basic assumptions of the Pi scheme is that the paths
from specific senders remain constant over the timescale of an
attack. Attackers can exploit this assumption in a variety of
ways. Instead of focusing a DDoS traffic flood on a particular
victim, an attacker can try and flood the routers along the path
to the victim, potentially causing a disruption in the paths
packets take to reach the victim, resulting in new Pi marks
arriving at the victim. A clever victim may be able to identify
the router under attack by comparing the Pi marks of traffic

6Unlike other IP Traceback schemes, which reconstruct the IP addresses of
the routers in the path to the attackers, the fact that IPv6 addresses are 128
bits instead of 32 bits is completely transparent to the Pi scheme.
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before and after the attack begins. Colluding attackers may
try to poison the PiIP filter by coordinating to complete a
TCP connection, while spoofing an address belonging to a
single attacker. The end-host may be fooled into including the
Pi marks of all attackers as legitimate Pi marks of the one
attackers IP address. This attack is limited, however, because
the attackers would need to spoof the same address, or set
of addresses, (if they poison more than one attackers address)
during the flooding phase of their attack.

VII. Related Work

There have been several studies of the frequency and nature
of Internet DoS attacks [14], [15], [20], [28].

Many approaches have been proposed for securing against
DoS and DDoS attacks. Ferguson and Senie propose to deploy
network ingress filtering to limit spoofing of the source IP
address [13]. However, unless every ISP implements this
scheme, there will still be entry points in the Internet where
spoofing can occur. Also, the additional router configuration
and processing overhead to perform this filtering is another
reason why it may not be widely deployed. Stone suggests
a mechanism whereby ISPs use routers capable of input
debugging connected through IP tunnels to an ASes border
routers to enable AS-level tracing [37].

Park and Lee propose a distributed packet filtering (DPF)
mechanism against IP address spoofing [29]. DPF relies on
BGP routing information to detect spoofed IP addresses. Their
approach is interesting, but requires high levels of router
participation.

Bellovin et al. suggest adding a new type of ICMP mes-
sage for traceback [3], [18], and Mankin et al. present an
improvement to this scheme [26]. Several researchers propose
to embed traceback information within the IP packet [1], [7],
[11], [23], [31], [35], [42]. Most of these schemes use the
16-bit IP Identification field to hold traceback information.
Routers along the packet’s path probabilistically mark certain
bits in the IP Identification field in certain ways. While the
traceback schemes could be used to find the origins of the
attacks, they often require a large number of packets and thus
cannot be used to filter out packets on a per-packet basis.

Snoeren et al. propose using router state to track the path
of a single packet [34]. Upon receipt of a packet, each router
hashes specific, invariant fields of the packet and stores the
hash in a table. When traceback is needed, the victim presents
its upstream router with the hash of the packet to be traced.
The routers then recursively query their upstream routers for
the presence of the packet in their hash tables. This mechanism
works well if all routers deploy this approach, but requires
routers to store substantial amounts of state and requires the
victim to contact the routers for traceback.

Ioannidis and Bellovin, and Mahajan et al. propose Push-
back, a packet filtering infrastructure leveraging router support
to filter out DDoS streams [17], [25]. Jin, Wang and Shin
propose the use of packet TTL as an effective means of
identifying spoofed traffic [19]. The mechanisms we propose
in this article can be used to greatly increase the effectiveness
of Pushback and Hop-count filtering, as the filters can take

the packet markings into account and thus distinguish packets
from various origins (increasing the accuracy of filtering).

Sung and Xu propose an altered IP traceback approach,
where the victim tries to reconstruct the attack path but also
attempts to estimate if a new packet lies on the attack path
or not [38]. Their scheme is probabilistic and each router
either inserts an edge marking for the IP traceback scheme
or a router marking identifying the router. Unfortunately,their
approach requires the victim to collect on the order of105

attack packets to reconstruct a path, and once the path is
reconstructed, this scheme will likely have a high false positive
rate as the routers close to the victim will all lie on some attack
path and frequently mark legitimate packets which will then
get rejected.

We have recently proposed a marking schemePi, a Path
Identification algorithm [40]. The original Pi marking is based
on the use of the packet’s TTL field as an index into the
IP Identification field where a router should add its marks.
This method is not as lightweight as the StackPi method.
Legacy routers have a harmful affect on the original Pi scheme
because they decrement the TTL of a packet but do not add any
markings. The StackPi scheme is robust to legacy routers and
even includes the write-ahead scheme to incorporate markings
for single legacy routers in the path.

Collins and Reiter use a novel approach of combining Cisco
NetFlow data from a large network with Skitter map data,
to compare DDoS defense mechanisms [10]. They measure
the effectiveness of path aware defense systems (Pi and
Hop-Count Filtering), as well as Static and Network-aware
clustering.

Recently, network capability-based systems have been pro-
posed for DDoS defense. Machiraju et al. propose a secure
Quality-of-Service (QoS) architecture that is based on net-
work capabilities [24]. Lakshminarayanan et al. leverage the
i3 infrastructure to enable a receiver to cut off unwanted
senders [22]. Anderson et al. [2] present an infrastructure
where the sender uses a capability to set up a path to the
receiver. We subsequently proposed SIFF, a capability-based
system that allows a receiver to enforce flow-based admission
control [41]. Yang et al. propose a capability-based mechanism
with fine-grained service levels that attempts to address the
denial-of-capability attack [43]. They leverage Pi markings to
filter out floods of request packets — in their scheme routers
attempt to provide fair sharing among capability request pack-
ets based on their Pi markings. This nicely illustrates thatPi
and StackPi are complementary to capability-based systems,
and can be used to mitigate spoofing and flooding in the
capability request channel.

VIII. Conclusion

In this article, we present new approaches for packet marking
and filtering in the Pi DDoS defense scheme [40]. The
StackPi marking improvements, stack-based and write-ahead
marking, eliminate themarking holesgenerated by legacy
routers and include the markings from single legacy routers
immediately following Pi-enabled routers in a path. We derive
an equation that allows a DDoS victim to select the optimal
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threshold value for the Pi filter. We also introduce a novel
filter which relies on the〈Pi, IP〉 tuple of each packet, making
it far less likely that an attacker will successfully bypassthe
filter. With these improvements, our evaluation shows that Pi
provides measurable DDoS protection, even when only 20%
of routers in the Internet participate in the marking scheme.
Finally, we discuss how Pi can be made compatible with IPv4
fragmentation, and propose ways to integrate Pi marking into
IPv6. The Pi scheme is very general and quite promising in
performance. These properties promise to make Pi a critical
deterrent to today’s most common Internet attacks.
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APPENDIX

OPTIMAL THRESHOLDFILTERING

We derive the optimal threshold filtering as follows.
Let vji

and pji
equal the number of packets accepted by

the victim and the total number of packets sent by entityj,
with StackPi mark i, respectively.

The acceptance ratio gap,∆, is then:

∆ =
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When the ratio of user traffic to attacker traffic at a particular
StackPi mark is above the threshold value, then all packets
arriving with that StackPi mark are accepted. Thus, we can
introduce our threshold filtering function,fi, which will return
1 if the user traffic ratio at StackPi marki is above the
threshold and 0 if it is below. We can now define the packets
accepted by the victim at a particular StackPi mark in terms
of the total packets arriving at that mark:

vUi
= fi · pUi

vAi
= fi · pAi

We include these definitions in our acceptance gap equation:

∆ =

2
16

−1
∑

i=0

(

fi · pUi

pU

−
fi · pAi

pA

)

=

2
16

−1
∑

i=0

fi

(

pUi

pU

−
pAi

pA

)

To maximize∆, it is clear that we must only accept packets
with StackPi marki where the ratio of user packets with
StackPi marki to the total number of user packets,

pUi

pU
is

greater than the ratio of attack packets with StackPi marki
to the total number of attack packets,

pAi

pA
. In terms of our

filtering functionfi:

fi =

{

1 if
pUi

pU
<

pAi

pA
,

0 otherwise.
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