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Abstract

We propose XTRec, a primitive that can record the
instruction-level execution trace of a commodity computing
system. Our primitive is resilient to compromise to provide
integrity of the recorded execution trace. We implement
XTRec on the AMD platform running the Windows OS. The
only software component that is trusted in the system dur-
ing runtime is XTRec itself, which contains only 2,195 lines
of code permitting manual audits to ensure security and
safety. We use XTRec to show whether a particular code
has been executed on a system, or conversely to prove that
some malware has not executed on the system. This is a
highly desirable property to ensure information assurance,
especially in critical e-government infrastructure. Our ex-
perimental results show that the imposed overhead is 2x–
4x for real-world applications. This overhead is primarily
due to CPU Branch Trace Messages(BTM), a ubiquitous
debugging feature used to record control-flow instructions.
Hardware improvements to BTM would therefore enable
XTRec to run with minimal overhead.

1 Introduction
Current operating systems and applications continue to

be plagued by security vulnerabilities that enable an at-
tacker to compromise a system and execute arbitrary op-
erations. In fact, new vulnerabilities that enable a remote
attacker to compromise a system are still discovered on a
weekly basis. In such an environment, an operator of ap-
plications with security-sensitive data would like to answer
two important questions: given a newly discovered vulner-
ability, did attackers exploit this vulnerability to compro-
mise his/her systems; and if yes, what operations did they
perform?

Execution trace recording helps answer these questions.
Given a complete and exact trace of execution of an en-
tire system, it is possible to deduce all operations that took
place. Such information can even be used to demonstrate
that some operation did not happen, which is a highly de-
sirable property to ensure information assurance. This is
especially true in the context of critical e-government in-
frastructure such as systems used for lodging tax returns or
those employed for online voting. A breach in such security
critical systems can result in the loss and/or manipulation
of highly sensitive user information.

To illustrate these points, we consider the Haxdoor mal-
ware [13] which compromised several systems within Eu-
rope in 2006–2007 resulting in massive data theft and fi-
nancial loss [12]. The attacks made use of the A-311
Death Backdoor [33] which enables a remote attacker to
take complete control of a system, perform attacks, and
remove itself completely leaving no evidence that it ever
executed. In the case of Swedish bank Nordea, attackers
used the malware to steal relevant information from sys-
tems within the bank and performed internal transfers over
the next 15 months. Execution trace recording would en-
able concerned enterprises to know whether they had been
affected after the malware was documented, and what op-
erations the attackers performed.

Given the importance of execution trace recording, the
goal of this work is to provide an unobtrusive and efficient
mechanism that provides this property for current legacy
computing environments, such as Windows and Linux. We
seek an approach that does not mandate ad hoc hardware
or changes to existing operating systems or applications.
We present XTRec, a primitive which records the execution
trace of the entire system (including the OS and applica-
tions) in real time at the instruction level. Further, XTRec
provides robustness against subversion and integrity of the
recorded execution trace.

Current approaches for execution trace recording are
largely based on the concept of deterministic replay, where
coarse-grained deterministic and non-deterministic events
and memory snapshots (checkpoint) of the system are
recorded using a virtual machine monitor (VMM). These
events are then replayed at a later time in order to recon-
struct the entire system state. However, this approach has
several shortcomings. First, for server platforms, the re-
play time is proportional to the length of time the system
has been running since the last checkpoint. Since check-
points incur significant latency and are minimally used, re-
play increases analysis time considerably thereby defeat-
ing the goal of forensic analysis where minimizing time is
of utmost importance. Second, non-determinism such as
network and disk data result in huge overhead in terms of
space and time, especially for server environments. Fur-
ther, it is prohibitively slow to accurately capture all forms
of non-determinism (e.g, device states, device interrupts
and CPU micro-architectural states) at runtime on current
commodity platforms without employing ad hoc platform
hardware [29]. Finally, current approaches rely on gen-



eral purpose VMMs which have a large Trusted Comput-
ing Base (TCB). This renders them suceptible to various
attacks owing to their size and complexity [14], thereby en-
abling an attacker to tamper with the recorded events. We
discuss deterministic replay approaches in further detail in
Section 7.

In contrast to deterministic replay systems which aim
at reconstructing the entire system state by replay, XTRec
focuses on obtaining only the execution trace in real time.
Thus, there is no replay overhead to perform trace analysis.
Also, we do not record any data. Based on recent findings
which show how to accurately detect malware using only
instruction traces [7, 6], we argue that the execution trace
information in itself is sufficient to show if a system has
been compromised.

XTRec uses several novel approaches for real-time exe-
cution trace recording. First, XTRec employs the Branch
Trace Message (BTM) and physical memory virtualiza-
tion features available in all commodity x86-class CPUs
to obtain the instruction-level execution trace. Since trace
recording is done in real time, it results in smaller space
and time overhead as there is no need to store any non-
deterministic data (e.g., data from network and disk ac-
cesses). Second, XTRec reserves a network interface for its
exclusive use on an untrusted system where it is deployed
and stores the execution trace on a remote trusted system.
Our primitive employs a tiny hypervisor and uses commod-
ity hardware features to provide robustness against subver-
sion thereby guaranteeing the integrity of the recorded ex-
ecution trace. Finally, XTRec relies on a small subset of
system hardware for all its functionality. This helps keep
XTRec’s codebase very simple and small thereby making
it amenable to formal verification to rule out potential vul-
nerabilities.

2 Problem Statement
Goals: Our primary goal is to record the execution trace
of a system at the instruction level in real time while simul-
taneously ensuring the integrity of the recorded informa-
tion. Further, we wish to achieve the above goal on com-
modity platforms without adding specialized hardware or
modifiying any software including the operating system.

Adversary Model: We consider an attacker without
physical access to tamper with the CPU, chipset, memory
or the network interface/connection used by XTRec. The
attacker can use any method to take control of the system
(XTRec is assumed to be secure) and can execute any arbi-
trary code within the system.

Assumptions: We assume the following: (a) system sup-
port for branch trace messages (BTM), which all x86-class
CPUs provide, (b) support for hardware CPU virtualiza-
tion including hardware-based physical memory virtualiza-
tion (e.g., Nested Page Tables) and support for hardware-
attestation (e.g., TPM chip). Both technologies are rapidly
becoming ubiquitous, (c) support for a storage area net-
work (SAN) for recording purposes, a reliable and loss-
less gigabit-speed network connection (optical fiber/EMI-
resistant ethernet cabling) to the SAN and a dedicated gi-

Trusted 
System

(Log Store)

Untrusted 
System 
(Host)

Dedicated 
High-speed 

Communication Link

Execution Trace

Internet

XTRec Hypervisor

OS Environment (OS Kernel, 

Drivers & Applications)

CPU, Memory

TPM and

Trusted NIC

Other 

Devices

Figure 1: XTRec is deployed on an untrusted system (host) and
records host execution trace to an external trusted system (log-
store) in real-time. Shaded portions represent trusted components.

gabit network interface to the SAN. These are typical en-
terprise settings, (d) CPU features (hardware virtualization,
BTMs and physical memory virtualization) and TPM hard-
ware attestation are free of vulnerabilities, and (e) XTRec’s
code does not contain vulnerabilities. Given the dramat-
ically reduced TCB of XTRec (2,195 lines) compared to
previous work, we argue that manual audits can validate
this assumption.

3 Design

3.1 Overview

XTRec is intended for deployment on untrusted systems
or hosts (Figure 1). Since XTRec collects large volumes
of real-time information, our system currently relies on a
fast transmission medium such as a gigabit network inter-
face/connection and stores the collected information on a
trusted entity (log-store). A host would typically be an en-
terprise server while the log-store would be a storage area
network or an inexpensive disk array system such as ATA-
over-Ethernet.

The XTRec architecture is based on two central con-
cepts: (i) real-time recording: the execution trace infor-
mation is recorded in real time using the CPU as opposed
to event record and replay approaches employing a VMM.
This eliminates system replay, thereby enabling fast foren-
sic analysis and does away with issues associated with non-
determinism (e.g., reconstructing CPU micro-architectural
states and storing data for all network and disk accesses);
(ii) secure recording: XTRec maintains the integrity of
the recorded execution trace by storing the information on
an external log-store and by preventing access to the net-
work interface, CPU mechanisms and memory areas used
for trace collection within the host. Further, since XTRec
relies on CPU hardware to perform most of the function-
ality, its codebase is simple and tiny to rule out potential
vulnerabilities. In contrast, current deterministic replay ap-
proaches use general-purpose VMMs which are suceptible
to various attacks due to their size and complexity [14, 19].



01.      mov eax, esi

02.      xor eax, edi

03.      cmp eax, a000h

04.      jz l_1  

05.      mov ecx, b800h

06.      xor eax, ecx

07. l_1: add eax, 5h

08.      cmp eax, a000h

09.      jnz l_2 

10.      mov edi, eax

11. l_2: cmp edi, 5000h

12.      jle l_3 

13.      or edx, edx

14.      cmp edx, 1000h

15.      jne l_2

16. l_3: jmp l_4 

17.      ...

18. l_4: ...

CPU

BTM-1: jz l_1  (NT)

BTM-2: jnz l_2 (T)

BTM-3: jle l_3 (T)

BTM-4: jmp l_4 (T)

…...

NT = Not Taken

T = Taken

Figure 2: CPU Branch Trace Messages record control-flow in-
structions which are then superimposed over dynamically cap-
tured code for a complete execution trace.

3.2 Real-time Recording
XTRec leverages a special feature in a regular x86-class

CPU, whereby the CPU emits details about every control-
flow instruction that is encountered during program execu-
tion. XTRec also leverages physical memory virtualization
to obtain non control-flow instructions. Thus, a complete
instruction level execution trace is recorded in real time.
Finally, XTRec simultaneously transmits the collected ex-
ecution trace to the log-store over a trusted network.

3.2.1 Branch Trace Messages

All x86-class CPUs contain support for a debugging fea-
ture called a Branch Trace Message (BTM). A BTM en-
abled CPU emits a special message for every branch (con-
ditional or unconditional) that is decoded at the current in-
struction pointer. This includes conditional jumps, uncon-
ditional jumps, loops, procedure invocations, returns from
procedures, interrupts, exceptions, and return from inter-
rupts and exceptions. BTMs are usually sent out on the
system bus, but the CPU can also be configured to send the
BTMs to system physical memory. Figure 2 shows a code
fragment and the BTMs generated by the CPU.

BTMs occur irrespective of the operating mode or priv-
ilege level of the CPU. This is crucial to our architecture,
since we do not need to modify any code executing in the
host to enable recording the execution trace. Further, BTMs
are directly generated from the Execution Unit of the CPU,
so the CPU will always generate a BTM irrespective of the
type of control-flow transfer. Thus XTRec can support any
form of commodity code including obfuscated, polymor-
phic and metamorphic code found in all current generation
malware. Further, the BTM feature is controlled with a
very small set of CPU registers and involves very little in-
tervention at runtime. This helps keep XTRec’s codebase
simple and tiny.

3.2.2 Dynamic Code Capture

BTMs enable recording of only control-flow instructions.
This information can then be superimposed over static code
(executables or libraries) in order to obtain an instruction-
level execution trace. However, most if not all mali-
cious code employs some form of dynamic code generation
(e.g., polymorphism and metamorphism). Further, certain
classes of malware employ sophisticated coding mecha-
nisms which closely mimic the control-flow instruction se-
quences of a benign program. XTRec uses hardware physi-
cal memory virtualization to obtain the code corresponding
to the BTMs during runtime.

XTRec uses page protections within hardware managed
physical memory page tables to enforce a W ⊕ X policy
on physical memory pages used within the host OS envi-
ronment. Thus, a page within the host OS environment
may be executable or writable, but not both. XTRec al-
ways records the contents of a page prior to converting the
page to executable status. Thus, at any given point in the
recorded information, a BTM can always be superimposed
on the corresponding code page contents to obtain the com-
plete execution trace.

Previous work use a similar page protection mechanism
for approved code execution in the kernel [31], or to de-
termine what applications are running [23]. In contrast,
XTRec uses these page protections to record the contents
of a page where code is executed.

3.2.3 Recording to the Log-Store

XTRec records the execution trace to an external trusted
log-store over a trusted network. Given the fine granularity
at which the execution trace information is recorded, it is
very important to eliminate any bottleneck as a result of the
network transmission. XTRec leverages commodity giga-
bit network interface features in order to ensure simultane-
ous execution trace collection and network transmission.

All gigabit network interfaces contain support for a ring
of descriptors, where each descriptor describes a range
of physical memory to be transferred using DMA. Fur-
ther, once these descriptors are setup, the entire ring can
be transmitted in one shot via DMA. Our implementation
and experimental results show that by carefully choosing
the size and arrangement of the ring of descriptors and
the physical memory buffers, the network transmission can
proceed simultaneously with the collection of execution
trace information and stalls due to network transmission
can be avoided.

3.3 Secure Recording
A host with XTRec runs a commodity OS and untrusted

applications. Thus, vulnerabilities within the OS or an ap-
plication can be exploited either locally or remotely to ex-
ecute malicious code. Such malicious code could: (a) tam-
per with the BTM functionality or memory regions belong-
ing to XTRec, and/or (b) impersonate XTRec to log incor-
rect execution trace information to the log-store. XTRec
handles both cases using a combination of CPU protections
and hardware attestation (via a TPM).



Memory Protection: XTRec partitions the available
physical memory within the host into two areas: the XTRec
memory region and the host OS memory region. XTRec
employs CPU physical memory page tables (PMPT) to
restrict the host OS to its own physical memory region.
In other words, the PMPT for the host OS does not map
physical memory pages that belong to XTRec. Further,
XTRec employs hardware-based DMA protection to pre-
vent DMA-based access to its memory regions. This pre-
vents malicious devices in the host from directly accessing
memory regions belonging to XTRec.
BTM Protection: BTM features on x86-class CPUs are
controlled by CPU registers. XTRec uses CPU hardware
virtualization to trap any access to CPU BTM registers
from the host OS environment.
Secure Communication with the Log-Store: To cre-
ate a secure channel for communicating with the log-store,
XTRec uses CPU hardware virtualization to prevent the
host OS from accessing the network interface that connects
the host to the log-store.

To convince the log-store that it is communicating with
XTRec, we use TPM-based attestation. Initially, XTRec is
started at system boot using a late launch operation, which
records a measurement of XTRec in the TPM. XTRec then
waits for a challenge (a cryptographic nonce) from the log-
store. XTRec uses the TPM to generate a quote (essen-
tially a signed statement describing the software state of
the system and the challenge nonce) that it transmits to the
log-store, which checks the attestation. The correct attes-
tation ensures the log-store that XTRec is correctly exe-
cuting with the correct protections in place. The log-store
starts accepting data from the host only if the verification
succeeds.

XTRec uses CPU hardware virtualization mechanisms
to detect when the host is restarted or shutdown. When
XTRec detects such an event, it sends the log-store a spe-
cial network packet signifying the end of recording. Upon
receipt of this special packet, the log-store stops accepting
any further data from the host and performs the procedure
described in the previous paragraph to verify that XTRec
has started again.

4 Implementation
We implemented a prototype of XTRec with Windows

2003 Server SP1 as the OS on a host running the AMD
Opteron CPU with SVM extensions. Our prototype cur-
rently supports execution trace recording for a single CPU.

4.1 XTRec Components
XTRec consists of two pieces: the Loader and the Run-

time. The Loader uses the SKINIT instruction to run in
a hardware-protected environment and to store a measure-
ment (cryptographic hash) of its memory regions in TPM
PCR 17. The Loader loads the Runtime and protects its
memory regions from DMA access using SVM Device Ex-
clusion Vector (DEV) protections. It then verifies the in-
tegrity of the Runtime and extends a measurement (a cryp-
tographic hash) of the Runtime memory regions into TPM

PCR 18. The Loader initializes the dedicated network inter-
face within the host for communication with the log-store,
creates the Nested Page Tables (NPTs) for the host OS en-
vironment, and transfers control to the Runtime.

The Runtime implements all of XTRec’s functionality.
When first launched, the Runtime waits for a challenge
from the Log-store. The Runtime and the Log-store then
engage in the authentication protocol described in Sec-
tion 3.3. The Runtime then starts the host OS with CPU
Branch Trace Messaging (BTM) enabled. Runtime’s role
in real-time recording and protection of recording is de-
scribed below.

4.2 Real-time Recording
4.2.1 Branch Trace Messages

On AMD CPUs, BTMs are managed using a set of Ma-
chine Specific Registers (MSR) 1 . These MSRs are used
to control BTM generation and specify the region of phys-
ical memory that the CPU can use for storing BTMs. The
MSRs are accessed via the RDMSR and WRMSR instruc-
tions. The BTM control logic also provides an option to
generate a #DB exception when the BTM physical mem-
ory region is full.

Our current implementation uses a 128MB contiguous
physical memory region within the host for execution trace
recording. This region, called the execution trace buffer,
is further divided into two 64MB logical regions. At any
given point in time one area is a collect buffer (where trace
information is collected) while the other area is designated
as a transmit buffer (which is transmitted to the log-store).

4.2.2 Dynamic Code Capture

Prior to executing the host OS environment, XTRec sets
its NPT entries to prevent execution of all physical pages
belonging to host OS. When the host OS environment at-
tempts to execute a page, it causes a nested page-fault
(NPF) that returns control to XTRec. XTRec then copies
the contents of the page and updates the NPT entry of the
page to allow execution but prevent writes. If the host OS
environment later writes to this page, a write fault will be
generated. XTRec will re-enable writing but disable exe-
cution.

4.2.3 Recording to the Log-store

We used an Intel 82572EI gigabit network interface within
the host to transmit execution traces to the log-store. We
developed a tiny 82572EI driver within XTRec for this pur-
pose. Our driver leverages the jumbo and packet-split fea-
tures that are common to all gigabit network interfaces in
order to transmit the execution trace buffer via Direct Mem-
ory Acess (DMA) at runtime. Our experimental results

1The BTM feature on x86 CPUs is sparsely documented today. While
Intel documents the BTM feature as part of the Debugging section in their
developer’s manuals [17], AMD does not document the BTM feature at
all. All information pertaining to the AMD BTMs in this section are a
result of system-level exploration efforts spanning several months. As a
result, we also found that BTMs were supported on all recent Intel and
AMD x86 CPUs.



(Section 6.2.2) show that the network transmission occurs
in parallel with execution trace collection.

4.3 Secure Recording
Memory Protection: In our current implementation on a
host with 4 GB of physical memory, XTRec allocates 3.5
GB of physical memory to the host OS environment, while
it reserves 136 MB for itself and 258 MB for the systems
firmware. Memory protection is maintained by creating the
NPTs. The NPT entries which point to XTRec’s physical
memory regions are marked not-present.
BTM Protection: XTRec sets up MSR intercepts in the
VMCB for the BTM Machine Specific Registers (MSR).
Our current implementation disallows any access to such
MSRs upon the intercept triggering.
Secure Communication with the Log-store: The In-
tel 82572EI Gigabit network interface (NI) uses memory-
mapped registers. The location and size of the mem-
ory range is exposed through the PCI configuration space
which is accessed using the PCI address and data registers.
XTRec sets up the NPTs such that entries for the memory
range for the dedicated NI are marked absent. XTRec also
sets up an I/O intercept on the PCI data register. Upon this
intercept, the PCI address register is examined to obtain the
bus, device and function of the request. If it matches that
of the dedicated NI, a device not present result is returned.

We used an Intel Dual Xeon (2 x quad-core) system
equipped with a gigabit NI as the Log-store. This system
is connected to the host via a gigabit switch. The XTRec
runtime contains a tiny network driver that is used to con-
trol the dedicated NI and communicate with the Log-store.
The XTRec runtime also contains a small TPM v1.2 driver
which communicates with the TPM.

The Log-store waits for a challenge request from
XTRec. Upon receiving the challenge request, the Log-
store transmits a cryptographic nonce and receives a TPM-
generated attestation from XTRec. The attestation con-
tains the TPMs signature over the current values of PCRs
17 and 18, as well as the nonce that was provided. The
Log-store uses the TPMs public-key (obtained using any
of the numerous existing methods [26]) to verify the attes-
tation. If the verification succeeds, the Log-store enters a
trusted communication mode with XTRec and begins ac-
cepting and storing data until a end of recording packet is
received.

5 Security Analysis
XTRec uses CPU BTMs and physical memory virtual-

ization in order to obtain a complete instrution-level ex-
ecution trace dynamically. XTRec also uses a dedicated
network interface within the host to transmit the execution
trace information to a trusted log-store. In order to ensure
the integrity of the recorded execution trace, these opera-
tions and the memory areas they use must be protected at
all times.

XTRec’s use of hardware physical memory page tables
(PMPT) ensures that software in the host OS environment
cannot address XTRec’s physical memory region, thus pro-

tecting its secrecy and integrity. To prevent device-based
attacks, XTRec uses hardware-based DMA protections to
prevent DMA-based reads and writes to its memory region.

XTRec uses the CPU to generate BTMs to a portion of
its own protected memory region and uses CPU hardware
virtualization to trap access to CPU registers that control
BTM functionality. Thus, adversarial code within the host
OS cannot manipulate BTMs or prevent BTMs from be-
ing generated. XTRec uses the PMPT to set page protec-
tions for dynamic code capture (Section 3.2.2). The PMPT
are also stored within XTRec’s protected memory region,
thereby ensuring that dynamic code capture is always in
effect.

Finally, XTRec records the execution trace to the log-
store over a secure channel that is established during its
startup (Section 3.3). This channel is protected by XTRec’s
exclusive access to the dedicated network interface that
connects to the log-store combined with the TPM’s abil-
ity to provide a verifiable summary of the host system’s
software. Therefore, an adversary cannot record incorrect
execution trace information to the log-store.

5.1 Other Attacks
Denial of Service Attack Since, XTRec resides on an
untrusted host and is loaded on host startup, malware in
the untrusted host can modify the startup sequence to pre-
vent XTRec from loading. However, it cannot do so unde-
tectably.

The log-store always verifies that XTRec has been
loaded on the host before starting to accept any informa-
tion from it. If the host does not load XTRec, then the
verification will never complete and the log-store will not
accept any information from the host. While this results in
no forensic evidence, it is a clear indication of unintended
(probably malicious) activity. This is a form of denial-of-
service, but one that can be detected.

Alias Attack CPU BTMs contain linear addresses which
need to be translated to physical addresses to tie a BTM to
a corresponding code page. This information is obtained
by XTRec on a Nested Page Fault (NPF) during dynamic
code capture (Section 3.2.2). However, once a physical
page is set to execute during dynamic code capture, it may
no longer generate a NPF due to code execution. An at-
tacker can then modify the host OS page tables to alias the
physical page with different linear addresses with the result
that BTMs can no longer be superimposed on correspond-
ing code. We are currently working on an implementation
using shadow page tables [34, 37] to prevent such attacks.

6 Evaluation
In this section we first evaluate our XTRec prototype

using two metrics: code size and performance. We follow
that with a case study of the HaxDoor.KI malware.

6.1 Trusted Computing Base (TCB)
XTRec must assume the correctness and security of its

core components. This assumption can hold if the code-
base is tiny, to reduce potential vulnerabilities and make



Figure 3: Code-base of XTRec is small to permit formal analysis
to rule out vulnerabilities.

it amenable to formal analysis. We use the codecount 2

utility to measure the logical Lines of Code (LOC) of our
prototype implementation (Figure 3). The prototype code
consists of three components. The Loader initializes the
CPU, memory, NIC and Runtime. The Runtime handles
all of XTRec’s functionality. Finally, the common library
code is used by both the Loader and the Runtime for certain
memory copy and move operations. Combining all compo-
nents, XTRec’s total TCB is only 2,195 LOC, placing it
within means of manual and analytical audit techniques.

XTRec’s TCB is an order of magnitude smaller than
the TCB of hypervisors that are used in deterministic re-
play approaches. VMware ESX includes a large TCB (ap-
prox. 500,000 LOC [35]) as it employs full virtualization
of devices and hence must include device drivers for all
of the platforms it wishes to support. Xen on the other
hand includes an entire Linux OS for administrative pur-
poses, dramatically increasing its TCB [35]. Note that
we exclude the log-store from our TCB. In practice, the
log-store is physically and remotely isolated from an at-
tacker (access-controlled room and disconnected from the
general-purpose network).

6.2 Performance Measurements
We now present the runtime microbenchmarks and ap-

plication benchmarks for XTRec. For all our experiments
we used a Dell 740 Workstation as the host running Win-
dows 2003 Server SP1. The system was equipped with an
AMD Phenom 2.4Ghz CPU, 500GB hard disk, 4GB phys-
ical memory, and a v1.2 Broadcom TPM chip. We used
an Intel 82572EI PCI-Express gigabit NIC to connect to
the log-store. The log-store was an Intel Dual Xeon (2 x
quad-core, 3.0GHz) system with 16GB physical memory,
and 1TB harddisk running Linux 2.6.23.1. Note that we do
not compare against current deterministic replay systems
as such a comparison would not be meaningful. Determin-
istic replay systems record coarse-grained events and re-
play them to reconstruct the system state whereas XTRec
directly records the complete execution trace without the
need to replay. We discuss the performance of determinis-
tic replay systems in Section 7.

6.2.1 Microbenchmarks

XTRec adds overhead to system operation in three ways:
(a) BTMs handled by the CPU, (b) dynamic code capture,
and (c) network transmission.

2http://sunset.usc.edu/research/CODECOUNT/

BTM latency is due to the CPU emitting BTMs to mem-
ory and due to the #DB exception that is raised by the CPU
when the BTM buffer is full. We employed a tight loop
with a CALL instruction and measured the time before the
CALL and at the start of the subroutine. We measured the
#DB exception latency by setting the OS trap-flag and mea-
suring the round-trip time from XTRec to the OS and back.
The BTM emission latency and the #DB exception latency
were on average 2.72 and 1120 clock cycles respectively.
The dynamic code capture latency is due to the trigger-
ing of NPF and the copying of the corresponding mem-
ory page contents and averaged 945 and 512 clock cycles
respectively. We measured this latency by setting up the
NPTs to generate a NPF exception for a single memory
page within the host OS and resuming the host OS on that
memory page. Finally, the network transmission latency
averaged 769,019,125 clock cycles. This is the time taken
by the trusted NIC to finish a DMA transfer and was mea-
sured by invoking the trusted NIC transmission function in
a tight loop.

Note that network transmission incurs a large clock cy-
cle count. However, this only occurs when the collect
buffer is full. Further, network transmission occurs in par-
allel with execution trace collection for all our application
benchmarks, resulting in no perceptible latency.

6.2.2 Application Benchmarks

We hypothesize that when XTRec is used, the overhead of
an application will be directly proportional to the number of
control-flow instructions that are encountered by the CPU
during application execution. Based on our hypothesis, I/O
bound applications with few control decisions will have the
lowest overhead. On the other hand, compute bound ap-
plications with high branching will have the highest over-
head. Consequently, compute bound applications with high
branching will require more log space when compared to
I/O bound applications.

To test our hypothesis we execute both I/O bound and
compute bound applications on a Native system and a sys-
tem running XTRec. For our I/O bound applications we
chose an Apache 2.2 webserver, a MySQL 5.1.33 database
server, Postmark (with 10000 files and 10000 transac-
tions), IoZone (read and write benchmarks), Bonnie (with
a 100MB file and read and write) and Tar (on the Win-
dows system folder). We used the cygwin runtime envi-
ronment to run Postmark, Tar and Bonnie. We used the
SPEC CINT 2006 benchmarks for our compute bound ap-
plications. We used the Apache ab benchmarking tool to
benchmark the webserver and employed the sysbench uti-
tlity to benchmark the database server using the oltp option
and the innodb database engine.

Figures 4a–c show the result of our I/O bound appli-
cation benchmarks. The Apache webserver running un-
der XTRec exhibits a slowdown of 2.7x–3.2x while the
MySQL server exhibits a slowdown of 0–3.3x. The over-
head increases with the number of concurrent connections.
Certain I/O bound applications such as tar and iozone run
with low overheads (7% and 10% respectively). We at-
tribute this to the benchmarks having low control flow de-
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Figure 4: XTRec Application Benchmarks: (a)–(d) I/O bound and Compute-bound applications execute with a 2x–4x overhead. The
majority of the overhead is due to CPU Branch Traces Messages, and (e) Log-sizes generated by the benchmarks

cisions. Bonnie and Postmark on the other hand incur con-
siderable latency. We attribute this to the internal architec-
ture of these benchmarks which issues reads and writes to
the disk system one byte at a time using a loop structure.
This results in a large amount of branch instructions that
contributes towards the overhead.

Compute bound applications result in higher latency and
their latency is proportional to the number of branch in-
structions (Figure 4d). As an example, 456.hmmer has the
smallest slowdown when compared to other benchmarks.
This is due to a much smaller number of branch instruc-
tions in 456.hmmer when compared to the other bench-
marks [27].

Figure 4e shows the log sizes generated by various ap-
plications with XTRec. For the first set of experiments,
we ran the Apache ab benchmark tool with 128 simultane-
ous clients simulating a real world webserver access. We
also ran the sysbench tool with 16 concurrent connections.
Finally we let the host idle. As seen from the figure, the
log sizes for these experiments is within limits for an en-
terprise storage area network. While the time period for
which logs should be maintained, depends upon the task
for which XTRec is used and the available resources, given
the size of our logs, enterprises could easily maintain logs
for a period of 3–4 months. It is important to note that the
XTRec’s log size is an order of magnitude smaller than de-
terministic replay approaches. For example, a real-world
apache webserver operating 24 hours a day with for a pe-
riod of 3 months would result in a huge amount of log with

deterministic replay as all network and disk access data for
the entire 3 month period must be captured and stored. On
the contrary, the same webserver under XTRec will result
in around 40 TB of log irrespective of the network traffic
and disk accesses.

For the second set of experiments we ran various com-
pute bound and I/O bound applications. As seen, the
log size of an application is proportional to the num-
ber of branch instructions. As examples, 445.gobmk and
458.sjeng which have higher number branch instructions
generate larger logs. Though the compression ratio is ap-
plication specific, the average compression ratio during our
experiments, as seen from Figure 4e is around 14 for I/O
bound applications and around 8.5 for compute bound ap-
plications. The compression is done in real time by the log
store.

Figure 4e also shows that on an average only 1/3rd of
a gigabit network interface (NI) bandwidth is used for ex-
ecution trace transmission for a single CPU. This makes
XTRec readily scalable to 3–4 CPUs with a single gigabit
NI. We postulate that with high-end gigabit NIs (e.g., 10
gigabit) XTRec can easily scale to future multicore CPUs
with 8–12 cores.

For all our benchmarks, we noted that hardware physi-
cal memory virtualization and dynamic code capture con-
tributed minimally to the results. A code page is logged
only during the loading of a benchmark executable and rep-
resents a small set of memory pages corresponding to the
benchmark code. For example, for the SPEC benchmarks



in Figure 4e, only an average of 292 code-pages (0.001%
of the log-size) were recorded. Further, for all our bench-
marks, we noted that when the collect buffer was full, the
polling of the network interface (NI) status register always
indicated that the transmit buffer was successfully transmit-
ted. In other words, the network transmission was occuring
in parallel to the execution trace collection. This is affirmed
by the log rates of all our application benchmarks which
average only 1/3rd of a gigabit NI transmission bandwidth.
Thus, we conclude that CPU BTMs are the primary source
of latency in our experiments. Hardware enhancements to
BTM generation would therefore greatly improve XTRec’s
performance.

6.3 Case Study of Haxdoor.KI
In this section we discuss the Haxdoor.KI malware and

show how one can determine it executed on a host using
XTRec. We use the technique of code normalization [6]
to compare the execution trace obtained by XTRec to ref-
erence traces which describe a particular malware. Code
normalization decomposes a binary instruction stream into
a high level representation which can then be semantically
compared without any need for operand values. It has been
successfully used to identify malware and its variants [6].

We obtained the reference execution traces of Hax-
door from the documentation of its internal workings [20].
We then downloaded the Haxdoor sample from Offensive
Computing [9] and deployed it on the host system running
XTRec. We used the A311 Remote Administration Toolkit
on another system to connect to the backdoor in the host.
The compressed log-size generated by XTRec for our ex-
periment was 643 MB.

Haxdoor protects its own threads and processes from be-
ing accessed by the system. It does so by rewriting the
OS kernel functions NtOpenThread and NtOpenProcess. If
the hook function notices any access to Haxdoor’s thread
it simply swaps the target thread/process identifiers which
will lead to the operations being performed on the calling
thread/process instead. Figure 5a shows the reference trace
which is representative of this mechanism. Its high-level
representation and normalized version are shown in Fig-
ure 5b and Figure 5c respectively.

We searched through the XTRec execution trace by nor-
malizing sets of instructions and comparing them to the
normalized reference trace. Our search resulted in a unique
match to the fragment of code shown in Figure 5d. As seen,
the code fragment consists of different instructions which
accomplish the same result. This is due to instruction per-
mutations that were present in the sample we downloaded.
However, as seen from Figures 5e and 5f, the normalized
version of this trace and the normalized version of the ref-
erence trace result in a match. We also confirmed the over-
writing of the NtOpenProcess API by looking at the execu-
tion trace which logged the code page due to the write.

Using the above technique on various reference traces
describing the Haxdoor malware [20], and knowing that the
information recorded by XTRec is accurate and uncompro-
mised, we can determine that Haxdoor.KI (or an equiva-
lent) was therefore executed in the host.

7 Related Work
In this section we discuss related work in the area of

execution logging. Current approaches in the area of exe-
cution logging can be broadly divided into three categories:
deterministic replay, OS level logging, and debuggers and
specialized hardware.

Deterministic Replay: In deterministic replay ap-
proaches, a technique called VM introspection is em-
ployed, whereby general-purpose VMMs are extended to
deliver events during guest execution. These events are
recorded and replayed at a later time in order to reconstruct
the entire system state. To reduce the time taken to replay
to a particular state, deterministic replay systems introduce
the notion of a checkpoint which saves the complete system
state (including memory contents) as a snapshot. Replay
requires time that is proportional to the length of time the
system has been running since the last checkpoint.

Aftersight [8] employs VMWare [36] to decouple anal-
ysis from normal execution by logging non-deterministic
VM inputs and replaying them on a separate analysis plat-
form for intrusion detection and bug detection. ReVirt [11]
employs UML Linux [10] for intrusion detection and re-
play. It logs deterministic events such as interrupts and sys-
tem calls, and is able to replay these events thereby replay-
ing the execution control flow. Flight data recorder [38]
extends this scheme to multiprocessors. Other intrusion
detection tools such as Backtracker [21] and Introvirt [18]
also work on the same principle and employ ReVirt as
their base. VMIIDS [15] and Psyco-Virt [1] are some
more examples of systems employing VM introspection
for intrusion detection. Time Traveling Virtual Machine
(TTVM) [22] logs execution control flow and uses it to de-
tect bugs in a OS Kernel.

With deterministic replay, a sequence of events are re-
played for a significant period of time to reconstruct a given
system state. Such an approach defeats the goal of forensic
analysis where minimizing time is of utmost importance.
While checkpoints can be used to minimize replay time,
they are heavyweight and unsuitable for server platforms.

Deterministic approaches also need to store all non-
deterministic data in order to generate a particular system
state. For network and disk accesses, this incurs a large
overhead in terms of runtime and disk space, especially for
server environments. As examples ReVirt incurs runtime
overheads of 1.2x–1.8x. Aftersight uses ReTrace [39], a
deterministic replay system built on VMWare and reports a
small runtime overhead of 5%. However, ReVirt is only tar-
getted at desktop environments and assumes network and
disk data to be very minimal and to the best of our knowl-
edge there is no evaluation of network and disk logging for
ReTrace for real world server deployments. Further, it is
prohibitively slow to capture all forms of execution non-
determinism (e.g., device states accessed via I/O locations
and device interrupts) in current commodity platforms [29].

Finally, VMMs employed in current deterministic re-
play approaches are complex and have a large trusted com-
puting base. An attack exploiting a vulnerability within the
VMM[14] or any of the host OS components (in case of



Mov eax, [eax+Client_ID.UniqueProcess]

Mov ecx, dwProtectedProcCount

Mov edi, offset pProtectedProcBuffer

Repne scasd

Or ecx, ecx

Jz do_nothing

Cmp eax, dwBackdoorProcId

Jz do_nothing

Mov eax, fs:18h

Mov eax, [eax+NT_TEB.Cid.UniqueProcessId]

Cmp eax, pProtectedProcBuffer

Jz deny_operation

Cmp eax, pProtectedProcBuffer+4

Jz deny_operation

Mov ecx, [esp+4+ClientID]

Mov [ecx], eax

Mov ebx, [ebx+Client_ID.UniquePRocessId]

Mov ecx, [20102000h]

lea esi, [20101000h]

X: Cmp [esi], ebx

Je Y

Add esi, 4

Loop X

Jmp 200105A

Y: cmp ebx, 20002000h

Jz 2000105A

Mov edx, fs:18h

Mov eax, [edx+NT_TEB]

Mov ebx, [23001020h]

Cmp eax, ebx

Jz 2000112B

Add ebx, 4

Cmp eax, ebx

Jz 2000112B

Mov ebp, [esp+4+clientID]

Mov [ebp], eax

R01 = [R01+Client_ID.UniqueProcess]

R03 = [dwProtectedProcCount]

R06 = pProtectedProcBuffer

X: tmp = [r06] – r01; ZF= (tmp ?1: 0)

Jump (ZF=1) Y

R06 = r06 + 4

R03 = R03 -1

Jump X

Y: R03 = R03 | R03 ; ZF = (R03?1:0)

Jump (ZF=1) do_nothing

Tmp = R01 – [dwBackdoorProcId]; ZF = (tmp?1:0)

Jump (ZF=1) do_nothing

R01 = [FS:18h]

R01 = [r01 + NT_TEB.Cid.UniqueProcessId]

Tmp = R01 – pProtectedProcBuffer; ZF=(tmp?1:0)

Jump (ZF=1) deny_operation

Tmp = R01 – pProtectedProcBuffer-4; ZF=(tmp?1:0)

R03 = [r08 + 4 + ClientId]

[R03] = R01

R02 = [r02 + Client_Id_UniqueProcess]

R03 = [20102000h]

R05 = 20101000h

X: tmp = R05 – R02; ZF = (tmp?1:0)

Jump(ZF=1) Y

R05 = R05 + 4

R03 = R03 -1

Jump(Zf=0) X

Jump do_nothing

Y: tmp= R02 – 20002000h; ZF=(tmp?1:0)

Jump(Zf=1) 2000105A

R04 = [Fs:18h]

R01 = [R04 + NT_TEB.Cid.UniqueProcessId]

R02 = [23001020h]

Tmp = R01-R02; ZF=(tmp?1:0)

Jump(ZF=1) 2000112B

R02 = R02 + 4

Tmp = R01 – R02; ZF = (tmp?1:0)

Jump(ZF=1) 2000112B

R07 = [R08 + 4 + ClientID]

[R07] = R01

R02 = [r02 + Client_Id_UniqueProcess]

R03 = [20102000h]

R05 = 20101000h

X: tmp = [R05] – R02; ZF = (tmp?1:0)

Jump(ZF=1) Y

R05 = R05 + 4

R03 = R03 -1

Jump X

Y: R03 = R03 | R03 ; ZF = (R03?1:0)

Jump (ZF=1) 2000105A

tmp= R02 – 20002000h; ZF=(tmp?1:0)

Jump(Zf=1) 2000105A

R01 = [[Fs:18h] + NT_TEB.Cid.UniqueProcessId]

Tmp = R01-[23001020h]; ZF=(tmp?1:0)

Jump(ZF=1) 2000112B

Tmp = R01 – 23001020h - 4; ZF = (tmp?1:0)

Jump(ZF=1) 2000112B

R07 = [R08 + 4 + ClientID]

[R07] = R01

R01 = [R01+Client_ID.UniqueProcess]

R03 = [dwProtectedProcCount]

R06 = pProtectedProcBuffer

X: tmp = [r06] – r01; ZF= (tmp ?1: 0)

Jump (ZF=1) Y

R06 = r06 + 4

R03 = R03 -1

Jump X

Y: R03 = R03 | R03 ; ZF = (R03?1:0)

Jump (ZF=1) do_nothing

Tmp = R01 – [dwBackdoorProcId]; ZF = (tmp?1:0)

Jump (ZF=1) do_nothing

R01 = [[FS:18h] + NT_TEB.Cid.UniqueProcessId]

Tmp = R01 – pProtectedProcBuffer; ZF=(tmp?1:0)

Jump (ZF=1) deny_operation

Tmp = R01 – pProtectedProcBuffer-4; ZF=(tmp?1:0)

R03 = [r08 + 4 + ClientId]

[R03] = R01

(a) (b) (c)

(d) (e) (f)

EAX=R01, EBX=R02, ECX=R03, EDX=R04, ESI=R05, EDI=R06, EBP=R07, ESP=R08

R07 <-> R03, pProtectedProcBuffer <-> 23001020h, 

dwProtectedProcCount <-> 20102000h, do_nothing <-> 

2000105A, dwBackdoorProcId <-> 23001020h

Figure 5: Using code normalization on execution traces recorded by XTRec to detect the presence of Haxdoor.KI on a host: (a)–(c)
Reference trace, its high-level trace representation and corresponding normalized representation and (d)–(e) Execution Trace from XTRec,
its high-level trace representation and corresponding normalized representation. The normalized representations of the reference trace and
execution trace from XTRec match, thus showing that Haxdoor was executed on the host.

a hosted VMM) can result in the integrity of the recorded
trace being compromised. While, the past log can be pre-
vented from being tampered with [3], nothing prevents the
attacker from inserting new entries and deleting the log.

OS Level Logging: In OS level logging, the host OS
is modified to trigger messages during the operation of the
OS Kernel. Taser [16] is an intrusion recovery system that
captures and transmits system calls, their parameters, and
their return values across a private network interface to a se-
cure, append-only, backend system. Syslogd [30] provides
support for system logging on Unix-based systems. File-
mon [28] and Regmon [28] are system utilities which log
real-time file and registry activities under Windows. Tools
such as Valgrind [25], and DynamoRIO [5] can run a spec-
ified program within an OS using dynamic binary trans-
lation and can be used for instruction-level execution log-
ging.

OS level logging, in addition to being coarse-grained,
suffers from the following drawbacks: (a) the log is stored
within the host OS, which, as discussed previously, cannot
guarantee log integrity, and (b) the framework itself resides

within the host OS which makes it easily susceptible to at-
tacks. Recent approaches such as SIM [32] combine OS
level logging with VMM based memory protections for ef-
ficient system call logging. While such an approach can
protect the monitoring framework from attacks, an attacker
can still manipulate the OS data being logged.

Debuggers and Specialized Hardware: Debuggers
such as WinDbg [24] allow recording of execution con-
trol flow by single-stepping instructions. Specialized hard-
ware such as Logic Probes and In-Circuit Emulators (ICE)
can be configured to read processor BTMs from the sys-
tem bus as demonstrated by Bosch et al. [4]. However,
these approaches are designed for manual debugging and
are not suited for real-time logging and online deployment.
CADRE [29] is a cycle accurate deterministic replay sys-
tem that can accurately recreate the execution control-flow
of a system. However, it uses a hardware platform that is
very different from commodity systems. Software cycle
accurate deterministic simulators such as PTLSim [40] and
AMD SimNow [2] are very slow (typically 50 to 1000x
slowdown) and do not contain adequate support for com-



modity hardware making them unsuitable for online de-
ployments.

8 Conclusions
With the rapid creation of new malware, XTRec offers

the useful property to perform fast forensic analysis a pos-
teriori. Based on our experimental results we find that
XTRec is viable on current enterprise systems. We ex-
plored a debugging feature that is present on all x86 CPUs,
namely Branch Trace Messages (BTM) and found that it
can be used to show whether a particular set of code has
been executed on a system, or conversely to prove that
some code has not executed, a highly desirable property
to ensure information assurance, especially in critical e-
government infrastructure. In the process, we found that
current hardware implementation of BTMs do not target
any form of optimization and their documentation is sparse
to non-existent. Indeed, we hope that BTM applications
such as the one demonstrated in our paper will drive CPU
vendors to be open about BTM functionality and make nec-
essary hardware changes to improve BTM performance.
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