
SWATT: SoftWare-based ATTestation for Embedded Devices∗

Arvind Seshadri
CMU/CyLab

Adrian Perrig
CMU/CyLab

Leendert van Doorn
IBM

Pradeep Khosla
CMU/CyLab

Abstract

We expect a future where we are surrounded by embed-
ded devices, ranging from Java-enabled cell phones to sen-
sor networks and smart appliances. An adversary can com-
promise our privacy and safety by maliciously modifying
the memory contents of these embedded devices. In this
paper, we propose a SoftWare-based ATTestation technique
(SWATT) to verify the memory contents of embedded de-
vices and establish the absence of malicious changes to the
memory contents. SWATT does not need physical access
to the device’s memory, yet provides memory content at-
testation similar to TCG or NGSCB without requiring se-
cure hardware. SWATT can detect any change in memory
contents with high probability, thus detecting viruses, un-
expected configuration settings, and Trojan Horses. To cir-
cumvent SWATT, we expect that an attacker needs to change
the hardware to hide memory content changes.

We present an implementation of SWATT in off-the-shelf
sensor network devices, which enables us to verify the con-
tents of the program memory even while the sensor node is
running.

1 Introduction

With the proliferation of embedded devices, we expect
to be surrounded by them in the near future. For example,
furniture, clothing, and appliances are all expected to con-
tain integrated microcontrollers for advanced functions such
as automated checkout, inventory control, fire detection, or
climate monitoring. It is clear that such devices pose an
inherent risk, as an attacker may only need to compromise
one of our devices to compromise our privacy and safety.
This risk is compounded by the frequent lack of security

∗This research was supported in part by the Center for Computer and
Communications Security at Carnegie Mellon under grant DAAD19-02-
1-0389 from the Army Research Office, and by gifts from Bosch, Cisco,
Intel, and Matsushita Electric Works Ltd. The views and conclusions con-
tained here are those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either express or
implied, of ARO, Bosch, Carnegie Mellon University, Cisco, Intel, Mat-
sushita Electric Works Ltd., or the U.S. Government or any of its agencies.

in embedded devices. In an environment where we are sur-
rounded by embedded devices, we thus need mechanisms to
attest the current memory contents of the devices, to detect
when an attacker altered the software or configuration.

In embedded systems, cost is a concern. Even a small
increase in per device cost leads to a significant increase
in overall production costs in high-volume manufacturing.
Clearly, a software-based attestation technique will incur
lower cost than an attestation technique that requires addi-
tional hardware. More importantly, a technique that works
entirely in software can be used on legacy devices. In this
paper, we propose such a purely SoftWare-based ATTesta-
tion technique called SWATT.

SWATT externally attests the code, static data, and con-
figuration settings of an embedded device. By “externally”
we mean that the entity performing the attestation (verifier)
is physically distinct from the embedded device. Hence,
the verifier cannot directly read or write the device’s mem-
ory. Note that we need an external verifier since, without
secure hardware, a (potentially) compromised device can-
not be trusted to verify itself correctly.

SWATT uses a challenge-response protocol between the
verifier and the embedded device. The verifier sends a chal-
lenge to the embedded device. The embedded device com-
putes a response to this challenge, using a verification pro-
cedure that is either pre-programmed into the embedded de-
vice’s memory or downloaded from the verifier prior to ver-
ification. The verifier can locally compute the answer to its
challenge, and can thus verify the answer returned by the
embedded device. The design of SWATT ensures that the
embedded device can return the correct answer only if its
memory contents are correct. In fact, when SWATT is used
the only way an attacker can hide malicious changes to the
memory contents of the embedded device is to change the
device’s hardware. To motivate the use of SWATT, we dis-
cuss several applications:

• As a concrete example of the applicability of SWATT,
consider network printers. Some network printers are
extremely vulnerable today [6], where anybody with
network access can easily upload software to a printer,
turning it into an eavesdropping or active attack device.
A network administrator can use SWATT over the lo-

1

cal network to attest that the printer code and configu-
ration settings are as expected. During the attestation
process, the administrator can configure the network
such that the printer can only communicate with the
verifier. This ensures that answer returned to the attes-
tation request is authentic, by preventing a malicious
printer from colluding with other entities to answer the
challenge from the verifier.

• Consider a smart cell phone, with an e-mail client as
part of its firmware. Suppose that a worm that exploits
a vulnerability in the e-mail client is currently active
on the Internet. The user of the cell phone will want
to know if their e-mail client has been compromised.
To determine this, the user plugs the cell phone into its
hot-sync cradle that is linked to the PC. The PC then
uses SWATT to verify the code running on the cell
phone. The point-to-point nature of the communica-
tion link between the PC and cell phone ensures the au-
thenticity of the answer returned by the cell phone. If
the cell phone was compromised, we can use SWATT
to verify that a patch installation or software reinstal-
lation was successful.

• Electronic voting machines represent an important
application of our technique. Recently, there have
been instances where manufacturers of e-voting ma-
chines used uncertified voting software [1]. To prevent
such occurrences, voting machine inspectors can use
SWATT to ensure that the correct voting software is
running on the voting machine.

• Consider smart cards that are used to store user pass-
words. Before entrusting their passwords to such a
smart card, a user can use SWATT to ensure that the
smart card has the correct code running on it. Other-
wise the smartcard may contain a malicious code seg-
ment that could leak all passwords.

• In the future, airlines, hotels or car rental companies
may provide Personal Digital Assistants (PDA) for
personal use. An attacker could easily reprogram one
of these devices such that it captures any username and
password information that is input. The vendor could
erase and reprogram each device after it is returned by
a customer, to ensure that the code running on it is
trustworthy. But how can a customer verify that the
firmware is trustworthy before using the device? To
verify the firmware, the user could plug a USB key into
the PDA and use SWATT to verify the code running on
the PDA.

As we will further discuss in the related work section,
SWATT is quite different from any other techniques that
we are aware of. SWATT may appear to provide similar

properties to secure boot, but it is distinct. Systems such
as TCG (formerly known as TCPA) [16] and NGSCB (for-
merly known as Palladium) [11] use a secure coprocessor
that is used during system initialization to bootstrap trust.
SWATT does not need a secure coprocessor, and allows a
trusted external verifier to verify the memory contents of an
embedded device. Once the code running on the embed-
ded device is verified, the code forms the trusted computing
base. Hence we bootstrap trust entirely in software.

Kennell and Jamieson propose techniques to verify the
genuinity of computer systems entirely in software [9].
Central to their technique is the premise that by including
sufficient amount of architectural meta-information that is
generated in a complex CPU into a simple checksum of the
memory contents, an attacker with a different CPU, who is
trying to simulate the CPU in question, will suffer a severe
slowdown in checksum computation. They use the virtual
memory subsystem (caches hits and misses, TLB hits and
misses etc.) as the source of architectural meta-information.
However, the 8 and 16-bit microcontrollers, that are used in
small embedded systems, have no virtual memory support.
Devices based on small microcontrollers constitute the ma-
jority of embedded systems that are manufactured and used
today. Kennell and Jamieson’s techniques cannot be used to
verify these devices. Further, as we describe in detail in the
related work section, Kennell and Jamieson’s method suf-
fers from a security vulnerability that allows an attacker to
hide malicious code on the platform.

Scope of this paper In this paper, we propose an ap-
proach to verify the memory contents of an embedded de-
vice without having physical access to the device’s memory.
SWATT is secure as long as the verifier has a correct view
of the hardware. In particular, the verifier needs to know
the clock speed, the instruction set architecture (ISA), and
the memory architecture of the microcontroller on the em-
bedded device, and the size of the device’s memories. In
this paper, we do not address the case where the attacker
changes the hardware (e.g., uses a faster microcontroller).

As a first step, we have implemented SWATT on the
Berkeley Mica Mote platform. The motes have an 8-bit mi-
crocontroller with no virtual memory support. Hence, they
are a perfect example of a small embedded system.

Contributions This paper makes the following contribu-
tions:

• We propose, SWATT, a technique to externally verify
the contents of the memory of an embedded device.
We show that an external verifier can detect with high
probability if a single byte of the memory deviates
from the expected value. SWATT provides a strong
guarantee of correctness. We show that if SWATT suc-

2

cessfully terminates, we have a high probability that
the memory contents are correct.

• We verify the memory contents entirely in software
and do not need secure coprocessors or other secure
hardware. Thus, SWATT can be used on legacy sys-
tems. Also, if cost is a concern, secure hardware may
not be available.

• We present an implementation of SWATT on the
Berkeley Mica Motes, a sensor network node architec-
ture. Our implementation enables us to directly verify
the program memory content of a running sensor node.

Outline In Section 2, we give a problem definition and
describe the attacker model. Section 3 presents the SWATT
design, implementation, and evaluation. In Section 4 we
discuss related work, and we present our conclusions in
Section 5.

2 Problem Definition, Assumptions and
Threat Model

A naive approach for verifying the embedded device’s
memory contents is for the verifier to challenge the embed-
ded device to compute and return a message authentication
code (MAC) of the embedded device’s memory contents.
The verifier sends a random MAC key, and the embedded
device computes the MAC on the entire memory using the
key and returns the resulting MAC value. The random key
prevents pre-computation and replay attacks, that would be
possible if a simple hash function were used. However,
we show that just verifying the response is insufficient—an
attacker can easily cheat. The embedded device is likely
to have some empty memory, which is filled with zeros.
When an attacker alters parts of the memory (e.g., inserting
a Trojan horse or virus), the attacker could store the original
memory contents in the empty memory region and compute
the MAC function on the original memory contents during
the verification process. Figure 1 illustrates this attack. It
is not necessary for the embedded device to have an empty
memory region for this attack to succeed. An attacker could
just as easily move the original code to another device that
it could access when computing the MAC.

Consider the setting of Figure 2. A verifier wants to
check whether the memory contents of an embedded de-
vice, which we refer to hereafter as the device, is the same as
some expected content. We assume that the verifier knows
the expected memory contents; our goal is to design an ef-
fective verification procedure, which will resist the attack
described previously. The verification procedure will be
used by the device to compute a checksum over its memory
contents. The checksum will be correct only if the memory

contents of the device is the same as the value expected by
the verifier, and it will fail with high probability if the mem-
ory contents of the device differs from the expected content.
We say a verification procedure with this property is a se-
cure verification procedure.

� �� �� �
� �� �� �

� � �
� � �

� �
� �

��
�

PSfrag replacements
Verifier Device

Device’s presumed memory content Device memory

request

response

Figure 2. Generic external memory verifica-
tion. The verifier has a copy of the device’s
presumed memory, and sends a request to
the embedded device. The device can prove
its memory contents by returning the correct
response.

Assumptions We assume that the device contains a
memory-content-verification procedure that the verifier can
activate remotely.1 We also assume that the verifier knows
the exact hardware architecture and the expected memory
contents of the device. In particular, for the hardware, the
verifier knows the clock speed, the memory architecture and
the instruction set architecture (ISA) of the microcontroller
on the embedded device, and the size of the device’s mem-
ory.

To verify that the device’s memory matches the expected
memory contents, the verifier creates a random challenge
and sends it to the device. The device then computes the
response to the challenge using the verification procedure.
Using its local copy of the device’s expected memory, the
verifier can locally compute the expected response and ver-
ify the correctness of the device’s response. Note that we
do not need to assume that the device contains a trusted ver-
sion of the verification procedure—for example, we assume
that an attacker can take full control of a compromised de-
vice and may not run the legitimate verification procedure.
However, a secure design of the verification procedure will
ensure that the verification will fail if the memory content
of the device does not match the expected content no matter
what code the device runs for the verification.

Threat Model We assume that an attacker has full control
over the memory of the device. However, we assume that
the attacker does not modify the hardware of the device,
e.g., increase the size of the memory, change the memory

1The procedure could also be downloaded any time prior to the verifi-
cation.

3

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � �� � �� � �� � �

� �� �� �� �

� � �� � �� � �� � �

� �� �� �� �

� �� �� �� �

	 		 		 		 	

PSfrag replacements

Expected memory layout

Attacker’s memory layout

EmptyVerif. code

Firmware

Firmware

Malicious code Old verification code

Figure 1. Memory verification attack. The attacker replaces the verification code with malicious
verification code and copies the old verification code into empty memory.

access timings or increase the clock speed of the processor
either by modifying the hardware or by changing settings in
the device’s BIOS.2

3 SWATT: SoftWare-based ATTestation

We start this section by discussing our general approach.
We then discuss the desired properties of the memory-
content-verification procedure. Section 3.3 describes our
implementation. This is followed by experimental evalua-
tion of SWATT. We then give some guidelines for practical
applications of SWATT.

3.1 Approach: Pseudorandom Memory Traver-
sal

As mentioned in Section 2, the embedded device con-
tains a memory-content-verification procedure that the veri-
fier can activate remotely. This verification procedure uses a
pseudorandom memory traversal. In this approach, the ver-
ifier sends the device a randomly-generated challenge. The
challenge is used as a seed to the pseudorandom number
generator (PRG) which generates the addresses for memory
access. The verification procedure then performs a pseudo-
random memory traversal, and iteratively updates a check-
sum of the memory contents. The key insight, which pre-
vents the attack on MACs mentioned in Section 2, is that
an attacker cannot predict which memory location is ac-
cessed. Thus, if the attacker alters the memory, it has to
perform a check whether the current memory access is to
one of the altered locations, for each iteration of the ver-
ification procedure. If the current memory access indeed
touches an altered location in the memory, the attacker’s
verification procedure needs to divert the load operation
to the memory location where the correct copy is stored.

2In current embedded systems, the BIOS is often minimal and thus
difficult to alter. We will discuss this assumption further in Section 3.6.

Even if the attacker alters a single memory location, the in-
crease in running time of the verification procedure due to
the added if statement becomes noticeable to the verifier,
as the verification procedure is very efficient and performs
many iterations. So a verifier will detect the altered mem-
ory because either the checksum returned by the embedded
device is wrong, or the result is delayed a suspiciously long
time. We construct the verification procedure in a way that
a single additional if statement will detectably slow down
the checksum computation by the embedded device.

3.2 Desired Properties of the Verification Proce-
dure

The verification procedure needs the following proper-
ties: pseudo-random memory traversal, resistance to pre-
computation and replay attacks, high probability of detect-
ing even single-byte changes to memory contents, small
code size, efficient implementation, and non-parallelizable.
In the following paragraphs we discuss the reasons why we
need these properties. Section 3.3 describes our design and
implementation to achieve these properties.

Pseudo-random memory traversal The verification pro-
cedure makes a pseudo-random traversal of the memory re-
gions it checks, thereby forcing the attacker to check ev-
ery memory access made by the verification procedure for
a match with location(s) that the attacker altered. We use a
cryptographic pseudo-random generator (PRG) to produce
the pseudo-random sequence of memory locations. The
choice of the PRG to be used depends on the CPU archi-
tecture of the device. For 8-bit architectures, we could use
the the keystream generated by RC4 stream cipher to gen-
erate the pseudo-random memory locations. Helix is a fast
stream cipher with built-in MAC functionality, optimized
for 32-bit architectures [4]. So the keystream of Helix can
be used to generate the pseudo-random sequence of mem-
ory accesses on 32-bit architectures, and the MAC can be

4

used for the checksum. Another option for address gener-
ation on 16 and 32-bit architectures is to use bits from the
output of a multiword T-function [10].

Resistance to pre-computation and replay attacks To
prevent pre-computation and replay attacks, the checksum
returned by the device must depend on a random challenge
that is sent by the verifier. We achieve this by having
the verifier send the seed for the pseudo-random generator
(PRG), that is used by the verification procedure to generate
the memory addresses for the memory traversal.

High probability of detecting changes The probability
that the verification procedure returns the correct checksum
when the attacker modifies some memory contents should
be very small. First, we would like the verification pro-
cedure to touch every memory location, with high prob-
ability, even though it accesses the memory in a pseudo-
random sequence. We achieve this by using the result of
the Coupon Collector’s Problem. The verification proce-
dure does O(n ln n) accesses to the memory, where n is the
memory size. The result of the Coupon Collector’s Prob-
lem states that if X is the number of memory accesses re-
quired to access each memory location at least once then,
Pr[X > cn ln n] ≤ n−c+1. Second, we would like the
checksum function to be sensitive to value changes. The
checksum should differ even when the input changes by a
single byte and it should be difficult for the attacker to find
a different input that gives the same checksum result as the
original memory content on a randomly chosen challenge.

Small code size Our pseudo-random memory traversal
forces an attacker to insert an if statement into the ver-
ification procedure, which causes a detectable increase in
its running time. An if statement translates to a com-
pare instruction followed by a conditional jump in assem-
bly. Hence, it takes about 2-3 CPU cycles to execute an
if statement on most 8 and 16-bit microcontroller archi-
tectures. If insertion of the extra if statement is to cause a
detectable slowdown of the verification procedure, then the
main body (excluding the initialization and epilogue code)
of the verification procedure should take a few tens of CPU
cycles to execute.

Optimized implementation The attacker may find an op-
timized implementation of the verification procedure, so
that the extra if statement does not cause any overhead.
Hence, it is important that our implementation of the body
of the verification procedure loop not allow any further op-
timizations. We need to optimize only the verification pro-
cedure loop since the initialization and epilogue code con-
sume a negligible fraction of the execution time.

Joshi, Nelson and Randall propose a superoptimizer, De-
nali, that uses an automatic theorem prover to generate a
nearly mathematically optimal straight line machine code
sequence, that evaluates a given set of expressions using
the minimal possible instruction count on a given architec-
ture [8]. Denali is perfectly suited to optimize the body
of the verification procedure loop, which is a straight line
code sequence. Further, tools like GNU superopt generate
the smallest instruction sequence for a given function on
a specified architectural platform, by using an exhaustive
generate-and-test approach [15]. Due to the small code size
of the loop body of the verification procedure we were able
to hand-optimize it to be highly efficient. In Section 3.3 we
argue why our code sequence cannot be optimized further.

Non-parallelizable It may be possible for multiple de-
vices to collude to speed up the checksum computation.
For example, the checksum computation, which is a se-
quence of operations, can be split into two halves, each half
can be computed independently by a device and the results
combined in the end. The second device needs to run the
PRG for half the total number of iterations of the verifica-
tion procedure to bring the PRG into the state required to
start computing the second half of the checksum. But this
consumes less time than running the verification procedure
fully. Hence, the total computation time using two devices
will be less than that for a single device. To prevent this, we
have to make the verification procedure non-parallelizable.
We achieve this by making the address for the memory ac-
cess and the computation of the checksum depend on the
current value of the checksum.

3.3 Design and Implementation of Verification
Procedure on Sensor Motes

We have designed and implemented our verification
procedure for sensor motes, which use an Atmel AT-
MEGA163L microcontroller, an 8-bit Harvard Architecture
with 16K of program memory and 1K of data memory [7].
The CPU on the microcontroller has a RISC architecture.
We first describe our design, give the pseudo-code for the
main loop of the verification procedure and then show its re-
alization in assembly language of the ATMEGA163L. Even
though we show an 8-bit implementation, the implementa-
tion can be extended to 16 or 32-bit architectures.

Pseudorandom memory traversal We use the RC4
Pseudo-Random Generator (PRG) by Rivest to generate the
pseudo-random sequence of addresses for memory access.
RC4 takes a seed as input and outputs a pseudo-random
keystream. Known attacks exist against the RC4 stream ci-
pher [5]. To evade these weaknesses, we discard the first
256 bytes of the RC4 keystream. We use RC4 because of

5

its extremely efficient and compact implementation on a 8-
bit architecture: our RC4 implementation only requires 8
machine instructions (in the main loop) and outputs one
8-bit pseudo-random number every 13 cycles on the AT-
Mega163L microcontroller. Since we need 16-bit addresses
to access the program memory of the microcontroller, we
concatenate the 8-bit RC4 output with a current value of the
checksum to generate a 16-bit address.

The checksum function To achieve a low probability of
collision for different memory contents, we need a suffi-
ciently long output for the checksum. If our checksum func-
tion outputs n bits, 2−n is a lower bound on the collision
probability. In this implementation, we use a 64-bit check-
sum.

We propose to use a simple and efficient checksum func-
tion. Efficiency on an 8-bit architecture was our main de-
sign goal, so that an additional if statement introduces a
substantial slowdown. Further research is required to ex-
plore the design space for these checksumming functions, to
identify the ideal tradeoff between security and efficiency.

Figure 3 shows the pseudocode of the checksum function
and Figure 4 shows our implementation in assembly for the
ATMega163L processor. We now describe the function in
more detail and discuss the design decisions.

To generate the 64-bit checksum we treat the 64-bit
checksum as a vector of eight 8-bit values. In each iteration
of our function, we update one 8-bit value of the checksum,
incorporating one memory value and mixing in the RC4 val-
ues as well as previous values of the checksum.

We derive the 16-bit address of the memory location to
be accessed as follows. The high byte of the address is the
RC4 value generated in that round. The previous value of
the checksum vector is the low byte.

One of our design goals was that a changed memory lo-
cation perturbs all fields of the checksum. To achieve this,
each 8-bit value of the checksum affects the following two
iterations. First, the 8-bit value of the checksum is used as
the low byte of the memory address of the following itera-
tion, and the value is again incorporated in the computation
of the subsequent 8-bit value by XORing it with the loaded
memory value. Thus, if an altered memory location is ac-
cessed, the following memory access will load a different
value, and the checksum in the following iteration will also
be affected. This design of checksum function also ensures
that computation of the current 8-bit value of the checksum
depends on previously computed 8-bit values. This makes
the loop of the verification procedure non-parallelizable.

We did consider the possibility of using a MAC func-
tion for the checksum function. Helix is fast stream cipher
with built-in MAC functionality [4]. Hence, the main loop
of our verification procedure can be completely replaced by
Helix. However, because Helix is optimized for 32-bit ar-

chitectures, it takes many instructions to compute on 8 and
16-bit microcontrollers. Therefore, an if statement would
only cause a small increase in running time. The same situ-
ation is true of MACs as well. Since they often take many
instructions to compute, they may not be short enough to
allow us to identify the slowdown caused by if statements.

Pseudocode Figure 3 shows the pseudocode of the main
loop of the verification procedure. The code is presented in
a verbose and unoptimized form to improve readability. The
variable m represents the number of iterations of the loop,
which is equal to the the total number of memory accesses
performed by the checksum procedure. m is sent by the
verifier as part of the verification request. The number m

depends on the size of the memory being verified due to the
result of the Coupon Collector’s Problem.

The variables of the verification procedure are initialized
as follows. We use the notation RC4i to denote the ith
output byte of the RC4 keystream. Since we discard RC40

to RC4255 for security reasons, the eight 8-bit values in
the checksum C0 to C7 are initialized with RC4256 through
RC4263. The initial value of RC4i−1 is set to RC4264.

Assembler code Figure 4 shows the assembly code cor-
responding to the pseudocode shown in Figure 3, written
in the assembly language of the Atmel ATMEGA163L mi-
crocontroller. The current assembly code is manually opti-
mized. In our manual optimization, by carefully unrolling
the verification procedure loop, we do away with the code
that updates the checksum index (the variable j in the pseu-
docode).

The architecture of the microcontroller has the following
characteristics:

• The microcontroller has a Harvard Architecture, with
16Kbytes of program memory and 1 Kbyte of data
memory.

• The CPU inside the microcontroller uses a RISC ISA.
This means that all instructions except loads and stores
have only CPU register and immediate as operands.
Only loads and stores use memory addresses.

• The CPU has 32 8-bit general purpose registers, r0 -
r31. Registers r26 and r27 together can be treated as
a 16-bit register x, used for indirect addressing of data
memory. Similarly, r28 and r29 form register y and r30
and r31 form register z. The upper and lower 8-bits of
the 16-bit registers are named using the suffix ’h’ and
’l’ after the name of the register. Thus xh and xl refer
to the upper and lower bytes of x and similarly for y
and z.

• Data and program memory can be addressed directly
or indirectly. To indirectly address data memory, one

6

algorithm Verify(m)
//Input: m number of iterations of the verification procedure
//Output: Checksum of memory
Let C be the checksum vector and j be the current index into the checksum vector
for i← 1 to m do

//Construct address for memory read
Ai ← (RC4i � 8) + C((j−1) mod 8)

//Update checksum byte
Cj ← Cj + (Mem[Ai]⊕ C((j−2) mod 8) + RC4i−1)
Cj ← rotate left one bit(Cj)
//Update checksum index
j ← (j + 1) mod 8

return C

Figure 3. Verification Procedure (Pseudocode)

of x, y or z registers holds the pointer to the mem-
ory location. In case of program memory, only the z
register can be used for indirect addressing. Indirect
addressing has displacement, pre-decrement and post-
increment modes.

The main loop of our verification procedure is just 16
assembly instructions and takes 23 machine cycles. Hence,
the addition of a single if statement (compare + branch)
that takes 3 cycles, to the main loop, adds a 13% overhead,
in terms of machine cycles, to each iteration of the loop.

In future work, we plan to use an approach similar to
Denali [8] to ensure that our checksum code cannot be opti-
mized further. In our current implementation, we conjecture
that only the two mov instructions may be optimized away,
as all other instructions perform essential operations. How-
ever, we need a strict mathematical argument that the code
is optimal for high security.

3.4 Experiment and Results

We implemented two versions of the verification
procedure—a genuine version and an attacker’s version that
assumes that the attacker changes a single byte of code and
copies it into the data memory. To check for this the attacker
then inserts an extra if statement into the verification pro-
cedure. This is an optimistic scenario for the attacker. If the
attacker modifies even a single memory location, it also has
to modify the verification procedure. This means that the
attacker will end up making multiple changes to the mem-
ory contents. So, the attacker will have to insert multiple
if statements.

For development and testing of our verification proce-
dure, we used the AVR studio version 4.0, which is an
integrated development environment for Atmel microcon-
trollers, developed by Atmel Corp. The AVR studio has a

simulator for the ATMega163L. We ran both versions of the
verification procedure in the simulator, keeping interrupts
and all peripherals disabled to minimize running time vari-
ations due to external events. The simulator profiled both
versions of the checksum function and returned the running
time. We show a plot of the running time versus number
of code memory accesses in Figure 5. We vary the number
of memory accesses (which is equal to the number of iter-
ations of the main loop) by the verification procedure from
10000 to 320000 (∼ 2 · n ln n, for n = 16Kbytes).

50000 1e+05 1.5e+05 2e+05 2.5e+05 3e+05
Number of memory accesses

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1

T
im

e
[s

ec
on

ds
]

Legitimate verification code
Attacker’s verification code
Time difference

Figure 5. Result from our implementation.
Time difference of legitimate code versus at-
tacker code. The more memory locations we
include in our checksumming procedure, the
larger the time difference between the legiti-
mate and attacker.

7

Assembly explanation Pure assembly code

Generate ith member of random sequence using RC4
zh← 2 ldi zh, 0x02
r15← *(x++) ld r15, x+
yl← yl + r15 add yl, r15
zl← *y ld zl, y
*y← r15 st y, r15
*x← r16 st x, r16
zl← zl + r15 add zl, r15
zh← *z ld zh, z
Generate 16-bit memory address
zl← r6 mov zl, r6
Load byte from memory and compute transformation
r0← *z lpm r0, z
r0← r0 ⊕ r13 xor r0, r13
r0← r0 + r4 add r0, r4
Incorporate output of transformation into checksum
r7← r7 + r0 add r7, r0
r7← r7 << 1 lsl r7
r7← r7 + carry bit adc r7, r5
r4← zh mov r4, zh

Figure 4. Verification Procedure (Assembly Code)

3.5 Considerations for Practical Use

Selecting number of iterations Due to the pseudo-
random nature of the memory access by the verification
procedure, there is always a finite probability that a single
changed memory location may be undetected. However, the
probability that this happens can be made arbitrarily low as
by increasing the number of memory accesses performed by
the verification procedure, i.e., by increasing the number of
iterations of the verification procedure loop. The drawback
of doing this is that the running time of the verification pro-
cedure increases linearly with the number of loop iterations.

Memory architecture dependencies The 8 and 16-bit
microcontrollers used in small embedded systems are de-
signed in either of two memory architectures: the Von Neu-
mann Architecture, in which both program code and data
reside in a single physical memory; and the Harvard Archi-
tecture, in which the program and data memories are dis-
tinct. These microcontrollers lack support for virtual mem-
ory. Since the verification procedure can directly access and
check the entire physical memory, if the result of a verifica-
tion request is correct, the verifier is assured that the mem-
ory contents are correct. Note that an attacker cannot re-
construct the correct memory image before verification and
undo changes afterward. Doing this will require the code
that does the undo operation to be resident in the memory

of the device. This change in memory contents will be de-
tected by SWATT.

In the Harvard architecture, the program memory is sep-
arate from the data memory and typically different instruc-
tions are required to access the program and data memory.
Since the data memory is not executable, we usually only
need to verify the program memory. The program memory
typically contains executable code and static data. Hence,
its contents will be known to the verifier apriori. This makes
it feasible to verify a running device.

Microcontrollers that use a Harvard architecture have a
non-volatile storage such as flash memory as program mem-
ory and SRAM for data memory. The size of the program
memory is typically an order of magnitude larger than the
size of the data memory. 8 and 16-bit microcontrollers from
several popular vendors like Atmel, National Semiconduc-
tor, Microchip, Texas Instruments, and Zilog use this ap-
proach.

In the Von Neumann architecture, the program and data
share the same memory address space. Since we want to
verify all code memory, but cannot externally determine
how much of the memory is used for the code, we need to
verify the entire memory, including all data. Consequently,
the verifier needs to know the exact state of the data mem-
ory, which includes the program stack. The set of programs
that run on an embedded device and their runtime sched-
ules are fixed at the time the embedded device is designed.

8

So, it should be possible to have checkpoints in the code at
which all dynamic state present in memory, with the possi-
ble exception of environmentally-influenced state like sen-
sor readings, is externally predictable. If we carry out our
verification at these checkpoints, we can verify a running
system. In any case, the verifier can download all dynamic
content when performing a verification.

Effect of memory size on running time The verification
procedure makes O(n lnn) accesses to memory to compute
the checksum, where n is the memory size. Each memory
word read is operated upon in constant time. Hence the run-
ning time of the verification procedure grows as O(n lnn)
in the size of the memory.

Empty memory regions Empty regions of memory are
often filled with zeros. So, if an attacker places malicious
code in the empty memory regions, it can suppress the read
to these memory locations and substitute it with zero. Also,
the attacker need not compute the exor operation when
computing the checksum of a zero-valued memory location.
Together, the time saved by not performing these two oper-
ations may offset the time for an extra if statement. To
prevent this attack, we suggest that empty memory regions
be filled with a pseudo-random pattern.

CPU Architecture and ISA dependencies Microcon-
troller architectures vary considerably between vendors.
The techniques discussed this section can always be used
with Von Neumann architectures. For Harvard Architec-
tures, our technique works if the architecture satisfies the
following conditions:

1. If the code and data memories have different word
sizes, the word size of the code memory should be
smaller than or equal to the width of the datapath of
the CPU of the microcontroller. If not, then the code
memory should be readable in sizes equal to the width
of the datapath.

2. The instruction set of the microcontroller must have an
instruction to read words the from the code memory.
This can be the move instruction or any other special
purpose instruction designed for that purpose.

3. On some Harvard architectures, the loads from pro-
gram memory take 2 to 3 times as long as loads from
data memory. This could be the source of a potential
attack. An attacker can keep the copy of the original
memory contents in the data memory. Then by divert-
ing the load operation to the data memory, the attacker
might be able to offset the extra time taken by the if
statement. In view of this attack, we require that the
difference between the latencies of loads from program

and data memory not be greater than the time taken to
execute the if statement.

3.6 Discussion

The design for the verification procedure, discussed in
this section, is central to SWATT. The design ensures that
the checksum of memory contents returned by the embed-
ded device will be correct only if the memory contents of
the device is the same as the value expected by the veri-
fier. It will be different with high probability if the mem-
ory contents of the device differ from the expected contents.
This statement about the checksum holds as long as the veri-
fier has the correct view of the embedded device’s hardware
configuration. So the only way an attacker can hide changes
to memory content is to change the hardware of the device.
This is typically much more difficult to do than changing
memory contents.

An interesting application of SWATT is in virus check-
ing. If an embedded device is suspected to be infected, an
external verifier can ship the verification procedure to the
device, download the entire memory image from the device,
and use SWATT to ensure that the downloaded memory
content is indeed the same as on the device. The verifier can
then use the downloaded content to perform virus checking
locally. This approach will prevent the virus from interfer-
ing with the virus checker, if we were to run the checker on
the infected device. Note that the verification procedure can
be shipped to the device even after the device is infected.
The design of SWATT ensures that the device can return the
correct checksum within a specified time frame only if runs
the correct verification procedure. If the device is found to
be infected, it can be patched to remove the virus. SWATT
can be used to verify that the installation of the patch was
successful.

One vulnerability of SWATT is that time at which the
memory is verified is not the same as the time at which
the device is used. So there is a possibility that an attacker
changes the memory contents of the device between verifi-
cation and use. It is an open research problem how to deal
with this weakness.

4 Related Work

The IBM 4758 secure cryptographic coprocessor [12, 13,
14] runs a general purpose operating system and allows field
upgrades of its software stack. To ensure the integrity of
the system it uses a form of secure boot [2, 3] that starts
from an initial trusted state and each layer verifies the digital
signature of the next layer before executing it. This ensures
that the software stack has not been altered.

Systems such as TCG (formerly known as TCPA) [16]
and NGSCB (formerly known as Palladium) [11] use es-

9

sentially the same notion to bootstrap trust but the mecha-
nisms are very different. TCG and NGSCB measure the in-
tegrity of the various components using a secure hash func-
tion (SHA-1) and the result is stored in a separate secure
coprocessor. This coprocessor can attest to these measure-
ments by signing them with the attestation identity key that
is stored inside the coprocessor. What is measured differs
per system, TCG starts measurement from system boot and
NGSCB starts measuring when the Nexus takes control.

SWATT does not need a secure coprocessor and allows a
trusted external entity to verify the memory contents of an
embedded device using a software-based technique. Once
the memory contents are verified, it forms the trusted com-
puting base. Hence we bootstrap trust entirely in software.

Kennell and Jamieson propose techniques to verify the
genuinity of computer systems entirely in software [9]. As
we discuss in Section 1, their technique cannot be used on
embedded systems. They always send their checksum code
as part of the challenge, which introduces vulnerabilities
due to the threats of mobile code. Their technique is similar
in that they also compute a randomized hash of the memory,
and also use timing to detect genuinity. However, both of
these techniques serve different purposes than in SWATT:
the randomized memory access is used to trigger more page
faults and cache misses (and not as in our technique to force
insertion of an if statement to slow down the attacker),
and the timing based approach assumes that it would take
longer to simulate the hardware on another device. Thus,
their mechanisms are different from ours as well as their
target platform. They presuppose a virtually paged archi-
tecture and the availability of low-level CPU performance
counters to measure the effect of instruction and data TLB
replacements. These kinds of architectural features are typ-
ically only available on high end CPUs and not on small
embedded devices.

In addition, Kennell and Jamieson’s technique suffers
from a security vulnerability that enables an attacker to
change an arbitrary number of memory locations and re-
main undetected with a 50% probability. The attack pro-
ceeds as follows. They compute a 32-bit checksum by
adding 32-bit memory words read into the current value of
the checksum, where the traversal is influenced by cache
and TLB misses. Periodically, they also XOR the current
values of cache and TLB misses into the checksum. Thus
their checksum function can be described as
checksum = checksum + [MemoryLocation]
checksum = checksum ⊕ CacheMisses||TLBMisses

With this method of computing the checksum, an attacker
can flip an arbitrary number of most significant bits (MSB)
of 32-bit words and the resulting checksum will still be cor-
rect with probability 50%. Only the MSB has this property,
as the carry bit of the MSB produced by an addition is lost.
Thus, if an odd number of changed locations are included

in the checksum, the resulting checksum will have the MSB
flipped, however, if an even number of changed locations
are included, the resulting checksum is correct.

5 Conclusion and Future Work

SWATT is a technique for externally verifying the code,
static data and configuration settings of an embedded de-
vice. Central to our technique is a carefully constructed ver-
ification procedure that computes a checksum over memory
in such a way that an attacker cannot alter the content of that
memory without changing the externally observed running
time of the verification procedure while still producing the
correct checksum. In particular, we use a randomized ac-
cess pattern to force the attacker to insert check statements
before every memory access if the memory was altered. We
have presented a practical implementation of such a proce-
dure and provided a detailed analysis of it.

Our future work concentrates on how to perform secure
device verification remotely, over an untrusted network. We
are also working to expand verification to CPUs with so-
phisticated architectural features like virtual memory and
branch predictors. We hope that our work motivates further
research on this important problem.

6 Acknowledgments

We would like to thank Dan Boneh, David McGrew,
David Maltz, Robert O’Callahan, Mike Reiter, Adi Shamir,
Bhaskar Srinivasan, and Brian Weis for stimulating discus-
sions, and suggestions on how to improve this paper. We
also thank the anonymous reviewers for their comments and
suggestions.

References

[1] Elise Ackerman. Voting machine maker dinged.
http://www.mercurynews.com/mld/
mercurynews/business/technology/
7511145.%htm, Dec 2003.

[2] William A. Arbaugh, David J. Farber, and Jonathan M.
Smith. A reliable bootstrap architecture. In Proceed-
ings of the IEEE Symposium on Research in Security
and Privacy, pages 65–71, Oakland, CA, May 1997.
IEEE Computer Society, Technical Committee on Se-
curity and Privacy, IEEE Computer Society Press.

[3] William A. Arbaugh, Angelos D. Keromytis, David J.
Farber, and Jonathan M. Smith. Automated recovery
in a secure bootstrap process. In Proceedings of the
Symposium on Network and Distributed Systems Se-
curity (NDSS ’98), pages 155–167, San Diego, Cali-
fornia, March 1998. Internet Society.

10

[4] N. Ferguson, D. Whiting, B. Schneier, J. Kelsey,
S. Lucks, and T. Kohno. Helix: Fast encryption and
authentication in a single cryptographic primitive. In
Proceedings of Fast Software Encryption (FSE2003),
pages 345–362, February 2003.

[5] Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weak-
nesses in the key scheduling algorithm of RC4. In 8th
Annual Workshop on Selected Areas in Cryptography,
volume 2259 of Lecture Notes in Computer Science,
pages 1–24, Toronto, Canado, August 2001. Springer-
Verlag, Berlin Germany.

[6] FX and kim0. Attacking networked embed-
ded systems. In Black Hat Briefings, Las Vegas
2002, 2002. Presentation available at http:
//www.blackhat.com/presentations/
bh-asia-02/bh-asia-02-fx.pdf.

[7] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David E. Culler, and Kristofer S. J. Pister. System
architecture directions for networked sensors. In Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 93–104, 2000.

[8] Rajeev Joshi, Greg Nelson, and Keith Randall. Denali:
a goal-directed superoptimizer. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 304–314.
ACM Press, 2002.

[9] Rick Kennell and Leah H. Jamieson. Establishing
the genuinity of remote computer systems. In Pro-
ceedings of the 11th USENIX Security Symposium.
USENIX, August 2003.

[10] Alexander Klimov and Adi Shamir. New crypto-
graphic primitives based on multiword t-functions.
Invited talk at the Fast Software Encryption Work-
shop 2004. http://www.wisdom.weizmann.
ac.il/˜ask/.

[11] Next-Generation Secure Computing Base (NGSCB).
http://www.microsoft.com/resources/
ngscb/default.mspx, 2003.

[12] S.W. Smith, E. Palmer, and S.H. Weingart. Using a
high-performance, programmable secure coprocessor.
In 2nd International Conference on Financial Cryp-
tography, 1998.

[13] S.W. Smith, R. Perez, S.H. Weingart, and V. Austel.
Validating a high-performance, programmable secure
coprocessor. In 22nd National Information Systems
Security Conference, October 1999.

[14] S.W. Smith and S.H. Weingart. Building a
high-performance, programmable secure coprocessor.
Computer Networks (Special Issue on Computer Net-
work Security), 31:831–960, 1999.

[15] Superopt - finds the shortest instruction sequence
for a given function. http://www.gnu.org/
directory/devel/compilers/superopt.
html.

[16] Trusted Computing Group (TCG). https://www.
trustedcomputinggroup.org/, 2003.

11

