
Mobile User Location-specific Encryption (MULE):
Using Your Office as Your Password∗

Ahren Studer
Carnegie Mellon University

astuder@cmu.edu

Adrian Perrig
Carnegie Mellon University

perrig@cmu.edu

ABSTRACT
Data breaches due to stolen laptops are a major problem. Solutions
exist to secure sensitive files on laptops, but are rarely deployed be-
cause users view them as inconvenient. This work examines how
to provide an unobtrusive system to securely encrypt files on lap-
tops. We observe that only a fraction of users’ files contain sen-
sitive information. In addition, the majority of users’ accesses to
these sensitive files occur while in a trusted location that malicious
parties are unable to access. Rather than protecting all of the user’s
files, we secure user designated sensitive files that are rarely ac-
cessed outside of specified trusted locations. Our approach is to
use information and services available only in a trusted location
to assist in key derivation without user involvement and without
authenticating the laptop to any outside service. We study two set-
tings: home use where zero management overhead is needed (i.e., a
“plug-and-play” solution) and a corporate setting where staff man-
agement of a whitelist of acceptable devices allows a higher level of
security. We have implemented both systems and found automatic
key derivation introduces a five second delay during the initial ac-
cess to sensitive files.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection—authentication, physical security, unau-
thorized access

General Terms
Security, Human Factors

∗This research was supported in part by CyLab at Carnegie Mellon
under grants DAAD19-02-1-0389 and MURI W 911 NF 0710287
from the Army Research Office, and grants CNS-0831440, CNS-
0627357 and CCF-0424422 from the National Science Foundation.
The views and conclusions contained here are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, either express or implied, of ARO, CMU,
CyLab, NSF, or the U.S. Government or any of its agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’10, March 22–24, 2010, Hoboken, New Jersey, USA.
Copyright 2010 ACM 978-1-60558-923-7/10/03 ...$10.00.

1. INTRODUCTION
Lost/stolen laptops are a major cause of leaked data [25,30]. In pre-
vious years, lost or stolen laptops resulted in the exposure of over
30 million unencrypted records [23]. These leaks expose financial
account information, health records, social security numbers, and
other crucial data. This issue is not limited to corporate laptops that
contain hundreds or thousands of records. As financial institutions
and the IRS move towards electronic systems (i.e., e-statements and
e-filing), more home users are storing sensitive data on their per-
sonal laptops. The loss of a personal laptop may leak the owner’s
account numbers, social security number, or even health records.
A simple solution to preventing such leaks is to authenticate users
and encrypt sensitive data [19,29]. However, a recent survey found
that only half of security and privacy professionals indicate their
companies encrypt data [18]. Without access to policies, we cannot
know why so few companies are using encryption. However, with-
out a standard that enforces encryption, most users view the tech-
nology as an unnecessary burden. Company IT personnel will also
see encryption technologies as a burden, similar to the headache as-
sociated with account management. When given the choice, users
often prefer convenience over security and only worry about leak-
ing data after losing their laptop [24]. What makes securing files
on laptops hard is that users and administrators want a system that
“just works” with little or no actions on their part. However, there
is often a tradeoff between security & user effort.
In this paper, we examine the extreme case of no user effort and
little IT administration to determine what level of security is pos-
sible. Our goal is to remove user effort associated with encryption
technology while achieving the same or better security compared
to traditional password-based approaches. Prior work by Corner &
Noble [9] reduced user overhead associated with securing files by
leveraging a cryptographic token which shares secrets with the lap-
top. Provided the token is within radio range of the laptop, the user
can access files. Once the token is out of range, files are encrypted.
Such an approach has the advantage that all of the user’s files are
protected, but requires the user to carry a token to allow access to
any of the files. We lower the threshold and examine how much
security one can achieve with no per laptop secrets on company
managed devices and zero user effort (i.e., no password entry, bio-
metric entry, or possession of cryptographic tokens) in the common
case.
We observe that only a fraction of the files on users’ laptops are
sensitive and most users only access those sensitive files when they
are in a location they feel is difficult for malicious parties to access
(e.g., a home office or a desk at work). Our approach is to encrypt
user-specified sensitive files and leave all other files unencrypted
and always accessible. Given the majority of accesses to sensi-
tive files occur in a trusted location, Mobile User Location-specific

Encryption (MULE) uses location-specific information from the
trusted location to automatically derive a decryption key and allow
access to the sensitive files. Once the user is inactive, logs off, or
puts the computer to sleep, the files are automatically re-encrypted
and the key is deleted from the computer. In the rare case that a
user wants to access sensitive files outside the trusted locations, the
user can enter a secondary password to gain access. This password-
based access also provides a fail-safe mechanism in case location-
specific information or services are no longer available in a trusted
location.
Convenience is the major advantage of MULE. The user can access
files without performing any additional actions in the common case
(accessing non-sensitive files or accessing sensitive files in a trusted
location). Ideally, only in rare cases would MULE require user
effort.
A malicious entity in possession of the laptop with unconstrained
access to a trusted location could access sensitive data. We propose
a new attacker model, the Outsider Thief (OT), to more accurately
reflect the threat of a laptop thief. We describe this adversary model
in more detail in Section 2.
We have implemented our system and find that the time needed to
acquire the location-dependent key is less than 5 seconds depend-
ing on the security level, type of location-specific information, and
technique used. Once the key is known, access to encrypted sen-
sitive files is transparent to applications. Our implementation also
includes the necessary tools to automatically re-encrypt sensitive
files when the system is idle for a set period of time or put to sleep
(e.g., the owner closes the laptop).
Contributions. We investigate the level of security one can achieve
with encrypted sensitive files when no user effort is required. Rath-
er than relying on something users know, have, or are, we explore
using where the user is to perform access control. We propose
two new mechanisms that derive keys based on location-specific
information to allow the laptop to infer that it is physically located
in a trusted location, without proving to any other device that it is in
the trusted location. We evaluate an implementation of our system
on readily available hardware.

2. PROBLEM FORMULATION
The goal of this work is to provide encryption of sensitive data
while requiring minimal administrative effort and zero user effort
during common accesses and moderate effort otherwise. Such en-
cryption should, with high probability, prevent an adversary who
steals the laptop from accessing files. Minimal administrative ef-
fort applies to a corporate setting and means IT personnel at most
have to keep a list of not-yet-stolen laptops (i.e., there are no per-
laptop secrets on a corporate server). A scheme requires zero user
effort if a user can access sensitive files without entering a pass-
word or biometric, carrying around a hardware token, or adding
additional hardware to their laptop. The main challenge is how to
protect the key needed to decrypt sensitive data without requiring
user or administrative effort.
To avoid user effort in the common case, we need a system that
allows the laptop to automatically derive the key based on location-
specific information when in a trusted location (the common ac-
cesses). The laptop can use this location specific key to decrypt
sensitive files and provide the user access.
Location-based access control [10] addresses the different problem
of proving to an outside system that a device/user is in a location
and thus should have access to a resource. Our problem involves
a laptop that wants to prove to itself that it is in a specific location
(i.e., retrieve a decryption key). The laptop can leverage informa-
tion and computation from other devices already in the location to

perform this proof, but the other devices perform no authentication
of the laptop and require no per-laptop secrets.

2.1 Assumptions
Sensitive Data Access Patterns. We assume users rarely access
sensitive data outside of trusted locations. For example, users will
work on taxes in their home or access customer accounts in the of-
fice. This assumption remains true for individuals that travel for
work. Companies often disallow individuals from taking sensitive
files out of the office [8]. For example, human resource employ-
ees often access employee records. However, while traveling to
recruiting events, company policy may dictate that laptops must
not contain unencrypted copies of employee records. Some users
rarely access sensitive files in the same location. For example, a
consultant that frequently travels may have no real office. For users
without a trusted location, MULE provides no real advantage.
Available Hardware and Software. We assume laptops are e-
quipped with a video camera and trusted computing technology,
MULE users will accept the cost of installing a small device in
the trusted location, and corporations that use MULE will have a
whitelist of company laptops or a blacklist of stolen company lap-
tops and a Public Key Infrastructure (PKI) or at least the means to
distribute authentic public keys to their employees.
The majority of commodity laptops have webcams mounted into
the frame around the display and already come equipped with trust-
ed platform modules (TPMs) [33], an inexpensive coprocessor that
enables a number of security related operations. Extracting keys
from the TPM is infeasible without expensive hardware and exten-
sive time.
Given the lack of laptop accessible location-identifying informa-
tion in home and work offices, we assume users or their companies
will install a Trusted Location Device (TLD) as part of MULE.
The TLD provides location-specific information and responds to
any machine that wants to run the key derivation protocol. Instead
of performing location-based access control, the TLD performs no
authentication of the requesting device. TLD secrets, location-
specific information, and inputs to the key derivation process form
the foundation of the secrecy of location-specific keys in MULE.
The TLD is a spare machine connected to an inexpensive ($20) mi-
crocontroller to transmit location-specific information. The TLD
also requires zero user effort after plugging it into the trusted lo-
cation and minor maintenance in the corporate setting to ensure
protection of keys (see Section 3 for more details).
We assume corporations keep track of company owned laptops us-
ing some type of unique identifier that the laptop knows. This could
be a value the company assigns to the laptop (e.g., a network as-
signed name or IP address) or a value found in hardware (e.g., the
MAC address of the laptop). When the laptop is lost/stolen, IT or
property management personnel will remove the laptop from the
company whitelist (or add it to a blacklist) of laptops that are al-
lowed various services (e.g., access to the corporate wireless net-
work). We leverage this company assigned unique identifier during
calculations such that, once the laptop is stolen, the calculations
fail, but no authentication of the identifier is performed—as part of
MULE.
Any corporation with a secure web-site already uses a PKI to pro-
tect communication with the site. We assume that the company can
use this same PKI to identify TLDs. Otherwise, IT personnel can
easily create an in-house PKI for free using open source software
like OpenSSL [21] and manually distribute the necessary creden-
tials (i.e., CA’s public key) to identify TLDs.

2.2 Outsider Thief (OT) Attacker Model
We propose the Outsider Thief (OT)—a realistic attacker to model
a laptop thief. The thief has complete control over a stolen laptop,
may visit a company office, and can launch attacks on the wireless
network, but is unlikely to break into a user’s home. After the OT
steals the laptop, she can install any software and try to guess the
user’s login password. We assume the laptop has no malware be-
fore it is stolen, otherwise any sensitive data the user accesses could
be leaked. Malware defenses are an important problem that is out-
side of the scope of this work. We assume fear of legal retribution
prevents an OT from breaking into a home to access a home user’s
trusted location. Corporate trusted locations are publicly accessi-
ble, but are protected by guards and IT personnel which prevent an
OT from successfully compromising devices in the trusted location.
An OT can overhear, intercept, and inject messages on the wireless
network. However, when outside of a trusted location, an attacker
is unable to access the location’s constrained channel [14] (e.g., in-
frared signals that are unable to pass through walls or sounds in an
insulated room). We recognize that stronger attacker models ex-
ist, but we expect that defending against those adversaries requires
additional user effort.

2.3 Requirements for Location-Specific
Information Used to Derive Keys

When location-specific information is used for key derivation, the
information must fulfill the following requirements to ensure suc-
cessful and secure operation of MULE.
Easily Accessible. Once the laptop is powered on, placed in a
trusted location, and the user is logged in, the laptop should have
access to the information required for key derivation.
Unique to a Location. If the information is not unique, the laptop
may automatically decrypt a user’s sensitive files while outside of
the originally defined location, an obvious security vulnerability.
Bounded Range. Location information should only be accessible
within the location. Information accessible from outside of a build-
ing will apply to more than the location the user trusts.
Significant Entropy. Information used to derive the key within a
location needs to have significant entropy so that it is hard to guess.
Limited entropy would enable an attacker to guess the necessary
values, spoof the location, and recover a key.

3. MULE OVERVIEW
MULE’s goal is to protect sensitive files on mobile devices with
zero user effort in the common case. Standard user login works
independent of MULE and provides a form of weak user authen-
tication. All non-sensitive files on the laptop are left unencrypted
and are always accessible. Only user-specified sensitive files are
encrypted. Figure 1 depicts an overview of the operation of MULE.
When a user tries to access a sensitive file, MULE contacts a Trust-
ed Location Device (TLD) which helps the laptop derive the key
needed to decrypt sensitive files with zero user effort. The TLD
generates a nonce and transmits it over the constrained channel [14].
We call this TLD generated nonce a location-specific message (m)
because the properties of the constrained channel ensure that only
devices within the trusted location can access the m associated with
the current run of the protocol. A TLD is unable to authenticate
requesters without per-laptop secrets and will respond to any key
derivation request. However, the key derivation calculations are
such that a TLD produces the wrong output if the requester uses
the wrong m in calculations (e.g., the client is in a different loca-
tion). After the TLD has helped derive the key, the user can access
sensitive files without having performed any extra actions. Dur-

ing the rare occasion when a user accesses sensitive files outside
of a trusted location, MULE will lack the correct location-specific
information and key derivation will fail. In that case, we sacri-
fice some usability to preserve security and ask the user to enter a
password as part of a location-independent key derivation scheme.
The password allows the TPM on the laptop to decrypt a location-
independent key which can decrypt the files. Once a valid key is
available, the sensitive files are decrypted. When a user is idle for
some set period of time, logs off, or puts the laptop to sleep, the
laptop will re-encrypt the files and delete the key.

TPM

User is Idle or Puts
the Laptop to Sleep

Encrypted (no)

User Wants to Access
Sensitive Files

The User Enters a Secondary
Password to Decrypt the
Location Independent

Password

is Used to Decrypt
Sensitive Files

Sensitive Files are

Valid

No

Yes

Re
qu

ire
s

U
se

r

Laptop Records m
from the Constrained
Channel

TL
D

Laptop Uses m
and TLD to Derive a TL

D

Figure 1: Operation of MULE
User effort is only needed when location-specific key derivation fails.

In this work, we present two location-specific key derivation proto-
cols that leverage the same implementation of a constrained chan-
nel. The reason we have two protocols is that home and corporate
users are willing to accept different levels of management overhead
and use cases. In both protocols, we use an infrared (IR) LED and
the laptop’s webcam to implement a constrained channel. IR can-
not pass through objects (e.g., walls, window blinds, or people). If
one is viewing sensitive files on the screen, one should close the
blinds to prevent an OT across the street from seeing the display—
and also prevent access to the constrained channel. One downside
to this constrained channel is the limited number of bits the TLD
can reliably transmit to the laptop in a fixed amount of time. Based
on the Nyquist frequency, a camera that captures X frames per sec-
ond is limited to X/2 bits per second when using an on/off encod-
ing scheme.1 We could add multiple LEDs to encode more bits
per frame. However, the user would have to pay careful attention
to how the laptop is positioned within a trusted location to ensure
the LEDs are easily differentiable so the laptop can successfully
decode m. Instead, we design key derivation protocols which are

1The LED on is a 1. The LED off is a 0.

secure despite the use of a 20 to 30 bit long m which changes with
each run of the protocol.
In Section 4, we describe the Home Key Derivation (HKD) pro-
tocol. In the home scenario, we assume the user wants to turn an
existing computing device (e.g., old desktop or wireless router) into
a TLD, hang the IR LED over the desk in the office (or other trusted
location), and leave the system alone. Without access to the con-
strained channel, an OT can sit outside of the user’s home, inter-
cept all wireless communication, and find it infeasible to recover
the key. If the laptop is ever stolen, the user can feel secure know-
ing a thief needs to break into her home to steal the TLD or attack
the location-independent mechanism to recover a key which will
decrypt sensitive files.
In Section 5, we describe the Corporate Key Derivation (CKD) pro-
tocol. In a business setting, malicious parties may surreptitiously
gain access to the office for any number of reasons (e.g., a corporate
open house or interview). As such, an OT may access the trusted
location with the laptop in her possession. In that case, we leverage
the company’s guards and IT personnel to maintain the secrecy of
the sensitive files. Guards will prevent an OT from breaking into
locked rooms and subverting TLDs.2 The company’s IT person-
nel can maintain a simple white-list of valid MULE clients based
on some static unique ID for the laptops (e.g., a network name, IP
address, or MAC address). During key derivation, the TLD will
verify a laptop supplied name is in the whitelist and use it as in-
put to the key derivation function. Even though the TLD performs
zero authentication that the supplied name belongs to the laptop,
this ensures that after a laptop is stolen and administrators remove
the laptop name from the white-list, the thief is unable to recover
the key needed to decrypt the files using the TLD.
Outside of the trusted locations, during designation of a trusted
location, or when automatic key derivation fails, MULE uses a
location-independent key storage and retrieval technique that uses
TPMs and a secondary password (different from the user’s login
password) to securely manage a key that can access the sensitive
files (see Section 6).
In Section 7, we discuss implementation details of the protocols,
management of encryption/decryption of files for application trans-
parency, key management such that multiple keys can access the
files, and management of the automatic re-encryption of files so
that a user does not unknowingly leak data.

4. HOME USER SCENARIO
Within the home setting, MULE needs a key derivation technique
that “just works” once the TLD is powered on and in the trusted
location. Pairing the laptop with the TLD could establish a strong
shared key which could be used to secure later key derivations, but
requires user effort and is vulnerable to human error [35]. As such,
MULE should perform all of the tasks necessary once the laptop is
in a trusted location. The simplest key derivation protocol would
have the laptop derive a decryption key from a fixed m. Without
access to the constrained channel, an OT will be unable to derive
the key. However, an attacker in possession of the laptop could
quickly brute force the key, given the limited entropy of m. Instead,
the TLD can possess a strong secret to help derive the laptop’s de-
cryption key and use m to ensure the requesting laptop is in the
room and protect communication over the wireless network. With
Encrypted Key Exchange (EKE) [1], the TLD and the laptop can
leverage m as a weak secret to establish a session key. The session

2The TLD can be secured behind doors and use a wired connec-
tion to send data to microcontrollers which transmit data over the
constrained channel.

key can protect the laptop’s subsequent file decryption key request.
Instead of using m to establish a key which is used to protect the
derivation of a different key, we would like a protocol that allows
the laptop with knowledge of m to successfully acquire a file de-
cryption key with less communication and computation overhead.
Since a new m is randomly generated for each run of the protocol,
we can use a more efficient protocol. With blind-signatures [7], a
laptop can store a secret k and use a TLD signature (kd mod N)
as a decryption key, without revealing either value to the TLD or
an eavesdropper. If the signature request is concealed using sym-
metric encryption with m as the key, the laptop with the correct
m can derive the key in a single round of communication over the
wireless channel. Provided symmetric encryption functions as a
Pseudo-Random Permutation (PRP), a device with the wrong m (a
device outside of the room) will receive seemingly random output
from the TLD.
In the remainder of this section, we describe the key derivation pro-
tocol, how the laptop first associates a key with a trusted location,
and an analysis of our protocol.

4.1 Home Key Derivation (HKD)
The HKD protocol consists of 4 main steps: initialization, input
hiding, TLD calculations, and key recovery. During initialization,
the laptop verifies it is interacting with a known TLD.3 At the same
time, the TLD generates random location-specific information (m)
for use during this instance of the protocol and transmits it using
the constrained channel. During input hiding, the laptop multiplies
a value stored on the laptop (k) with a random number to generate a
blinded request and uses m to encrypt the blinded value. The TLD’s
calculations include using m to decrypt the ciphertext and recover
the laptop’s blinded message, signing the value, and returning the
result to the laptop. To recover the key needed to decrypt sensitive
files (a signature on k), the laptop unblinds the signature. Figure 2
contains a summary of the HKD protocol. The goal of the protocol
is to ensure that only a device with knowledge of m can successfully
retrieve the correct signed value from the TLD, without revealing
the laptop’s long-term value k or a signature on k. If a client uses
an incorrect m (the key for the cipher), the decryption at the TLD
will produce the wrong value and result in a different signature.

Initialization.
When the protocol starts, the TLD sends its RSA public key (see
Step 1 in Figure 2 where N is the RSA modulus and e is the public
exponent). At this time, the laptop verifies it is talking to a known
TLD by checking metadata stored with the encrypted sensitive files.
If this TLD is unknown, the laptop considers this an untrusted lo-
cation and stops key derivation (see Step 2). At the same time,
the TLD randomly generates the location-specific information m of
length � and transmits it over the constrained channel (see Steps 3
& 4). Since the constrained channel provides a slow rate of transfer,
� is 20 to 30 bits to reduce the transmission time to a few seconds.
Note that here we use infrared as a constrained channel, but any
medium that allows the TLD to confine the transmission of m to
the physical room will work.

Input Hiding.
After receiving m, the laptop uses a random number R to blind
the laptop’s long term secret k, and uses m to encrypt the result
in Steps 5 to 7. Here, R is a random number relatively prime to N.
Blinding the value hides k and temporarily conceals m. Blinding

3Section 4.2 discusses how the laptop first learns the appropriate
TLD and public key for a trusted location.

Initialization:
1. T LD→ L : K+

T LD T LD responds with its public key (N,e).
2. L : if(!(k = get_k(K+

T LD)) L retrieves the long-term secret for this K+
T LD from its harddrive

quit; and quits if no record exists.

3. T LD : m R←−{0,1}� T LD generates a random value of length � to act as the current location-specific information.

4. T LD CC−→L : m T LD transmits the location-specific information over the constrained channel.
Input Hiding:
5. L : R R←−Z

∗
N L generates a random number relatively prime to N,

6. b← Re k mod N uses R raised to the public exponent e to blind the long term secret,
7. c← Encryptm{b} and uses m as a key to a symmetric cipher and encrypts the blinded value.
8. L→ T LD : c L sends the concealed value to T LD.
TLD Calculations:
9. T LD : v← Decryptm{c} T LD uses m to decrypt the message
10. σ ← vd mod N and signs the value.
11. T LD→ L : σ T LD returns the signed value.
Key Recovery:
12. K← σR−1 mod N L unblinds the result to retrieve kd mod N.

Note: (Rek)dR−1 mod N = RedkdR−1 mod N = RkdR−1 mod N = kd mod N

Figure 2: The HKD protocol between a laptop (L) and a TLD.

with the random value Re prevents the TLD (or any device with
knowledge of m) from recovering k from Re k mod N. Blinding
also ensures that the value encrypted is different for each protocol
run. This prevents an entity outside of the room from intercepting c
and recovering m from a brute-force attack. When testing a poten-
tial key for the cipher, the output of decryption appears as a random
value and an attacker cannot verify if the revealed value matches the
laptop’s original message, thus verifying the correctness of a guess
of m. In Step 7, an implementer must select a cipher such that a
failed decryption does not leak information about m. If the size
of the blinded value is a multiple of the cipher’s block size, Elec-
tronic Code Book (ECB) mode is sufficient. However, the addition
of deterministic padding to the plaintext would allow an attacker to
recover m based on c (e.g., if padding is a series of 0s the attacker
will try different values of m until decryption results in a plaintext
ending in 0s). If the length of the blinded value is not a multiple
of the cipher block size, a stream cipher or ciphertext stealing can
encrypt the blinded value such that no predictable plaintext is used.

TLD Calculations.
After receiving c (Step 8), the TLD uses the correct m to decrypt the
message (Step 9). If c was generated with m, the TLD has a copy of
Re k mod N (or whatever the laptop sent). If c was generated with a
different key, the TLD will have a pseudo-random value that differs
from the laptop’s original input with high probability. After using
the private exponent d to complete the blind signature, the TLD
returns the result to the laptop as σ (Steps 10–11). At this point, m
is no longer location-specific information. An attacker can take c
and σ and recover m by finding the x such that Decryptx{c}== σ e

mod N. However, learning this m is useless since the TLD uses a
new random m for each run of the protocol and blinding conceals k
and kd .

Key Recovery.
Once the laptop has the TLD’s response (σ from Step 11), the lap-
top will use R−1 mod N to recover the file decryption key/signa-
ture (kd mod N) from the TLD’s response. Provided the laptop and
TLD were using the same value for m, the laptop will now possess
a deterministic signature on k (static across time) which it can use

as a decryption key. If the laptop used incorrect location-specific
information (mLaptop �= mT LD), the end result will contain a signa-
ture on a pseudo-random value—the TLD signed a different value
than the laptop sent—that will fail to decrypt the sensitive files.
In the remainder of this section, we discuss how our protocol allows
TLD identification with zero user effort and why our protocol is
secure against an OT.

4.2 Trusted Location Designation
Before using HKD, a laptop must acquire the correct public key
(N,e) associated with a trusted location. Given the attacker is un-
able to send or receive information on the constrained channel,
learning the correct public key for a trusted location requires zero
user effort. When designating a location as a trusted location, the
laptop generates a random 128 bit or larger k. After performing
HKD with the new k and a potential public key, the laptop can ver-
ify if the device which controls the constrained channel used the
public key the laptop received over the wireless channel. Given an
OT is unable to access the constrained channel, this verification en-
sures the TLD—which controls the constrained channel—has the
public key the laptop received. Once the laptop knows it is inter-
acting with the T LD with the correct public key, the laptop saves k
and the public key (N,e) as metadata with the encrypted sensitive
files so future runs of HKD can access all of the necessary data. All
a user has to do during designation of a new location is to recover
the location-independent key (see Section 6) so the sensitive files
can be decrypted using HKD or the location-independent mecha-
nism. Section 7.3 has more details on how we manage sensitive
files encrypted under multiple keys.
After a sample run, the laptop can check if it has the correct public
key by verifying the signature it received from the potential TLD.
If the signature is valid, there is a 1−2−� chance that the public key
used is the correct public key for this trusted location. There is a
small probability (2−�) an attacker impersonated the TLD and was
able to guess m. With a correct guess of m, the attacker could cor-
rectly decrypt c and produce a valid signature for the claimed public
key. For a stronger guarantee, the laptop could run HKD multiple
times before accepting N,e. Given m is randomly generated inde-
pendently for each run of the protocol, the laptop will detect an
attack after n runs of the protocol with probability 1−2−n�.

4.3 Security Analysis
In this section, we discuss how HKD prevents an attacker from
recovering kd mod N (the value used as the file decryption key).
Provided RSA is secure, blind signatures conceal the original mes-
sage [7], m and R are random, and the block cipher used is a good
pseudo-random permutation, an OT attempting to discover kd mod
N will be unsuccessful. Section 4.2 already discussed why an at-
tacker is unable to pose as a TLD during setup and generate kd

mod N once in possession of the laptop (if the impersonation was
successful, the attacker would know the private key needed to gen-
erate the signature). The remainder of this section discusses how
the key remains secure when the laptop is still in the user’s posses-
sion and after the OT has stolen the laptop.
While the user still has possession of the laptop, an attacker can
eavesdrop on HKD to try and recover the key from messages from
multiple protocol runs, or try to directly run the protocol with the
TLD. After eavesdropping on one run of the protocol, an eaves-
dropper will have a blinded message (Re

1k) and a blind signature
(R1kd). An attacker that could recover k or kd from these mes-
sages would be able to defeat blind signatures (something infea-
sible assuming blind signatures conceal the original message and
the attacker lacks the randomly generated R values). After eaves-
dropping on n protocol runs, the attacker will have n messages
(Re

1k,Re
2k, ...,Re

nk) and n signatures (R1kd ,R2kd , ...,Rnkd). Even
with n pairs, the attacker is still unable to recover k or kd given
each Ri is random and the number of unknowns matches the num-
ber of equations. Without knowledge of k, direct interaction with
the TLD provides little information to the attacker. As we discuss
in the next paragraph, it is also infeasible to retrieve the desired
signature without knowledge of the current m.
With possession of the laptop, an attacker will know k and at-
tempt to recover kd mod N by calculating the signature, deriv-
ing the value based on previously recorded messages, or via in-
teracting with the TLD. If an attacker were able to generate kd

mod N without knowledge of d (or the factors of N) the attacker
can compromise RSA (something infeasible assuming RSA is se-
cure). An attacker can try to recover kd using k and data from pre-
viously recorded runs of the protocol (e.g., the n pairs of messages
(Re

1k,Re
2k, ...,Re

nk) and signatures (R1kd ,R2kd , ...,Rnkd)). Now, the
attacker can recover the various Re

i by multiplying a message with
k−1 mod N. However, the attacker is unable to isolate kd from the
signatures. The RSA assumption dictates that given N and Re

i (the
values an attacker has) it is infeasible to recover Ri (the value the
attacker needs). As such, the attacker needs a different approach to
learn kd .
If an attacker can submit k to the TLD concealed with the correct
m, the attacker can recover kd and decrypt the user’s sensitive files.
However, we assume an OT is unable to access the constrained
channel and thus lacks knowledge of m. Instead, the attacker can
try to guess m and interact with the TLD by itself or intercept com-
munication between a legitimate user and the TLD to recover the
current m. On her own, the attacker has a 2−� chance of guessing
the correct m for a given run of the protocol. A geometric distri-
bution describes the probability of success after x attempts (x− 1
failures followed by one success). As such, an attacker will need
2� attempts on average to successfully guess m. To make the attack
less feasible, the TLD can rate limit requests, forcing an attacker to
invest more time to perform the large number of attempts. If an at-
tacker wants to leverage information from a legitimate run of HKD,
the attacker must intercept the first message and try to determine the
current m which produces the other user’s blinded message Re

OkO.
However, the block cipher and the random selection of RO prevent

the attacker from verifying if the guess for m was correct. Given
the randomness of Re

O and the pseudo-randomness of the cipher,
the majority of decryptions look like potential legitimate messages.
As such, interception of cO provides little help to an attacker trying
to recover the current m. After the TLD responds, the attacker can
recover the last m from cO and σO, but once the TLD responds it
will use a different m for the next run of the protocol.
Without access to the constrained channel, an attacker is unable to
recover the m needed to interact with the TLD and will be unable
to recover the signature needed to decrypt the user’s sensitive files.
The best an attacker can do is recover m after the TLD responds.
However, at that time the TLD will expect a different m for the next
run of the protocol.

5. CORPORATE USER SCENARIO
In the corporate setting, an OT is able to access the constrained
channel. If HKD was used, an OT could recover file decryption
keys for stolen laptops. The company PKI and an administrator
maintained list of company laptops allow us to design a protocol
such that legitimate users can access sensitive files on a laptop with
zero user effort, but an OT in possession of the laptop is unable
to access the same data. In the remainder of this section, we dis-
cuss why the HKD fails to work in the corporate settings, how the
Corporate Key Derivation (CKD) works, and why CKD is secure.
With access to the office, a malicious party can receive or send data
on the constrained channel and circumvent any security provided
by HKD. With the ability to receive data from the constrained chan-
nel, an attacker could return to the office after stealing a laptop and
use the TLD to automatically derive the file decryption key. With
the ability to send on the constrained channel, an OT could pose as
a TLD during initial MULE setup, trick a laptop into deriving a file
decryption key based on the attacker’s RSA key pair, and generate
the file decryption key once in possession of the laptop.
The Corporate Key Derivation (CKD) must authenticate the TLD,
cease to work once the laptop is reported stolen, and only succeed
when the laptop has access to the constrained channel. With a
company PKI/trusted company public key, TLDs possess author-
ity signed certificates to identify themselves as legitimate. A TLD
certificate and Transport Layer Security (TLS) [11] can prevent an
attacker from spoofing the TLD or eavesdropping on other devices’
communication with the TLD. However, execution of HKD over
TLS is insufficient, because an OT can steal a laptop, return to the
office, and acquire the file decryption key. The TLD could authen-
ticate laptops and only perform HKD for laptops not yet reported
stolen. However, this means significant administrative overhead
with per-laptop secrets on the TLD, or the addition of laptops to the
company PKI and the maintenance of a Certificate Revocation List
(CRL) to identify stolen laptops. Instead, the TLD uses the laptop’s
long-term secret and a company assigned laptop identifier (without
any authentication the laptop is the one it claims to be) as input dur-
ing key derivation, and refuses to derive keys for laptops that report
an identifier not in the company whitelist (or quits if the laptop is
present in a blacklist). The TLD uses a keyed hash/Message Au-
thentication Code (MAC) as an efficient way to generate an output
given a laptop secret and ID pair, without leaking any information
about the key used in the MAC. To ensure derivation only succeeds
for devices in the trusted location, the laptop xors its long-term se-
cret with the location specific m, and the TLD xors m with the lap-
top’s input. If a laptop uses an m that differs by one or more bits,
the TLD will use the wrong input to the MAC and fail to derive
the correct key. Encryption/decryption of the input using m as the
key would provide the same results as xor, but requires additional
computation. The Corporate Key Derivation (CKD) can protect

Initialization:
1. LT LS_init↔ T LD : Cert’T LD′ ,σTLD′ TLD sends a certificate and signature as part of the TLS handshake.
2. L : if(!verify(σT LD′ ,CertT LD) L uses the locally stored certificate to verify this is a trusted TLD.

quit

3. T LD : m R←−{0,1}� TLD generates a random value of length � as the current location-specific information

4. T LD CC−→L : m and transmits the location-specific information over the constrained channel.
Apply m:
5. L : x← k⊕m L xors m with the long term secret value (k) stored on the laptop

6. L T LS−→T LD : IDL,x and sends its unique ID and the xored value to the TLD.
TLD Calculations:
7. TLD : k← m⊕ x TLD recovers the laptop’s long term secret,
8. TLD : if (ID /∈ whitelist) quit verifies the ID is in the whitelist,
9. TLD : KIDL ←MACKT LD(IDL||k) uses a keyed hash to derive the key for this IDL,k combination,

10. T LD T LS−→L : KIDL and returns the calculated value to the laptop.

Figure 3: The CKD protocol between a laptop (L) and a TLD.

sensitive data from a laptop thief, provided the laptop is reported
stolen before an OT can enter the corporate trusted location.
In the remainder of this section, we describe the CKD protocol
and discuss why it is secure. Trusted location designation within
CKD is similar to designation within HKD, except the laptop can
verify the public key for the TLD via the corporate PKI or a public
key distributed manually (e.g., IT personnel installs it with other
software).

5.1 Corporate Key Derivation (CKD)
In the CKD protocol, the TLD uses TLS to prevent attackers from
posing as the TLD or interfering during legitimate key derivation,
xors an input with m to implicitly check if the other device is in
the trusted location, and uses a MAC to derive keys. Figure 3 con-
tains the various steps involved in CKD. The protocol is divided
into three main steps: initialization, application of m, and TLD cal-
culations.

Initialization.
The laptop initiates a TLS connection with the TLD and uses lo-
cally stored certificates or public keys to verify the TLD. At the
same time, the TLD generates a random value to use as location-
specific information and transmits it over the constrained channel.

Application of m.
The laptop xors the location-specific information with its long-term
secret (k) as part of the implicit check that the laptop is in the trusted
location. The laptop sends the result of the xor operation and the
laptop’s ID to the TLD.

TLD Calculations.
The TLD performs two operations to ensure only laptops with ac-
cess to the constrained channel that are on the company whitelist
acquire decryption keys. The TLD xors the received value with m
to recover k and verifies the provided ID is in the whitelist. Pro-
vided the ID is in the whitelist, the TLD uses the TLD key (KT LD)
to generate the MAC of the laptop ID concatenated with k. If the
laptop is outside of the room and uses the wrong m, the TLD will
use the wrong k as input to the MAC. With the wrong input, the
output will fail to decrypt sensitive files. If the whitelist indicates
the laptop is stolen (i.e., the ID is absent from the list), the TLD
quits the current run of CKD. With a MAC, the TLD can use the

same secret (KT LD) to securely generate different outputs for dif-
ferent IDs. For example, if laptop ID1 is stolen, it is infeasible for
an attacker to recover MACKT LD(ID1||x) when posing as ID2 (i.e.,
a secure MAC ensures the attacker is unable to find y such that
MACKT LD(ID2||y) == MACKT LD(ID1||x)).
In Section 5.2, we discuss how secrecy of k and the use of a whitelist
of valid IDs ensures attackers are unable to use the CKD to recover
the keys needed to access sensitive files on a stolen laptop.

5.2 Security Analysis
The security of the laptop’s decryption key KIDL relies on the se-
curity of TLS, the secrecy of the laptop’s long-term secret before
the laptop is stolen, and the timely update of the whitelist after the
laptop is stolen. We assume TLS is secure and laptops are able to
correctly identify the TLD based on secure distribution of public
keys (a company CA key or a copy of the certificate for the TLD).
As such we only consider how an attacker can attack the CKD to
recover KIDL before or after stealing the laptop and how tunneling
of m can cause the decryption of sensitive files while the laptop is
still in the legitimate user’s possession.
Before the laptop is stolen, an attacker is unable to recover KIDL be-
cause it lacks knowledge of the long-term secret k. Given TLS au-
thenticates the TLD, an attacker is unable to impersonate the TLD
and trick the laptop into sending k to the attacker. At this time, an
attacker can pose as the laptop and interact with the TLD while us-
ing the laptop’s ID. However, without knowledge of k, the attacker
is unable to know what inputs will generate the correct output from
the TLD. Without the encrypted files, the attacker will be unable to
test a potential key and verify the guess was correct. The attacker
can collect a large set of potential keys by sending a large num-
ber of requests to the TLD. However, k is a long sequence of bits
(i.e., 128 bits or more) randomly generated during assignment of
the office as a trusted location. The chance of an attacker correctly
guessing k and thus retrieving the key from the TLD while the user
still has possession of the laptop is negligible.
Once the laptop is stolen, the user will report the theft to the com-
pany’s IT department which will consequently remove the laptop’s
ID (IDL) from the whitelist (or add IDL to a blacklist). Even though
the attacker now knows k and can interact with the TLD, the MAC
function and the secrecy of KT LD ensure the attacker will be un-
able to acquire the key needed to access the sensitive files. Once
the IDL is removed from the whitelist, an attacker will be unable

to retrieve values from the TLD that are derived using IDL. To
learn KIDL , the attacker can recover KT LD and derive the key itself
or find different inputs ID2 and k2 which, when sent to the TLD,
produce the same output. Provided the TLD is securely locked up
in a physically guarded room and lacks any software vulnerabili-
ties, the only way to recover KT LD is to send inputs to the TLD
and analyze the responses to recover KT LD. Provided the MAC
function used is secure, this type of attack is infeasible. Next an
attacker could try to find a still legitimate identifier (ID2) and an
input (k2), such that MACKTLD(IDL||k) == MACKT LD(ID2||k2). An
attacker with the ability to discover such an ID2,k2 pair would be
able to perform selective forgery of the MAC function. Assuming
the MAC function is secure, selective forgery is infeasible. The
only way an attacker can successfully acquire KIDL is to steal the
laptop and return to the trusted location before the theft is reported.
An attacker can cause a laptop still in the legitimate user’s posses-
sion, but outside of a trusted location, to derive the correct key with
CKD. Xoring k with the shorter location-specific information en-
sures that only devices with access to the constrained channel can
successfully derive keys. If the laptop xors k with the wrong value,
the TLD will xor with m and produce a different value as input to
the MAC. If the laptop is unable to access the constrained channel
the chance of accidentally guessing the correct m is 2−�. However,
an attacker can relay information from the constrained channel in
the trusted location to a location outside of the trusted location.
Assuming users quickly report stolen laptops to the company, this
tunneling action only accidentally reveals sensitive files to legiti-
mate users still in possession of the laptop; the TLD will refuse to
derive the correct key for a reported stolen laptop.
In this section, we have presented the CKD protocol and discussed
why it allows the secure automatic key derivation without per lap-
top secrets on the TLD, provided the laptop is reported stolen be-
fore an attacker can access the trusted location.

6. LOCATION-INDEPENDENT KEY
Users outside of a trusted location may need access to sensitive
data. Given these accesses are infrequent, we assume users will
accept the solution to require some interaction and time to maintain
a high level of security. When outside of a trusted location, we use a
secondary password – one different than the user’s login password
– to retrieve a location-independent key. The simplest solution is to
use the password itself as the key. However, an attacker can brute
force a password in a matter of hours. Similar to Bitlocker [19],
we use the laptop’s TPM to bind [33] a key based on the user’s
password. Here we discuss how MULE uses the user’s password
and the TPM to protect the location-independent key.
During installation, MULE generates and encrypts the location-
independent key (KInd) that is later un-bound whenever the user
accesses sensitive files outside of any trusted location. When the
user first installs MULE, the system generates a random KInd and
takes as input from the user a secondary password. Next, MULE
asks the TPM to generate a non-migratable asymmetric key pair
(K+

MULE ,K−1
MULE) (i.e., the key is only accessible on this TPM) and

require the user’s secondary password to permit operations which
utilize the secret key. The TPM can encrypt KInd without requiring
the password. MULE stores the encrypted KInd in the user’s home
directory until the user tries to access protected files and HKD or
CKD fail to derive a key. At that time, MULE asks the user for the
secondary password. MULE passes the entered password and the
encrypted copy of KInd to the TPM. In response, the TPM will only
permit calculations which use K−1

MULE and decrypt and return KInd
when given the correct secondary password.
Without the secondary password, an OT would need to invest a sig-

(a) IR transmitter (b) An Example Trusted
Location

Figure 4: The IR transmission device and the desk setup as a
trusted location.

nificant amount of time (e.g., decades) to access user’s sensitive
files. To access files using the location-independent key, an OT
needs to guess the password or one of the keys. We assume KInd
is at least a 128-bit randomly generated value and the TPM uses a
2048 bit RSA private key so it is computationally infeasible for at-
tackers to guess either of the keys. If an OT tries to guess the user’s
secondary password, the TPM’s built-in guessing attack defenses
and the fact that only that TPM can use K−1

MULE and decrypt the
data (i.e., the attack is non-parallelizable) will prevent the attacker
from accessing the files for several decades on average (see Sec-
tion 8.2 for more details about guessing attacks against the TPM
used in our implementation).

7. IMPLEMENTATION
We have implemented MULE on a HP 6730b with a 2.4 GHz In-
tel Core 2 Duo processor and 2GB of RAM running Ubuntu 2.6.28
that uses EncFS4 to store sensitive data as encrypted filesystems.
For a TLD, we use a Dell Optiplex 755 with a 3.2 GHz Intel Core
2 Duo processor with 4GB of RAM connected to a Universal Bit
Whacker5 with an IR LED (see Figure 4(a)). All of the cryptog-
raphy involved in the protocols was performed using OpenSSL.
We use AES with a 128 bit key (m followed with 0s) as a cipher
for HKD. HKD signature generation uses 2048-bit RSA with TLD
side blinding to prevent timing attacks [3]. The MAC in CKD
was implemented using HMAC with SHA1. TLS in CKD uses
ephemeral Diffie-Hellman with 2048-bit RSA authentication dur-
ing setup with AES256 and SHA1 to protect communication. We
use video for Linux two (V4L2) to directly capture frames from
the laptop’s webcamera. As a trusted location, we attached the IR
transmitter to the underside of a bookshelf on a desk, pointing to-
wards the back of the desk (see Figure 4 (b)). In this setup, the
laptop can only see the LED (i.e., be in the trusted location) while
the laptop is open and on the desk. In the remainder of this sec-
tion, we discuss how our implementation of MULE transmits data
over the IR channel, manages encrypted copies of sensitive files
under multiple keys, provides automatic access to encrypted files,
and protects users who forget to close sensitive files.

4http://www.arg0.net/encfs
5http://www.schmalzhaus.com/UBW/index.html

7.1 Transmission of Data Over the
IR Channel

Our constrained channel uses a simple on/off encoding with two
frames per bit (i.e., LED brightness above a threshold for 2 con-
secutive frames means 1). The laptop performs 3 steps to capture
a message over the constrained channel: locate the position of the
LED, tell the TLD to begin transmission, and decode the message.
When the TLD is not transmitting a message, the LED repeatedly
transmits the sequence 1010 to help the laptop determine the po-
sition of the LED. Once the camera is on, the laptop records six
frames and looks for pixels that follow an alternating on-on-off-
off pattern. Any pixels that match the pattern are considered the
LED and are used to build a mask such that any other pixels are ig-
nored. With the mask determined, the laptop tells the TLD to begin
transmission. The TLD generates a 20 bit random sequence and
prepends 0101 as the header. The laptop records the output from
the masked images (i.e., ignoring any non-LED pixels), looking for
the 0101 start sequence followed by 20 bits for m and quitting once
the LED returns to transmitting 1010.

7.2 Location Independent Key
Implementation

Our laptop includes an Infineon SLB 9635 TT v1.2 TPM which al-
lows our implementation to protect the RSA decryption key with
the user’s password such that a party needs that TPM and the pass-
word to decrypt the location-independent key. Our implementation
uses the TCG Software Stack (TrouSerS)6 to interact with the TPM
and our own code to manage the encrypted location-independent
key (KInd).

7.3 Multiple Keys & Encrypted Filesystems
In MULE, a single encrypted filesystem is protected under the lo-
cation-independent key (KInd) and at least one location-dependent
key (KLoc1 ,KLoc2 , ...). Knowing one of the keys should grant ac-
cess, but the different keys produce different cipher text (thus dif-
ferent values). Storing multiple copies of the filesystem, each en-
crypted under a different key, wastes space and can lead to out-
dated information when one copy is changed and the keys needed
to access the other copies are unknown. Our approach is to ran-
domly generate a filesystem key (KFS) to encrypt the filesystem.
MULE uses OpenSSL to encrypt copies of KFS under the location-
independent key and any relevant location-dependent keys (i.e.,
{KFS}KInd , {KFS}KLoc1

, {KFS}KLoc2
, ...). Once MULE acquires any

of the keys, it can decrypt KFS and mount the sensitive files using
EncFS. MULE also stores any location relevant information (the
public key for HKD, the certificate for CKD, and various long-
term secrets) with each encrypted key to simplify key derivation
(e.g., identify the TLD needed to derive the key to decrypt KFS).

7.4 Encrypted Filesystem Management
One of the major goals in this work is to reduce user overhead asso-
ciated with accessing encrypted files. This includes both mounting
the encrypted filesystem when the user tries to access sensitive files
and unmounting the filesystem to ensure no sensitive information
is leaked when the laptop is lost.

7.4.1 Mounting the Filesystem
To make accessing the encrypted filesystem unobtrusive, we re-
place the folder that contains the decrypted files (i.e., the mount
point of the encrypted filesystem) with a MULE script. When
a user double clicks on the “folder”, our script runs, generates a

6http://trousers.sourceforge.net

key for EncFS, overwrites the script with the mounted filesystem,
and opens the filesystem in a new window. When using a termi-
nal, a user must execute the “folder” rather than simply change
directories (i.e., “cd ∼/; ./sensitiveFolder” rather than“cd
∼/sensitiveFolder”).

7.4.2 Unmounting the Filesystem
To protect data, we need to ensure that the encrypted filesystem
is unmounted before an OT can steal the laptop. If the encrypted
filesystem is left mounted when the laptop is put to sleep, an OT
could steal the laptop, wake up the system, and access the files
without having to discover a key. We could leave unmounting
the filesystem up to the user. However, it is dangerous to assume
a user will remember to unmount a filesystem that is automat-
ically mounted. To prevent leaks, MULE installs a number of
scripts to automatically unmount the filesystem, re-insert the scripts
which perform automatic mounting, and closes applications access-
ing sensitive files when the user logs off, has been idle for too long,
or the laptop goes to sleep (e.g., the user closes the laptop and
leaves the trusted area). We recognize that automatically closing
applications negatively impacts usability. Fortunately, auto-save
functionality will help reduce the loss of data due to unexpected
application termination. In addition to a script launched at log-
off, our implementation replaces the Gnome screen-saver with a
copy of our script and places a copy of the script in /usr/lib/pm-

utils/sleep.d/. Respectively, these scripts ensure that, once
the screen-saver starts (i.e., the user has been idle) or the machine
sleeps or hibernates, the sensitive files will be unmounted.

8. EVALUATION
In this section, we evaluate the performance of our implementa-
tion. We first discuss the amount of time from when a user clicks
on an encrypted filesystem and when the filesystem is mounted and
displayed in a new window. We also discuss how our implemen-
tation performs when an attacker attempts to guess the secondary
password associated with the location-independent mechanism.

8.1 Time to Mount an Encrypted FS
Table 1 contains the time in milliseconds for various operations as-
sociated with each protocol. The values here represent the average
and standard deviation across 20 runs of each protocol. In the re-
mainder of this section, we discuss a number of results. The home
protocol is faster than the corporate protocol due to less computa-
tion. The location-independent mechanism provides the fastest key
recovery mechanism. The performance is slower than expected for
some operations because we are using a bash script to call a number
of different programs. Finally, our key derivation protocols require
almost 5 seconds, but our constrained channel limits the potential
speedup.
When comparing the performance of the HKD and CKD protocols
we find that the home protocol is faster due to less computation.
The major differences are the result of the connection setup and the
computation performed by the TLD. HKD has a faster setup since
TLS is not used. However, HKD requires more computation for the
TLD because key derivation involves signature generation. With
our current setup, both the blind signature and TLS use 2048-bit
RSA keys. However, with TLS the keys are used to sign ephemeral
Diffie-Hellman values which are then used to establish a shared
key. This connection setup takes roughly 141ms versus the 10ms in
HKD. During actual key derivation, HKD is slower since the TLD
must generate a signature as opposed to the symmetric operations
associated with TLS and the MAC-based key derivation.

Operation Home Corporate Loc-Ind
Average Delay in ms Delay in ms Delay in ms
Standard Deviation (σ) (σ) (σ)
Connect to TLD 10.40 140.72 11.71

(3.69) (8.6) (4.671)
Film Sequence 4329.85 4378.99 1671.19

(17.12) (42.781) (39.518)
Decode Sequence 30.24 41.01 —

(5.33) (8.58)
Calculations & Send Data 2.13 1.96 —

(0.05) (0.09)
TLD Operations 47.62 19.54 —

(15.54) (14.45)
Unblind Result 0.06 — —

(0.002)
Close TLS — 5.36 —

(3.48)
TPM-based Decryption — — 981.5

(5.01)
Decrypt KFS 9.57 9.66 9.63

(0.13) (0.18) (0.15)
Mount FS 10.92 10.90 11.1

(0.26) (0.30) (0.25)
Open Window 78.3 79.2 76.8

(2.5) (2.7) (2.3)
Total 4627.6 4803.6 2806.6

Table 1: Average time and standard deviation for various op-
erations for HKD, CKD, and the Location Independent Mech-
anism (after HKD fails)

There are two reasons why the location-independent mechanism is
fastest: the constrained channel has long setup times and a slow
transmission rate and we ignore the time associated with entering
the password. For the home and corporate protocols, the major-
ity of the time associated with key derivation is “Film Sequence”
which includes video initialization, detecting the LED, and cap-
turing the sequence. Video initialization takes on average 1212.8
ms. Once the program is able to capture frames, the system records
11 frames—5 to allow for automatic brightness adjustment and 6
for LED detection—in 466 ms. The system then takes on average
2706 ms to record the next 60 frames or 30 bits at 2 bits/frame.
After filming these frames the next 30 ms are used to decode the
20 bit sequence m. In total, the use of IR and a webcam as a con-
strained channel consumes almost 4.5 seconds. In comparison, the
location-independent mechanism spends 1208 ms initializing video
and 518 ms capturing frames to determine no LED exists (1.7 of
the total 2.8 seconds). During evaluation, our script read the sec-
ondary password from a file to remove human variability from the
results. However, spawning a password entry window and manu-
ally entering the secondary password would add significant time to
the location-independent protocol that is highly dependent on the
user’s ability to quickly remember and type in the secondary pass-
word.
By using a bash script to call a number of separate programs some
operations take longer than expected. Specifically, the script calls
our programs which perform the home or corporate protocol, our
TPM-based decryption program if automatic key derivation fails,
the OpenSSL command line tool to decrypt KFS, EncFS to mount
the filesystem, and the file browser Nautilius to open a window
with the mounted filesystem. As a result, a number of generally
fast operations contribute considerable overhead. For example, de-
crypting KFS requires a single AES decryption, but takes almost 10
ms in our current implementation.
Overall, the automatic key derivation schemes can provide access

to files in less than 5 seconds. This does seem like an exception-
ally long time, but is only incurred during the first access to a set
of sensitive files. Once the files are mounted, the only additional
overhead is a result of using EncFS. The majority of that time is
associated with receiving the location-specific information. If we
were to use a different constrained channel or use an IR receiver
rather than a webcam, we could increase the transmission rate and
speed up the protocol while maintaining the same security level.
However, these other options require additional hardware for the
laptop, a requirement that contradicts some of our initial design
goals.

8.2 Attacks on the Location-Independent
Password

For the location-independent mechanism to remain secure, the TPM
must implement some type of defense against guessing the pass-
word. Prior works have shown only some TPMs have such a de-
fense [27] so we wanted to evaluate what defenses were present on
the Infineon TPM. To test the defenses, we sent a series of decryp-
tion requests to the TPM with the wrong password and measured
how long a guess took. We also periodically sent a correct pass-
word to determine how that impacted the defense.
Our test found that on average testing a wrong password required
626ms. After a single wrong password, the TPM entered a lockout
period where it refused to respond to even the correct password for
more than 2 minutes. Even after removing the battery and power
from the laptop, the defense continued to ignore requests. This rep-
resents positives and negatives with respect to MULE. With such
strong TPM defenses, attacking a limited entropy secondary pass-
word will take a long time. For example, consider an attacker trying
to guess the password. An 8 character user-selected password has
on average 24 bits of entropy [4]. With a modern computer that can
perform half a million guesses a second (219), it would take 223

guesses on average or 24 seconds (less than one minute) to recover
the password. With the Infineon TPM, an attacker can only perform
roughly one guess every 27 seconds and requires roughly 230 sec-
onds or ≈ 34 years to discover the secondary password. However,
these defenses will also impede a user who has trouble recalling a
password or accidentally mistypes a password.

9. DISCUSSION
If we use a non-migratable binding key on the TPM to encrypt a
file decryption key, the current TPM is the only TPM that can ac-
cess the key. If this TPM were to fail, the user would be unable to
access files outside of trusted locations. Users should back up files
in case of laptop loss in a way that does not rely on the laptop or the
laptop’s TPM. With a backup, the user can copy sensitive files to a
new laptop and use the new TPM and a new location-independent
key.
For both HKD and CKD, TLD secrets are needed to derive keys. To
ensure continued operation of the location-based protocols, users
or company IT personnel could copy the secrets onto some other
medium. If a TLD ceases to function, users could copy the secrets
to a new TLD. Home users could simply store the TLD secrets on
a USB drive in the trusted location.7 IT personnel could store the
data in a company safe behind locked doors so physical security
could prevent unwanted access.

7Without access to the location, an OT is unable to access the con-
tents of the USB drive.

10. RELATED WORK
This is the first work we are aware of that balances usability and
security by using location-specific key derivation. However, several
prior works have examined the related problems of securing data on
stolen devices, pairing (i.e., securing communication between two
devices), and location verification.
Encrypting files is a common solution to the stolen laptop prob-
lem [9, 19, 29]. We desire a technique to store the key without
burdening the user or company personnel or requiring extra laptop
hardware. Users are willing to accept the task of password entry to
act as a key, but often use relatively weak passwords. Once a lap-
top is in the attacker’s possession, an attacker can brute force pass-
words to discover the key. In addition to passwords, prior works on
user authentication utilize what the user is (biometrics) or what the
user has (tokens). Users cannot forget their biometrics, but most
systems require additional user interaction (e.g., speech or finger
prints [20,34]) and extra hardware for biometric entry (e.g., finger-
print reader). Some mechanisms also require the system to store a
template used to verify that the appropriate biometric was entered,
rather than deriving a key from the biometric. Often the template
is encrypted on the hard drive and requires an additional key to
decrypt the template [13]. Cryptographic tokens provide greater
entropy than user’s passwords [9,26], but users may keep the token
with the laptop to ensure effortless access [22]. Once an attacker
steals the laptop with the cryptographic token, the attacker has ac-
cess to all of the files. Another approach is to use an online service
to store keys for a user [16, 26]. Unlike our CKD, these schemes
use per-laptop secrets and require significantly more administrative
overhead, reducing the chance of widespread adoption. In addi-
tion, when the laptop is offline, for example during a flight, users
cannot access their files. Related to harddrive encryption is how to
securely store and erase keys such that an OT is unable to recover
the key from memory [12]. Once MULE derives the keys to grant
users access, appropriate defenses are needed to ensure once the
filesystems are unmounted an OT is unable to retrieve the keys or
other sensitive data from memory.
In HKD and CKD, a secondary device (the TLD) is used to help
derive keys. A number of prior works examine how two devices
can establish secure communication [5, 15, 17, 28, 31]. Rather than
using location-specific information and HKD or CKD, the laptop
could initially pair with a device and use that device as a key es-
crow. However, this approach would only guarantee that the laptop
is in the trusted location during the initial pairing and requires the
device to store per-laptop secrets. Once paired, the schemes would
have to perform a partial “re-pairing” which verifies the laptop is
still in the trusted location. In addition, many of these schemes
require user effort to initially pair (e.g., comparing strings, con-
necting two devices, or checking that no other devices are within
range) and/or require additional laptop hardware (e.g., highly ac-
curate timers to measure wireless time-of-flight). HKD and CKD
allow the TLD to maintain limited state (at most a secret key and a
whitelist of devices) and combine the step of location verification
with key derivation without any user effort.
As presented, MULE relies on a weak verification of a location
claim based on constrained channels [14]; if the laptop can receive
m and interact with a known TLD, the laptop is in a trusted location.
Other works have proposed schemes which provide stronger guar-
antees about location verification based on the ability to quickly
respond to challenges [2] or by comparing the reception times at
multiple authoritative receivers [6, 32]. These approaches would
improve the security of MULE by verifying a device is within a
certain radius or physical space surrounding the TLD. However,
these stronger verification claims require one or more highly accu-

rate timers to measure the time-of-flight of wireless messages and
thus are not cheaply implemented with the radios on today’s lap-
tops.

11. CONCLUSION
Users and corporate IT personnel want security solutions that sim-
ply work and want to avoid any schemes that require additional ef-
fort or administrative overhead. In this work, we designed Mobile
User Location-specific Encryption (MULE), a system that requires
zero user effort and limited IT administration in the common case.
MULE remains secure when facing an Outsider Thief (OT), our
model of a laptop thief. Based on the observation that the majority
of accesses to sensitive documents occur while located in a trusted
location, we designed the Home Key Derivation and Corporate Key
Derivation protocols which allow a laptop to automatically derive
the key needed to access sensitive files based on a location. For
example, with MULE, a user can securely store encrypted copies
of bank records and tax returns on a laptop, and automatically gain
access when opening those files in the home office. After a thief
steals the laptop, the only way to recover the files is to break into
the user’s home. Given physical copies of various sensitive files
already exist in the home, such an invasion presents a loss of data,
independent of possession of the stolen laptop. In a corporate set-
ting, an IT administrator only has to remove a stolen laptop’s ID
from a whitelist of not-yet stolen laptops to ensure the sensitive
data remains encrypted. We have implemented MULE on com-
modity hardware and found that it provides automatic protection
of sensitive files with limited delay during the initial access (i.e.,
less than 5 seconds to automatically derive the key and decrypt the
files).

12. REFERENCES
[1] S. M. Bellovin and M. Merritt. Encrypted key exchange:

Password-based protocols secure against dictionary attacks.
In Proceedings of IEEE Symposium on Research in Security
and Privacy, 1992.

[2] S. Brands and D. Chaum. Distance-bounding protocols. In
Proceedings of Advances in Cryptology (EUROCRYPT),
1993.

[3] D. Brumley and D. Boneh. Remote timing attacks are
practical. In Proceedings of USENIX Security Symposium,
2003.

[4] W. E. Burr, W. T. Polk, and D. F. Dodson. Recommendation
for electronic authentication. Special Publication SP 800-63,
NIST, 2004.

[5] M. Cagalj, S. Capkun, and J.-P. Hubaux. Key agreement in
peer-to-peer wireless networks. IEEE (Special Issue on
Cryptography), 2006.

[6] S. Capkun and J. Hubaux. Secure positioning of wireless
devices with application to sensor networks. In Proceedings
of IEEE Conference on Computer Communications
(INFOCOM), 2005.

[7] D. Chaum. Blind signatures for untraceable payments. In
Proceedings of Advances in Cryptology (Crypto), 1982.

[8] CNN. Agency chief: Data on stolen va laptop may have been
erased.
http://www.cnn.com/2006/US/06/08/vets.data/,
2006.

[9] M. D. Corner and B. D. Noble. Zero-interaction
authentication. In Proceedings of ACM Conference on
Mobile Computing and Networking (MobiCom), 2002.

[10] M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca.
Geo-rbac: A spatially aware rbac. ACM Transactions on
Information and System Security, 2007.

[11] T. Dierks and C. Allen. The TLS protocol version 1.0.
Technical Report 2246, IETF, Jan. 1999.

[12] J. A. Halderman, S. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and
E. Felten. Lest we remember: cold boot attacks on
encryption keys. In Proceedings of USENIX Security
Symposium, 2008.

[13] A. Jain, A. Ross, and U. Uludag. Biometric template
security: Challenges and solutions. In Proceedings of
European Signal Processing Conference (EUSIPCO), 2005.

[14] T. Kindberg, K. Zhang, and N. Shankar. Context
authentication using constrained channels. In Proceedings of
IEEE Workshop on Mobile Computing Systems and
Applications, 2002.

[15] Linksky, J. et al. Simple Pairing Whitepaper, revision
v10r00. http://www.bluetooth.com/NR/rdonlyres/
0A0B3F36-D15F-4470-85A6-F2CCFA26F70F/0/

SimplePairing_WP_V10r00.pdf, August 2006.
[16] P. MacKenzie and M. K. Reiter. Networked cryptographic

devices resilient to capture. In Proceedings of IEEE
Symposium on Security and Privacy, 2001.

[17] J. M. McCune, A. Perrig, and M. K. Reiter.
Seeing-is-believing: Using camera phones for
human-verifiable authentication. In Proceedings of IEEE
Symposium on Security and Privacy, 2005.

[18] R. Mears and L. Ponemon. Enterprise@risk: Privacy & data
protection survey. http://www.deloitte.com/dtt/
article/0,1002,cid=182733,00.html, 2007.

[19] Microsoft. BitLocker drive encryption: Technical overview.
http://technet.microsoft.com/en-us/

windowsvista/aa906017.aspx.
[20] F. Monrose, M. K. Reiter, Q. Li, and S. Wetzel.

Cryptographic key generation from voice. In Proceedings of
IEEE Symposium on Research in Security and Privacy, 2001.

[21] OpenSSL. The OpenSSL project.
http://www.openssl.org.

[22] A. Papadimoulis. Security by oblivity.
http://thedailywtf.com/Articles/Security_by_

Oblivity.aspx.
[23] Privacy Rights Clearinghouse. A chronology of data

breaches. http://www.privacyrights.org/ar/
ChronDataBreaches.htm.

[24] K. Regan. No end in sight: Data breach tally approaches 100
million.
http://www.technewsworld.com/story/53222.html.

[25] B. Rosenberg. Chronology of data breaches 2006: Analysis.
http://www.privacyrights.org/ar/

DataBreaches2006-Analysis.htm.
[26] RSA Labortories. RSA SecurID.

http://www.rsa.com/rsalabs/node.asp?id=1156.
[27] A.-R. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann, and

M. Winandy. TCG inside?: a note on TPM specification
compliance. In Proceedings of ACM workshop on Scalable
trusted computing (STC), 2006.

[28] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan.
Secure device pairing based on a visual channel. In
Proceedings of IEEE Symposium on Security and Privacy,
2006.

[29] SecureStar. DriveCrypt: Disk encryption and data encryption
software. http:
//www.securstar.com/products_drivecrypt.php.

[30] K. Small. Data breaches caused by human error, hardware
theft. http://www.itnews.com.au/News/87188,data-breaches-
caused-by-human-error-hardware-theft-survey.aspx.

[31] F. Stajano and R. J. Anderson. The resurrecting duckling:
Security issues for ad-hoc wireless networks. In Security
Protocols Workshop, 1999.

[32] N. O. Tippenhauer and S. Capkun. Id-based secure distance
bounding and localization. In Proceedings of European
Symposium on Research in Computer Security (ESORICS),
2009.

[33] Trusted Computing Group. TPM main specification. Main
Specification Version 1.2 rev. 103, Trusted Computing
Group, July 2007.

[34] U. Uludag, S. Pankanti, and A. K. Jain. Fuzzy vault for
fingerprints. In Proceedings of International Conference on
Audio- and Video-Based Biometric Person Authentication
(AVBPA), 2005.

[35] E. Uzun, K. Karvonen, and N. Asokan. Usability analysis of
secure pairing methods. In Proceedings of Usable Security
Workshop (USEC), 2007.

