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Abstract—Although much research has been conducted in
the area of authentication in wireless networks, Vehicular Ad
hoc Networks (VANETs) pose unique challenges, such as real-
time constraints, processing limitations, memory constraints,
frequently changing senders, requirements for interoperability
with existing standards, extensibility and flexibility for future
requirements, etc. No currently proposed technique addresses
all of the requirements for message and entity authentication in
VANETs.

After analyzing the requirements for viable VANET mes-
sage authentication, we propose a modified version of TESLA,
TESLA++, which provides the same computationally effi-
cient broadcast authentication as TESLA with reduced mem-
ory requirements. To address the range of needs within
VANETs we propose a new hybrid authentication mecha-
nism, VANET A uthentication using Signatures and TESLA++
(VAST), that combines the advantages of ECDSA signatures and
TESLA++. ECDSA signatures provide fast authentication and
non-repudiation, but are computationally expensive. TESLA++
prevents memory and computation-based Denial of Service at-
tacks. We analyze the security of our mechanism and simulate
VAST in realistic highway conditions under varying network and
vehicular traffic scenarios. Simulation results show that VAST
outperforms either signatures or TESLA on its own. Even under
heavy loads VAST is able to authenticate 100% of the received
messages within 107ms.

VANETs use certificates to achieve entity authentication (i.e.,
validate senders). To reduce certificate bandwidth usage, we use
Hu et al.’s strategy of broadcasting certificates at fixed intervals,
independent of the arrival of new entities. We propose a new
certificate verification strategy that prevents Denial of Service
attacks while requiring zero additional sender overhead. Our
analysis shows that these solutions introduce a small delay, but
still allow drivers in a worst case scenario over 3 seconds to
respond to a dangerous situation.

Index Terms—Broadcasting, Computer Network Security,
Road Vehicles

I. I NTRODUCTION

Within the next decade, vehicles will be equipped with
Dedicated Short Range Communication (DSRC) capabili-
ties to provide a means for a Vehicular Ad Hoc Network
(VANET) where vehicles’ On-Board Units (OBUs) commu-
nicate wirelessly with other vehicles’ OBUs or Road Side
Units (RSUs) [1]. Vehicle manufacturers and federal entities
intend to leverage these VANETs to make roadways safer and
improve the driving experience through a number of safety,
convenience, and commercial applications.

For VANET applications to operate safely, an authentication
framework is necessary to help identify valid participants,

ensure participants are who they claim to be, and prevent mali-
cious parties from modifying messages. Without an authentica-
tion framework, attackers could physically or financially harm
other drivers. For example, malicious parties could broadcast
spurious data and cause vehicular accidents–accidents which
otherwise would have been avoided if VANETs were not in
use. Malicious parties could pose as electronic toll boothsto
steal drivers’ financial information.

The current IEEE 1609.2 standard for secure VANET
communication proposes the use of the Elliptic Curve Dig-
ital Signature Algorithm (ECDSA) for signatures to verify
messages [2]. Prior work has shown that the verification of
a single ECDSA signature requires 7ms of computation on
proposed OBU hardware [3]. However, an attacker can send
an invalid signature in a fraction of that time. This imbalance
between time needed to process and time needed to receive
gives rise to Denial of Service (DoS) attacks. An attacker could
use a fraction of the DSRC bandwidth to flood receivers with
invalid signatures which will take much longer to process.
Without a more efficient authentication mechanism, attackers
could cripple a VANET.

TESLA appears to provide an efficient alternative to signa-
tures [4]. Rather than using asymmetric cryptography, TESLA
uses symmetric cryptography with delayed key disclosure to
provide the necessary asymmetry to prove the sender was the
source of a message. Since symmetric cryptography is orders
of magnitude faster than signatures, TESLA is resilient to
computational DoS attacks. However, TESLA is vulnerable to
memory-based Denial of Service attacks. In TESLA, receivers
store data until the corresponding key is disclosed. Malicious
parties can flood receivers with invalid messages which never
have a corresponding key disclosure as part of a “pollution
attack” [4]. If an attacker can fill a receiver’s memory with
junk data, performance on the receiver’s system degrades.
To address such memory-based DoS attacks in TESLA, we
propose TESLA++, a modified version of TESLA that reduces
memory requirements on the receiver without sacrificing se-
curity.

Alas, we cannot abandon digital signatures. At this time,
VANET applications are still in the process of being defined,
leaving their authentication requirements unclear. In addition,
manufacturers may also develop new applications which re-
quire additional security properties which were previously con-
sidered unnecessary. Rather than proposing an authentication
mechanism that focuses on one aspect (e.g., computation or
bandwidth overhead, DoS resilience, or security requirement),
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we propose VANET Authentication using Signatures and
TESLA++ (VAST). VAST is a flexible solution that provides
a wide range of possible authentication properties and enables
developers to fine tune parameters at a later time to achieve
important properties.

In addition to verifying the validity of messages, a VANET
participant needs to verify the validity of other OBUs or RSUs.
Given VANET participants rarely have a prior association, a
trusted third party (i.e., a certificate authority) is used to iden-
tify valid participants and their corresponding cryptographic
credentials (e.g., public keys). Such third party authentication
techniques use digital signatures and present a computational
DoS vulnerability in VANETs. In addition to proposing an
authentication framework to efficiently verify messages, we
present a technique to efficiently manage the verification of
newly encountered OBUs and RSUs. These contributions are
crucial to the operation of VANETs. If designers only focus on
efficient mechanisms to verify messages and ignore the over-
head associated with verification of valid entities, a malicious
party could exploit an inefficiency in certificate verification
and launch a DoS attack to disable VANET communication.

The remainder of this work is organized as follows: Sec-
tion II contains a summary of previous work on broadcast
authentication. In Section III, we discuss the different re-
quirements for an authentication framework and why previous
works fail to fulfill all of the prerequisites for a robust au-
thentication framework. In Section IV, we introduce our DoS
resistant version of TESLA, TESLA++. Section V contains
the description of our authentication framework, VAST. In
Section VI, we evaluate VAST through a series of simulations.
Section VII discusses the mechanism we propose to manage
the distribution and verification of VANET participants’ cre-
dentials (i.e., certificates). In Section VIII, we discuss some
remaining topics which were not addressed earlier in the paper.
We make concluding remarks in Section IX.

II. PREVIOUS WORK

Several works have investigated how to perform broadcast
authentication [3], [5]–[8] and how to mitigate Denial of
Service (DoS) attacks against broadcast authentication [5], [7],
[9].
Broadcast Authentication. To perform broadcast authenti-
cation, several works use asymmetric cryptography where the
sender digitally signs messages or some structure which links
messages together [3], [5], [7]. TESLA [8] and its derivatives
use symmetric cryptography for broadcast authentication and
rely on time to provide the necessary asymmetry so only the
sender can generate a broadcast authenticator at a given time.
Symmetric cryptography significantly reduces computation,
but cannot provide non-repudiation (i.e., a recipient using
TESLA cannot convince a third party that the sender indeed
broadcast the message).

The IEEE 1609.2 VANET standard calls for the inclusion
of an Elliptic Curve Digital Signature Algorithm (ECDSA)
signature in every packet as a means for broadcast authenti-
cation [2]. Work by Raya et al. demonstrated that resource-
constrained 400MHz machines intended for use in VANETs

could handle the workload associated with asymmetric cryp-
tography [3]. However, Raya’s work assumes NTRU signa-
tures which require less than1/4 of the time to verify. NTRU
signatures are roughly 200 bytes (5 times the size of ECDSA
signatures) and present significant overhead when includedin
every heartbeat message (a 32 byte or smaller message).

Researchers have proposed techniques which require less
than one signature per packet as a means to reduce com-
putation and bandwidth overhead associated with authenti-
cation. Broadcast Authentication Streams [5] and Distillation
Codes [7] use error correction and limited digital signatures
to address the scenario where a subset of a sender’s packets
are dropped or attackers inject malicious packets into the data
stream. Using these techniques, a sender processesn packets
as a set and only generates1 signature for alln packets.
Such processing prevents the sender from broadcasting any
of the packets until the data in the last packet is known.
This requirement introduces a delay, which is unacceptable
in VANETs, since the sender will not know data for future
heartbeat messages (i.e., the OBU’s future location and veloc-
ity).

As an alternative to broadcast authentication based on
asymmetric cryptography, TESLA [8] uses symmetric cryp-
tography and delay key disclosure and time synchronizationto
provide the necessary asymmetry for broadcast authentication.
In TESLA, a sender pre-computes a hash-chain of keys:Ki

= h(Ki−1). The sender uses each of these keys for a short
period of time to generate Message Authentication Codes
(MACs). A certificate authority signs a copy of the hash chain
anchor (Kn), the starting time for the hash chain, and the
length of each key interval as a certificate for the sender.
When a sender wants to broadcast a messageM , the sender
broadcastsM and the MAC ofM generated with the key
for that intervalKi : MACKi

(M). Once the time interval for
Ki is over, the sender broadcastsKi and starts usingKi−1

to generate MACs for any messages broadcast in the new
interval. Receivers store the message and the MAC until the
key is broadcast. To authenticate a message, receivers hash
the received key and compare it to the key in the certificate to
verify the keys validity and use the now verified key to check
that the stored MAC was generated with the appropriate key at
the appropriate time. The maximum synchronization between
senders and receivers controls the length of the time interval
and subsequently the minimum authentication delay. Hu et
al. propose the use of TESLA within VANETs [6] to reduce
the overhead associated with authentication. As we discussin
Section III the fact that receivers must store messages provides
a possible memory-based Denial of Service attack.
Denial of Service Mitigation. Several works have examined
how to mitigate DoS attacks against broadcast authentication
mechanisms. These schemes use puzzles [9] or filters [5], [7]
to prevent receivers from expending resources on maliciously
injected packets.

Ning et al. [9] propose the use ofmessage specific puzzles
to prevent DoS on broadcast authentication. Message-specific
puzzles are computational puzzles [10] which force the sender
to expend some amount of computation before receivers accept
the message as legitimate. Parties can generate valid puzzle
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solutions at a rate proportional to the computation invested.
This reduces the effectiveness of a computationally bounded
attacker. However, the technique is inappropriate for VANETs
where a sending OBU will have little spare computation power.
Solving a new puzzle for each message introduces significant
computation and delay at the sender.

Gunter et al.’s Broadcast Authentication Streams (BASs) [5]
use forward error correction in broadcast streams such thatthe
sender has to generate one signature for several packets. To
mitigate DoS attacks where an attacker inserts invalid signa-
tures, they propose selective verification where only a fraction
of the signatures are verified. This approach is inappropriate
for VANETs since a sender must know the contents of every
packet in a set before the sender is able to compute the error
correcting data which is inserted into each packet. Since an
OBU lacks knowledge of the vehicle’s future location and
velocity this scheme would introduce an unacceptable delay
as the OBU queued up packets in the set.

Karlof et al. propose the use of Distillation Codes [7]
to prevent computational DoS in broadcast authentication
where malicious parties inject spurious data in an attempt
to interfere with error correction. This allows receivers to
efficiently “distill” the sender’s packets from malicious packets
in the broadcast stream while permitting the sender to use
one signature for a set of messages. Again, senders must
process packets as sets. For scenarios where the sender knows
data in advance this technique works well. As mentioned in
the previous paragraph, the need to simultaneously processa
set of packets introduces a delay which makes the technique
inappropriate for VANETs.

This section has provided a description of previous work
on broadcast authentication and ways to address DoS attacks
against broadcast authentication. Next, we discuss the differ-
ent properties VANETs require of a broadcast authentication
mechanism and why the current solutions fail to meet all of
these properties.

III. R EQUIREMENTS ANDCOMPARISON OFBROADCAST

AUTHENTICATION SCHEMES

In this section, we discuss the desirable properties of a
broadcast authentication mechanism, potential attacks against
those properties, and whether or not proposed broadcast au-
thentication mechanisms fulfill those requirements.

A. Broadcast Authentication Properties

A successful authentication mechanism should fulfill several
properties: secure authentication, non-repudiation, Denial of
Service (DoS) resilience, and support for multi-hop commu-
nication. We now discuss each of these properties in turn.
Authentication. Authenticated data ensures receivers can
verify that the message received was sent by the appropriate
entity and that it has not been modified in transit. If an attacker
can pose as another entity or modify another entity’s packets
without being detected, the mechanism fails to provide secure
authentication. One attack against authentication is to pose as
another entity and generate or modify a packet, or block a
future packet to prevent authentication of the data. Such an

attack is possible when, for example, an attacker modifies
a series of packets from senderA which lack signatures.
WhenA broadcasts the signature for the last few packets, the
attacker could block the signature such that receivers willfind
authentication of the data or the modified data impossible.

Non-repudiation. Non-repudiation allows a receiver to
prove to a third party that the sender is accountable for
generating a message. If the broadcast mechanism lacks
non-repudiation, a malicious party can claim another party
generated the message.1 For example, in TESLA once the
symmetric key used to generate a MAC is broadcast, any
entity can use the disclosed key to generate a MAC for
an arbitrary message. A malicious party could also fail to
broadcast the necessary verification data that would hold them
responsible for that message. For example, in schemes that use
one signature forn packets, an attacker can broadcast spurious
data and never broadcast the corresponding signature packet.

Denial of Service (DoS) Resistant. A mechanism should
require little computational or memory resources such that
other OBU operations may proceed unimpaired. Given the
relatively expensive nature of digital signature verification (≈
7ms for ECDSA [3]), an attacker can launch a computational
DoS by flooding a receiver with invalid signatures such that
the receiver wastes processing power to verify the signatures.
TESLA incurs little computational overhead, but requires
entities to store messages and message-authentication-codes
(MACs) until the corresponding symmetric key is broadcast.
An attacker can broadcast a large number of invalid malicious
messages such that receivers expend an excessive amount of
memory resources as part of a “pollution attack” [4].

Multi-hop Authentication. Given the limited radio range
of DSRC radios (reliable up to 300 meters) [2], a VANET
authentication mechanism should enable parties outside of
a sender’s radio range to authenticate messages after an
intermediate party has relayed the message. Such multi-hop
authentication is crucial for applications that disseminate data
over long distances or require extensive time and distance for
drivers to respond. For example, knowledge of a closed or
congested road is more useful miles away from the incident
on the highway. Unless your vehicle is near an off-ramp,
information about a traffic jam 300 meters ahead (e.g., just
around the corner) is almost useless. Signatures allow multi-
hop communication as a result of the non-repudiation property
because any receiver can use the signer’s public key to verify
the signature. Multi-hop authentication is possible in TESLA,
but one of two undesirable use cases must happen: receivers
will forward data before having authenticated the message,or
the sender must generate multiple MACs using different keys
(i.e., keys for intervali, i + 1, i + 2 etc.) so receivers can
authenticate a packet after an interval and forward the data
and future key broadcasts from the sender to receivers further
away who uses the other MACs and subsequent key broadcasts
to authenticate the packet.

1The scenario where an entity broadcasts its private asymmetric key to
defeat non-repudiation is outside of the scope of this work.
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Scheme Authentication Non-Repudiation DoS Prevention Efficient
Computation Memory Multi-hop Comm.

ECDSA for √ √ √ √
Every Packet
ECDSA in 1
of n Packets
TESLA

√ √

VAST
√ √ √ √ √

TABLE I
PROPERTIES THEDIFFERENTBROADCAST AUTHENTICATION SCHEMESFULFILL

B. Comparison

We now compare previous proposals for VANET authen-
tication with our new protocol (VAST) with respect to the
aforementioned requirements. Table I contains a summary of
this comparison.

IEEE 1609.2 [2] (the proposed standard) suggests the in-
clusion of an ECDSA signature inevery packet to provide
broadcast authentication. A digital signature ensures instant
authentication with non-repudiation. However, the long veri-
fication time enables computational DoS attacks by flooding
OBUs with bogus signatures.

The inclusion of a digital signature in a subset of the
broadcast packets (i.e., aftern − 1 packets thenth packet
includes a signature over the lastn messages) can help
reduce bandwidth and computation overhead associated with
security, but fails to fulfill the properties necessary for a
VANET authentication scheme. As discussed earlier, attackers
can block other senders’ signatures to prevent authentication.
Attackers could also fail to generate a signature–posing as
though the packet was lost–to avoid non-repudiation. Ex-
pensive signature verification operations permit computational
DoS where attackers broadcast a large number of invalid
signatures. Storing packets until the signature arrives permits
memory DoS since malicious parties can send numerous junk
messages which victims store, expecting the broadcast of a
signature. Given signature verification requires a subset or
all n packets to successfully authenticate the data, multi-hop
communication is inefficient. Rather than forwarding only the
relevant packets, nodes must forward multiple packets, making
the scheme inappropriate for multi-hop communication. Error
correction codes can reduce the number of packets necessary
for verification. However, error correction adds more data and
introduces delay since the sender must know the data in the
entire set before broadcasting the first packet.

TESLA may work as a VANET authentication mechanism
with less computation and bandwidth demands. However,
since TESLA uses symmetric cryptography non-repudiation
is impossible. As discussed before, TESLA fails to support
efficient multi-hop communication. If senders are limited to
one MAC per packet, two unfortunate things can happen:
a relayer forwards unauthenticated data or a relayer sends
potentially incorrect – but authenticated – data as its own.If
relaying entities forward messages and MACs before receiving
the corresponding key, receivers more than one hop away
from the sender will receive the data early enough that they
can authenticate the data once the key is broadcast. However,
an attacker could send invalid message/MAC pairs which

relayers will forward since they have no way to tell if the
information is authentic. This wastes bandwidth and storage
since receivers should have dropped the invalid messages. If
relaying nodes wait until the key is broadcast, the relaying
node can verify the message is valid before retransmitting
the data. However, the nodes must use their own TESLA
credentials to retransmit data which may not necessarily be
true, even though it was authenticated. For example, a sender
can falsely claim debris is on the road and use TESLA to
send an authenticated message about the fake debris. Once
a node authenticates the message, the receiver will relay the
message to other nodes and use his own TESLA values to
authenticate the message. If the false debris notification results
in legal actions, TESLA’s lack of non-repudiation preventsthe
relaying node from proving to a third party he did not craft
the lie, but received the fake message from the original sender.
If the sender includes multiple MACs in the packet, each
hop can authenticate the message before relaying it to nodes
further away. Such an approach consumes a large amount
of bandwidth; the additional MACs increase the size of the
original packet. In addition, when a node relays a packet
P , the relayer has to rebroadcastP and any subsequent key
broadcasts from the sender to ensure recipients can verify the
different MACs inP .

VAST uses a combination of TESLA++ (a modified ver-
sion of TESLA, which is resilient to memory-based DoS
attacks) and digital signatures to provide authentication, non-
repudiation, DoS prevention, and multi-hop authentication. In
Section V, we provide a detailed description of our scheme and
exactly how we achieve these properties. Before describing
our entire scheme, we present TESLA++ and describe how it
differs from TESLA in Section IV.

IV. TESLA++

In this Section, we begin with a short description of
TESLA [6], [8] as background. We describe TESLA++ with an
emphasis on how it improves on the techniques in TESLA. We
also provide a security analysis of TESLA++ and a discussion
of how TESLA++ provides resilience to memory-based DoS
attacks.

Here we only present how a sender can perform broadcast
authentication of a message within an interval. In TESLA
and TESLA++, key management across intervals is the same
(i.e., using key hash-chains) and any party wishing more
information on that portion of the schemes should refer to
the original TESLA publication [8].
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TESLA Background. TESLA uses symmetric cryptogra-
phy and delayed key disclosure to perform broadcast authen-
tication (the left side of Figure 1 depicts the operations in
TESLA). To authenticate a messageM , a sender broadcasts
the message and a Message Authentication Code (MAC) (Step
2) of the packet using the sender’s key for this interval
(Ki). Recipients save the entire message and MAC (Step 3)
until the sender broadcasts the key. After the key disclosure
period, the sender broadcasts the key (Step 5). To authenticate
the message, receivers verify that the stored message/MAC
pair agrees with the broadcast key (Steps 6 and 7). As we
mentioned in Sections II & III, one problem with TESLA
is that receivers store all message/MAC pairs. With enough
pairs maliciously broadcast, a pollution attack occurs where a
receiver wastes a significant amount of memory storing invalid
data [4].
TESLA++. We propose TESLA++ to prevent memory-
based DoS attacks against TESLA. Like TESLA, TESLA++
provides broadcast authentication using symmetric cryptogra-
phy and delayed key disclosure. However, in TESLA++, a
receiver only stores a self-generated MAC to reduce memory
requirements. Since receivers only store a shortened version
of the sender’s data, the sender first broadcasts the MAC and
later broadcasts the corresponding key and message (similar
to the Guy Fawkes protocol [11]). Figure 1 shows an example
of how to authenticate a broadcast message using TESLA++.

To authenticate messageM , in TESLA++, the sender
first broadcasts the MAC (MACS = MACKi

(M)) which is
computed with the current keyKi, along with the key index
i (Step 2). Upon reception, using the key indexi and the
time associated with the start of the sender’s key chain, a
recipient first verifies the security condition to ensure that the
key Ki for the sender has not yet been broadcast and is thus
still only known by the sender. If the security condition does
not hold, the receiver drops the MAC because an attacker
could potentially have already received the correspondingkey
Ki. The receiver then re-MACs the received data using a
local secret keyKRecv that is only known to the receiver
(MACR = MACKRecv

(MACS)) (Step 3) and stores this
shortened MAC (MACR) along with the key index (Step 4).

Once the keyKi can be disclosed, the sender will broadcast
any messages and the key used to calculate the messages’
MACs (Step 5). To verify a message, the receiver first verifies
the validity ofKi by following the one-way key chain back to
a trusted key. The receiver then calculates the shortened MAC
of the message (Step 6) and compares it with the MAC and
index stored in memory (Step 7). If the receiver has a matching
MAC/key index pair in memory, the receiver considers the
message authentic (Step 8). If none of the stored pairs match
the newly calculated value, the receiver considers the message
unauthentic and discards the message.

Over time the receiver will store more MAC and key
index pairs in memory. When a stored MAC successfully
authenticates a message, the receiver can free the memory
used to store the MAC and key index. However, when the
receiver misses a legitimate senders message and key broadcast
or malicious nodes flood the network with MACs in an attempt
to waste a receiver’s resources, the receiver will need a policy
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to determine when to replace a MAC and key pair. In the event
of a MAC flood and the receiver has insufficient memory, the
replacement policy for shortened MACs stored in memory
is an intricate issue in the design of TESLA++. For the
replacement policy below, receivers also store the sender id
and an arrival timestamp along with the shortened MAC and
the key index (for simplicity, we left it out of the description
above). For each sender (besides the trusted key chain value
and key disclosure information), the receiver also stores the
latest key index for which an authentic message has arrived.
If memory space becomes insufficient, we make use of the
following policy to identify which shortened MACs to discard:

• All shortened MACs with key indices that are older than
the last authentic message received from that sender.
The intuition is that older shortened MACs are still
stored because an attacker injected the message or the
corresponding message and disclosed key were lost.

• If more space is needed, the message whose verification
is furthest out in the future is discarded. This addresses
the scenario where attackers try to trick receivers into
storing messages for a long period of time by claiming
the key index isn when the real sender’s current key
index is j wherej << n.

The DoS protection of TESLA++ comes at a cost: lack
of non-repudiation, poor multi-hop performance, and poor
functionality in lossy networks. Like TESLA, TESLA++ uses
symmetric cryptography and as a result prevents computa-
tional DoS, but does not provide non-repudiation or efficient
multi-hop authentication. In addition, senders using TESLA++
broadcast the MAC and the message in separate packets which
impacts the functionality in lossy networks. In TESLA, the
receiver acquires and stores the MAC and message together
and can use any future key broadcast to authenticate the
message. In TESLA++ if the appropriate message broadcast
is lost the MAC is useless. We discuss the impact of this
difference in VANETs later in Section VIII. One solution is for
the sender to broadcast the message twice (with the MAC and
with the key), and allow the receiver the option of storing the
message. A receiver that stores the message can use any future
key broadcast to authenticate the message. However, storing all
of the received messages indefinitely can lead to a memory-
based DoS attack, similar to a scenario where receivers use
TESLA with smaller MACs. As such, broadcasting the mes-
sage multiple times presents a tradeoff between resilienceto
lossy channels and bandwidth and storage overhead.

Storing smaller MACs and discarding old MACs makes
TESLA++ resilient to pollution attacks [4]. In the next sub-
section, we discuss why TESLA++ is secure and resilient to
DoS attacks. However, TESLA++ fails to provide all of the
properties necessary for a VANET authentication framework;
TESLA++ lacks non-repudiation and multi-hop authentica-
tion.Without these we need the full authentication framework
of VANET Authentication using Signatures and TESLA++
(VAST) to meet the VANET requirements defined in Sec-
tion III.

A. Analysis of TESLA++

This section analyzes the security and storage require-
ments of TESLA++. We begin by assuming TESLA and
the underlying cryptographic functions (MACs and hashes)
are secure. However, TESLA++ raises some questions since
senders first broadcast a Message Authentication Code (MAC)
and receivers generate a shorter MAC based on the received
MAC and a secret key. Storing only the shortened MAC,
instead of the original MAC and message, reduces the possi-
bility of memory exhaustion attacks. However, if storing only
a shortened MAC enables malicious parties to spoof other
entities the technique is useless. In this section, we will discuss
why broadcasting the MAC without the message is secure,
why receivers can use shorter MACs when storing records of
received MACs without decreasing security, and some rough
calculations to demonstrate the memory savings and thus DoS
resilience of TESLA++.
Attacks on Broadcasting MACs Alone. Under TESLA++,
a sender first broadcasts the MAC and the key index and
includes the message in the key broadcast. Some may worry
that without the message and the MAC in the same packet,
attackers can generate false messages and pose as the origi-
nal sender. Provided secure underlying MACs and key hash
chains, the probability of success for this attack is negligible. If
an attacker waits until the key and message are broadcast, the
attacker will try to find a different message which results inthe
same MAC as the original sender’s message (i.e., find a new
messageM ′ such that the original message (M ) and key (Ki)
result in the same MACS (MACKi

(M) == MACKi
(M ′))).

Generation of such a message implies the underlying MAC
was not CMA secure. An attacker can try to calculate the
key before the original sender broadcasts the message and
key. With knowledge of the key, the attacker can generate
any valid MAC and message pair. For this attack to be
successful, the sender must calculate the next TESLA++ key
and generate a new MAC (or use the old one) such that the
calculated key and desired message generate the broadcast
MAC. To discover an undisclosed TESLA++ key, an attacker
must defeat the one-way property of the hash used to build the
hash chain, which is computationally infeasible. If an attacker
broadcasts an arbitrary key (K ′) and message (which produce
a previously broadcast MAC), a receiver can verify thatK ′

is invalid by hashing the broadcast key (K ′) and comparing
its value to previous keys from the claimed sender. Provided
the underlying MAC algorithm and hash chain are secure
broadcasting the MAC without the message in TESLA++ is
secure.
Attacks on Storing Shortened MACs. In TESLA++, the
receiver only records a shortened re-keyed MAC as a means
to reduce storage. When receivers’ keys are kept secret,
TESLA++ provides security guarantees based on the size of
the interval and the bandwidth of the medium. This is different
and much easier to control than other cryptographic techniques
which base security guarantees on computational capabilities
which can vary greatly across attackers (e.g., a nation state
versus a lone attacker with a laptop).

To take advantage of the shorter stored MAC, an attacker



7

wants a smaller stored MAC to match the MAC for an attacker
selected message using a legitimate party’s key. For example
if the shortened MAC is calculated as MACKrecv

(X) where X
is a broadcast MAC and an attacker wants to spoof a message
M ′, the attacker will try to broadcast a MAC valueY such
that after the spoofed sender broadcasts his/her key for the
interval (Ki) the MAC for the attacker’s message matches
the receiver’s stored MAC (i.e., MACKrecv

(MACKi
(M ′)) =

MACKrecv
(Y )). With more stored MACs, the chance that a

message key combination (and corresponding MAC) corre-
sponds to a previously heard MAC increases. However, the
receiver’s key (Krecv) is secret so an attacker cannot calculate
the shortened MAC for a given broadcast value.

Without knowledge of the receiver’s key, an attacker’s best
strategy is to broadcast as many MACs for a given key
interval as possible in an attempt to make it appear as though
an attacker generated message and a legitimate user’s key
correspond to a previously heard MAC. If a receiver believesit
has heard every possible MAC in the appropriate key interval,
the receiver will mistakenly verify every TESLA++ key and
message pair it receives as authentic since it will have a record
of the corresponding MAC. Assuming the re-MAC-ing process
uniformly assigns MACs, this problem reduces to the coupon
collector problem where each attacker broadcast MAC is an
attempt to have a receiver record a new shortened MACs.

Even with a very short stored MAC, an attacker will have
a difficult time fooling a receiver with an arbitrary message.
With a relatively short stored MAC of 16bits, there are
216 ≈ 64000 shortened MACs and the attacker needs to
send on average216 log 216 = 220 or roughly one million
MACs to ensure he can forge an arbitrary message from
a sender in a key interval. In the case of VANETs with a
DSRC bandwidth of 56Mb/s, a 100ms TESLA++ interval,
and an 80bit sender MAC, an attacker can only send≈ 70
thousand MACs in an interval. As such, the probability of
an attacker successfully fooling a receiver with an arbitrary
message with a 16bit stored MAC and the aforementioned
bandwidth and interval is around 7%. A 32 bit MAC would
reduce the probability of success to10−6. If we consider
the additional overhead for each packet’s header and the key
index, the actual number is smaller. When attackers cannot find
collisions in the larger broadcast MAC, TESLA++ with small
time intervals and relatively small receiver MACs providesa
negligible probability that an attacker can spoof another sender
as a result of the storage optimizations, independent of the
computational power of the attacker(s).
Maximum Storage. In the previous paragraph, we showed
how TESLA++ remains secure even when storing smaller
MACs. The reason to use smaller MACs is to reduce storage
constraints in TESLA++ and prevent pollution/memory-based
DoS attacks. Here we discuss the upper-limit on memory con-
sumption for TESLA++ in different VANET configurations.
When storing only re-MACed values the maximum memory
consumption is a function of the maximum number of MACs
which can be broadcast in an interval and how long MACs are
stored. Given, the acceptable latency is on the order of a few
hundred milliseconds in VANETs [12], the TESLA interval
should be made small (50 to 100ms) to ensure messages are

quickly authenticated. This also implies that senders should
broadcast messages within the next couple of intervals. If a
MAC has a key index that corresponds to disclosure multiple
intervals in the future, receivers can ignore the MAC since the
data will be old by the time message and key are broadcast.
The real time requirement in VANETs reduces the maximum
number of MACs stored to less than the maximum number
that could be broadcast in two TESLA++ intervals (≤ 200ms).
Given VANETs have a bandwidth of56Mb/s [2], an OBU will
have to store at most the maximum number of bits transmitted
in 200ms times space savings of the receivers MAC,2 or
11.2Mb · |MACrecv|

|MACsend|
. For example, if broadcast MACs are 80

bits and receiver MACs are 24bits long, receivers only have
to reserve less than 1/2 a megabyte of space. Even with a
limited space of 1 megabyte, a receiver can handle more than
the maximum amount of data an attacker can force the receiver
to store.

In this section we have described a modified version of
TESLA, TESLA++, which reduces the storage requirements
for receivers without reducing security. As such, TESLA++
provides a broadcast authentication scheme based on symmet-
ric cryptography without a vulnerability to memory-based DoS
attacks.

V. VANET A UTHENTICATION USING SIGNATURES AND

TESLA++ (VAST)

VANETs require an authentication framework which
provides more than just authentication of packets. Non-
repudiation is necessary for attribution and efficient multi-hop
communication. The framework must also provide efficient
and timely authentication to prevent flooding or computational
DoS attacks. The previous works discussed in Section II
and Section III were good first approaches to VANET au-
thentication, but are not flexible enough to meet all of the
properties discussed in Section III. In this work we proposea
new framework, VANET Authentication using Signatures and
TESLA++ (VAST), which uses a combination of ECDSA
signatures and TESLA++ to verify each packet. TESLA++
provides an efficient DoS resilient authentication mechanism
to verify legitimate packets and filters out the majority of ma-
licious or spurious messages. Once an OBU verifies the packet
using TESLA++, the OBU may verify the ECDSA signature
if non-repudiation is necessary (e.g., the message will cause
a driver alert or any other situation where the message may
negatively impact the driving experience). The signature also
enables authentication for multi-hop communication. If the
OBU has no record of the TESLA++ MAC, the OBU will
verify the signature, provided the OBU’s CPU and message
buffer indicate it has processing power to spare. In this section,
we present VAST and discuss how it meets the requirements
set out in Section III: authentication, non-repudiation, DoS
resistance, and efficient multi-hop communication.

VAST is shown in Figure 2 where the sender broadcasts
an authenticated messageM . Note that receivers perform two

2Note that the per broadcast packet overhead of source address and lower
layer information overshadows the receiver stored key indexand other data
used to determine when to replace a MAC.
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Sender Receiver
1. σSi = Sign(M,K−1

Sender)
2. µSi = MACKSendi

(M ||σSi)

3.
µSi,i

-

4. µR = MACKRecv
(µSi)

5. store(µR||i)
... (a TESLA++ interval later)

6.
M,σSi,KSendi

-

7. if(h(KSendi
)! = KSendi−1

)
ignore(M )

else
8. µ′

R = MACKRecv
(MACKSendi

(M ||σSi))

9. if(lookup(µ′
R||i) == 1)

10. V erify(σSi,M,K+

Sender)
∗

11. accept(M)
else

12. if(CPU util < ω and# Mess In Queue < λ)
13. V erify(σSi,M,K+

Sender)
14. accept(M)

Fig. 2. VANET Authentication using Signatures and TESLA++ .KSendi
are symmetric keys used for TESLA++.K

+/−1

Sender
are ECDSA keys.∗ Step 10

is only performed when non-repudiation is necessary.

types of verification: 1) a TESLA++ verification in steps 7,
8, and 9 and 2) digital signature verification in step 10
when the application requires non-repudiation or step 13
when TESLA++ authentication fails (possibly due to a lost
MAC) and if CPU utilization and the number of messages
in the processing queue are below certain thresholds (i.e.,
computational DoS is not an issue). These thresholds provide
flexibility within VAST such that VANET system designers
can mold the authentication framework to meet application
needs. As such, the exact values of the thresholds depend on
the suite of VANET applications and should be selected once
the application requirements are defined.

TESLA++ provides authentication and a filter of the data
broadcast during times of high computational load. The pre-
viously received and recorded MAC (steps 2 to 5) ensures the
validity of the message and the signature while the hash chain
ensures the proper key is used (step 7). The digital signature
included with every message provides non-repudiation in case
the relevant application requires non-repudiation orM must
be forwarded to other VANET participants which may have
missed the broadcast of the original TESLA++ MAC (step 3).

Under VAST, the digital signature is authenticated using
TESLA++ (steps 7 to 9) before it is verified, preventing the
majority of computational and memory-based DoS attacks.
Authenticated signatures prevent attackers from broadcasting
invalid signatures while posing as other VANET entities. In
the case where the receiver has no record of the TESLA++
MAC, the receiver will only verify the signature if the extra
computation will not lead to a DoS (see step 12). We choose
to use CPU utilization (ω) and number of messages in the
processing queue (λ) to determine thresholds for acceptable

computational load, but other metrics could be used. The only
way a malicious party can trick receivers into verifying digital
signatures during times of high computation is by sending
a TESLA++ authenticated signature. Under such a scenario,
recipients can determine which entity sent the signature,
and ignore signatures from any sender that has a history of
broadcasting invalid signatures. The storage techniques used
in TESLA++ (see Section IV and steps 4 and 5 in Figure 2)
reduce storage needs and prevent pollution attacks [4].

One final issue in VAST is when to broadcast data. For
the fastest authentication, an OBU can broadcast a MAC as
soon as the data is known and broadcast the message, key,
and signature as soon as possible based on the time syn-
chronization and transmission delay in the network. However,
in VANETs each OBU broadcasts a message every 100ms.
To reduce lower layer overhead and network contention, an
OBU can “piggyback” the MAC for the current heartbeat
interval by broadcasting it in the same packet as the message,
key, and signature for the last interval. Of course this does
delay authentication one heartbeat interval (100ms) sincethe
message is only broadcast at the start of the next inter-
val. Figure 3 presents a graphical representation of the two
techniques. It is important to note that the two techniques
require the transmission of the same amount of data on
the application/security level, but present a tradeoff between
authentication delay and lower level overhead. Only once we
have a better understanding of the VANET network and the
various applications can we state which technique provides
better properties.

VAST allows for multi-hop communication and authenti-
cation through the use of both TESLA++ and ECDSA sig-



9

Time

P
ig

g
y

b
a

ck
e

d

M
A

C
s

In
d

e
p

e
n

d
e

n
t

M
A

C
s

σi+1M KMACi+1MAC i M K σii i+1

σi-1M K MACii-1 σiM K MACi+1i

Heartbeat Period
i

Heartbeat Period
i+1
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natures. Vehicles further away will miss the sender’s original
TESLA++ MAC broadcast so ECDSA signatures are needed
for authentication. However, if OBUs were to simply verify
any signature they receive, a computational DoS attack would
be possible. Instead, the relaying OBU should include the orig-
inal sender’s/forwarded message and signature (Mfwd||σfwd)
as part of the relaying OBU’s own messages (Mrelay =
Mnew||Mfwd||σfwd) which are authenticated using either the
relaying nodes signature or TESLA++ authenticator. Now,
the recipient several hops away can use TESLA++ to verify
the validity of the relayers message (which includes the
original sender’s signature) and only if that is authentic will
the recipient expend the computation to verify the original
sender’s signature in the forwarded message. In the case where
the TESLA++ data allows authentication, but the forwarded
signature is invalid, the receiving OBU can label the relaying
OBU as a potential attacker and ignore the relaying OBU’s
future messages. In the case with authentic, but false data in
the original message (i.e., the sender signed a lie), the signature
in the original message indicates the true origin of the false
data.

In this section, we presented VAST and explained how it
fulfills the different requirements from Section III: authen-
tication, non-repudiation, DoS resilience (computation-and
memory-based), and multi-hop communication. We discuss the
simulation of ECDSA, TESLA, and VAST in Section VI and
compare the performance of each.

VI. SIMULATION OF MESSAGEAUTHENTICATION

MECHANISMS

To evaluate the efficacy of our scheme, we use ns-2 [13]
to simulate VANETs using ECDSA, TESLA, or VAST on
a 1 kilometer long stretch of a large highway (4 lanes of
traffic in each direction with 50 meter median between each
side of the highway) with varying traffic densities, traffic
speeds, and packet error rates. We only simulate highway
traffic since this presents a scenario where the authentication
framework encounters the greatest load due to a large number
of vehicles within range at a given time. During simulation
each vehicle broadcasts a heartbeat message every 100ms [1].
This heartbeat message contains the size of the packet, the
OBU’s address, location, and velocity, the broadcast address

Structure Size

Vehicle Info 192 bits
ECDSA Signature 320 bits
MAC, MAC KEY 80 bits

ECDSA Only Packet Contents 64B
TESLA Only Packet Contents 44B
VAST Packet Contents 84B

TABLE II
SIZE OF DATA IN THE VARIOUS PACKETS

Operation Comp. Time

ECDSA generation 4ms
ECDSA verification 7ms
Symmetric Cryptography 1µs
(Hash or MAC)

TABLE III
COMPUTATIONAL TIMES OF SIMULATED CRYPTOGRAPHICOPERATIONS

(as the receiver address), and the authentication data as con-
tained in Table II. For simulation, the OBU’s radio range is
set to 300m, signal attenuation is modeled according to ns-
2’s two ray ground model, and the bandwidth is one DSRC
channel (6Mb/s) [2]. For this simulation we focus on the
overhead associated with message authentication and ignore
the certificate broadcast and verification process since it is the
same for each mechanism (i.e., only one signature from an
authority is necessary to verify a sender’s public key, TESLA
anchor, or public key and TESLA++ anchor).

For simulation we assume OBUs’ cryptographic perfor-
mance corresponded to the values from Raya et al. [3] shown
in Table III. To analyze the performance of the different
schemes under different traffic scenarios we use the different
values summarized in Table IV.

For simulation of ECDSA, we assume a fixed size queue
to store up to 50 messages while waiting for signature veri-
fication and that if the queue was full any received message
was dropped. A larger queue would decrease the number of
dropped packets, but would also increase authentication delays
since packets would be in the queue longer. For simulation of
TESLA, we consider any message that was not verified within
1 second as dropped. For simulation of VAST, we assume that
if the message queue is larger than 10 messages (λ = 10)
the message is dropped. For our simulation, we allow full
CPU utilization (ω = 100%) since the number of messages in
the queue provides sufficient evidence of computational DoS
(i.e., if the message queue is growing the OBU is receiving
messages faster than it can process them).

In each traffic scenario, OBUs drive for 1 minute of simu-
lation time to fill their queues and begin to process messages.
After this warm-up period, we simulate the VANET for an

Quantity Range

Traffic Density 1 - 75 cars in radio range
Wireless Errors P(error) = 0.00 - 0.50
Traffic Speed 10m/s (20mph) - 40m/s (90mph)

TABLE IV
SIMULATED TRAFFIC VALUES
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Fig. 5. Authentication Delay vs. Traffic Density

additional 10 minutes of simulated time where each OBU in
the 1km stretch of the highway records the total number of
messages received, number of messages dropped (due to full
processing queues or long time between message reception and
key broadcast), and authentication delay. Authenticationdelay
is defined as the amount of time between when the sending
OBU knows the data and when a receiver can authenticate
the data. In our simulation we choose to have TESLA++ and
TESLA piggyback future MACs or key exposures in the cur-
rent heartbeat message. This optimization reduces bandwidth
usage since key exposure can occur in the same message as a
future MAC, but as a result the smallest possible authentication
delay for those schemes is the time between two heartbeat
messages (100ms).

A. Simulation Results

Figures 4 and 5 show the impact of increasing traffic density
on the percentage of received packets processed (i.e., 1 -
percent dropped) and the average authentication delay. For
these scenarios the average vehicle speed was fixed at 30m/s
(70mph) and 10% of packets were uniformly dropped at
random due to wireless reception errors. Across all scenarios,
VAST performs well with little authentication delay and 100%
of data received authenticated. As traffic density increases,
when OBUs only use ECDSA the processing time is too large
and as queues fill up delays increase and packets are dropped.
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Fig. 6. Portion of Signatures Verified vs. Traffic Density

For OBUs using TESLA, denser traffic introduces delays
when channel contention causes more messages to be missed.
For VAST, as traffic density increases and more packets are
missed due to channel contention, OBUs use signatures to
verify packets when the corresponding MAC was missed.
However, OBUs used TESLA++ to authenticate a significant
fraction of packets so processing queues remain relatively
empty. Figure 6 shows the percentage of received packets
that were authenticated using signatures under VAST and
confirms that as more packets are lost due to contention VAST
utilizes the included signatures to authenticate the messages.
When 75 OBUs were in range, channel contention reduces the
number of received packets such that 50% of those packets is
less than the number of packets received during the 25 cars
in range scenario, allowing for VAST to handle that many
signature verifications. This finding indicates that the channel,
rather than OBU processing capabilities, limits the rate ofdata
authentication possible in our simulation of VAST.

Figures 7 and 8 show the impact of increasing losses
in the wireless network on packet processing capabilities
and authentication delay. The vehicles’ speed was fixed at
30m/s (70mph) and traffic density was 25 cars in radio
range. VAST performs well independent of the error rate as
it smoothly adjusts to different error rates, using TESLA++
the majority of the time when error rates are low and using
more signatures as error rates increase (see Figure 9). When
packet error rates are low, VAST uses TESLA++ to avoid
excessive computation. With more packets lost to wireless
errors, VAST begins verifying signatures in packets since
the corresponding MACs were lost. ECDSA performs well
with more wireless errors. With more errors there are less
packets received. This reduces the computational load due
to signature verification and improves packet processing rate
compared to previous simulations. The increase in packet loss
increases authentication delay for TESLA since it is several
intervals between when an OBU receives a message and a
MAC and when the OBU receives a key it can use to verify
the MAC. As a result, when approximately every other packet
is dropped (50% drop rate) the authentication delay increases
to approximately two intervals.

We also ran simulations with speeds varying between 10m/s
(20mph) and 40m/s (90mph), but the change in speed did
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not have a statistically significant impact on packet processing
capabilities or authentication delays.

The simulation results in this section show that our scheme
is flexible and efficient enough to provide timely authentication
of VANET messages under a wide range of scenarios that pro-
duce ill effects for prior VANET authentication mechanisms.

VII. C ERTIFICATE DISTRIBUTION & V ERIFICATION

In this Section, we present certificate distribution and ver-
ification mechanisms which prevent DoS attacks without re-
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quiring additional sender overhead. Since VANET participants
acquire certificates from anoffline authority, certificates must
use digital signatures rather than TESLA or TESLA++ to
authenticate an OBU’s credentials (public key and hash chain
anchor) to another OBU. As such, we need a mechanism to
prevent DoS attacks where malicious parties trick receivers
into wasting bandwidth repeatedly broadcasting their own
certificates or wasting processing power verifying invalid
signatures on maliciously crafted certificates. We propose
broadcasting certificates at fixed intervals to reduce bandwidth
usage. To reduce computational DoS attacks, a receiver should
verify the signature on a certificate after the sender behaves
legitimately for a short period of time. After the receiver has
authenticated some small number of messages from a sender
using TESLA++, the receiver will verify the sender’s certifi-
cate. This approach requires no additional sender overheadand
only requires the receiver to store a counter in addition to a
potential certificate.

For certificate distribution we follow the idea presented by
Hu et al. where OBUs only broadcast their certificates once
or twice every second [6]. This limits certificate based traffic
to a fixed amount. Given the relation between urgency of
VANET messages and distance, the probability is high that
OBUs will have received certificates before they are close
enough to receive relevant safety messages with strong time
deadlines (i.e., Emergency Electronic Brake Light (EEBL)
notifications [1]). Other works have suggested mechanisms
where OBUs will broadcast their certificate whenever they
hear a “first message” from an OBU for which they do not have
a certificate. This approach may provide faster acquisitionof
certificates, but this provides a means for traffic amplification
attacks. In such an attack, a malicious party poses as a
new OBU (which is simple considering OBUs will lack the
certificate necessary to verify the keys used to sign the “first
messages” are invalid). In response to this new OBU, all
of the other OBUs within radio range would respond with
their certificates. Depending on OBU density, a small number
of fake “first messages” can cause a flooding attack on the
network where certificate responses consume the majority of
the bandwidth.

Preventing computational DoS attacks that leverage invalid
certificates is a challenging problem. Using one signature to
sign a set of certificates [5], [7] would cut down on com-
putation associated with certificate verification if the OBUs
listed in the set are driving together. However, an authority is
unable to predict which OBUs will be within radio range at
a given time. As such, aggregated signatures for certificates
would require the same computation on average (i.e., one
signature verification per sender) and consume additional
overhead since the sender will have to broadcast their own
certificate and any additional certificates associated withthe
aggregated signature. In addition, there is nothing stopping
a malicious party from broadcasting a fake certificate that is
not valid. Rather than reducing the computation associated
with verifying a certificate, our approach is to build some
confidence that the corresponding OBU is a valid VANET
participant before verifying the certificate. Our approachuses
a type of puzzle in the sense that the sender must expend some
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computational or storage resources before a receiver will verify
the certificate. Prior work based on puzzles forced a sender to
generate a Merkle Tree over a set of messages and the sign
the root of the tree before receivers will verify the certificate
[14] or to generate a specific hash for a given message [9].
The Merkle Tree approach will not work in VANETs where
senders cannot predict the contents of the next message. OBUs
could queue up messages, but this would introduce a long
delay which would negatively impact the safety applications.
Message specific puzzles are fine in asymmetric networks
where senders have an abundance of computational power,
but in VANETs OBUs will have limited resources. Instead we
propose the use of the TESLA++ based authenticators as a
way to prove work done by the sender.

In our scheme, the receiving OBU uses a trial period where
the receiver assumes the certificate and TESLA++ anchor are
valid and uses those values to verify the nextx messages
from the sender. After the sender expends resources to produce
x valid messages, the receiver will expend the computation
necessary to verify the signature. During the trial period the
OBU will only verify the messages are properly authenticated
under TESLA++. Note that signatures are not verified and the
OBU will not alert the driver or change vehicle dynamics in
response to messages from the sender in question during this
trial period. Once the receiver has successfully authenticated
x messages from the sender, the receiver will verify the
signature on the certificate to authenticate the public key
and the TESLA++ anchor. A receiver’s threshold (x) can
also change over time to reflect different CPU utilization. If
a receiver’s processor is idle, the value ofx can be small
since the computation associated with verifying a certificate is
acceptable. If a receiver’s processor is under heavy utilization,
the value ofx should be larger so that only after a potential
attacker acts like a legitimate sender for a long time will the
receiver spend the processing time to verify a certificate. With
a properly selectedx (the number of TESLA++ authenticated
packets before credential verification), receivers will know
that the sender has invested a certain amount of computation,
memory, bandwidth, and time into using those credentials.
An attacker can still trick receivers into verifying invalid
credentials, but the attacker has to waste resources to generate
x messages which are properly authenticated under TESLA++.
Such an approach has zero overhead at the sender side (as
compared to previous work where a hash tree was built [14]
or puzzles were solved [9]), since the sender uses VAST with
no modifications and simply rebroadcasts their own certificate
every few seconds. This approach also limits resource usage
on the receiver’s side to only storing the possible credentials
(i.e., the certificate, public key, and TESLA++ anchor) and a
counter for how many TESLA++ authenticated messages were
received from that sender.

Limiting certificate broadcasts to a fixed frequency and
waiting until x messages are successfully authenticated using
TESLA++ provide efficient mechanisms to prevent bandwidth
and computational Denial of Service attacks. In the next
subsection, we analyze how long it will take to analyzex
messages under varying network conditions and configuration
parameters.

A. Analysis

One drawback to waiting untilx messages are successfully
authenticated using TESLA++ before verifying a certificate
is the delay between when a receiver first hears a message
from a sender and the time when the receiver verifies the
certificate. With TESLA++, a receiver requires a pair of
packets to authenticate a message (i.e., the MAC packet
and the message packet). Given some messages may be lost
due to errors in the wireless channel, the time needed to
successfully authenticatex messages may be greater than the
time to broadcastx heartbeat messages. If the message is
included in the same packet as the next MAC (i.e., messages
are piggybacked), this will cause a larger delay since losing
the current packet means the receiver cannot authenticate 2
messages, the dropped message and the subsequent message
since the corresponding MAC was lost. In this section, we
calculate the average number of packets needed before a
receiver verifies a certificate assuming packets are received
with probability r. We analyze the scenario where MACs
are sent separately from messages and the scenario where
messages are piggybacked (i.e., messagei and the MAC for
messagei+1 are sent in the same packet). For these calculations
we assume packet loss is an independent process so the loss
or reception of one packet has no impact on the reception of
the next packet.
MACs and messages are transmitted separately. When
MACs and messages are transmitted separately, the proba-
bility of authenticating messagei and messagei + 1 are
independent. The probability of receiving the two packets
needed to authenticate a message is simply the probability
of receiving two packets in a row, orr2. In VANETs, a
sender will broadcast one MAC and one message per interval
so the probability of authenticating 1 message from a given
sender during one interval isr2. We can model the number
of intervals needed to successfully authenticate a messageas
a geometric distribution (Xauth1

= Geometric(r2)). After
the first message is authenticated, the number of intervals
needed to authenticate a second message can be modeled as an
independent, identically distributed random variable, since the
reception of the authenticated message has no impact on the
network reception rate or the authentication of the next packet.
We can model the number of intervals needed to authenticate
x messages as a sum ofx geometric random variables or
Σx

i=1Xauthi
. The average number of intervals to authenticate

x messages is
x

r2
(1)

wherer is the probability of successfully receiving a packet.
MACs and messages are piggybacked. When MACs and
messages are transmitted in the same packet, the loss of one
packet prevents the receiver from verifying two messages (i.e.,
the lost message and the message that corresponds to the
lost MAC). To model this interaction between packet loss
and authentication we use a Markov Chain where the current
state encodes the reception or loss of the previous packet that
contains the MAC and how many TESLA++ authentications
from a sender have occurred. Figure 10 (a) contains the
Markov Chain which represents the authentication of the first
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TESLA++ message. Figure 10 (b) contains the Markov Chain
which represents thenth authentication of a message using
TESLA++ wheren ≥ 2. The major difference between (a)
and (b) is that in (b) the receiver starts with the MAC since it
was received during the previous successful authentication.

start

1-r

0 MAC

0 Auth.

1 MAC

0 Auth.

1-r

r
1 MAC

1 Auth.

r

(a)

start
1 MAC

n Auth.

r

1-rr

1-r

1 MAC
n-1 Auth.

0 MAC
n-1 Auth.

(b)

Fig. 10. Markov Chains for Different Phases of Authentication Using
TESLA++

We can analyze the average time spent in transition states
of these Markov Chains [15] to find the average number of
packets broadcast by a sender before a receiver verifies the
certificate. This analysis finds that on average

r + 1

r2
(2)

packets are needed to successfully authenticate one packet(the
average number of packets needed to reach the{1 MAC, 1
Auth.} state). Analyzing the chain in Figure 10 (b) we find
that on average

1

r2
(3)

packets are needed to authenticate an additional message.
Based on our assumption of packet reception independence,
we can sum the two times to find the average time needed to
authenticate 2 packets. Given packet reception is independent
of prior packets, each additional authentication requiresan
additional 1

r2 packets on average (see Eq. 3). We can calculate
the average number of packets needed to authenticatex
packets using the following equation.

Eq. 2 + (x − 1)Eq. 3 =
r + 1

r2
+

x − 1

r2
=

x + r

r2
(4)

Comparing Equations 1 and 4, we find that broadcasting
MACs and messages separately ensures, on average, the veri-
fication of certificates in less intervals, but with more packets,
for all values ofx and r > 0. More packets are used when
messages are broadcast in their own packets, because each
OBU broadcasts two packets per interval and thus the average
number of packets broadcast before certificate verification
occurs is 2 times Eq. 1.

Figure 11 compares the average number of intervals before
a receiver verifies a certificate with the value ofx = 2,
x = 3, and a range of values forr. As expected, the number
of intervals decreases as the probability of receiving packets
improves (r increases). To translate these values from intervals
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Fig. 11. Average number of intervals for a receiver to successfully
authenticatex = 2 or x = 3 TESLA++ packets

to time, we simply multiply by 100ms per interval based on
the standard for the frequency of heartbeat messages [2]. If
we assume the OBUs first hear each other at a distance of
DHear, travel at a relative velocity ofV (in meters per second),
and waitN intervals on average before verifying a certificate
(whereN is the output of Eq. 1 or 4), the average distance
between the OBUs when the certificate is verified (DV erify)
can be estimated as

DV erify = DHear − V N0.1 (5)

DHear should be close to 300 meters based on the reliable
range of DSRC. However, the value forV andN depend on
the traffic scenario and the network conditions.

To analyze the impact of waiting to verify a certificate
and alert a driver we can analyze a situation with a given
traffic, driver reaction time, and deceleration to determine if
our mechanism would impair the VANETs ability to prevent
an accident. We find that our mechanism does introduce a
small delay, but still provides drivers ample time to respond
to a dangerous situation. As a worst case scenario, consider
two OBUs speeding at 30 meters per second (roughly 70
mph or 110 km/h) and headed directly towards each other
(V = 2 × 30m/s) with poor network performance (r = 0.5).
If x = 2 and messages are piggybacked, the OBUs will be
separated by 240 meters on average when certificate verifi-
cation occurs. At these speeds, if the driver receives an alert
when the certificate is verified, the driver has 4 seconds before
the two vehicles collide (assuming the drivers do nothing).If
x = 3, the OBUs will be separated by 216 meters and the time
to impact is reduced to 3.6 seconds. If we assume both drivers
take 0.5 seconds to react and apply the brakes so each vehicle
decelerates at 5m/s2, whenx = 2 the OBUs will stop with 30
meters between them. Whenx = 3 the OBUs will stop with
6 meters to spare. Of course ifx is larger, the probability of
receiving packets is reduced, or the vehicles are travelingat
a greater speed, the vehicles may not stop in time. However,
with several seconds to respond to an alert the drivers could
simply turn to avoid an accident.

Our certificate management scheme prevents OBUs from
waisting bandwidth broadcasting their own certificates or
waisting computation verifying invalid certificates whilein-
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curring zero sender overhead and a limited receiver overhead
(the storage and management of per sender counters). Analysis
shows that the scheme does delay certificate verification and
thus driver alerts, but still allows drivers ample time to respond
to a dangerous situation.

VIII. D ISCUSSION

In this section we discuss some remaining issues which were
not addressed earlier in the paper.
Authentication Delay. The delay between when a node
receives a message and when the node can authenticate the
message is an important value in VANETs. For example,
safety messages require a small authentication delay, otherwise
drivers will not have sufficient time to respond to an alert in
a dangerous situation.

For VAST, the authentication delay depends on the time
between when the sender broadcasts the MAC and when the
sender broadcasts the message, the key, and the signature. In
both cases, the delay is roughly the time between when the
sender knows the data and when the sender reveals the data.
The sender could reveal the data and a signature along with the
MAC (before revealing the TESLA++ key), but OBUs should
rely on TESLA++ for authentication to prevent computational
DoS due to signature verification. As a result, the receiverswill
wait until at least the TESLA++ key is broadcast (or should
have been broadcast) before the message is authenticated.

TESLA++ can utilize the parameters defined for TESLA
and achieve a similar authentication delay. According to Perrig
et al. [16] the delay between MAC and key broadcasts within
TESLA is a function of the maximum synchronization error
between nodes, the maximum network delay between hosts,
and the size of the TESLA time interval. If GPS synchroniza-
tion is used, synchronization between nodes is around20ns
for expensive GPS units [17] and less than100ns for more
economic devices. Given the1km maximum transmission
range of DSRC and a 6 Mb/s throughput (the rate for a
single channel of DSRC), the network delay is less than
5ms for single-hop communication. If we assign an interval
of 5ms, the authentication delay associated with TESLA++
is 1 interval or 5ms. However, this prevents senders from
piggy-backing messages like we did in simulation (where
the MAC for the next message was included in the current
heartbeat message). If senders use an additional broadcast,
specifically for key disclosure, each sender must broadcastnot
only the key, but also all of the lower level data (MAC and
Physical layers) associated with a packet for an extra 40bytes
of broadcast information [18]. The sender only broadcasts a
key at the end of an interval where the sender broadcast a
message (as opposed to at the end of every interval) so the
bandwidth usage is a function of the number of messages.
Without more real world data about acceptable authentication
delays and effective throughput of the DSRC channel it is
difficult to make any definite statements about which approach
is better: a small interval with more packets or a larger interval
which corresponds to the heartbeat message interval.
Packet Loss. For TESLA++ to work successfully a receiver
needs both the original MAC packet and the packet with the

message and the key. If the receiver misses the message and
key packet (only the MAC is received), the receiver will not
have the data. A similar issue is present in TESLA, when
the recipient only receives the key broadcast they will not
know what data that key authenticates. When only messages
are received, but the MAC for VAST was lost or the next key
broadcast for TESLA is lost authentication is still possible. In
VAST, the receiver can use the signature to verify a message
if TESLA++ authentication fails and the processing queue
is not full. In TESLA, a receiver can use any future key to
authenticate a previously received packet.

Even if receivers do miss a small number of heartbeat
messages applications will still work. The VANET heartbeat
messages used for most safety applications are frequently
broadcast (every 100ms) and each message overrides the
values from previous messages (i.e., the vehicle’s current
position and velocity is more important than where it was a few
moments ago) [1]. As such, even if a VANET recipient misses
a message and key packet, the sender will broadcast updated
location and velocity information within a relatively short
period of time. Bai et al. [1] discuss this issue using their terms
of “network-level metrics” and “application-level metrics”.
The probability of packet loss is a network-level metric for
reliability. While, some applications only need one message
within a given time window to work (“Application-level T-
Window Reliability”). Even with poor network reliability,
application reliability is fairly good. For example, if network
reliability is 50%, an application with a time window of 0.5
seconds has a reliability of 97%.

IX. CONCLUSION

In this paper, we analyze the different requirements of Ve-
hicular Ad Hoc Network (VANET) authentication mechanisms
and find that prior approaches fail to meet all of the necessary
properties. To address this problem we propose a new authenti-
cation building block TESLA++ that represents a DoS resilient
version of TESLA. Our authentication framework VANET
Authentication using Signatures and TESLA++ (VAST) uses
both ECDSA signatures and TESLA++ to provide timely and
efficient authentication of VANET messages while remaining
resilient to DoS attacks. Simulation results show that under a
range of scenarios VAST authenticates 100% of the received
data while maintaining acceptable authentication delays (worst
case of 107ms). In addition, we propose a certificate manage-
ment scheme that prevents Denial of Service attacks without
requiring additional work from senders. The combination of
VAST and our certificate management techniques provide
a complete system to efficiently manage authentication of
VANET messages and credentials without exposing VANET
participants to Denial of Service attacks.
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