
Evaluating Susceptibility of VPN Implementations
to DoS Attacks Using Adversarial Testing

Fabio Streun
ETH Zurich

fabio.streun@inf.ethz.ch

Joel Wanner
ETH Zurich

joel.wanner@inf.ethz.ch

Adrian Perrig
ETH Zurich

adrian.perrig@inf.ethz.ch

Abstract—Many systems today rely heavily on virtual private
network (VPN) technology to connect networks and protect
services on the Internet. While prior studies compare the per-
formance of different implementations, they do not consider
adversarial settings. To address this gap, we evaluate the resilience
of VPN implementations to flooding-based denial-of-service (DoS)
attacks.

We focus on a class of stateless flooding attacks, which
are particularly threatening because an attacker that operates
stealthily by spoofing its IP addresses can perform them. We have
implemented various attacks to evaluate the DoS resilience of four
widely used VPN solutions and measured their impact on a high-
performance server with a 40Gb/s interface, which has revealed
surprising results: An adversary can deny data transfer over an
already established WireGuard connection with just 300Mb/s
of attack traffic. When using strongSwan (IPsec), 75Mb/s of
attack traffic is sufficient to block connection establishment. A
100Mb/s flood overwhelms OpenVPN, denying data transfer
through VPN connections and connection establishments. Cisco’s
AnyConnect VPN solution can be overwhelmed with even less
attack traffic: When using IPsec, 50Mb/s of attack traffic deny
connection establishment. When using SSL, 50Mb/s deny data
transfer over already established connections. Furthermore, per-
formance analysis of WireGuard revealed significant inefficiencies
in the implementation related to multi-core synchronization. We
also found vulnerabilities in the implementations of strongSwan
and OpenVPN, which an attacker can easily exploit for highly
effective DoS attacks. These findings demonstrate the need for
adversarial testing of VPN implementations with respect to DoS
resilience.

I. INTRODUCTION

In today’s Internet ecosystem, enterprise networks are often
dispersed over several locations, such as corporate branches,
data centers, and infrastructure hosted by cloud providers. VPN
systems are an integral part of these setups, serving as the glue
that securely connects the different locations by encrypting
and authenticating traffic between pairs of endpoints over an
untrusted network such as the Internet. Given this role, VPN
protocols are as ubiquitous in emerging SD-WAN deployments
as they are in more traditional site-to-site connections. More-
over, the recent shift to remote work has led to a surge in VPN
use [6], as they are also often deployed as an access control

mechanism to protect network segments and services. Since
VPN endpoints are usually exposed to the public Internet, they
represent an attack surface for various adversaries. Combined
with the critical reliance on the endpoints, they are an attractive
target for DoS attacks.

All major VPN protocols integrate DoS defenses, such
as source-binding cookie mechanisms. However, developing a
VPN implementation with strong DoS resilience is challeng-
ing. While prior studies analyzed the performance of different
VPN implementations [3], [21], their measurements do not
consider adversarial settings.

We address this lack of adversarial testing by evaluating
the DoS resilience of four widely used state-of-the-art VPNs:
WireGuard, strongSwan (IPsec), OpenVPN, and Cisco Any-
Connect (IPsec and SSL). This paper describes DoS miti-
gation mechanisms commonly used by VPNs and gives an
overview of how each of the evaluated VPN implementations
applies them. To obtain quantitative measurements of each
VPN’s resilience, we measure the performance of the VPN
implementations while performing flooding attacks. Primarily
stateless flooding attacks attacks are considered, which an
adversary with spoofed IP addresses can perform stealthily.
Through an in-depth analysis of the VPN implementations, we
identify major performance bottlenecks and easily exploitable
vulnerabilities. Additionally, we present a flexible framework
that simplifies the launching of flooding attacks in a high-
performance testbed network. We also look into automating
the exploration of flooding attacks, which is challenging due to
the huge number of possible attacks and the significant amount
of time required to measure an attack’s impact.

Overall, we demonstrate that today’s standard implemen-
tations are highly vulnerable to flooding attacks, even though
mitigation mechanisms are in place. Hence, they cannot reli-
ably provide the first layer of DoS protection. Furthermore,
our results indicate a significant deficit of adversarial testing.

This paper makes the following contributions:

• We evaluate four state-of-the-art VPN solutions on high-
performance hardware, providing quantitative measurements
of their resilience under realistic adversarial conditions.

• We analyze the VPN implementations, uncovering signifi-
cant inefficiencies and multiple vulnerabilities in the imple-
mentations. All findings have been reported to the respec-
tive developers, resulting in CVE-2021-3568 and multiple
patches.

• We present a framework capable of launching flooding
attacks in a high-performance testbed network.

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.24043
www.ndss-symposium.org

II. BACKGROUND

A. VPN Protocols

A VPN protocol session between two peers comprises
two main phases: the handshake and data transfer. During
the handshake, the peers authenticate each other, exchange
session identifiers, and establish shared keys, which the peers
subsequently use to encrypt and authenticate data transferred
between them. One peer takes the role of the initiator, while
the other is called the responder. Commonly, authentication
is achieved through pre-shared keys, public keys, or certifi-
cates, and a variant of the Diffie-Hellman (DH) exchange is
performed to establish the shared keys. Data transfer, identified
through the session identifiers, is protected by symmetric-key
cryptography.

For an adversary attempting to disrupt a VPN connection,
the handshake phase is an attractive attack vector: authentica-
tion and key establishment rely on CPU-intensive operations,
and memory has to be allocated to store information related
to the new connection. Hence, an adversary provoking a large
number of handshake executions at the server can exhaust the
server’s resources such that handshake or data transfer packets
from legitimate peers cannot be processed and have to be
dropped. On the other hand, a data transfer packet requires
a valid session identifier, which can be verified efficiently.
Furthermore, symmetric-key cryptography requires fewer CPU
resources than authentication and key establishment.

B. DoS Mitigation Mechanisms

1) Source Blocking: A primitive technique to mitigate
attacks is to filter requests based on their origin. A list of
accepted sources (allowlist), a list of denied sources (denylist),
or a combination thereof suffices to achieve that.

2) Rate Limiting: Since a DoS attack aims to consume
excessive amounts of resources at the victim, the attacker will
commonly send requests at higher rates than legitimate peers.
This observation can be leveraged to identify and mitigate
malicious behavior through rate limiting. VPNs apply this
technique often to handshake requests, which are not meant
to be sent at a high rate by a single peer. Usually, the IP
address serves as an identifier for a peer, but a session ID can
also be used if available.

3) Address-Binding Cookies: While various approaches to
mitigate IP spoofing are deployed on the Internet [24], it is
still widely possible to forge source addresses [15]. Because
some adversaries can spoof their IP address, source blocking
and rate-limiting mechanisms based on source IP addresses
are not always effective. IP-based rate limiting can even be
abused for DoS attacks. An adversary using the IP addresses
of legitimate peers could exceed their rate limits causing the
target to drop their requests.

Address-binding cookies, originally proposed for Pho-
turis [12], provide protocol-level mitigation against spoofing
attacks. While adversaries may be able to send packets with
arbitrary source addresses, they cannot obtain responses to
these packets. A VPN responder can utilize this by responding
with a cookie to the initiator, which then repeats the request
with the cookie proving control over the used IP address. The
cookie is usually a cryptographic hash over the initiator’s IP

address, using a secret key such that only the responder can
compute it. Such a cookie mechanism can be implemented to
be stateless and computationally efficient. Since it adds a round
trip to the handshake protocol, it should ideally be activated
only when the responder suspects to be under attack using
spoofed IP addresses.

Ultimately, the combination of rate limits and cookies
prevents adversaries from exhausting amounts of resources
disproportionately to the number of IP addresses they control.

4) Pre-Shared Keys: Another defense mechanism to protect
a server from malicious requests is the use of pre-shared
keys. If each request is authenticated with a key shared only
among legitimate peers, requests from illegitimate peers can be
detected with a lightweight verification step using symmetric
cryptography. However, keys shared between multiple peers
could be leaked to an adversary. Furthermore, an adversary
in possession of previously sent requests could replay them
and circumvent such a mechanism in the absence of replay or
freshness checks.

5) Priority assignment: Some VPN implementations prior-
itize authenticated traffic over unauthenticated traffic to protect
communication with legitimate peers. This can be achieved
by enforcing stricter rate limits for unauthenticated traffic
than authenticated traffic. Another approach is to process
unauthenticated packets on threads with lower priority than
authenticated packets. However, this prioritization can also be
problematic since not all legitimate packets are authenticated.
If the prioritization is too strict, also legitimate packets are
dropped if there is a high load of authenticated traffic.

6) Parallelism: Some VPN implementations rely on a
high degree of parallelism to utilize all CPU resources to
achieve high performance. This principle can also improve
DoS resilience by allowing the system to serve a higher rate
of requests. Multi-core systems usually utilize receive-side
scaling (RSS), which distributes the processing of received
packets among multiple cores. When a packet is received,
RSS calculates a hash over some predefined packet header
fields, usually IP addresses and TCP/UDP ports. The hash is
then used to determine which core will process the packet,
and the packet is added to the core’s receiver queue. Packets
originating from different sources, i.e., packets from different
flows, are likely to be processed by different cores. On the
other hand, packets of a single flow are always processed by
the same core. The hash function usually includes a secret
value, such that adversaries cannot know the mapping between
the hash fields and the cores. Otherwise, an adversary may
deteriorate the performance of a specific flow by overwhelming
only a single core.

7) Deferred resource allocation: Often optimizing the pro-
cessing of legitimate requests also optimizes the processing
of malicious requests. However, optimizations, such as pre-
computing values and pre-allocating memory, can introduce
unnecessary overhead to the processing of malicious requests.
In general, deferring resource allocations during packet pro-
cessing as much as possible minimizes the amount of resources
allocated for malicious traffic.

2

III. PROBLEM STATEMENT

For our evaluation, we consider a VPN setup on the public
Internet with one central VPN server and multiple clients. The
central server uses a static IP address, which can be considered
publicly known. The clients connecting to the server may use
arbitrary IP addresses. Hence, the server cannot apply source
blocking. We consider an adversary that floods the server with
packets to deny all connections to the server or a specific one
(e.g., a critical tunnel between two corporate locations).

A. Threat Model

Our threat model considers adversaries with minimal
knowledge about the targeted infrastructure: we assume that
the adversary knows the VPN protocol used and the location
(i.e., IP address and port) at least of the VPN server. An
adversary can obtain such information in various ways: insider
knowledge, traffic analysis, port scanning, or infiltrating a ser-
vice (e.g., signing up as a legitimate customer of an SD-WAN
service). Further, we assume that the adversary is off-path,
i.e., it cannot observe communication between the server and
a client. Since our evaluation aims to determine the resilience
of VPN implementations exposed to the public Internet, it is a
realistic assumption that some attackers can spoof their source
address [15]. Moreover, we assume that the adversary cannot
break the cryptographic primitives used by the VPNs.

Primarily we focus on stateless flooding attacks, where an
adversary attempts to exhaust a victim’s resources by flooding
it with packets that do not depend on responses by the victim,
hence, stateless. Because the attacks are stateless, they can be
performed stealthily with spoofed IP addresses.

B. Attack Impact Metrics

Various metrics exist to describe an attack’s impact on a
VPN’s performance. For our evaluation, we focus mainly on
the following two metrics:

Throughput: The maximum rate at which data is transferred
over an established VPN connection between two endpoints.

Connection setup time: The time required for two VPN end-
points to complete the handshake, i.e., establish a new
connection.

Throughput and connection setup time significantly influ-
ence the VPN user experience and are regarded as highly
relevant. They are also commonly used in performance eval-
uations without adversaries. An attack’s impact is regarded
as significant if the attack significantly reduces throughput or
significantly increases connection setup time.

We quantify an implementation’s DoS resilience by the
amount of attack traffic required to achieve a significant
impact. Therefore, we are particularly interested in flooding
attacks that block throughput or deny connection establishment
with little traffic.

IV. ATTACK IMPLEMENTATION

We have implemented a framework that enables efficient
testing of stateless flooding attacks on a high-performance
testbed. Furthermore, we have extended our framework with
an attack space exploration algorithm to automatically discover

efficient flooding attacks. The source code is publicly avail-
able1.

A. Line-Rate Traffic Generation

In order to carry out flooding attacks, an attack tool must
be able to achieve high packet rates while enabling low-layer
packet manipulation (e.g., source address spoofing). For this
purpose, standard application-layer software sockets are not
flexible enough. Alternatively, raw sockets allow low-layer
packet manipulation, but the kernel networking stack signifi-
cantly limits the performance of such an approach. We use the
DPDK framework to overcome these limitations. DPDK offers
efficient packet processing by bypassing the Linux networking
stack and allowing applications in user space to control the
networking devices directly [7]. Since this low-level control
requires a considerable amount of setup, we have built our
implementation with libmoon (the underlying framework
of MoonGen [5]), which simplifies the setup process and
accelerates development [9].

Our framework further encapsulates boilerplate code,
which most stateless flooding attack implementations oth-
erwise repeat. Hence, functionalities including basic packet
manipulations, rate control, thread management, and NIC
offloading are already provided with a command-line interface
to control them all. To implement a new flooding attack,
a user only needs to prepare the different kinds of packets
used in the flood and provide packet field modifications to be
performed during the flood. Pcap files containing previously
captured packets offer a simple way to prepare packets. This is
especially helpful for packets with complex structures. Packet
modifications during the flood allow, for instance, to send the
same packet with different source IP addresses. In most cases,
it is sufficient to define a simple counter, which is increased
for each sent packet and is used to modify a particular packet
field. Throughout our evaluation, the framework simplified the
implementation of numerous flooding attacks. Furthermore, the
command-line interface shared by all attacks facilitates the
integration into an automated testbed.

B. Attack Space Exploration Algorithm

The space of possible flooding attacks an adversary can
perform to disrupt VPN connections is extensive, and manually
exploring it is impractical. Therefore, we look into automating
the exploration using our flooding attack framework. Because
measuring the impact of a single attack requires a considerable
amount of time (on the order of seconds), a comprehensive
search is impossible for a large attack space. For this reason,
we suggest using an optimization algorithm to guide the
exploration and find efficient flooding attacks.

A simple attack space consists of flooding attacks in which
the same packet is sent repeatedly at a specific rate. Given
a list of packets known by the adversary, an attack space
is defined, which can be explored automatically, e.g., by
steadily increasing the flood’s rate until the VPN connection
is completely disrupted. This approach reveals which packets
impact the VPN’s performance more efficiently than others.

1https://github.com/fstreun/Flood-Generator

3

However, a sophisticated adversary will vary the packets
during a flooding attack. We thus extend the previously de-
scribed simple attack space and include flooding attacks in
which a packet mix is sent repeatedly at a specific rate. Given
a list of n packets known by the adversary, a flood can be
defined by vector x = (x1, . . . , xn), where xi is the bit rate
at which packet i is sent to the victim. As we are primarily
interested in finding efficient attacks, i.e., attacks with high
impact but low cost, we can use optimization algorithms to
guide the exploration of the attack space. Using the throughput
over a VPN connection tp(x) during the flood as the impact
metric and the flood’s bit rate |x| = x1 + . . .+xn as the cost,
we define the following optimization problem:

minimize tp(x) + α · |x|
subject to xi ≥ 0 for i = 1, . . . , n

|x| ≤ bw

The constant α controls the trade-off between the attack’s
cost and impact. If α is large, the exploration algorithm favors
attacks with low cost, i.e., attacks that require little bandwidth.
If α is small, the exploration algorithm favors attacks that
minimize the throughput, giving less weight to the required
attack rate. The constant bw represents the attacker’s maximum
achievable bit rate.

We choose to use the differential evolutionary algo-
rithm [25] provided by the Python library SciPy [28] as the
optimization algorithm. A differential evolutionary algorithm
requires an initial set of candidate solutions to the optimization
problem. Over multiple cycles, the candidate solutions are
optimized by mixing them and removing the worst ones from
the set.

Given a list of packets known by the adversary, our
implementation determines first the optimal attack rate for
all trivial mixes, i.e., mixes consisting of only one packet.
Using the resulting set of trivial floods as the initial set, the
differential evolutionary algorithm then explores the space of
mixed-packet floods over several cycles and tries to find the
most efficient one.

Section VI-E describes the process of applying this mixed-
packet flood exploration algorithm to WireGuard, and how it
can be helpful in practice. The algorithm did not reveal new
interesting attacks for the other VPNs due to multiple reasons.
Firstly, it revealed the obvious: floods using initiation packets
or tiny packets can be the most efficient ones. Secondly, the
list of packets provided was either too small to find a new
packet mix that efficiently degrades the throughput, or too big
for the algorithm to converge to an efficient packet mix in a
reasonable time frame.

V. EVALUATION

A. Network Topology

Figure 1 shows our setup consisting of three machines
connected over a 40Gb/s star topology using a single switch,
modeling a VPN connection over the Internet with an off-path
adversary. We refer to one endpoint as the server and to the
other as the client. The attacker attempts to disrupt the VPN
connection by flooding the server, i.e., the device under test
(DUT), with packets.

Fig. 1. The network topology used in our evaluation setup. Three high-
performance servers are connected through a switch over 40Gb/s links.

For the open-source VPN tests, the VPN server is a
commodity server running Ubuntu 18.04.4 LTS.2 The machine
is equipped with two 18-core CPUs3, offering 72 virtual cores
with hyper-threading, and a 40Gb/s network card.4 RSS is
activated with the maximum number of supported queues on
this system, i.e., 64 queues. For RSS, IP addresses and port
numbers in a packet are used as hash fields.

The setup for the Cisco AnyConnect tests is slightly
different. The VPN server is a Cisco Firepower® 9300 SM-24
security appliance running Cisco Adaptive Security Appliance
(ASA) Software.5 The machine is equipped with two 12-core
CPUs6, offering 48 virtual cores with hyper-threading, and two
40Gb/s interfaces. The outside interface is connected to the
switch. The inside interface is connected to the machine which
serves as the VPN server in the other tests.7

Specifications for the client and attacker are provided in
Appendix A.

The maximum transmission unit (MTU) on the network
interfaces is set to 1500B to simulate real-world limitations
of the public Internet.

B. Attack Impact Measurements

While the VPN server is the DUT, the client machine
measures the attack impact according to the metrics defined
in Section III-B.

Throughput measurement: iperf over a single TLS con-
nection is used to measure the maximum achievable through-
put from the client over the already established VPN con-
nection. The measurement is taken over a duration of 10
seconds, during which the attack is performed.

Connection setup time measurement: The Linux time
command in combination with ping is used to obtain the
connection setup time by measuring the time required by
the VPN client to connect to the VPN server and perform
the first packet exchange over the VPN connection. Attacks
are performed over a duration of 25 seconds to allow for
multiple connection establishment tries during the attack.

2GNU/Linux 5.10.11-051011-generic x86 64
3Intel® Xeon® CPU E5-2695 v4, 2.10GHz
4Intel® Ethernet Controller XL710 for 40GbE QSFP+
5Version 9.16(2)7 (SSP Operating System Version 2.10(1.159))
6Intel® Xeon® CPU E5 series, 2.20GHz
7The additional machine is required to measure throughput over the ASA.

4

The measurement continues for 60 more seconds to see if
the client is able to connect after the attack has terminated.

Impact measurements are taken across five runs. The plots
in the following sections show mean and standard deviation
values across these runs. To eliminate carry-over effects across
runs, the VPN applications running on client and server
machines are always restarted before each run.

To further analyze an attack’s impact on the DUT, we
collect metrics about packets dropped by the network interface
controller (NIC) and CPU utilization, e.g., with ethtool and
perf sampling, respectively.

C. Attack Traffic Flow Configurations

Since we test the VPN implementations on multi-core
machines with RSS, different attack traffic flow configurations
must be accounted for. We consider the following three attack
traffic flow configurations:

single-flow (sf): The attacker uses a single source IP address
and port such that all attack packets are mapped to the same
receiver core. With high probability, the client’s packets are
mapped to another core.

multi-flow (mf): The attacker uses multiple source IP ad-
dresses or source port numbers to distribute the attack
packets among all receiver cores. This configuration is likely
favorable for an attacker trying to disrupt all connections to
the server.

client-flow (cf): The attacker uses the same IP address and
port as the client such that attack packets and the client’s
packets are mapped to the same receiver core. This config-
uration can be favorable for an attacker targeting a specific
connection. However, the attacker must, firstly, know the
client’s IP address and the port used, and secondly, spoof
its address with the client’s address.

D. Overview of Evaluation

For each VPNs we evaluate its resilience against flood-
ing attacks using initiation requests. Initiation request floods
are commonly known, and all evaluated VPN protocols and
implementations have mechanisms to mitigate their impact.
Additionally, we also evaluate other stateless flooding attacks,
which were found manually or with the help of our attack
space exploration algorithm.

Table I provides an overview of the evaluation results.
The table contains the lowest attack rate that achieves the
given impact using the most efficient attack found for each
VPN. We indicate two different types of impact thresholds:
(a) throughput reaches less than 5% of the throughput achieved
in the absence of attacks, and (b) connection establishment
is denied during the duration of the flooding attack, i.e., 25
seconds. These thresholds provide a quick point of comparison
between the different implementations. The overview shows
that for all VPNs, a couple of hundred Mb/s of attack traffic
suffice to either practically deny throughput or completely
block connection establishment.

For WireGuard, our attack space exploration algorithm
discovered a mixed-packet flood, which completely disrupts
throughput with 300Mb/s in the client-flow configuration.

TABLE I. AN OVERVIEW OF THE EVALUATION RESULTS. THE VALUES
SHOW THE ATTACK RATES AND THE FLOW CONFIGURATIONS REQUIRED TO

ACHIEVE THE GIVEN ATTACK IMPACT.

≤ 5% throughput setup time ≥ 25 s

WireGuard 300Mb/s (cf) 6Gb/s (cf)
strongSwan (IPsec) 15Gb/s (mf) 75Mb/s (mf)
OpenVPN 50Mb/s (cf) 100Mb/s (mf)
Cisco (IPsec) 300Mb/s (mf) 50Mb/s (mf)
Cisco (SSL) 50Mb/s (mf) 200Mb/s (mf)

With the multi-flow configuration, the packet mix requires
roughly 700Mb/s. For strongSwan, flooding the server over
multiple flows with initiation requests at a rate of 75Mb/s
suffice to consistently deny connection establishment due to
a found vulnerability in the implementation. OpenVPN can
also be overwhelmed with an initiation packet flood. With
the client-flow configuration, roughly 50Mb/s of attack traffic
practically deny the throughput between the client and the
server. Using multiple flows, 75Mb/s are required. When
flooding Cisco’s IPsec implementation with initiation requests,
50Mb/s suffice to block connection establishment. Cisco’s
SSL-based VPN is easiest overwhelmed with minimal-sized
UDP packets. Roughly 50Mb/s are sufficient to deny through-
put.

The following sections on WireGuard, strongSwan, Open-
VPN, and Cisco describe the different attacks in detail and
provide an analysis of their impact.

VI. WIREGUARD

WireGuard is a relatively new VPN protocol that differ-
entiates itself from competing solutions through its simplicity,
high performance, and modern design [3]. WireGuard is “cryp-
tographically opinionated”, i.e., it only offers a single cipher
suite, and keeps configuration options to a minimum. This ap-
proach allows its protocol specification and source code to be
significantly less complex than other VPNs, which commonly
offer multiple cipher suites and a plethora of configuration
options. This minimalist approach ultimately reduces the risk
of implementation bugs and possible misconfigurations that
lead to vulnerable deployments.

In a WireGuard setup, each peer has a unique key pair for
identification and authentication. For two peers to establish a
connection, both peers have to know the public key of the
other peer. The handshake is an instance of the IK pattern
defined by the Noise protocol framework [19] and relies on
DH operations for authentication and key-derivation. Under
normal circumstances, the handshake requires one initiation
request and one response to complete, as shown in Fig. 3. As
its transport layer, WireGuard uses UDP for all packets.

The implementation published for the Linux operating
system is a kernel module and was included in the kernel
tree with the Linux 5.6 release.8 To increase performance,
the processing is distributed among all available CPU cores
(Fig. 2). When a packet is received, RSS assigns it to a core,
on which it is then processed by the kernel stack and classified
by WireGuard as a handshake or data packet. Handshake
packets are queued to the handshake list and assigned to

8Besides the kernel module, also a cross-platform Go implementation exists.

5

NIC

core 1

core N

core 1

core N

RSS Kernel +
WG Receive

WG Job List WG Workers

Handshake Packet Data Packet

Fig. 2. WireGuard’s packet processing pipeline: Packets are initially
processed on the receiving core, which distributes work among dedicated
workers spawned on all cores. Multiple queues are used for incoming packets:
a handshake list and a data list for each established connection.

handshake worker threads, which are spawned on all available
cores. The handshake worker then (a) dequeues the packet,
(b) validates the cryptographic message authentication codes
(MACs) (described later), (c) processes it according to the
Noise protocol framework, and finally (d) stores the connection
state in memory. The processing of initiation and response
packets only differ in Step (c).

A. DoS Defense Mechanisms

WireGuard follows the principle that memory allocation or
modification is only performed for authenticated peers. Hence,
a per-peer rate limit for handshakes is applied to mitigate
memory exhaustion attacks.

As a first line of defense against CPU exhaustion attacks,
WireGuard leverages the peers’ public keys as pre-shared keys.
The initiation packet contains a keyed-hash MAC (HMAC)
called mac1, which is the hash over all WireGuard fields (up to
the mac1 field) using the receiver’s public key as the hash key.
The responder drops any incoming initiation packets without
a valid mac1, ensuring that only initiation packets from peers
with knowledge of the public key are processed.

However, if the victim’s public key is known to the attacker,
the mac1 does not provide any protection. Furthermore, an
attacker in possession of a previously sent initiation packet
can pass this check by replaying the packet.

As a second line of defense, WireGuard uses a novel
cookie mechanism and IP-based rate limiting. If the responder
receives an initiation packet with a valid mac1, it may respond
with a cookie, which is encrypted with the responder’s public
key. The initiator decrypts the cookie, uses it to compute a
second HMAC called mac2, and repeats the request. Since the
peers never exchange the cookie in clear, an attacker without
knowledge of the responder’s public key cannot create packets
with valid mac2 even if possessing an initiation request with
a valid mac1.

Furthermore, the implementation assigns low thread pri-
ority to handshake workers such that a flood of handshake
messages would not monopolize the CPU and prevent previ-
ously established connections from being served. To mitigate
algorithmic complexity attacks, it uses fast hash tables for peer
lookup and secret keys for the hash functions.

Initiator Responder

Initiation

Cookie Reply

Initiation with mac2

optionaloptional

Response

Fig. 3. WireGuard’s handshake, including a cookie mechanism that is
activated if the responder is under load.

B. Setup and Configuration

For the WireGuard evaluation, we use the newest version
provided for Ubuntu at the time of writing.9 The client and
the server are configured to use the default WireGuard port
(51820). Otherwise, the client would use a random port,
complicating the evaluation of client-flow flooding attacks. Be-
sides that, WireGuard does not offer much more configuration
options. The cookie mechanism is implemented to activate as
soon as the handshake packet list exceeds half of its capacity.
Tate limits are also hard-coded values.

Measuring the VPN’s performance under normal cir-
cumstances reveals that a maximum throughput of roughly
2.8Gb/s can be achieved on the system under evaluation.

C. Flooding Attacks

To evaluate the effectiveness of WireGuard’s DoS miti-
gation mechanisms against initiation packet floods, we first
establish a baseline. As a baseline, representing a theoretical
upper limit on performance under attack, we flood the server
with UDP packets of the same size as a WireGuard initiation
packet, i.e., 190B, but with a payload of only zeros (Fig. 4a).
If the flood is performed with the single-flow or the client-flow
configuration, the throughput is not negatively affected up to an
attack rate of 30Gb/s, at which point the network is nearing
saturation. However, if the flood spreads multiple flows, we
observe that WireGuard’s throughput steadily decreases as the
attack rate increases. Connection setup time is not significantly
affected by UDP floods up to rates of 30Gb/s independent of
the flow configuration. For higher rates, the connection estab-
lishment sometimes requires one retransmission, i.e., succeeds
after 5 s.

Flooding the server with initiation requests drastically
impacts WireGuard’s performance, even if the packets do not
contain valid mac1 fields, as shown in Fig. 4b. If the attack
traffic spreads over multiple flows, the achievable through-
put collapses at attack bandwidths above 700Mb/s and
drops to zero for 1.6Gb/s. If the client’s source IP and
port number are used, the attack is even more effective:
with just 600Mb/s, the attack already stops practically all
legitimate traffic through the VPN connection. To consistently
deny connection establishment, still, roughly 20Gb/s of attack

91.0.20200513-1 18.04.2

6

0 10 20 30 40
0

1

2

3

Attack rate [Gb/s]

T
hr

ou
gh

pu
t

[G
b/

s]
single-flow multi-flow client-flow

0 10 20 30 40
0

10

20

30

Attack rate [Gb/s]

C
on

ne
ct

io
n

se
tu

p
[s

]

(a) UDP packets (190B)

0 1 2
0

1

2

3

Attack rate [Gb/s]

T
hr

ou
gh

pu
t

[G
b/

s]

0 10 20 30 40
0

10

20

30

Attack rate [Gb/s]
C

on
ne

ct
io

n
se

tu
p

[s
]

(b) Initiation packets (190B) without valid mac1

0 1 2
0

1

2

3

Attack rate [Gb/s]

T
hr

ou
gh

pu
t

[G
b/

s]

0 10 20 30 40
0

10

20

30

Attack rate [Gb/s]

C
on

ne
ct

io
n

se
tu

p
[s

]

(c) Initiation packets (190B) with valid mac1

Fig. 4. Performance achieved by WireGuard under flooding attacks using different types of packets.

traffic are required. Again, the flood’s impact with the single-
flow configuration is insignificant.

The flood becomes slightly more effective if the initiation
packets contain a valid mac1 field, as shown in Fig. 4c.
Connection establishment is consistently denied with roughly
6Gb/s of attack traffic with the multi-flow or the client-flow
configuration.

We have also evaluated the impact of initiation request
floods with valid mac1 and mac2 fields (Appendix B). How-
ever, with valid mac2 fields, the flood is not significantly more
effective than without.

D. System Instrumentation

During single-flow and client-flow floods, the overall CPU
utilization of the server never exceeds 25%, independent of
the attack rate. Since RSS assigns all attack packets to the
same core, only a single receiver thread performs the initial
processing and manages their distribution among the different
handshake workers. For attack rates above 500Mb/s, this
thread exhausts the entire capacity of the core it is running
on. This causes packets assigned to this core to be dropped
sometimes, while packets mapped to other cores are still
processed. Therefore, client-flow attacks are devastating, while
single-flow attacks have a negligible impact. Profiling reveals
that the overloaded receiver thread spends roughly 50% of its
runtime assigning packets to particular workers and waking
them up.

During multi-flow attacks, RSS distributes the packets
among multiple cores. Hence, multiple receiver threads per-
form the initial processing of the attack packets. For attack
rates above 1.5Gb/s, the receiver threads and handshake
workers require 45% and 54%, respectively, of all CPU
resources, hence, completely exhausting system resources.
Surprisingly, approximately 90% of CPU time is spent in
spinlocks to add/remove packets to/from the handshake
packet queue. This observation clearly identifies multi-core
synchronization as the main bottleneck.

TABLE II. THE MOST EFFICIENT MIXED-PACKET FLOOD FOUND BY
THE EXPLORATION ALGORITHM. FOR EACH PACKET, THE RELATIVE

FREQUENCY, PACKET RATE (kp/s), AND BIT RATE (Mb/s) ARE LISTED.

Packet type (size) Frequency [%] kp/s Mb/s

Handshake Initiation (190B) 15.6 116.3 176.7
Handshake Response (134B) 28.1 209.3 224.3
Handshake Cookie Reply (106B) 53.1 395.3 335.2
Transport Data (170B) 0.0 0.0 0.0
Transport Data (170B) 0.0 0.0 0.0
Transport Data Keepalive (74B) 3.1 23.3 13.8

0 0.5 1 1.5 2
0

1

2

3

Attack rate [Gb/s]

T
hr

ou
gh

pu
t

[G
b/

s]

multi-flow client-flow

0 5 10 15 20
0

10

20

30

Attack rate [Gb/s]

C
on

ne
ct

io
n

se
tu

p
[s

]

Fig. 5. Performance of WireGuard under a mixed-packet flood found by our
exploration algorithm.

E. Attack Space Exploration

We apply the automated attack space exploration algorithm
described in Section IV-B. We consider an adversary with
minimal knowledge of the setup, which performs flooding
attacks using multiple different IP addresses. We provide a list
of 6 generic WireGuard packets to the algorithm, containing
all packet types as defined by the protocol specification. The
attack cost weight α is set to 0.001, such that the search
prioritizes attacks with high impact.

7

After 58 evolution steps and a runtime of approximately
1.5 hours, the exploration algorithm discovers a packet
mix that completely disrupts the throughput with just
750Mb/s.

The mix, shown in Table II, clearly favors handshake
packets over data packets. Out of the data packets, only the
keepalive packet, the smallest possible data packet, is repre-
sented in the mix. Furthermore, the share of each handshake
packet (including the cookie packet) in the mix correlates
with the packet’s size. Hence, this distribution indicates that
the handshake packet rate is a major factor for an efficient
flooding attack. The measurements in Fig. 5 show that the
mixed-packet flood is significantly more effective than the
initiation packet flood. If the attack is performed on the client’s
flow, roughly 300Mb/s are sufficient to deny throughput. Even
though the exploration algorithm only tries to optimize the
flood’s efficiency regarding the throughput, the found mix also
denies connection establishment with a lower attack rate than
the previously evaluated attacks. Roughly 6Gb/s suffice to
block new connections from being established.

Applying the gained insights, we also evaluate a flood
based solely on the cookie response packet (Appendix B). Even
though the cookie flood achieves a higher handshake rate than
the mixed-packed flood for the same bit rate, it is slightly less
efficient.

F. Discussion of WireGuard Results

The design of WireGuard appears to be sound against DoS
attacks: the protocol cleverly leverages shared public keys as
an additional layer of defense if they are kept secret. A so-
phisticated cookie mechanism and rate limiting protect against
spoofing attacks. Furthermore, the multi-threaded implemen-
tation aims to utilize all available computation resources,
increasing the number of requests, including malicious ones,
it can process.

However, our evaluation has exposed significant weak-
nesses in the implementation that negate the DoS resilience
properties of the design. Our flooding attacks cause Wire-
Guard to spend most of its processing time in spinlocks,
indicating that CPU resources are wasted due to suboptimal
thread synchronization. This has a severe impact on the data
processing of legitimate connections. Interestingly, flooding
the server with handshake packets affects data transfer more
than connection establishment, even though WireGuard tries
to prioritize the processing of data packets.

We have applied the attack space exploration algorithm to
find an efficient flooding attack beyond manual analysis. The
found packet mix also helped identify a significant bottleneck
in the implementation, exploited through a high handshake
packet rate.

VII. STRONGSWAN: IPSEC

Internet Protocol Security (IPsec) is a secure network pro-
tocol suite that is widely used in VPN solutions. Multiple IETF
working groups have continually updated the IPsec standards
and published them as RFCs [8]. The relevant pieces of the
IPsec protocol suite for our analysis are Internet Key Exchange
Version 2 (IKEv2) [13] for the handshake, and Encapsulating
Security Payload (ESP) [14] for the data transport.

NIC

core 1

core N

core 1

core N

RSS Kernel +
XFRM Layer

strongSwan
Receiver

strongSwan
Workers

core 1

IKE Packet ESP Packet

Fig. 6. strongSwan’s packet processing pipeline: while ESP packets are
directly processed by the kernel, IKE packets are first inspected the receiver
thread and then distributed among other workers.

An IKEv2 exchange consists of two phases:

a) IKE_SA_INIT: The first phase establishes a secure
channel between the initiator and responder and consists of
one request and one response. Both peers provide a randomly
generated security parameter index (SPI) to identify the con-
nection, and symmetric keys are established using the DH
key exchange. SPIs, keys, and other information related to
the connection are stored in an IKE security association (SA).
Since the peers have not authenticated each other yet, the IKE
SA is also called half-open. Any subsequent packet is identified
with the corresponding SPI, and its payload is encrypted and
integrity-protected using the established key.

b) IKE_SA_AUTH: Mutual authentication is per-
formed in the second phase of the IKEv2 protocol, e.g., by
using pre-shared keys or certificates. The IKE_SA_AUTH
phase could complete in one round trip but may require more.

IKEv2 uses UDP as its transport layer. ESP functions
directly on top of the IP layer. However, ESP can also be
encapsulated in UDP packets to enable the traversal of NAT
devices, which we activate for our evaluation. While the
IKE_SA_INIT exchange uses port 500, the IKE_SA_AUTH
exchange switches to port 4500, which the UDP-encapsulated
ESP packets subsequently use.

A widely used open-source VPN solution based on IPsec
is strongSwan [27], which provides an implementation of
the IKEv2 protocol. The implementation consists of a user-
space daemon that handles the IKE packets and distributes the
processing of them among multiple threads. For the encryption
and authentication of data packets (i.e., ESP packets), the
IPsec stack implementation in the operating system’s kernel
is responsible (called XFRM in Linux). Figure 6 shows a
simplified overview of the packet processing pipeline.

A. DoS Defense Mechanisms

Numerous RFCs have been published that update the IKE
protocol or recommend best practices for implementation and
configuration to increase DoS resilience. RFC 8019 [18] is
particularly interesting, as it summarizes possible DoS attacks
and mitigation mechanisms.

Since during the IKE_SA_INIT phase, a DH exchange is
performed, and memory is allocated, an adversary may exhaust

8

0 10 20 30 40
0

1

2

3

Attack rate [Gb/s]

T
hr

ou
gh

pu
t

[G
b/

s]
single-flow multi-flow client-flow

(a) UDP packets (306B).

0 10 20 30 40
0

1

2

3

Attack rate [Gb/s]

T
hr

ou
gh

pu
t

[G
b/

s]

0 0.1 0.2 0.3 0.4
0

20

40

60

80

Attack rate [Gb/s]

C
on

ne
ct

io
n

se
tu

p
[s

]

(b) IKE_SA_INIT request packets (306B)

Fig. 7. Performance achieved by strongSwan under flooding attacks using different types of packets.

a server’s resources by flooding it with IKE_SA_INIT re-
quests. Such an attack does not require any special knowledge
from the adversary, as no authentication takes place during this
phase of the protocol.

CPU resources required in the IKE_SA_INIT phase can
be significantly decreased by deferring the key derivation
into the IKE_SA_AUTH phase. This is possible because the
IKE_SA_INIT response requires only the DH public key,
which can efficiently be generated. The symmetric DH keys
are at the earliest required for the decryption of the payload
in the following IKE_SA_AUTH request.

To mitigate memory exhaustion attacks, it is recommended
to limit the creation of half-open IKE SAs for a single source
IP. Since an adversary capable of spoofing its sources address
can circumvent such IP-based limits, IKEv2 makes use of
a cookie mechanism, which activates if the number of half-
open IKE SAs exceeds a certain threshold. When receiving
an initiation request, the responder does not create a new
half-open IKE SA but instead responds with a cookie. The
initiator then repeats its request but with the cookie added
to its payload, proving control over the used IP address. The
responder creates half-open IKE SAs only for requests with a
valid cookie and if the limits allow it.

B. Setup and Configuration

For our IPsec setup with strongSwan10, we use IKEv2 as
the initiation protocol with a certificate-based authentication
method. A recommended cipher set11 is chosen [26], which
utilizes the dedicated hardware accelerators on the machines.
Moreover, strongSwan is configured to spawn a thread for
each logical core, i.e., 72 threads in total, for IKE packet
processing. The cookie threshold is set to 32, causing the
cookie mechanism to activate if the number of half-open IKE
SAs exceeds this threshold. Additionally, a maximum of 128
concurrent half-open IKE SAs are allowed for a single IP
before the address is blocked from creating more. Default
values are used for all remaining configuration options.

In absence of any attacks, the client achieves a throughput
of roughly 2.9Gb/s, which is sightly more than WireGuard
achieves.

C. Flooding Attacks

As a comparison to the initiation flood on WireGuard
described in Section VI-C, we evaluate an equivalent attack

10Version 5.9.2
11aes128gcm16-prfsha256-ecp256

on IPsec, i.e., we evaluate the impact of an IKE_SA_INIT
request flood on strongSwan. For this attack, we use an
IKE_SA_INIT request packet of the same structure as used
by a legitimate peer.

To establish a baseline, we first evaluate floods consisting
of generic UDP packets of the same size, i.e., 306B, but
with only zeroes as payload. The results are depicted in
Fig. 7a. For the single-flow and client-flow configurations,
the measurements show significant variance up until 30Gb/s,
beyond which the throughput falls sharply. If the UDP flood
is performed over multiple flows, the impact is stronger: the
maximum throughput between the peers is inversely propor-
tional to the attack rate. Connection setup time is not affected
by any of the UDP floods.

The impact of the IKE_SA_INIT request floods are
shown in Fig. 7b. The single-flow attack degrades the connec-
tion’s throughput only slightly more than the baseline UDP
flood. If the attack is performed over multiple flows, through-
put decreases steadily with increasing attack rate, similar to the
baseline. Attack rates above 15Gb/s largely deny data transfer
between the peers. If the attacker uses the client’s address
for the traffic, the attack starts to impact the connection at
much lower rates as with an unrelated single flow: at an attack
bandwidth of 1Gb/s, throughput is reduced by roughly 30%.

On the other hand, connection setup time is drastically
affected by the attack, independent of the attack traffic config-
uration: with just 75Mb/s, the attack inhibits the client
from connecting to the server during its full duration.
For the attack to be effective, the IKE_SA_INIT requests
must use a high number of different initiator SPIs to pass a
retransmission filter implemented in strongSwan.

D. Discussion of strongSwan Results

1) Throughput: As expected, single-flow attacks affect the
throughput the least among all considered flow constellations.
Since the IKE_SA_INIT requests and data transport packets
use different port numbers, RSS assigns them to different
cores with high probability. Hence, the client-flow attack
configuration is not expected to affect the throughput signifi-
cantly more than the single-flow constellation. Nevertheless,
the measurements show a surprising drop of roughly 30%
for attack rates above 1Gb/s, for which the root cause is
unclear. As the multi-flow attack configuration requires the
resources of many cores, it also slows down the processing of
legitimate traffic. perf sampling during the multi-flow attack
with 20Gb/s reveals that the Linux kernel uses 65% of the

9

total CPU capacity to process received packets. Another 12% is
used by strongSwan to process IKE packets. However, we have
not identified a specific bottleneck that causes the throughput
to drop to zero.

2) Connection Setup Time: Overall, the results show that
strongSwan’s implementation of the IKE handshake is not
resilient against floods of initiation requests. There are multi-
ple potential reasons for this. While strongSwan implements
some recommended DoS mitigation mechanisms (such as rate
limiting in combination with the cookie mechanism), others
(such as deferred key derivation) are missing. Furthermore,
even though the implementation is multi-threaded, the initial
processing of all IKE packets, including the cookie validation,
is performed by a single receiver thread. Hence, even initiation
requests with invalid cookies can overwhelm this single thread,
causing legitimate IKE packets to be dropped. Measurements
reveal that the server sends at a maximum of about 40 000
cookie replies, indicating that at most 40 000 IKE_SA_INIT
request packets per second can be processed. This limit is
reached with a 98Mb/s flood, partially explaining the client’s
inability to connect to the server during larger attacks.

E. Discovered Vulnerabilities

The strongSwan implementation was created years before
some of the DoS mitigation recommendations were published,
such as with RFC 8019, and has since not been updated to
follow them all. For instance, the implementation calculates
the symmetric DH key during the IKE_SA_INIT phase
instead of deferring the calculation to the IKE_SA_AUTH
phase, increasing computational resources wasted for mali-
cious IKE_SA_INIT requests. However, we have not found
an attack that exposes this potential implementation weakness,
possibly due to the large number of IKE workers, which
perform this computation.

On the other hand, we discovered that recommendations
given in RFC 7296 regarding the cookie mechanism were
interpreted in a way that resulted in a mechanism that can
be exploitable for DoS attacks. The standard recommends
that “the responder should change the value of the secret fre-
quently, especially if under attack”. strongSwan accomplishes
this by changing the cookie secret after using it for 10 000
cookie responses.12 Hence, at a rate of roughly 98Mb/s, the
IKE_SA_INIT packet flood transmits about 40 000 requests
to the server, causing the secret to change four times per sec-
ond. This has the effect that the server often rejects the client’s
IKE_SA_INIT requests due to outdated cookies. A fix to this
vulnerability, and potentially the correct interpretation of the
recommendation, is to update the cookie secret periodically
after some seconds, e.g., every 30 s. A significant improvement
can be observed with this fix: the IKE_SA_INIT packet
flood requires more than 300Mb/s instead of 100Mb/s to
deny connection establishment consistently. For rates above
300Mb/s, the receiver thread, which validates the cookie
values of all requests, seems to be the main bottleneck since
it uses the entire capacity of its core.

Another bug in the implementation causes the client to
unexpectedly abort connection establishment after receiving
five different cookie responses, which is likely to happen if

12This value is hard-coded and not configurable.

NIC

core 1

core N

RSS Kernel OpenVPN

Handshake Packet Data Packet

Fig. 8. OpenVPN’s packet processing pipeline: all packets are processed by
a single thread.

the cookie secret changes often. This explains why connection
establishment sometimes does not succeed even after the attack
has stopped, resulting in a measured connection setup time of
85 s.

Appendix D provides measurements of strongSwan with
the cookie mechanisms fixed and a description of an attack
in which an attacker with spoofing capabilities can exploit IP-
based limits even if the configurations suggest differently.

VIII. OPENVPN

OpenVPN is a VPN solution designed to be easily portable
and deployable on different platforms [11]. OpenVPN uses
the TLS protocol for its handshake to authenticate peers and
securely derive key material. The back-end mainly relies on the
OpenSSL library for cryptographic algorithms. A wide variety
of cipher suites are offered, such that users can select one of
them depending on the given hardware capabilities and security
requirements. Supported authentication methods include pre-
shared keys, username/password, and certificates.

On Linux, OpenVPN is a single threaded implementation
running in user space (as depicted in Fig. 8). Compared to
other VPN implementations, which run in kernel space and
use multiple cores, this approach is expected to achieve weaker
performance.

OpenVPN supports both UDP and TCP as underlying
transport protocols. UDP is the recommended choice and
also used in our evaluation. Since the TLS handshake as-
sumes a reliable transport underlay, OpenVPN implements
a custom reliable transport layer on top of UDP. The first
packet sent by a client to establish a new connection is
the P_CONTROL_HARD_RESET_CLIENT_V2 packet, which
contains a random session identifier used by the client to
identify the connection. On reception, the server responds
with a similar packet containing the client’s session identifier
and a new session identifier used by the server. During the
subsequent exchanges, authentication and key establishment
take place.

A. Defense Mechanisms

OpenVPN offers three options to protect its TLS handshake
against flooding attacks: tls-auth, tls-crypt, and tls-

10

crypt-v2. These options all provide mechanisms to authen-
ticate each packet using pre-shared keys.

The tls-auth option relies on a single key shared
between all legitimate peers and uses it to calculate an HMAC
for each TLS packet. With tls-crypt, the TLS packets are
also encrypted with the same shared key, improving privacy,
e.g., by hiding the used certificates. However, none of these
options scale well in setups with many peers: if a single peer
is compromised, the secret key must be changed on all clients
and servers to restore the security properties.

tls-crypt-v2 offers a solution to this scaling problem.
With this option, each peer receives a unique secret key and a
version of its key encrypted with the server’s secret key, which
is called the wrapped client key. The client uses its secret
key for encryption and authentication of the TLS messages,
just like with tls-crypt, but also sends the wrapped client
key in the first packet. The receiving server first decrypts
the wrapped client key and then decrypts the received TLS
message. The wrapped client key can also contain metadata,
such as the client’s identifier or expiration date, facilitating key
management. Note that the server only needs to know its key
and does not need to store a list of client keys. This method
scales better because it allows the revocation of single keys
using a revocation list.

Since none of the TLS protection mechanisms perform
a freshness check on the packet, an adversary can replay
a previously sent TLS packet to pass it. However, a replay
protection mechanism ensures that the same request is only
processed once over a certain period. Hence, an attacker
constantly replaying the same packet should not be able to
exhaust the server’s resources.

B. Setup and Configuration

For our OpenVPN setup, we use the most recent version
available at the time of writing.13 The peers authenticate each
other using certificates over TLS 1.3 with the ciphers AES
128 GCM and SHA256. For encryption of the data, AES 128
GCM is used as well.

Under normal conditions, the peers achieve a throughput
of about 600Mb/s. By increasing the MTU of OpenVPN’s
virtual network interface to 60 000B and enabling IP fragmen-
tation on the physical network interface, a throughput of up
to 4Gb/s is achieved. This performance gain is likely due to
OpenSSL performing much better on larger packets. However,
IP fragmentation also causes issues, such as low tolerance to
packet loss, which could reduce DoS resilience. Therefore, we
do not consider this approach in our evaluation.

C. Flooding Attacks

At first, we evaluate OpenVPN’s performance without
any TLS protection activated while flooding the server
with P_CONTROL_HARD_RESET_CLIENT_V2 packets. The
measurements in Fig. 9 show that the server can barely process
legitimate data packets when flooded at a rate of 50Mb/s,
which corresponds to slightly more than 100 000 packets
per second. Starting at an attack rate of 100Mb/s, the

13Version 2.5.1 (git:release/2.5/f186691b32e68362) with OpenSSL 1.1.1

0 20 40 60 80 100 120 140 160
0

200

400

600

800

Attack rate [Mb/s]

T
hr

ou
gh

pu
t

[M
b/

s]

single-flow multi-flow client-flow

0 20 40 60 80 100 120 140 160
0

20

40

60

80

Attack rate [Mb/s]

C
on

ne
ct

io
n

se
tu

p
[s

]

Fig. 9. Performance of OpenVPN under flooding attacks using initiation
packets (60B). TLS protection mechanisms are not enabled.

flood completely denies data transmission and connection
establishment. With the client-flow configuration, connection
establishment often never succeeds, even after the attack has
stopped, resulting in a measured connection time of 85 s.

OpenVPN’s TLS protection mechanisms seem to offer an
efficient way to detect illegitimate TLS packets, assuming the
adversary does not possess a legitimate key. However, these
protections do not affect the impact of an initiation packet flood
significantly: the server is still overloaded by a 50Mb/s flood
of invalid initiation packets, independently of the mechanism
used. Detailed measurements are presented in Appendix C.

D. Detected Vulnerability

Throughput our evaluation of OpenVPN, we discovered
that an adversary capable of spoofing its address and using
the client’s address can completely block the client from
communicating with the server with just a single attack packet.
OpenVPN acknowledged the vulnerability, and CVE-2021-
3568 was registered to track the issue. Appendix D3 describes
the attack in detail.

IX. CISCO ANYCONNECT: IPSEC AND SSL

Cisco AnyConnect [10] is a proprietary VPN solution
and offers multiple different deployment options. We evaluate
remote access VPN with IPsec and SSL. The VPN client,
which connects to the VPN server, uses the Cisco AnyConnect
Secure Mobility Client.14 The server implementation, as well
as the client implementation, are closed-source. Therefore,
we primarily relied on application guides and deployment
recommendations to gain an understanding of how they work.

In the following, we evaluate Cisco’s DoS resilience for
the two different setups: IPsec and SSL.

A. IPsec – Setup and Configuration

For the IPsec setup, the Cisco ASA software is configured
to use IKEv2 and ESP with the same cipher set15 as for

14Version 4.10.02086
15aes128gcm16-prfsha256-ecp256

11

0 10 20 30 40
0

0.5

1

1.5

Attack rate [Gb/s]

T
hr

ou
gh

pu
t

[G
b/

s]
single-flow multi-flow client-flow

0 1 2 3
0

20

40

60

80

Attack rate [Gb/s]

C
on

ne
ct

io
n

se
tu

p
[s

]

(a) UDP packets (740B)

0 10 20 30 40
0

0.5

1

1.5

Attack rate [Gb/s]

T
hr

ou
gh

pu
t

[G
b/

s]

0 0.05 0.1 0.15
0

20

40

60

80

Attack rate [Gb/s]
C

on
ne

ct
io

n
se

tu
p

[s
]

(b) IKE_SA_INIT request packets (740B)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Attack rate [Gb/s]

T
hr

ou
gh

pu
t

[G
b/

s]

0 0.05 0.1 0.15
0

20

40

60

80

Attack rate [Gb/s]

C
on

ne
ct

io
n

se
tu

p
[s

]

(c) UDP packets (42B) port 4500

Fig. 10. Performance achieved by Cisco AnyConnect (IPsec) under flooding attacks using different types of packets.

strongSwan. The crypto engine accelerator bias is set to IPsec
to increase the available hardware resources required for our
setup. We set the limits for IKE SAs and half-open IKE SAs
to 1000 and 100, respectively. The cookie threshold is set to
50, i.e., the cookie mechanism activates if more than 50 half-
open IKE SAs exist. For the remaining configuration options,
defaults are used whenever possible.

Under normal circumstances, the client measures a maxi-
mal throughput of roughly 1.5Gb/s, almost half as much as
with strongSwan. Most likely, the throughput is limited by the
client’s AnyConnect application, which uses only a single core.

B. IPsec – Flooding Attacks

Like for strongSwan, we analyze the effect of flooding
the VPN server with IKE_SA_INIT requests of the same
structure as the client uses (740B). As a baseline, we flood
the server with generic UDP packets of the same size addressed
to the IKE port 500. The measurements in Fig. 10a show that
the flood significantly affects the throughput when performed
over multiple flows. With roughly 4Gb/s of attack traffic, the
throughput drops below 10%. On the other hand, connection
establishment is denied with roughly 2Gb/s independent of
the flow constellation. The logs reveal that the generic UDP
packets are rejected due to an unknown IKE version number,
potentially by one of the server’s first checks when receiving
a potential IKE packet.

Figure 10b shows the impact measurements of
IKE_SA_INIT request floods. The impact on the throughput
is only slightly higher compared to the baseline. However,
just 50Mb/s of attack traffic, i.e., roughly 8500
IKE_SA_INIT packets per second, suffice to deny
connection establishment consistently. Like for strongSwan,
using a high number of different initiator SPIs is crucial for
the attack to be effective.

We suspect that a single thread processes all IKE packets,
while ESP packets are processed on multiple cores. This
would explain the flood’s low impact on the throughput of
already established connections. Further analysis reveals that

the overall CPU utilization rises above 80% when the multi-
flow flood exceeds 3.5Gb/s, i.e., roughly 590 000 packets
per second. For lower rates, the utilization does not even
exceed 10%. This sudden increase might be caused by the
synchronization required between the multiple receiving cores
and the IKE thread, which becomes infeasible for high packet
rates. We confirm this hypothesis by flooding the server with
minimal-sized UDP packets, i.e., UDP packets with no pay-
load. Roughly 400Mb/s of minimal-sized UDP packets spread
over multiple flows and addressed to the IKE port 500 are
sufficient to deny throughput. When the packets are addressed
to the ESP port 4500, i.e., the data transfer port, already
300Mb/s are sufficient, as shown in Fig. 10c. Blocking
connection establishment requires roughly 100Mb/s, which
is significantly more than the IKE_SA_INIT packet flood
requires.

C. SSL – Setup and Configuration

When choosing SSL, a protocol developed by Cisco is
used. The handshake is based on the HTTPS (HTTP over
TLS) standard and offers various authentication methods. For
the data transfer, the VPN establishes a DTLS connection,
such that UDP is used as the transport layer. Overall, the
number of round trips required to set up the VPN connection is
significantly higher compared to the other evaluated protocols.

Because the TLS and the DTLS connections perform
handshakes, which require expensive cryptographic operations
and likely allocate some memory, both offer an attack surface.
Since for TLS, the lightweight TCP handshake precedes all
other exchanges, SYN cookies provide protection from spoof-
ing attacks [4] allowing an IP-based rate limiting to miti-
gate resource exhaustion attacks. For the DTLS connection,
also a cookie mechanism protects the server from spoofing
attacks [23]. In contrast to the other analyzed protocols, the
DTLS specification recommends enabling the cookie exchange
by default and not just when a DoS attack is suspected.

For the Cisco AnyConnect SSL setup, the protocols TLS
1.2 and DTLS 1.2 are used, with a cipher suite16 similar to the

16ECDHE-RSA-AES128-GCM-SHA256

12

0 200 400 600 800 1,000
0

200

400

Attack rate [Mb/s]

T
hr

ou
gh

pu
t

[M
b/

s]
single-flow multi-flow client-flow

0 200 400 600 800 1,000
0

20

40

60

80

Attack rate [Mb/s]

C
on

ne
ct

io
n

se
tu

p
[s

]

(a) UDP packets (252B)

0 200 400 600
0

200

400

Attack rate [Mb/s]

T
hr

ou
gh

pu
t

[M
b/

s]

0 200 400 600
0

20

40

60

80

Attack rate [Mb/s]
C

on
ne

ct
io

n
se

tu
p

[s
]

(b) DTLS ClientHello packets (252B)

0 50 100 150 200
0

200

400

Attack rate [Mb/s]

T
hr

ou
gh

pu
t

[M
b/

s]

0 50 100 150 200
0

20

40

60

80

Attack rate [Mb/s]

C
on

ne
ct

io
n

se
tu

p
[s

]

(c) UDP packets (42B)

Fig. 11. Performance achieved by Cisco AnyConnect (SSL) under flooding attacks using different packets.

IPsec setup. The crypto engine accelerator bias is set to SSL.

D. SSL – Flooding Attacks

We evaluate the resilience of Cisco’s implementation
against a flood of DTLS initiation packets, i.e., Clien-
tHello packets. To establish a baseline, we flood the server
with generic UDP packets of the same size (252B) and
addressed to the same port (443). The measurements shown
in Fig. 11a reveal that the flood is the most effective if
performed over multiple flows. Only about 500Mb/s suffice
to overwhelm the server, completely disrupting throughput and
denying connection establishment during the 25 seconds of the
flooding attack. The overall CPU utilization matches the multi-
flow attack’s impact on the throughput. For attack rates above
200Mb/s, the CPU utilization quickly rises above 65%.

Flooding the server with DTLS ClientHello packets
degrades the VPN’s performance even more efficiently, as
shown in Fig. 11b. Roughly 125Mb/s already suffice to
overwhelm the server, causing the overall CPU utilization
to exceed 90% and the throughput to drop to 0. Connection
establishment is denied with just 200Mb/s.

Just as for Cisco’s IPsec implementation, we evaluate
floods consisting of minimal-sized UDP packets, i.e., 42B
packets. The measurements shown in Fig. 11c reveal that
40Mb/s are sufficient to block an already established con-
nection from communicating over the VPN. At 40Mb/s also
the overall CPU utilization suddenly rises to 90%. How-
ever, to consistently deny connection establishment, roughly
200Mb/s are required. With attack rates between 50Mb/s
and 200Mb/s, the establishment succeeds 50% of the time
during the attack.

E. Cisco AnyConnect Discussion

Cisco’s implementations of IPsec and SSL do not offer
strong DoS resilience. In both cases, the evaluated attacks
are the most efficient when performed over multiple flows.
This could be due to multiple reasons. We suspect that the
implementations require substantial coordination between the
receiving cores because they all might forward certain packets

to the same thread for part of the processing. Further, thread
detection and firewall rules may also add some overhead.

While the floods consisting of minimal-sized UDP packets
can easily be detected and blocked, can their evaluation still
provide relevant information. Firstly, they are not blocked by
default, even though they are clearly illegitimate VPN packets.
Secondly, even if they were blocked, the smallest legitimate
packet is likely not much bigger. Moreover, the impact of small
UDP packets confirms the suspicion that packet processing,
which is minimal for these blank packets, is not the primary
cause for the high CPU utilization. Rather packet management,
potentially with a high concurrency overhead, is likely to be
the main cause.

X. DISCUSSION

Our evaluation has revealed significant limitations in the
DoS resilience of popular VPN solutions and exposed multiple
related implementation flaws. In the following subsections, we
discuss root causes for the performance issues identified in
our evaluation and propose possible mitigation techniques. Be-
cause Cisco’s implementation is closed-source, the following
discussion mainly focuses on the open-source VPNs.

A. Concurrency Aspects

As expected, the multi-threaded implementations of Wire-
Guard and strongSwan (IPsec) perform in the absence of
attacks significantly better than the single-threaded imple-
mentation of OpenVPN. However, our evaluation reveals that
this does not directly translate to better DoS resilience. Even
though WireGuard and strongSwan have access to all compu-
tational resources on the machine, they do not optimally use
them to fend off flooding attacks.

WireGuard distributes processing among all available
cores. However, when flooded with handshake packets, most of
the processing resources are spent on inter-thread communica-
tion, i.e., in spinlocks. This highlights a well-known challenge
in parallel programming, where a shared data structure be-
comes a bottleneck and nullifies the benefits of multi-core pro-
cessing. On the other hand, strongSwan performs some initial

13

processing, such as the cookie verification, before distributing
the work among other cores. This approach is favorable if
under attack the inter-thread communication requires more
computational resources than the mechanism mitigating the
attack. However, since in strongSwan only a single thread
performs the initial processing, an attack can easily overwhelm
the pipeline, causing legitimate requests to be dropped.

While utilizing as many available resources as possible to
handle handshake packets might increase the DoS resilience
of the handshake process, it can decrease the DoS resilience
of the data traffic process. This inevitable trade-off between
allocating resources for handshake packet processing and
data packet processing is evident in WireGuard. Even though
WireGuard assigns lower thread priority to handshake workers
than to data packet workers, our evaluation reveals that this
prioritization is insufficient to protect communication with
already authenticated clients.

For single-threaded VPN implementations like OpenVPN,
running multiple instances combined with a load balancer
to distribute traffic evenly across the processes can improve
overall performance. This approach has been shown to scale
linearly with the number of instances, as long as enough
physical cores are available on the system [21]. However, an
attacker knowing the mapping performed by the load balancer
might still be able to target individual connections effectively.

B. Network-Layer Mitigation

a) Port randomization: We observed that for Wire-
Guard, client-flow attacks are more impactful than multi-flow
attacks when targeting a specific connection. However, this
requires the adversary to direct its attack traffic to the same
receiving core on the server as the targeted client. When RSS
includes the source port in the hash calculation and clients
connect with random ports, an off-path adversary cannot easily
target a specific connection. All evaluated VPN implementa-
tions offer client port randomization options. However, it may
still be possible for the attacker to provoke a collision on the
client’s RSS queue through a side-channel guessing attack.

b) DDoS defenses: Our results for multi-flow configu-
rations have shown that attacks using many source IP addresses
are consistently successful. While cookie mechanisms theoret-
ically mitigate spoofing attacks, they are ineffective against
adversaries controlling many IP addresses, e.g., a large botnet.
For IKEv2, an addition to the cookie mechanism has been
proposed that defends against such an attacker model [18].
If activated, initiation requests are required to contain a valid
cookie value and a solution to a client puzzle, which requires a
moderate amount of resources to compute. Hence, in addition
to controlling the used IP, an attacker would need to expend
computational resources for every request, vastly increasing
the cost of a high-rate packet flood. At the time of this
writing, the client puzzle mechanism is implemented neither
by strongSwan nor Cisco. However, such a mechanism would
not mitigate the impact of our evaluated attacks, as they expose
other bottlenecks.

C. Specification and Implementation

IPsec is a highly complex protocol. Specifications, as well
as implementation and configuration recommendations, are

described across multiple RFCs. Our analysis of strongSwan
has revealed that the implementation does not follow all of
the recommendations for DoS mitigation. Furthermore, also
misinterpretations lead to vulnerabilities as we have found.
These rarely documented deviations from the standard make it
very challenging to deploy and configure a DoS-resilient VPN,
even for an administrator with a thorough understanding of
the specifications. WireGuard does not suffer from the same
issues, as it was designed and implemented in conjunction with
simplicity as a core goal.

D. Adversarial Testing

We envision developers integrating adversarial performance
measurements such as ours into the development process.
Implementations should be optimized with respect to legiti-
mate traffic and malicious traffic. To increase the incentive
for developers, performance evaluations should also include
metrics, which reflect, e.g., the DoS resilience. A high-
bandwidth testbed is beneficial for such evaluations. Still, as
our results have shown, many attacks already show their impact
at traffic rates below 1Gb/s, easily achievable on inexpensive
commodity hardware. Moreover, the attacks are not specific to
one network topology and can also be deployed on cloud-based
testbeds. Our adversarial testing framework can be applied to
new protocols and modified to perform other flooding attacks.
Even providing just a simple list of generic protocol packets
to the exploration algorithm can reveal unexpected results, as
we have observed in our analysis of WireGuard.

XI. RELATED WORK

This section reviews existing performance studies of VPN
implementations, provides an overview of the literature on DoS
attacks and defenses on VPNs, and relates our approach to
standard software testing techniques.

a) VPN performance evaluation: In a recent evaluation,
Pudelko et al. [21] compare the performance of three open-
source VPN implementations, all of which are also covered
by our study. Their findings are consistent with our baseline
measurements (i.e., with no attack traffic) and also highlight
shortcomings related to multi-core synchronization. The origi-
nal WireGuard paper also includes a performance comparison
against IPsec and OpenVPN [3], although the developers
concede that these measurements are relatively dated [29]. Our
results complement these evaluations, as they do not consider
malicious traffic and therefore provide no indication about the
DoS resilience of different implementations.

b) DoS attacks on VPN: To the best of our knowledge,
limited literature exists about practical DoS attacks on VPNs.
The Deviation attack on IKEv2 is a recent attack [17] that has
been implemented against strongSwan. The attack builds on a
vulnerability in the IKE handshake, which was discovered in
1999 but has been considered hard to exploit in practice [16].
The Deviation attack can only be performed by an attacker
capable of intercepting legitimate packets, which assumes a
much stronger position than our off-path attacker model.

c) Software testing: Our attack space exploration al-
gorithm aims to find worst-case traffic patterns that consume
resources at the server. This approach is related to fuzzing,
a common software testing technique that explores a large

14

domain of possible inputs to provoke edge cases and reveal
implementation bugs [20]. This technique has been applied
to OpenVPN to find logical flaws in the state machine of
implementations [2]. Like our approach, some fuzzing tools
also apply evolutionary algorithms to explore a given black-
box application’s input space effectively [22]. The adversarial
testing tool Frankencerts, which tests SSL/TLS implementa-
tions, makes use of synthetic certificates that are automatically
crafted from multiple real certificates and randomly mutated to
explore the input space more efficiently [1]. However, fuzzing
algorithms are often designed for a setting in which candidate
inputs can be tested in rapid succession. This is not given in
our setting since measuring the impact of a flooding attack
strategy is time-consuming.

XII. CONCLUSION

Our evaluation, on a real setup, shows that state-of-the-
art VPN solutions are vulnerable to well-orchestrated flooding
DoS attacks. This has important implications for real-world
deployments as various infrastructures rely on a functioning
VPN. Critical site-to-site connections may use several redun-
dant VPN tunnels between different endpoints to ensure high
availability. However, our results show that as many as 10
endpoints could be brought down entirely using a few gigabits
of bandwidth if the adversary can determine their locations.

These results highlight that rigorous adversarial testing is
crucial for creating more DoS-resilient VPN implementations.
Our framework represents an important step toward making
adversarial testing more accessible.

In future work, it would be valuable to complement the
evaluation with other adversary models, such as on-path adver-
saries and insider adversaries. Moreover, the automated attack
space exploration would benefit from additional extensions,
e.g., by a combination with traditional fuzzing techniques that
enable a higher degree of automation such that the framework
can be applied more quickly to new protocols.

ETHICAL CONSIDERATIONS

We have carefully followed conventions for responsible
disclosure. More than three months prior to publication, we
reported all our findings according to the respective security
report policies of the studied VPN projects.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
feedback and suggestions. Furthermore, we gratefully ac-
knowledge the support from ETH Zurich, and from the Zurich
Information Security and Privacy Center (ZISC).

REFERENCES

[1] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vi-
taly Shmatikov. Using frankencerts for automated adversarial testing of
certificate validation in SSL/TLS implementations. In IEEE Symposium
on Security and Privacy, November 2014.

[2] Lesly-Ann Daniel, Erik Poll, and Joeri de Ruiter. Inferring OpenVPN
state machines using protocol state fuzzing. In IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), 2018.

[3] Jason A. Donenfeld. WireGuard: Next generation kernel network tunnel.
In Network and Distributed System Security Symposium (NDSS), 2017.

[4] Wesley Eddy. TCP SYN flooding attacks and common mitigations.
RFC 4987, RFC Editor, 2007.

[5] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. MoonGen: A Scriptable High-Speed Packet
Generator. In Internet Measurement Conference 2015, October 2015.

[6] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Enric Pujol, Ingmar
Poese, Christoph Dietzel, Daniel Wagner, Matthias Wichtlhuber, Juan
Tapiador, Narseo Vallina-Rodriguez, Oliver Hohlfeld, and Georgios
Smaragdakis. The lockdown effect: Implications of the COVID-19
pandemic on Internet traffic. In Internet Measurement Conference
(IMC), 2020.

[7] Linux Foundation. Data plane development kit (DPDK), 2015.
[8] Sheila Frankel and Suresh Krishnan. IP security (IPsec) and internet

key exchange (IKE) document roadmap. RFC 6071, RFC Editor, 2011.
[9] Sebastian Gallenmuller, Dominik Scholz, Florian Wohlfart, Quirin

Scheitle, Paul Emmerich, and Georg Carle. High-performance packet
processing and measurements. In International Conference on Commu-
nication Systems & Networks (COMSNETS), pages 1–8, 2018.

[10] Cisco Systems Inc. Cisco AnyConnect secure mobility client.
[Online]. Available: https://www.cisco.com/c/en/us/products/security/
anyconnect-secure-mobility-client.

[11] OpenVPN Inc. OpenVPN. [Online]. Available: https://openvpn.net/.
[12] Phil R. Karn and William A. Simpson. Photuris: session-key manage-

ment protocol. RFC 2522, RFC Editor, 1999.
[13] Charlie Kaufman, Paul E. Hoffman, Yoav Nir, Pasi Eronen, and Tero

Kivinen. Internet key exchange protocol version 2 (IKEv2). RFC 7296,
RFC Editor, 2014.

[14] S. Kent. IP encapsulating security payload (ESP). RFC 4303, RFC
Editor, 2005.

[15] Franziska Lichtblau, Florian Streibelt, Thorben Krüger, Philipp Richter,
and Anja Feldmann. Detection, classification, and analysis of inter-
domain traffic with spoofed source IP addresses. In Internet Measure-
ment Conference (IMC). ACM, 2017.

[16] C. Meadows. Analysis of the internet key exchange protocol using the
NRL protocol analyzer. In IEEE Symposium on Security and Privacy,
1999.

[17] Tristan Ninet, Axel Legay, Romaric Maillard, Louis-Marie Traonouez,
and Olivier Zendra. The deviation attack: A novel denial-of-service
attack against IKEv2. In IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom),
2019.

[18] Y. Nir and V. Smyslov. Protecting internet key exchange protocol
version 2 (IKEv2) implementations from distributed denial-of-service
attacks. RFC 8019, RFC Editor, 2016.

[19] Trevor Perrin. The Noise protocol framework. [Online]. Available:
https://noiseprotocol.org, 2018.

[20] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana.
SlowFuzz: Automated domain-independent detection of algorithmic
complexity vulnerabilities. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2017.

[21] M. Pudelko, P. Emmerich, S. Gallenmüller, and G. Carle. Performance
analysis of VPN gateways. In IFIP Networking Conference, 2020.

[22] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. VUzzer: Application-aware evolutionary
fuzzing. In Network and Distributed System Security Symposium
(NDSS), 2017.

[23] Eric Rescorla and Nagendra Modadugu. Datagram Transport Layer
Security Version 1.2. RFC 6347, RFC Editor, 2012.

[24] Kotikalapudi Sriram and Douglas C. Montgomery. Resilient interdo-
main traffic exchange: BGP security and DDoS mitigation. Technical
report, NIST, 2019.

[25] Rainer Storn and Kenneth Price. Differential evolution – a simple
and efficient heuristic for global optimization over continuous spaces.
Journal of global optimization, 11(4):341–359, 1997.

[26] strongSwan. strongSwan. [Online]. Available: https://www.strongswan.
org/.

[27] strongSwan. strongSwan security recommendations. [On-
line]. Available: https://wiki.strongswan.org/projects/strongswan/wiki/
SecurityRecommendations.

15

0 0.5 1 1.5 2
0

1

2

3

Attack rate [Gb/s]

T
hr

ou
gh

pu
t

[G
b/

s]

multi-flow

0 5 10 15 20
0

10

20

Attack rate [Gb/s]

C
on

ne
ct

io
n

se
tu

p
[s

]

Fig. 12. Performance of WireGuard while flooding it with initiation packets
containing valid mac1 and mac2 fields.

[28] The SciPy community. scipy.optimize.differential evolution – SciPy
v1.7.1 Manual. [Online]. Available: https://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.differential evolution.html.

[29] WireGuard. WireGuard: fast, modern, secure VPN tunnel. [Online].
Available: https://www.wireguard.com/.

APPENDIX

A. Additional Specifications of Testbed

a) Client: The VPN client is a commodity server ma-
chine running Ubuntu 18.04.4 LTS17 with two 16-core CPUs18

at 2.80GHz (64 virtual cores using hyper-threading) and a
network card19 that supports RSS and traffic up to 100Gb/s.

b) Attacker: The attacker has the same specifications
as the VPN server used for the open-source tests.

B. Additional Attacks on WireGuard

Figure 12 shows WireGuard’s performance when flooded
with initiation requests containing valid mac1 and valid mac2
fields. Compared to the flood consisting of initiation packets
containing only a valid mac1, the impact on WireGuard’s
performance is not significantly different. Since the cookie
mechanism is only activated if the floods are performed over
multiple flows (above 350Mb/s, i.e., 230 000 initiation re-
quests per second), the other configurations are not considered.

Figure 12 shows WireGuard’s performance while being
flooded with cookie responses. The cookie response packet
is with 106B the smallest of the three WireGuard handshake
packets. Even though the cookie flood achieves a higher
handshake rate than the mixed-packed flood for the same bit
rate, it is marginally less efficient.

C. Additional Attacks on OpenVPN

Figure 14 shows the impact of the TLS protection options
in OpenVPN. None of them show any significant improvement
in resisting a flood of initiation packets; if anything, the options
even appear to degrade the DoS resilience of the server slightly
(especially tls-crypt).

17GNU/Linux 5.4.0 x86 64
18Intel® Xeon® Gold 6242 CPU
19Mellanox MT27800 ConnectX-5

0 0.5 1 1.5 2
0

1

2

3

Attack rate [Gb/s]

T
hr

ou
gh

pu
t

[G
b/

s]

multi-flow
client-flow

0 5 10 15 20
0

10

20

30

Attack rate [Gb/s]

C
on

ne
ct

io
n

se
tu

p
[s

]

Fig. 13. Performance of WireGuard while flooding it with cookie response
packets.

0 20 40 60 80 100 120 140 160
0

200

400

600

800

Attack rate [Mb/s]

T
hr

ou
gh

pu
t

[M
b/

s] no TLS protection
tls-auth

tls-crypt

tls-crypt-v2

Fig. 14. Throughput comparison of OpenVPN with the different TLS
protection mechanisms enabled under a single-flow flooding attack using
generic initiation packets.

D. Security Vulnerabilities and Fixes

1) strongSwan – Cookie Reuse Limit: Based on our rec-
ommendations, the developers of strongSwan implemented a
patched version of their cookie mechanism, which updates
the cookie secret every 30 s. Figure 15 shows the impact
of IKE_SA_INIT packet floods on the patched version.
A significant improvement can be observed for attack rates
between 75Mb/s and 300Mb/s.

2) strongSwan – High Number of Half-Open IKE SAs:
Even with the cookie threshold set to a specific value, an
attacker spoofing its IP address can create far more half-open
IKE SAs on the server. The reason for this behavior is a
known race condition in the implementation. When receiving
an IKE_SA_INIT request, strongSwan checks if the cookie
threshold or the IP limit is reached. If the number of half-
open IKE SAs is below the threshold and the limit, the packet

0 0.1 0.2 0.3 0.4
0

20

40

60

Attack rate [Gb/s]

C
on

ne
ct

io
n

se
tu

p
[s

]

single-flow multi-flow client-flow

Fig. 15. Connection setup time of strongSwan with the cookie mechanism
fix applied while being flooded with IKE_SA_INIT packets (306B).

16

Client Server Attacker

P CONTROL HARD RESET CLIENT V2

P CONTROL HARD RESET SERVER V2

P CONTROL HARD RESET CLIENT V2

P ACK V1

TLS Handhsake

Fig. 16. Packet exchange of the forced key renegotiation attack on OpenVPN.

is added to the job queue and processed by another thread,
creating a new half-open IKE SA for the request. Since the
thresholds are only checked initially and hundreds of jobs can
be queued, an attacker spoofing its IP address can create more
half-open IKE SAs than the cookie threshold might suggest.
An attacker using a legitimate client’s IP address can even
exceed the number of half-open IKE SAs allowed for one
IP address, causing requests from the client to be dropped.
This attack also demonstrates the importance of setting the IP
limit higher than the cookie threshold, which was not done by
default at the time of writing.

3) OpenVPN – Forced Key Renegotiation: Our evaluation
of OpenVPN revealed that an adversary capable of spoofing a
legitimate client’s address could trigger a TLS renegotiation.
By injecting a single spoofed initiation packet, the server
believes the client requests a key renegotiation and responds
to it. The client receives the packet, accepts it, assumes the
server demands a key renegotiation, and responds accordingly.
Consequently, the client and server perform an unnecessary
TLS renegotiation, as shown in Fig. 16.

While a forced key renegotiation is already problematic,
the attack causes a more significant problem because the two
peers do not complete the handshake properly. This results in a
complete DoS for the connection, which persists even through
a restart of the client. Only after restarting OpenVPN on the
server, the client can establish a connection again. The TLS-
protection mechanisms tls-auth, tls-crypt, and tls-
crypt-v2 offer only limited protection since an attacker in
possession of the secret key or a previously sent initiation
packet can circumvent them.

We would expect the client to prevent the attack by drop-
ping the initiation requests since it contains an unknown client
session ID. Interestingly, when receiving the server’s packet,
the client reports an error in the logs due to an unexpected
acknowledgment of a packet, which is actually the packet sent
by the attacker. Nevertheless, it proceeds with the handshake.

While TLS is also used in many applications other than
OpenVPN, we do not expect them to be vulnerable. The bug
we have exposed seems not to be in the TLS implementation
itself but rather in the custom OpenVPN reliable layer on top
of UDP and how TLS is integrated into it. According to the
developers and the still reserved CVE, fixing this bug is not
trivial.

17

