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ABSTRACT
Establishing trust between a group of individuals remains a
difficult problem. Prior works assume trusted infrastructure,
require an individual to trust unknown entities, or provide
relatively low probabilistic guarantees of authenticity (95%
for realistic settings). This work presents SPATE, a primi-
tive that allows users to establish trust via device mobility
and physical interaction. Once the SPATE protocol runs to
completion, its participants’ mobile devices have authentic
data that their applications can use to interact securely (i.e.,
the probability of a successful attack is 2−24). For this work,
we leverage SPATE as part of a larger system to facilitate
efficient, secure, and user-friendly collaboration via email
and file-sharing services. Our implementation of SPATE on
Nokia N70 smartphones allows users to establish trust in
small groups of up to eight users in less than one minute.
The two example SPATE applications provide increased se-
curity with no overhead noticeable to users once keys are
established.

General Terms: Design, Human Factors, Security

Categories and Subject Descriptors: C.2.0 [Computer
– Communication Networks]: General – security and protec-
tion; D.2.2 [Software Engineering]: Design Tools and Tech-
niques – modules and interfaces; H.1.2 [Models and Princi-
ples] User/Machine Systems – human factors

1. INTRODUCTION
A decentralized security infrastructure—one that allows

informally organized groups of colleagues to communicate
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securely—remains a great idea in theory. In practice, the
idea is not much more accessible now than when it was in-
troduced decades ago, dogged by the usual concerns: how to
exchange keys, how to manage keys, how to integrate with
existing applications, how to configure security policies, etc.

Consider the example of secure email. One of the most
mature systems that provides encrypted, authenticated email
exchange is PGP, first introduced in 1991. PGP allows ar-
bitrary pairs of users to exchange email securely, without
the need for centralized administrators. However, even as
the software becomes streamlined and more popular, non-
expert users still have difficulty adopting it, struggling with
key management and configuration of security policies [48].

Another important example is file-sharing. Users with-
out centralized infrastructure like NFS or AFS still wish to
share files selectively with their friends, while hiding those
files from others. Yet recent work shows that popular file-
sharing utilities make configuring security policies difficult,
and that many users inadvertently expose private files to
strangers [17]. Indeed, configuring access-control lists might
be too much to ask of casual users.

In light of these security problems, a growing trend that
offers promise is device mobility—now more prevalent than
ever with the proliferation of increasingly sophisticated mo-
bile phones. This paper introduces the SPATE protocol,
and the SPATE system built on top of it. The use case for
SPATE is a common one: a small ad-hoc group meets in per-
son and wishes to continue collaboration remotely, whether
via secure email or secure file-sharing. Using current tools,
even this simple scenario is vexing for the average user,
requiring baroque, user-visible key exchange protocols and
confusing access control decisions. The SPATE system, by
contrast, takes advantage of device mobility and face-to-face
meetings to simplify future communication considerably.

The foundation of the SPATE system is the SPATE proto-
col, which runs on mobile phones with the objective of shar-
ing authenticated data among members of a small group.
Participants initiate the protocol by invoking an applica-
tion on their phones and indicating the number of people in
the group. The phones then exchange information via Blue-
tooth. The danger in this scenario is a Man-in-the-Middle
(MitM) attack, by which a nearby adversary can inject inau-
thentic data into the exchange. To prevent such an attack,
at the end of the protocol, all mobile devices check that
they received the correct number of data items and display
a visual hash function [13,33] computed over the exchanged
data. The participants check that all devices agree on the
hash. If both checks succeed, then the group participants



have guarantees that: (1) each participant contributed ex-
actly one data element to the collective; (2) that no one out-
side the group contributed data; and (3) the data distributed
is exactly what each individual user’s device intended.

The SPATE exchange is agnostic to the type of data ex-
changed. In addition to flexibility (i.e., users can exchange
any data), this can improve security. One obvious use for
such a protocol is to exchange public keys, enabling subse-
quent secure remote collaboration. SPATE is also designed
such that long-term secrets need not be stored on mobile
devices. This design provides improved security properties
when compared to other key exchange protocols (Section 9).
Without the corresponding private key on the device, the
loss of a mobile device has zero impact on security; the pri-
vate key remains securely on the user’s workstation at home.
Of course, without the private key on the phone, there is the
drawback that users cannot perform any operations that re-
quire the private key, until they can access their workstation.

Device pairing has recently attracted a significant amount
of interest from the research community, fueled by the pro-
liferation of wireless mobile devices. Prior work addresses
similar key exchanges, but either assumes a public key in-
frastructure [6,8,23,24,41,42,44], cumbersome key-exchange
protocols [5], is vulnerable to malicious bystanders [2], or are
restricted to two-party exchanges [3,7,9,27,30,32,38–40,45].
Other works offers mechanisms optimized for large groups
of 10 to 30 people [10]. This work focuses on small groups
where users can accurately count the group size [25]: eight
or fewer. Assuming group size fits a Zipf distribution, the
majority of groups will be within the range covered by the
SPATE protocol.

This paper presents an implementation of the SPATE pro-
tocol as part of a larger SPATE system, filling in the details
of how to generate cryptographic keys, how to move keys
between one’s PC and one’s phone, how to exchange keys,
and most importantly, how to build real applications that
use the exchanged keys. We present two applications: secure
email and secure file-sharing. Both exploit device mobility to
configure useful secure-by-default policies, without requiring
any expert decisions from the users. In the email example,
a Thunderbird Mail plug-in enables encrypted and signed
email communication by default for email sent among group
members after the meeting. The file-sharing application
provides a shared folder among all group members, which
affords read and write access to group members and denies
access to all others. Both applications have the crucial prop-
erty that security does not require undue inconvenience. We
anticipate that our approach will provide a foundation for
bootstrapping secure communication for current and future
applications.

In summary, this paper offers the following contributions:
(1) a description of the SPATE protocol for securely ex-
changing data among members of a small group; (2) an im-
plementation of the SPATE system on mobile smartphones;
and (3) two realistic applications that demonstrate how
SPATE enables practical secure-by-default operation.

2. PROBLEM DEFINITION
When meeting face to face, a group can trust that things

they see and hear from the other group members have not
been modified by a malicious party. Once the group dis-
perses, members would like to continue to have that same
level of trust for intra-group communication. Collecting au-

thentic data (i.e., public keys and application-specific data)
from other members of the group can facilitate such secure
communication. Most security applications are already de-
signed to handle public keys (e.g., X.509 certificates), while
other applications can leverage public keys to setup shared
keys or passwords within the group. However, for ease of
use, some applications may want to share additional infor-
mation (e.g., email or IP addresses to simplify contacting
other members or sharing data within the group). Once
groups have a way to exchange authentic data in person,
secure collaboration is possible without requiring members
to trust a third party.

According to Chen et al. [10], an exchange of authentic
information within a group produces a set of data that must
fulfill the following three properties:
1. Consistent: Every group member acquires the same set
of data.
2. Exclusive: Only group members’ data is in the set.
3. Unique: Each member only contributes one data element
to the set.

In addition, the exchange protocol should have limited ex-
pectations for the users. Humans are impatient and are in-
accurate when comparing numbers [45]. To avoid frustrating
users, an exchange protocol should run quickly with only a
small number of interactions (e.g., taking pictures of or shak-
ing devices) between group members (i.e., for n members a
total of O(n) total interactions). To avoid human errors, the
exchange should facilitate user-friendly comparisons, rather
than requiring several users to compare hexadecimal digits.

2.1 Assumptions
In this work, we make assumptions about the hardware

and software available on members’ mobile devices, the ab-
sence of malicious software (malware), the probability of hu-
man error, and the user’s diligence when it comes to securing
private asymmetric keys.

We assume users’ mobile devices are equipped with Blue-
tooth radios, a color display, a camera, and an installation of
our SPATE software. Commodity smartphones can provide
all of these hardware requirements.

We assume that group members’ mobile devices and work-
stations (e.g., desktop or laptop) are free of malware. If
malware existed on either system, a malicious party could
subvert any data distributed or collected during a SPATE
exchange. Malware is a serious threat, but is orthogonal to
the authentic exchange of data in groups.

We also assume that humans can count and compare im-
ages correctly within small groups of 2 to 8 members. Prior
studies have shown that users can accurately perform such
tasks in small groups [25]. However, in groups of more than
10 members, counting errors become more common.

We assume individuals keep their private keys secret. If
a user were to publish their private key or share it with
other users, that key no longer provides authentication. For
example, if user U shares the private key K−1

U with other
individuals, an email signed using key K−1

U provides no guar-
antee that U was the actual source of the email. The need
to keep the private key secret is not unique to systems that
use physical interaction to establish trust.

2.2 Trust Model
SPATE’s trust model is built upon physical interactions

via mobile devices. Having exchanged messages via the de-



vices, user Ua with mobile device Ma trusts a message from
Mb if two conditions are satisfied: 1) Ub is physically located
in the same place as Ua; 2) the message (or an unforgeable
representation of the message) displayed on Ma’s screen is
identical to the one on Mb. Users can visually verify both
conditions. Therefore, users only trust messages they have
directly received but not those relayed by someone else.

We now briefly contrast SPATE’s trust model with Public
Key Infrastructure (PKI) and PGP’s web-of-trust.

PKI A PKI certificate authority issues certificates that
bind users’ digital identities to public keys. The certifi-
cates are unable to bind a user’s physical identity to a public
key. When exchanging public keys in a PKI, a user needs to
present his certificate as proof of the authenticity of an ex-
changed public key. The security property relies on a shared
trusted authority, which may not exist in many settings.

PGP In a PGP key-signing party, user Ua signs a PGP
certificate that binds a public key with another user Ub’s
identity—if Ua believes the identity claimed by Ub. If user
Uc trusts Ua, Uc will accept the Ua-signed certificate as a
credential for Ub, without interacting with Ub.

SPATE is different in that we do not trust any third party.
We assume a stronger trust model where users only trust a
public key acquired through direct physical interaction with
another user.

2.3 Attacker Model
Attackers can eavesdrop, intercept, and manipulate any

message transmitted over the Internet and wireless networks.
The attacker can also form a coalition of several group mem-
bers (insiders), who have control over their own private keys
and devices.

The attacker’s goal is to manipulate the exchanged data
without being detected. Manipulation includes deletion of
users’ data or modification of existing data. Note that the
goal of colluding attackers is to manipulate the data of be-
nign users. Modifying data of other colluding attackers is
not considered an attack. An attacker can also contribute
bogus data (e.g., another user’s public key). However, with-
out the corresponding private key, the impersonator will be
unable to perform the operations necessary to assume the
victim’s identity online (i.e., decrypt or sign data with the
appropriate private key).

The attacker can also jam the wireless channel or insert
junk data as part of a denial-of-service (DoS) attack. How-
ever, we do not consider DoS attacks because they are de-
tectable (users can tell if the protocol aborts or gets stuck
abnormally) and cannot alter any data being exchanged.

We consider computationally bounded attackers who can-
not break basic cryptographic primitives. Hence, keys can-
not be recovered from signatures, and there is a hash func-
tion h() that for all intents and purposes behaves as a ran-
dom oracle. But an attacker can brute-force solutions to
“small” problems, such as finding M where h(M) ends with
any given 24 bits.

3. BACKGROUND ON HASH
COMPARISONS

Protocols that operate with collocated users often require
individuals to compare checksums to ensure successful setup
or authenticity of exchanged data [26,28,29]. For such com-

parisons, researchers would like a mechanism that is simple
for humans, computationally efficient, and has a quantifiable
level of security.

Traditionally, such protocols require users to compare a
sequence of hexadecimal digits. Hexadecimal digits are com-
putationally efficient to generate and contain a fixed amount
of entropy (4 bits per digit). However, humans trying to
quickly compare digits often make mistakes (e.g., confuse
an 8 for a 0) [45].

Given humans’ inability to accurately and quickly com-
pare digits, researchers have proposed using text [15, 18] or
visual [13,33] representations of these checksums. The“Loud
and Clear” system [18] expresses hashes as syntactically cor-
rect sentences, while the UIA system [15] expresses hashes as
sequences of dictionary terms (e.g., “meals – abut – yuck”).
The entropy of the words is easy to calculate given the size of
the dictionary from which the sequence of words is selected.
In addition, looking up words in a dictionary is computa-
tionally efficient. However, comparison of words may still
require significant user effort as a quick glance at the words
may not suffice to facilitate an accurate comparison.

Humans are good at quickly detecting differences in im-
ages, so visual representations of the checksums present one
promising comparison mechanism. “Random Art” [33] and
“Flag” [13] express hashes as visual images. Random Art
contains an unknown amount of entropy, making security
analysis difficult, and is computationally expensive, requir-
ing around ten seconds to generate an image on a mobile de-
vice [10]. Flags [13] represent an efficient alternative. How-
ever, their images contain limited entropy and lack reference
points. Such reference points are important when comparing
Flags across mobile devices where screens are often rotated.

3.1 T-Flags for Hash Comparison
For this work, we have developed a new scheme, T-Flags,

which contains nearly twice the entropy of the original Flag,
includes a visual cue to help users quickly determine the
proper orientation during comparison (Section 6 gives ex-
amples), and only requires around 60 ms to generate on a
mobile phone. In this work, we limited ourselves to 3 bits
for 8 colors per rectangle.1 With 8 rectangles per T-Flag, a
T-Flag contains 24 bits of entropy.

To select 8 maximally distinct colors, we need to select
colors that appear different independent of display settings
(e.g., contrast or brightness) or color blindness. Based on
human perception, Glasbey et al. deduce 11 maximally dis-
tinct colors [16]. To address color blindness, we eliminated
Green. We thus select the following 8 colors: Black, Gray,
White, Yellow, Light Pink, Red, Blue, and Brown.

4. SPATE
SPATE is a system that provides a foundation of trust for

secure applications. SPATE relies on visual channels and
physical interactions rather than pre-existing trusted infras-
tructure (i.e., PKI) or transitive trust (i.e., PGP) to au-
thenticate data. Our key insight is the use of mobile devices
and human interaction to convert physical interaction into
digital trust. A group of users who successfully complete
the SPATE protocol are guaranteed to have identical and

1Ellison and Dohrmann [13] use 6 bits representing 64 colors
per rectangle, but with so many colors slight differences in
shade may lead to errors during comparison.



authentic copies of data. The data can be anything, e.g.,
public keys, IP addresses, public-key certificates, or email
addresses. The authenticated information can be the basis
for a host of different secure applications. For example, to
send an encrypted message, the sender needs to know the
correct public key and email address of the receiver.

4.1 SPATE Protocol Overview
The SPATE protocol is designed to allow a group of users

that meet in person to exchange data which later forms the
basis of trust for an application. People often carry their
phones or other resource-constrained mobile devices, but
may leave their main workstation (i.e., desktop or laptop)
elsewhere. As such, we have designed the SPATE exchange
to run on mobile devices because they will be present when
people physically meet. When security applications and the
SPATE exchange are run on different devices, a mechanism
is needed to transfer the data between the device and the
machine. SPATE thus consists of three steps to allow op-
eration of our secure applications: 1) the one-time creation
of application dependent data and imprinting the data on
the mobile device, 2) exchange of authenticated data with
other users, and 3) retrieval of data from the mobile device.
Figure 1 depicts these three steps.2
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Figure 1: Steps associated with a SPATE exchange
between Users A, B, and C. Shown from the per-
spective of User A.

➀ Creation and Imprinting of Data During the cre-
ation and imprinting of data, a workstation (laptop or desk-
top) is used to create and transfer a user’s data. For our
prototype, the user’s data (d) is a self-signed certificate con-
taining the user’s name, email address, public key, and other
application-specific data. In general, SPATE users can ex-
change arbitrary data of their choosing. To securely transfer
2If the security application runs on the user’s mobile device,
the data always resides with the application, removing the
need for imprinting or retrieving the data (Steps 1 & 3).

d from the computer to the mobile device we use standard
Bluetooth pairing techniques [28] to setup a secure chan-
nel between the two. Initially, pairing requires the user to
copy a passkey from the computer to the device. Once the
two have been paired, files can be securely transferred be-
tween the two. We chose to use Bluetooth simple pairing
since users may have already paired their mobile device with
their computer (e.g., to exchange calendar or contact infor-
mation). Given that a secure mechanism for the exchange of
data already exists, users may view a SPATE-specific trans-
fer mechanism as unnecessary and cumbersome. If the work-
station lacks a Bluetooth adapter, users can utilize a USB ca-
ble or any other direct connection to securely transfer data.
We avoid using the Internet to imprint data because of net-
working and security issues. On current networks, mobile
devices and most home computers are behind Network Ad-
dress Translation services which prevent direct connections,
stopping either the device or the workstation from acting like
a server. Without additional setup, communication on the
Internet is vulnerable to Man-in-the-Middle attacks where a
third party modifies the data.

➁ Exchange of Authenticated Data Authenticated
exchange within a small group in SPATE involves four steps:
1) selection and counting, 2) commitment, 3) distribution,
and 4) verification. In the first step, each user selects the
data she wants to share with the other group members and
indicates to the device the number of physical members in
the group (i.e., the group contains N people). Once the de-
vice knows the number of members and the data the user
wishes to exchange, the device automatically performs the
commitment and distribution steps. After the device checks
that the received commitments agree with the distributed
data, the device computes a T-Flag representation of the
received data. To verify that all of the physically-present
participants have the same data, users compare the T-Flags
displayed by their devices. If everyone has received the same
data, the T-Flag on each device should be identical. Sec-
tion 4.2 contains more details on how a SPATE exchange is
performed.

➂ Retrieving Data from the Device After the user
has completed the SPATE exchange, the last step is to up-
load any collected data from the user’s mobile device to the
user’s workstation. Uploading data from the mobile device
to the workstation is similar to the creation and imprinting
step: the two devices pair or use a prior association from a
previous pairing to establish a secure channel which is used
to transfer the collected data.

4.2 SPATE Exchange of Authenticated Data
For applications where a user interacts with other users

and requires trust, users need to obtain authentic data from
the other users. Each user could pair with every other user
to securely exchange data. However, a pair-wise protocol
is inefficient in that O(N2) pairs are needed for a group
of N users. The following protocol allows a group of N
users numbered 1 . . . N to exchange authentic copies of data
d1 . . . dN (where di is user i’s data) with O(N) interactions.
Figure 2 presents an outline of the steps of the exchange
protocol.

In a SPATE exchange of authenticated data, the end goal
is for each group member to have collected an authentic
copy of every other member’s data. This exchange consists



of four major steps: selection and counting, commitment,
distribution, and verification. To ensure authenticity, each
user only has to count the number of group members present
and to perform a final comparison of T-Flags. The mobile
devices perform all other steps associated with committing
to, broadcasting, and verifying data without requiring any
human interaction. It is important to note that the SPATE
exchange requires no encryption or signing. As such, unless
the user wants to run an application on the device that re-
quires the private key, all of a user’s secrets remain on their
workstation. With all of the secrets on the workstation, a
lost device has zero impact on security. This is more se-
cure and computationally efficient than other protocols (de-
scribed in Section 9) where the device must perform private
key operations.

Selection and Counting (Steps 1–2) The SPATE ex-
change begins with each user selecting the data the user
wishes to share (data di for user i) and entering the num-
ber of users present in the group (here we represent the

user-supplied number as Ñ). Both of these items require
human intervention. The data to be shared is application-
dependent and depends on how the user wants to interact
with the other group members. The user must enter the
number of physical members in the group. If the device
were to simply count the number of messages it receives, a
malicious party outside the group could inject wireless mes-
sages and infiltrate the group.

Commitment (Steps 3–8) Once the device knows what
data the user wants to share and the size of the group, the
device generates two commitment [4] values: a protocol com-
mitment and a data commitment. With two separate com-
mitments, SPATE prevents attacks and limits the impact of
human errors, unless all group members make a mistake. To
generate the protocol commitment, the device generates a
random number or nonce (i.e., mobile device i generates ni)
and hashes the nonce (pi = h(ni)). The device hashes the
protocol commitment with this device’s data to generate the
data commitment (see Step 5). Without the data commit-
ment, an attacker can modify data from some group mem-
bers without being detected during verification [22]. Dur-
ing such an attack, the malicious party would wait until all
but one group member had broadcast their data. The at-
tacker would replace the last user’s data (dN ) with a different
d′

N such that T-Flag(h(d1||...||dN ) =T-Flag(h(d1||...||d
′
N )).

With knowledge of d1 to dN−1 and only 24 bits of entropy
in a T-Flag, an attacker could find such a d′

N in a few sec-
onds. The protocol commitment ensures that if at least one
user correctly compares T-Flags within the group, SPATE
fulfills the three properties of an authentic group exchange
(even if some members are lazy and skip the comparison
step). Exact details are explained in more detail in the
security analysis in Appendix A. The device records its
nonce, protocol commitment, data, and data commitment
as the initial members in a set of nonces, protocol commit-
ments, data, and data commitments for this group: sets
N, P, D, and C, respectively. After generating these values,
the device broadcasts the data commitment to the rest of the
group (Step 6). At the same time, the device is receiving
data commitment broadcasts from the other group members
(Step 7), and adding the received commitments to its set of

data commitments (C). If the device receives less than Ñ
data commitments before a timer threshold, either the user

miscounted or a malicious party is preventing a device from
contributing its commitment. In such a case, the protocol
quits, since at least one of the Ñ devices has failed to con-
tribute a data commitment. If the device receives more than
Ñ commitments, either the user miscounted the size of the
group, or a malicious party has inserted additional commit-
ments. In such a scenario, the protocol quits and any data
is discarded as invalid.

Distribution (Steps 9–10) Once each device has re-
ceived the correct number of data commitments, devices can
begin to exchange data. The device broadcasts its data and
the protocol commitment used to generate its data commit-
ment (Step 9). At the same time, the device receives the
other devices’ data values and protocol commitments and
adds those values to the respective sets (Step 10).

Selection & Counting

1. Ui
UI
−→Mi : di (the data to be shared)

2. Ui
UI
−→Mi : Ñ (number of people in the group)

Commitment

3. Mi : ni
r
←−{0, 1}ℓ, N← {ni}

4. pi ← h(ni), P← {pi}
D← {di}

5. ci ← h(di||pi), C← {ci}
6. Mi → ∗ : ci

7. ∗ →Mi : cj (for j 6= i)
Mi : C← C ∪ cj

8. Mi : if (|C| > Ñ) or timeout
quit (incorrect number of values)

Distribution

9. Mi → ∗ : (after receiving Ñ commitments) di, pi

10. ∗ →Mi : dj , pj for (j 6= i)
Mi : D← D ∪ dj , P← P ∪ pj

Verification

11. Mi : for j ∈ 1...Ñ

if cj 6= h(dj ||pj)
quit (wrong data commitment)

12. Mi : T − Flag(h(C||D||P)) (on screen)

13. Ui
UI
−→Mi : “All N T-Flags Match” or

“Some T-Flags Differ”
14. Mi : if “All N T-Flags Match”

broadcast ni

else

broadcast n′
i (n′

i

r
←−{0, 1}ℓ, n′

i 6= ni)
quit (discard collected D

15. ∗ →Mi : nj (for j 6= i)
Mi : N← N ∪ nj

16. Mi : for j ∈ 1...Ñ

if (pj 6= h(nj)) or timeout
quit (wrong protocol commitment)

17. Mi : Save D if all N values are correct

Figure 2: Steps for user Ui (i ∈ 1 . . . N) to exchange
data di with the other N−1 users via mobile devices.

Ui
UI
−→Mi indicates inputs over the user interface from

user Ui to their mobile device Mi. Any other transfer
of data (e.g., Mi → ∗) indicates wireless communica-
tion.

Verification (Steps 11–17) Once a device has received
the entire set of data, data commitments, and protocol com-
mitments, the verification stage of the protocol begins. The
device verifies that the data and protocol commitments match
the original data commitments (Step 11) by comparing the



data commitment with the hash of the received nonce and
protocol commitment.3 Provided all of the data commit-
ments are correct, all that remains to ensure authenticity is
for the device to verify that the values it received match the
values the other devices received and that the other devices
received its data. To verify each member’s device received
the same information, each device displays a T-Flag which
represents the hash of the data commitments, data, and pro-
tocol commitments exchanged during the protocol (Step 12).
At this time, the group members will compare the T-Flags
on the devices’ screens and indicate to their device if “All N
T-Flags Match” or if “Some T-Flags Differ” (Step 13). The
use of commitments and a final comparison where users ver-
ify the T-Flags on every device match ensures with
high probability that all of the devices in the group received
the same information. With a T-Flag containing 24 bits
of entropy, the probability of the same T-Flag on each de-
vice with different underlying data is 2−24. (We provide a
security analysis in Appendix A.)

Impatient group members may click“All N T-Flags Match”
without looking at the T-Flags in the group. In SPATE, the
use of protocol commitments and nonces allows the actions
of one or more diligent group members to protect such im-
patient users from saving incorrect data in the case of an
attack. After a user indicates the T-Flags agree, the de-
vice will reveal its nonce (see Step 14) and expect to receive
the correct nonce from the other N − 1 group members (see
Step 15) before the device saves D. An incorrect n is an
indicator that a member indicated “Some T-Flags Differ”
and dictates that members should discard D since D is in-
consistent across some of the devices.4 When all N nonces
are correct, every group member agrees that “All N T-Flags
Match”, and every device will save D. The nonces ensure
that any saved data fulfills the three properties needed for
authentic information exchange within a group, even if N−1
or fewer group members click “All N T-Flags Match” with-
out even looking at their devices.

5. APPLICATIONS
The SPATE system allows users to exchange public keys

in a secure and convenient way. To demonstrate the useful-
ness of the SPATE system, we design and implement two
applications on top of SPATE. In this section, we present a
high-level overview of a secure email application and a se-
cure file sharing application. In the following sections, we
present our implementation and evaluation.

5.1 Secure Email
In an ad-hoc group meeting, people may exchange their

physical business cards, or simply email addresses, to en-
able subsequent communication. Each group member needs
to distribute her cards to all the other group members, and
she will receive a different business card from each of the
other group members. Not only does distributing physical
cards consume time and resources, but each user then needs
to enter the received information into her digital address

3To ensure the proper protocol commitment, data, and data
commitment are compared, all sets are ordered with respect
to a unique sender value (e.g., Bluetooth or MAC address),
as opposed to the value of the element.
4A malicious party can inject an incorrect number to force
members to discard data, but this is only a denial of service
attack.

book later. Distributing vCards [21] using Bluetooth wire-
less communication may save time by eliminating typing,
however, it requires pairwise Bluetooth pairing to provide
any authenticity guarantees for the received information.
This approach does not scale: even for small groups with
8 users, there are 28 pairs.

Our secure email application provides a convenient mech-
anism for importing other users’ public keys and email ad-
dresses. Using the secure email application, a user can im-
print a self-generated X.509 public key certificate from their
workstation onto their mobile device. During the exchange
of authenticated data, she will obtain other users’ certifi-
cates. When she retrieves the collected certificates, the ap-
plication will extract the email addresses and names from
the certificates and automatically import them into the ap-
plication’s address book. Then, the user can send secret
and authentic emails. Our application is built as a plug-in
to Thunderbird [31], enabling simple adoption.

We can summarize the features of the secure email appli-
cation as follows:

1. Convenient to import contacts. The user does not have
to perform any operation per received certificate. The
uploading process is fully batched and automated.

2. Authenticated and confidential email. We provide an
alternative to PGP- and PKI-based solutions. Thanks
to the physical contact between human users, we can
assert that the contact information and public key that
a user has received is from that person she has met5.

3. Compatible with an existing mail client. Thunderbird
is one of the most popular POP/IMAP email clients.
Existing Thunderbird users can adopt our application
by installing it as a plug-in.

5.2 Secure File Sharing
In many scenarios, people may want to share files after a

social gathering. For example, scholars meet at a conference
and wish to start up a research project, or students at a
party want to share video games and music. In these cases,
the participants want to block people outside the group from
accessing the files. Also, they would like to share the files
with proper access control, but without frustrating manage-
ment overhead. Good and Krekelberg show that users have
trouble correctly setting permissions on files [17]. Further-
more, the file system should maintain accountability infor-
mation and revocability to help detect and stop misbehaving
users. Current solutions (e.g., BitTorrent [11], Dropbox [20],
and KaZaA [49]) do not meet these requirements.

We present a secure file sharing application that does sat-
isfy the above requirements. Each user downloads her work-
station’s configuration file and its public key to her mobile
device in advance. During the distribution of certificates
with SPATE, a user voluntarily provides her storage space
for file sharing. The configuration file of this user is now dis-
tributed to other users in the group, and the user collects the
other users’ public keys. That user uploads other users’ pub-
lic keys to our application, which will automatically create
a session for this group of users. They will have a separate
directory which only this session’s users can access. Other

5Of course, we cannot avoid errors if the person she met
gave false information. This problem cannot be solved even
if PGP or a PKI is used.



users upload the configuration file to their respective work-
stations and mount the remote file system. We implemented
this application on top of sshfs [43], a file system that works
over the SSH protocol.

Our application has the following advantages over past
solutions:

1. Secure transport. SSH tunnels protect file transfers
from eavesdropping and tampering.

2. Convenient access control. Shares on the server corre-
spond one-to-one with successful SPATE protocol ex-
changes. They are created automatically, with the pol-
icy that only users present at the physical key exchange
can access the files in the share.

3. Accountability and revocability for misbehaving users.
Each user is connected to the remote machine as an
individual user. Any misbehavior by the user can
be attributed to her user name. For instance, it is
suspicious if many sessions simultaneously connect to
the server using the same login credentials. The ma-
chine owner can then revoke or suspend this user. The
file system could also be extended to use the SPATE
exchanged public keys to enable non-repudiation for
changes made to the shared files via digital signatures.

4. User-friendliness. Users do not need to remember
hostnames, usernames, or passwords. The host ad-
dress and usernames are exchanged during the Distri-
bution of Certificates phase of SPATE. Since authenti-
cation is done using public key authentication in SSH,
no passwords are required. Of course, our system does
assume that the server machine is globally-routable.
Servers behind NAT can work but are more difficult
to configure.

6. IMPLEMENTATION
We have fully implemented the SPATE system and two

applications on Nokia N70 and E51 smart phones and com-
modity Dell workstations running Windows XP and Ubuntu
Linux. The system contains three parts: 1) the SPATE Mo-
bile Client that supports key exchange for the email and
file-sharing applications, 2) a Thunderbird plug-in to enable
secure email, and 3) a file sharing application (Figure 3).
In the following sections, we describe the implementation
details of these three programs.

6.1 SPATE Mobile Client
The SPATE Mobile Client is implemented in C++ for

Symbian OS v8.1a (with Nokia Series 60 second generation
graphical user interface) running on Nokia N70 smart phones
equipped with a digital camera and Bluetooth radio. The
size of the Symbian Installation System (SIS) binary for
the SPATE Mobile Client is 47 KB, enabling deployment
over even bandwidth-limited GPRS networks. We have also
ported the SPATE Mobile Client to the newer Nokia E51
with Symbian OS v9.1 (Series 60 third generation); how-
ever, we focus on our N70 implementation for comparability
with prior work on authenticated exchange [10,30].

Figure 3 shows the architecture of our SPATE Mobile
Client: it includes a library of commonly used functions
and email- and file sharing-specific modules. The SPATE li-
brary includes communication and visual engines. The com-
munication engine is responsible for data transmission and
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Figure 3: SPATE system overview.

contains the Bluetooth module. The visual engine is used
to generate T-Flags. As described in Section 4.2, SPATE
requires devices that support message broadcast. Bluetooth
does not support broadcast; however, it does support a pi-
conet of up to eight devices. We employ Bluetooth piconets
to simulate broadcast by forming a star network with a vol-
unteer leader during a SPATE exchange. Our simulated
broadcast also has the advantage of isolating different groups
in the same physical space, thereby eliminating crosstalk be-
tween groups of well-behaved devices (the common case).

Additionally, we desire to circumvent the Bluetooth device
and service discovery process, as it can introduce overheads
of tens of seconds, as well as user confusion [36]. Thus, we
augment our visual engine to also generate, photograph, and
decode two-dimensional barcodes (2D barcodes) which we
use to circumvent Bluetooth device discovery, as proposed
by Scott et al. [36].

The Bluetooth module is used for all data exchange (be-
tween mobile devices and between a mobile device and a
workstation). Note that this is a design decision we made for
our implementation; other communication interfaces (e.g.,
infra-red, USB, WiFi, or the cellular network) are also vi-
able. Ideally, during the SPATE exchange between multiple
Mobile Clients, we would have a broadcast primitive avail-
able.

2D Barcodes are generated, photographed, and decoded
using the VisualCodes module from Rohs and Gfeller [35],
ported to work with newer versions of Symbian OS. The
T-Flags module is used at the end of authenticated data
exchange; it displays a visual hash on devices’ screens (Fig-
ure 4).

6.2 SPATE Exchange Walk-Through
Here we provide a walk-through of a SPATE exchange us-

ing our implementation, in accordance with the SPATE pro-
tocol from Section 4.2. The only significant departure from
the SPATE protocol in Section 4.2 is the additional require-
ment that the people in the prospective group agree on a
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Figure 5: Execution Flow of SPATE Exchange. Step 1: Selection and Counting, Step 2: Commitment,
Step 3: Distribution, Step 4: Verification. Steps 1b, 1c and 1d are necessary in our implementation because
Bluetooth does not support broadcast.

Figure 4: Our Mobile Client displaying T-Flags on
N70 smart phones during a SPATE exchange. The
left and center T-Flags are identical, but the right
T-Flag is different.

leader to serve as the hub of the star network for simulating
broadcast with Bluetooth. Figure 5 provides a chronologi-
cal breakdown of the individual actions performed by a user
during the exchange.

Step 1, Selection and Counting, begins automatically when
the user starts the email or file-sharing SPATE Mobile Client
on her mobile device. Step 1a in Figure 5 shows the Mobile
Client prompting the user to count the number of prospec-
tive group members: “How many people?” The user may
enter a number between 2 and 8 (the maximum number of
devices supported by Bluetooth piconets, and the threshold
above which humans begin to make counting errors [25]).
Once the count has been entered, the Mobile Client prompts

the user as to whether she would like to act as the leader
for this SPATE exchange: “Act as Leader?” The user may
select Yes or No.

The devices must now establish Bluetooth connectivity.
We use 2D barcodes to circumvent the Bluetooth discov-
ery process. The leader uses her device’s camera to pho-
tograph the barcodes on the remaining prospective group
members’ devices (which encodes each device’s Bluetooth
address). Step 1c shows a Mobile Client displaying a bar-
code, and Step 1d shows the leader’s Mobile Client success-
fully decoding the barcode on another device. Once the
leader has photographed all members’ barcodes (detected
automatically since the Mobile Client can compute the ex-
pected number of distinct barcodes from the count entered
by the user in Step 1a), her device can construct a Blue-
tooth piconet between all of the devices. The leader’s device
serves as the master and the remaining devices are slaves.
The result is a network with a star topology connecting all
prospective group members’ devices to the leader’s device.
The leader’s device can then simulate broadcast by unicas-
ting messages to all connected slave devices.

All SPATE protocol operations for Step 2 (Commitment)
and Step 3 (Distribution) are automatically executed by the
SPATE Mobile Client. We design our Mobile Client to avoid
all non-essential user interactions in an effort to make the
exchange as smooth and fast as possible. The final step
(Verification) again involves the user. If the SPATE proto-
col successfully verifies all message commitments, then each
device will compute the final hash of the prospective group
members’ public keys and commitments and display it as a
T-Flag (Step 4a in Figure 5). The user is prompted to deter-
mine whether the T-Flags match. If the protocol fails during
the automated message exchange, the user is informed that
there has been an error and that she should retry.



It is now the responsibility of the prospective group mem-
bers to compare the T-Flags displayed by each of their de-
vices. If the users agree that all of the devices are displaying
identical T-Flags, they select“All T-Flags Match”(Step 4b).
Otherwise, they select “Some T-Flags Differ.” If the user in-
dicates that the flags do match, then her device stores the
newly received public keys for transmission to her worksta-
tion later. It also displays the message, “SPATE Exchange
Complete!” (Step 4c).

6.3 Secure Email
We enable secure (with authenticity, integrity, and se-

crecy if desired) email communication between users without
a PKI. We implemented our secure email application as a
Thunderbird extension using only 4135 lines of code. The
extension uses OpenSSL [12] to generate a public/private
signing keypair encapsulated in an X.509 certificate and
PKCS12 file for the user. This happens once during ini-
tial setup. The certificate includes the user’s email address
and is imported into Thunderbird as a trusted certification
authority (CA). The user’s certificate serves as a CA to au-
thenticate future certificates received from other users via
the user’s Mobile Client. Next, the user can download her
certificate from the extension to her mobile phone, thus im-
printing it with the user’s digital identity. She is now ready
to participate in SPATE exchanges, as described in the pre-
vious section.

After the user has participated in a SPATE exchange, her
device will have obtained self-signed public key certificates
from other users. She can upload all received certificates
from her Mobile Client to the Thunderbird extension. The
extension automatically signs6 the received certificates with
the user’s private signing key and imports them into Thun-
derbird’s address book. Users can then exchange secure
emails through Thunderbird’s built-in S/MIME [34] func-
tionality. In accordance with S/MIME, the email content
can also be encrypted under the receiver’s public key (in
addition to being signed by sender’s private key).

6.4 File Sharing
Our file sharing program is built for Linux using Java 6

and shell scripts, on top of the SSH File System (SSHFS) [43].
SSHFS allows a client to mount a remote file system tun-
neled through the SSH protocol. When the program is first
started, it creates a server configuration file with its host’s
IP address and the public host key that is used by the host’s
SSH server. It also generates a public/private signing key-
pair for the Mobile Client. After key generation, the user
imprints her mobile phone (via downloading) with her work-
station’s configuration file and her public key. Her device is
now ready to participate in SPATE exchanges to meet users
with whom she would like to share files.

The Mobile Client of the user that volunteers to be the
leader of the group during the SPATE exchange will dis-
tribute both the file-sharing configuration file and the user’s
public signing key. Other users only send out their pub-
lic signing keys. At the end of this phase, every client will
have received the leader’s server configuration file and the
leader will have received all the clients’ public key certifi-
cates. The leader later uploads the other clients’ certificates
to her workstation.

6Thunderbird does not accept public keys unless they are
signed by a trusted CA.

The file-sharing application (acting on behalf of the group
leader) briefly requires root privileges to complete the fol-
lowing tasks: 1) generate a group name with the hash of
received certificates; 2) create an account for each client,
using the filename of her public key as the username; 3)
register their public keys as authorized SSH users; and 4)
restrict their SSH access to reading and writing files only
(e.g., using scponly [37]). Finally, it creates a directory for
the group and adds each client into the group. The user may
also assign the group a “friendly name” after importing the
other users’ public keys.

Figure 6: Screen shot from the file-sharing applica-
tion. The application lists the shared folders on the
local host and folders mounted from remote systems.

Each of the non-leader users uploads the received con-
figuration file from their Mobile Client to the file-sharing
application running on their workstation. The application
will read the server’s IP address from the configuration file
and append the server’s public host key into its list of known
hosts (~/.ssh/known_hosts). The application mounts the
remote file system using the SSHFS engine. Since the server
and the client use their exchanged public keys for authen-
tication (i.e., the public key-based authentication method
offered by a standard SSH installation), there are no pass-
words for authentication.

The file-sharing application displays information about
currently shared folders, active groups, and active users on
the local machine (Figure 6). It also enables the user to
mount shared folders on remote machines.

7. EVALUATION
We evaluate the performance of authenticated key ex-

change using our SPATE Mobile Client implementation. We
do not discuss the performance of data exchange between a
mobile device and a workstation (i.e., imprinting the device
initially and then retrieving newly acquired public keys),
since synchronizing data between a mobile device and work-
station is a widely available operation.

7.1 Method
We ran SPATE, Seeing-is-Believing [30], and GAnGS [10]

on two to eight Nokia N70 smart phones. Each data point
represents the average of 10 runs. Time consumed by au-
tomated protocol steps (i.e., without involving the human;
Step 2 from Figure 1) is recorded in the experiment. We
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Figure 7: Time consumed during a SPATE ex-
change.

measured the time consumed by Collection, Connection, and
Communication. Collection represents the time consumed
by the leader while she photographs the 2D barcodes on
others’ screens. Connection represents the time needed to
establish a Bluetooth piconet once all barcodes have been
photographed. Communication includes the time for data
transfer during the automated Commitment and Distribu-
tion (Steps 2 and 3 from Section 4.2 and Figure 5) steps
of the SPATE exchange. For the other systems (SiB and
GAnGS), only the total time is measured for comparison. To
eliminate human factors in the execution time, these tests
are performed by experienced operators of all three systems.

7.2 Results
Figure 7 shows the time consumed by Collection, Con-

nection, and Communication. During Collection, the leader
needs to photograph N − 1 2D barcodes from other users.
In our experience, the leader needs 2-3 seconds to success-
fully photograph one 2D barcode. While this is the leading
source of time consumption in our system, 2-3 seconds is
considerably less than that which we would have incurred
using Bluetooth device and service discovery. To confirm
the overhead of Bluetooth discovery (and to validate the re-
sults of Scott et al. [36]), we implemented a Symbian C++
program to record the time spent on device and service dis-
covery. We conducted this experiment twice: once in an
open cubicle environment with many nearby Bluetooth de-
vices, and once in a closed apartment isolated from other
Bluetooth devices. Figure 8 shows our results; each data
point is the average of five runs. Even the best-case result
requires almost 30 seconds for two devices to discover each
other, connect, and query for the desired service.

Once all of the Bluetooth addresses have been collected by
the leader during Collection, the leader’s device establishes
a Bluetooth piconet. This results in the Connection over-
head in Figure 7, which takes roughly one to ten seconds,
depending on how many devices are involved.

Once the Connection is established, Communication con-
sumes less than one second even with a full eight devices.
Even with our star network topology, Bluetooth has suf-
ficient bandwidth to rapidly transfer the public keys and
commitments, which make up no more than a few kilobytes.
Verification of the commitments consumes less than 200 mil-
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Figure 9: Comparison between SPATE, SiB, and
GAnGS.

liseconds. We omit it from the figure since it would not be
visible.

The time consumed by the human user to count the num-
ber of participants, photograph barcodes, and compare flags
also contributes overhead. We find that these operations can
be done within 30 seconds by users familiar with SPATE, en-
abling a complete run of the SPATE system with eight users
in approximately one minute.

Comparison with Existing Systems Next, we present
a comparison between SPATE and two prior key-exchange
systems: Seeing-is-Believing and GAnGS (Figure 9). Note
that SiB is designed for key exchange between two parties.
Our SiB experiment was performed with two people; we then
extrapolated to obtain the expected overhead where each
member must pair with every other member for a total of
O(n) rounds of pairing. Without the additional time needed
to move about the group or keep track of who has paired
with whom, our SiB results can be interpreted as best-case.

SPATE, SiB, and GAnGS all use the barcode format pro-
posed by Rohs and Gfeller [35]. In our experience, recogni-
tion is efficient and accurate. However, SiB and GAnGS use
an extension to support multiple, cycling barcodes where,
e.g., four barcodes are cycled every second. We have found
that the requirement to successfully recognize all four bar-
codes significantly degrades usability. With SPATE, the



only information to be conveyed in the barcode is the Blue-
tooth address and service channel: 48+3 = 51 bits. We can
therefore employ a single static barcode, greatly improving
recognition times. In addition to slower barcode recogni-
tion, SiB and GAnGS require bidirectional barcode recog-
nition (i.e., A reads B’s barcode, and B reads A’s barcode).
GAnGS is a multi-round protocol designed for scalability
and denial of service resilience. However, for smaller groups
multiple rounds introduce overhead and thus slower perfor-
mance. With a single round, fewer barcodes to recognize,
and faster barcode recognition, SPATE outperforms SiB and
GAnGS for groups of three to eight users.

8. DISCUSSION
In this section, we discuss a topic not previously addressed.

8.1 Is Counting Necessary?
In SPATE, group members count the number of mem-

bers present to prevent non-group members from adding
their data (see Appendix A for more details). However,
if users exchange personally identifiable information (e.g.,
names and pictures), counting is optional. After running
SPATE (without counting), group members can examine the
acquired data and verify that they received information from
the expected group members and only those people. For ex-
ample, user A will verify that running SPATE with users B
and C yields data with B’s name and data with C’s name.
During this extra verification step, the user can detect any
additional data inserted by an outsider, O. If O simply
adds itself to the group, A can detect the unexpected data
labeled with O’s name. If O tries to impersonate a legiti-
mate group member (e.g., O submits a different public key
or email, but the same personally identifiable information as
C), A will notice the duplicate entries for C. If O tries to
delete a group member, the T-Flag comparison will detect
the attack. Without counting, SPATE requires the user to
press a button to indicate when the commitment phase is
complete (i.e., without Ñ , the device does not know when it
has the proper number of commitments). Therefore, there
is a tradeoff to ensure security; users have to count before
the commitment phase or carefully examine the data as part
of the verification phase.

9. PREVIOUS WORK
This work is preceded by protocols that establish authen-

tic information between two devices, which is often referred
to as “pairing”. Proposed strategies include: password en-
try on one or both device(s) [28,29]; string comparison that
uses the human as a channel to ensure authentic exchange
of information [26,28,29,47]; audio-based comparison where
the human user compares the strings via audio represen-
tation [18]; visual-based comparison of graphics that en-
code data [13, 33]; shaking devices to create shared entropy
pools [9, 19, 27]; common properties of the wireless channel
to establish authentic or secret information [7]; and location-
limited channels [3, 32,40].

Closely related to the SPATE exchange is GAnGS [10].
Both attempt to distribute authentic information within a
group of physically collocated users. However, GAnGS is
designed only for the exchange of public keys and requires
the installation of the private key on the user’s device. In
addition, SPATE is more efficient in that users are required

to perform fewer total interactions in the absence of infras-
tructure. Specifically, for N users SPATE requires N inter-
actions while GAnGS requires 3N .

Within the PGP community, key signing parties may be
held to authenticate groups of users [5]. The purpose of a
key signing party is to extend the web of trust: users gather
in a physical location to verify the identity of other atten-
dees (e.g., using a passport or driver’s license) and sign the
PGP certificates linking attendees’ names and public keys.
The proposed methods are suitable for forming groups, but
cumbersome. Attendees print their names and key finger-
prints on slips of paper, to be verified manually by other
attendees. Alternatively, a coordinator compiles a list of at-
tendees in advance, and each attendee must be verified at
the party. For large groups, comparing each attendee’s key
fingerprint is awkward and error-prone.

Researchers have also proposed numerous key agreement
protocols for groups, which rely on a PKI that issues certifi-
cates to each user [6, 23, 24, 41, 42, 44]. These protocols all
assume a common trusted certification authority (CA). The
CA is needed so that group members can authenticate other
members’ certificates. Unfortunately, this assumption is in-
valid in many settings. Different organizations may not have
any trusted authorities in common, or group members may
lack certificates entirely. The SPATE exchange is comple-
mentary to PKI-based schemes, as it can be used to establish
the authenticated certificates needed to set up a group key.

Other works have examined key agreement protocols for
groups, which rely on string comparison or shared pass-
words [1, 2, 46]. In contrast to SPATE, all of these schemes
aim to establish a shared secret between the group members.
After SPATE is used to exchange authentic public keys, it is
possible to set up a shared secret within the group using any
of the PKI-based schemes since SPATE allows the authentic
exchange of public keys. However, a shared secret lacks the
properties needed to distribute authentic public keys within
a group. Specifically, with only a shared symmetric group
key, any member can generate a message authenticator and
thus it is impossible to tell which user truly was the source
of a message (i.e., member A can claim K+ is member B’s
public key and use the shared group key to produce the
correct authenticator to support that claim). Also, many
prior works do not implement their schemes in a real-world
system, which elides numerous practical issues.

Finally, there is research using location-limited channels
to exchange keys [3, 8, 40]. Talking to Strangers [3] and
Capkun’s work [8] use demonstrative identification over a
location-limited channel (e.g., infrared) to exchange authen-
ticated public keys. Talking to Strangers may be used for
groups, but it lacks a step for member verification. Thus,
the scheme is vulnerable to malicious members who mount
Sybil attacks; the multiple identities of one member would go
undetected. Capkun’s work only discusses how to establish
a security association between two devices which physically
interact or share a trusted “friend” (much like PGP’s web-
of-trust). The Resurrecting Duckling protocol [40] leverages
a direct physical connection between devices for key setup.
In the protocol, a mother duck (i.e., the group leader) de-
fines and distributes a key to the ducklings (i.e., the other
members of the group). During setup, a policy is uploaded.
The policy specifies what actions a duckling will take. Thus,
the mother duck’s policy can direct the ducklings to support
group communication. Unfortunately, this requires that the



mother duck is completely trusted. In addition, there are
several practical issues with using Resurrecting Duckling for
groups. First, imprinting ducklings is a sequential operation.
Every duckling needs to touch the mother duck, and she be-
comes a choke point in the group formation process. Second,
the scheme requires a special interface that supports physi-
cal contact. Finally, like most other group schemes, Resur-
recting Duckling has not been implemented in a real-world
system to the best of our knowledge.

The field of Computer Supported Collaborative Working
(CSCW) is closely related to many of the applications that
would use SPATE. After a group meets and performs a
SPATE exchange, the next logical step is to use CSCW while
the group is physically separated. Within the CSCW field,
little has been done about how to secure applications. Fo-
ley and Jacob [14] described a formal language for defining
security requirements in CSCW, but ignored how to enforce
those requirements. SPATE presents one potential way to
enforce those requirements.

10. CONCLUSION
We have presented SPATE, a system for authentic ex-

change of public key information in groups of two to eight
people. SPATE represents a unique point in the design space
for ad hoc group key establishment. We trade off scalability
and denial-of-service resilience for speed and ease of use. In-
deed, only symmetric cryptographic primitives are employed
on the mobile device. An additional benefit is that SPATE
has no need to store secrets (e.g., a private key) on the mo-
bile device, thereby excluding an entire class of security vul-
nerabilities stemming from lost or stolen devices.

We rely on the user to accurately compare images across
other users’ devices and count the number of prospective
group members, but we limit the maximum group size to
eight people. In our experience, the resulting system is easy
and fun to use, finally providing the opportunity to achieve
easy-to-use secure email and secure file sharing.
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APPENDIX

A. SECURITY ANALYSIS OF SPATE
We now analyze the security of SPATE by considering

the various stages of the protocol and the various attacks
that an adversary may attempt to exploit. As we discuss in
our problem definition (Section 2), several vulnerabilities are
outside the scope of this paper, most notably vulnerabilities
of cryptographic primitives, denial-of-service attacks, and
malware on systems that tamper with the execution. The
security properties we need to demonstrate for the SPATE
system are: consistency, exclusivity, and uniqueness for the
exchanged data. Intuitively, these properties ensure that
each group member’s data is correctly sent to all other mem-
bers, and that no data of an outsider is present.

More formally, each group user ui of group G has data
di, and after the SPATE protocol run, each user obtains
exactly the set D =

S

i∈G
di. Consistency requires that each

user obtains exactly the same set, exclusivity requires that
uj /∈ G ⇒ dj /∈ D, and uniqueness requires that ui ∈ G ⇒
di ∈ D and |G| = |D|.

The SPATE protocol has three main phases: creation and
imprinting of data, authenticated exchange of data, and re-
trieving data from the device. We now argue why each of
these phases preserves the three security properties.

During the first phase (creation and imprinting of data)
and third phase (data retrieval), data di is sent to the mobile
device and the set D is retrieved from it. The exchanging
devices belong to the same party, so we may assume the
existence of an authenticated data transfer channel, perhaps
via a secure wireless device pairing protocol [26, 28, 47]. As
long as an adversary cannot alter the data exchanged, these
two phases are safe, since the data is meant to be publicized.

In this section, we argue that the authenticated data ex-
change phase is robust against attacks. We first discuss how
consistency is achieved, then uniqueness and exclusivity.

Consistency At the conclusion of a SPATE exchange,
the data D held by the group should be consistent (i.e., ev-
ery member has the same set of data D). To violate this
consistency, one of two things needs to happen: Either (i)
all users believe “All N T-Flags Match” despite at least two
distinct T-Flags appearing; or (ii) all devices show iden-
tical T-Flags despite an inconsistent set D. The protocol
and data commitments guarantee consistency by preventing
these events. The use of a protocol commitment in SPATE
ensures that when one group member detects different T-
Flags, every member of the group is alerted of the differ-
ence. The exchange of data commitments before revealing
data and protocol commitments ensures that an attacker
cannot give different group members different values which
produce the same T-Flag.

We assume that at least one member of the group dili-



gently compares the T-Flags on the devices. As such, when
at least two distinct T-Flags are displayed, the careful user
will notice the discrepancy. This careful user clicks “Some
T-Flags Differ” on the device Mi, which will cause it to re-
lease n′

i (the wrong nonce) and exit (Step 14 of Figure 2).
Without the correct nonces from all devices, the other group
members’ devices will infer that some member of the group
detected two different T-Flags. With this sure indication
that something is awry, every device in the group will discard
the collected set D. To trick the other group members into
saving inconsistent data, an attacker could try to imperson-
ate the diligent user’s device Mi by broadcasting the correct
nonce, ni, and blocking the incorrect nonce. However, the
attacker only knows pi (the diligent user’s disclosed proto-
col commitment). To learn a value n such that h(n) = pi,
the attacker must defeat the pre-image resistance property
of the hash function. Given a cryptographically secure hash
function, finding such a value is computationally infeasible.
Therefore, when at least one user compares the T-Flags, the
diligent user will release an incorrect nonce and alert the
whole group that the T-Flags are inconsistent. Once group
members receive the wrong nonce (or timeout if an attacker
blocks the diligent user’s device’s transmission containing
the incorrect nonce), the group will know about the incon-
sistent T-Flags and discard the inconsistent data.

Without a way to conceal different T-Flags, an attacker
trying to distribute inconsistent data in a SPATE exchange
needs different inputs to the T-Flags algorithm which pro-
duce the same output. Without data commitments, an at-
tacker could find such inputs. With data commitments,
the probability of identical T-Flags with inconsistent data is
negligible (i.e., P(equal T-Flags | inconsistent D) = 2−24).
Consider the protocol without the data commitments, i.e.,
suppose instead of broadcasting ci and later (di, pi), every-
one simply broadcasts di. A malicious party could wait until
all but one member of the group have broadcast their data,
intercept the last member’s data (dL), calculate a new value
d′

L, and broadcast that value to the group. Here, the at-
tacker’s goal is to create equal T-Flags, derived from unequal
inputs (dL versus d′

L). Such an attack exploits T-Flags’s
weak second pre-image resistance property, and requires 223

hash computations on average (since T-Flags’s output space
size is only 224). A modern computer can perform a hash
operation in about 1 µs, so under ten seconds of processing
on a single computer would yield a break of the protocol.

Such an attack is feasible because the malicious party
knows all of the group members’ data before it has to gen-
erate the value d′

L. To prevent such an attack, the system
must prevent a member from crafting their inputs to the
T-Flag algorithm after learning the other group members’
inputs. The use of data commitments does just that by bind-
ing group members to their inputs to T-Flags before other
group members reveal their inputs.

It is important to note that the group members will wait
until they hear all N data commitments to reveal their pro-
tocol commitment and data. Assuming the hash function is
pre-image resistant, the data commitment leaks no informa-
tion about the two inputs (i.e., the data and the protocol
commitment). Even if a recipient knows di and ci (where
ci = h(di||pi)), the only way to discover pi is by guessing.
This means that waiting until all other group members have
revealed their data commitments provides no advantage to
an attacker. The attacker also gains no advantage by wait-

ing to be the last to reveal her data and protocol commit-
ment. The collision-resistant property of the hash function
prevents the attacker from finding other data and protocol
commitment pairs (d, p) which yield the same c. Without
knowledge of group members’ protocol commitments, a ma-
licious party cannot precompute different inputs to the T-
Flag algorithm that produce the same output. The best
approach for a malicious party to produce identical T-Flags
with different underlying values is simply to guess randomly.
In such a case, the probability of two T-Flags matching when
the inputs are different is the probability of the lower 24 bits
of the underlying hash’s outputs matching (i.e., 1/224).

Exclusivity & Uniqueness At the end of the SPATE
exchange the set D does contains only group members’ data
and only contains one element from each member. Once
we know that the set of data is consistent and that each
member has counted accurately, the pigeonhole principle en-
sures exclusivity and uniqueness are achieved. An exclusive
set of data for a group of N members contains data from
only those N members. A unique set of data for a group of
N members contains one piece of data from each of the N
members. During the exchange each device ensures that its
set contains its own data (see Step 3 in Figure 2). At the

same time, when users count correctly (Ñ = N), the device
only completes the exchange when N elements are in the set
(Step 8). When there are more than N elements, the pro-
tocol quits and discards the data. If the protocol times out
before N elements are collected, the protocol also quits. We
also know that the sets are consistent for all N group mem-
bers. If the set lacks exclusivity, some entity besides the N
group members has added some element to the set. If the
set lacks uniqueness, one group member has added two or
more elements to the set. However, if either of these events
occur, the group members’ sets will be inconsistent or the
set will be too large and the protocol will quit and report an
error. Each member’s set is consistent so the check that the
set contains N elements ensures exclusivity and uniqueness.
When an outsider adds data or a group member contributes
multiple elements the cardinality of a consistent set must be
larger than N . All N members have the same set and each
member verifies their data is in the set so N is the small-
est cardinality of the set. However, the checks in SPATE
ensure that only N elements exist in the set. Based on the
pigeonhole principle it is impossible for outsider- or addi-
tional insider-data to exist in the collected set. Given that
users count correctly and devices only accept a set of the
corresponding size, a consistent set must only contain the
N elements from the N group members and thus exclusiv-
ity and uniqueness are ensured.


