
Secure Opportunistic Multipath Key Exchange
Sergiu Costea
ETH Zürich

Zürich, Switzerland
sergiu-mihai.costea@inf.ethz.ch

Marios O. Choudary∗
University Politehnica of Bucharest

Bucharest, Romania
marios.choudary@cs.pub.ro

Doru Gucea
University Politehnica of Bucharest

Bucharest, Romania
gucea.doru@gmail.com

Björn Tackmann
IBM Research – Zürich
Rüschlikon, Switzerland
bta@zurich.ibm.com

Costin Raiciu
University Politehnica of Bucharest

Bucharest, Romania
costin.raiciu@cs.pub.ro

ABSTRACT
The security of today’s widely used communication security proto-
cols is based on trust in Certificate Authorities (CAs). However, the
real security of this approach is debatable, since certificate handling
is tedious and many recent attacks have undermined the trust in
CAs. On the other hand, opportunistic encryption protocols such as
Tcpcrypt, which are currently gaining momentum as an alternative
to no encryption, have similar security to using untrusted CAs or
self-signed certificates: they only protect against passive attackers.

In this paper, we present a key exchange protocol, Secure Mul-

tipath Key Exchange (SMKEX), that enables all the benefits of op-
portunistic encryption (no need for trusted third parties or pre-
established secrets), as well as proven protection against some
classes of active attackers. Furthermore, SMKEX can be easily ex-
tended to a trust-on-first-use setting and can be easily integrated
with TLS, providing the highest security for opportunistic encryp-
tion to date while also increasing the security of standard TLS.

We show that SMKEX ismade practical by the current availability
of path diversity between different AS-es. We also show a method
to create path diversity with encrypted tunnels without relying on
the network topology. These allow SMKEX to provide protection
against most adversaries for a majority of Alexa top 100 web sites.

We have implemented SMKEX using a modified Multipath TCP
kernel implementation and a user library that overwrites part of
the socket API, allowing unmodified applications to take advantage
of the security provided by SMKEX.

CCS CONCEPTS
• Security and privacy → Public key encryption; Security
protocols;

KEYWORDS
key exchange, opportunistic security, multi-path TCP
∗I thank Christ our God for all His help during this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’18, October 15–19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243791

ACM Reference Format:
Sergiu Costea,Marios O. Choudary, DoruGucea, Björn Tackmann, andCostin
Raiciu. 2018. Secure Opportunistic Multipath Key Exchange. In 2018 ACM

SIGSAC Conference on Computer and Communications Security (CCS ’18), Oc-

tober 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3243734.3243791

1 INTRODUCTION
Secure communication is at the heart of our society today: we
use secure e-mails, secure HTTP (HTTPS), secure shell (SSH), se-
cure Voice-over-IP, secure messaging, etc. However, passive and
active attackers still threaten the security of our communications. In
particular, recent intelligence leaks and journalistic investigations
have shown that the NSA controls some of AT&T’s main rout-
ing facilities in order to analyze Internet traffic and long-distance
calls [48, 51]. Rob Joyce from NSA has also admitted that NSA, as a
persistent-threat adversary, will do everything it can to break into
other people’s machines and communications [25].

As a result, we have seen two major shifts in the landscape of
communications: a) enabling HTTPS by default on most major
websites and b) moving toward opportunistic encryption as the
baseline instead of no encryption at all (plaintext). Unfortunately,
the popular protocols that support these shifts (TLS and Tcpcrypt)
still have their shortcomings.

TLS (Transport Layer Security) [13], as well as similar protocols
such as QUIC [22], rely on third party servers – certificate author-
ities (CA) – to ensure the authenticity of public keys exchanged
between two communicating parties (e.g., client and server), hence
protecting against active man-in-the-middle (MITM) attacks. Yet,
in the past years we have seen many issues with this system: a)
CA’s have been fooled to issue certificates to untrusted parties [33];
b) CA servers have been hacked [17, 20]; c) the mechanism for
revoking bad or hijacked certificates is problematic [35]; d) CA’s
share their secret keys with other potentially insecure parties [7].
As a result, the protection that current TLS provides against active
MITM attacks is debatable.

On the other hand, opportunistic encryption protocols such as
Tcpcrypt [4] provide an improved security baseline for Internet com-
munications [15]: rather than using no encryption, such protocols
encrypt and authenticate data without requiring communicating
parties to authenticate each others’ public keys (i.e. no requirement
for trusting third parties or pre-established secrets). This provides
protection against passive attackers, but leaves the door open for

https://doi.org/10.1145/3243734.3243791
https://doi.org/10.1145/3243734.3243791

active ones (i.e. those that can tamper with the data). In essence,
this is similar to using a compromised CA or self-signed certificates.

In this paper, we introduce Secure Multipath Key Exchange
(SMKEX), a key exchange protocol that is an extension of the Diffie-
Hellman key exchange to multiple channels. SMKEX provides op-
portunistic encryption with partial protection against active MITM
attacks by leveraging the use of multiple public communication
channels between communicating parties. Hence, our protocol has
all the usability advantages of opportunistic encryption1, while
providing protection against several classes of active attackers. Fur-
thermore, SMKEX can be easily extended to a trust-on-first-use
(TOFU) setting and can be easily integrated with TLS, providing
increased security for both TOFU and TLS-like protocols.

The security and practicality of our protocol is made possible by
two main factors: a) the wide availability of path diversity between
different AS-es [39]; b) the widespread adoption of Multipath TCP
(MPTCP) [1] both on workstations and smartphones [37]. We have
performed measurements of path diversity in several countries,
which show that SMKEX can provide protection against local active
attackers for a majority of Alexa top 100 websites. Furthermore, we
can also use encrypted tunnels to create path diversity, allowing
SMKEX to provide security even against nation-wide adversaries.

Overall, our work provides several useful contributions towards
secure and practical opportunistic encryption: a) proof that SMKEX
can resist active, but unsynchronized attackers, thus providing the
highest security of an opportunistic encryption protocol to date
(§6); b) evidence that existing path diversity in the Internet allows
SMKEX to secure connections to many popular websites (§7); c) a
method based on encrypted tunnels which allows SMKEX to protect
against nation-wide adversaries (§7.2); d) an implementation of
SMKEX using a modified MPTCP kernel implementation and a
user library that overwrites the Socket API, allowing unmodified
applications to use SMKEX (§8); e) description of integration with
TLS and TOFU-based protocols (§10).

SMKEX builds on hash functions and is proven secure in the
random-oracle model. We additionally describe in §D a variant of
the protocol that is secure in the standard model.

2 ATTACKER MODEL
Generally, there are two types of network attackers: passive attack-
ers, which only eavesdrop on a path, and active attackers, which
additionally modify messages.

We consider the setting where a client connects to a server
across multiple paths. If multiple attackers target the same path,
we view them as a single attacker. If at least one of the attackers
is active, we view all of them as a single active attacker. If only
passive attackers target that path, we view them as a single passive
attacker. In the Internet, attackers that are present on different
paths can decide to collude. However, due to physical and national
boundaries, attackers in different AS-es or countries might not be
able to exchange data in real time. To capture such behavior, we
define two types of relationships.

Definition 1 (Synchronized attackers). Two attackersX1 and
X2 are said to be synchronized (written X1-X2) if they can exchange

messages between the start and end of a specific protocol session.

1See the SoK paper of Unger et al. [49, Section III, Table I] for more details.

P/P , P-P

A/P

A-P A/A

A-A

Figure 1: Map of all our possible adversaries based on intru-
siveness (A, P) and communication capabilities (−, /).

Definition 2 (Unsynchronized attackers). Two attackers X1
and X2 are said to be unsynchronized (written X1/X2) if they can

only exchange messages before the start and after the end of a specific

protocol session.

Unsynchronized attackers may agree over keys or data prior to
protocol execution. They may also cooperate after termination of
the session; this must not compromise the confidentiality of traffic.

2.1 Attack hierarchy for 2 paths
Based on attacker capabilities (active or passive) and the relation-
ships between attackers (synchronized or unsynchronized) we clas-
sify attacks according to total attacker power. While the classifica-
tion is simple for two paths (where we have only two attackers and
one relationship between them), the complexity increases quickly
as the number of paths grows. We discuss only the 2-path attacks
in-depth, and in §C.2 introduce methods that reduce the complexity
of any multipath attack to the 2-path case.

By looking at all possible combinations of attackers for the 2-
path case, we obtain the following attack scenarios: P/P , P-P , A/P ,
A-P , A/A, and A-A.

An active attacker is stronger than a passive one, as it includes
all the capabilities of the latter; additionally, synchronized attackers
are superior to unsynchronized ones. We sort the 2-path attack
scenarios based on attacker power in Figure 1. The arrows indicate
the strength of the adversaries: an adversary at the end of an arrow
is stronger (by the change of a single capability) than the one point-
ing to them. Furthermore, the arrows in reverse provide positive
implications of security: for example, if we prove that a protocol
provides some security property for the case A-P , this implies that
the protocol also provides this property for the cases P-P , A/P and
P/P . Note that P/P and P-P monitor all traffic without being able
to inject messages during the execution of the protocol. However,
because they can exchange information after the execution, they
are equivalent. The A-P model requires that the active attacker
cannot inject messages on the path controlled by the passive one,
as otherwise the model collapses to A-A. In terms of real-world
networks, A-P therefore requires an additional assumption such as
the impossibility of address spoofing or strong timing guarantees.

We want to prove that a protocol provides a security property for
some scenarios. We use the strict ordering of attacker capabilities to
reduce the number of necessary proofs. Specifically, if we show our
key exchange protocols are secure against A/A and A-P , it also im-
plies they are secure against P/P , P-P ,A/P . Opportunistic protocols

cannot achieve security against A-A attackers, so an opportunistic
protocol secure against both A/A and A-P attackers achieves the
best possible security according to our classification.

3 FUNDAMENTAL GOALS
In the following, we present the fundamental goals for secure op-
portunistic multipath key exchange in our model. In all our protocol
analyses, we model the network as asynchronous, with no upper
bound on the time required for a message to be delivered.
Secure key exchange. Our first goal (and the focus of our work)
is to obtain a secure key exchange between two parties. We define
a secure key exchange as a distinguishability game, adapting the
model of Canetti and Krawczyk [6]. In particular, as they target
authenticated key exchange and assume an adversary that has
full control over the network, we describe restricted classes of
adversaries that model A/A and A-P attackers, respectively. The
guarantee formalized by our model is that any protocol session in
which the adversary behaved as anA/A or anA-P attacker (and not
as an A-A attacker) produces a key that is indistinguishable from a
purely random one. This is the common security requirement for
key-exchange protocols.
Forward and backward secrecy. Key exchange protocols are of-
ten required to also provide forward secrecy and backward secrecy

(aka. future secrecy [11, 49]). Forward secrecy guarantees that an
attacker that is able to compromise all the key material of commu-
nicating parties at a given time (e.g. temporary access to a device) is
not able to decrypt data from previous communications [49, Section
IV]. Often, forward secrecy is defined in terms of long-term secrets:
compromising the long-term secrets should not allow an adversary
to decrypt previously encrypted data. However, given the lack of
long-term secrets in the basic version of our key exchange proto-
col, we define forward secrecy more generally, as Unger et al. [49,
Section IV], meaning that an adversary that can compromise all
the keying material cannot decrypt previously encrypted data. This
definition also captures protocols using long-term keys (see our
TOFU extension in §10).

Similarly, backward (or future) secrecy guarantees that an at-
tacker that is able to compromise all the key material of communi-
cating parties at a given time is not able to decrypt data from future
communications [49, Section IV]. Again, this generic definition
does not necessarily imply the use of long-term secrets, but only
that an adversary be given all key material available at a given time.

4 UNDESIRABLE EXTENSIONS FOR
MULTIPATH KEY EXCHANGE

Diffie and Hellman proposed the first efficient solution to exchange
a secret key over a public path back in 1976 [14]. This protocol
works as follows. Let Alice (A) and Bob (B) be the two parties that
want to communicate (e.g. a client and a server) and let G be a
cyclic group of prime order q, with generator д (with |q |, the bit
length of q, large). Alice and Bob may agree on parameters G, q,
д beforehand. A chooses a secret exponent a in Zq and sends the
public value дa (an element of G) to B. Similarly, B chooses a secret
exponent b in Zq and sends дb to A. They can now both obtain the

secret key K = дab , by exponentiating the public value received
from the other party to their secret exponent2.

While the DH protocol is still the predominant key exchange
mechanism used today, it is completely vulnerable to an active
MITM attacker (M) that can intercept and modify the key exchange
in order to set up different known keys with each of the participants.
A common solution to prevent such attack, as used in TLS, is to sign
the public value sent by the server and verify the signature through
a chain of certificates [13]. But relying on certificates signed by
third parties might lead to false security. Hence, we would like
to establish secure communications without relying on trusted
third parties or pre-established secrets (the context of opportunistic
encryption). As we show in the next sections, this is possible by
taking advantage of multiple communication paths.

In the following, we explain why previously proposed solutions
for multipath key exchange, as well as some ideas that may seem
good at first glance, fail to provide a secure key exchange against
A/A or A-P adversaries.
Replicated Diffie-Hellman. A first possible approach would be
to replicate the DH key exchange across all paths and then rely
on majority voting to decide on the good key. But this would only
work when there is a majority of passive attackers, which we cannot
know in advance. Another option is to stop if we get different keys
across some paths. However, in this case A/A adversaries could
agree before the key exchange on the parameters, resulting in the
same key exchange across all paths but with keys known to the
attackers.
Rely onDataTransfer Encryption.Another option is to perform
a single DH key exchange on one path (chosen randomly) and
then use a multipath data transfer protocol such as MPTCP [1] to
send encrypted data. This is practically what would happen if we
perform a standard DH key exchange (or any other single path key
exchange protocol) on top of MPTCP and then encrypt traffic with
the exchanged key.

In this case (see Figure 2, left), an active attacker on the path we
performed the key exchange onwould have access to the secret keys
used by the participants (say kAM and kMB). However, during data
transfer, this attacker would use KMB to re-encrypt the data sent
by A for B, while the data on the other paths would be encrypted
with the key kAM (assuming adversaries cannot communicate –
A/A – or that the other adversaries are passive – A-P). Therefore,
at some point B could reject the connection due to the impossibility
of decrypting data from these other paths.

While this seems better than DH on a single path, it still exposes
the data sent by A to the attacker (note that attackers may col-
lude after the key exchange to gather all the data they collected).
Therefore, a straight-forward extension of DH to the multiple path
scenario is not enough. This also implies that a straightforward im-
plementation of TLS on top of a multipath protocol such as MPTCP
will not increase its security. In Section 10, we show how to combine
SMKEX (§5) with TLS to actually increase its security.

2The only major change between the original proposal and the current use of the DH
protocol, is that in most applications today we use elliptic curves, which add curve
points instead of multiplicating integers. This is faster and requires less bandwidth,
since the public values are much smaller (e.g. 256 bits for security similar to 2048 bits
in the original approach).

Alice Bob

A1
M

B1
kAM kMB

A2 B2
kAM

A1
M

B1
дa ⊕ randA

дm ⊕ randM

дm ⊕ randM

дb ⊕ randB

A2
M

B2
randA

randM

randM

randB

Figure 2: Multipath extensions for Diffie-Hellman. Left: single DH then MPTCP. Right: shared secret Diffie-Hellman.

Shared Secret Diffie-Hellman. Another possible approach is to
combine the DH key exchange with secret sharing [45]. This was
done by Takano et al. [47] in the context of P2P networks. The idea
is to split the public values, e.g. дa , into shares s1, s2, ... up to the
number of paths, such that дa = s1 ⊕ s2 ⊕ ... (see Figure 2, right).
However, both A-P and A/A adversaries might compromise the
exchanged key either during or after the session. For example, let’s
take the case ofA/A adversaries that communicate after the session.
Say A starts the protocol and sends her shares s1, s2, ... to B. The
attacker M can agree beforehand on the shares he will reply to A
(дm = s ′1 ⊕ s

′
2 ⊕ ...), without requiring communication during the

key exchange. Upon receiving these shares, A creates the shared
secret kAM = дam and starts sending data to M (thinking of B). M
cannot decrypt the data at this point, since he cannot recover дa .
However, after the protocol run, the attackers can collude to get дa
and finally kAM . At this point it is possible to recover the data sent
by A. The same happens on B’s side.
Multiple Diffie-Hellman. Yet another simple approach is to per-
form a different DH key exchange on each communication path,
obtaining a different key ki on each path. Then, A and B can
compute a new global key, e.g. by adding the key bits modulo
2: kA = k1

A ⊕ k
2
A ⊕ However, this solution has the same problem

as the one above: it does not actually provide a secure key exchange.
The attackers can also reconstruct kA after the key exchange and
hence obtain data sent by A.

In summary, none of the simple extensions of DH to multiple
paths presented above can provide a secure key exchange against
A/A and A-P adversaries.

5 SECURE MULTIPATH KEY EXCHANGE
In this section, we present our secure multipath key exchange pro-
tocol (SMKEX). This protocol provides secure key exchanges with
forward and backward secrecy against A-P and A/A adversaries
without relying on long-term secrets or trusted third parties.

SMKEX, shown in Figure 3, performs a standard Diffie-Hellman
key exchange on one path while exchanging a hash of session
information and some nonces on the other path. Compared to
classical Diffie-Hellman, the only extra costs are computing and
sending the hash and nonces. As the protocol consists of a single
round trip, it can also easily be be included in other protocols, such
as the initial TLS key exchange, without introducing additional
delays. The protocol fields are described in Table 1.

In isolation, the Diffie-Hellman key exchange on the first path
is vulnerable to a man-in-the-middle attack. To prevent this, the
server sends a hash of session information (the public keys and
the cryptographic nonces) on the second path. The client uses

Client Server

A1 B1
дx

A2 B2
NC

A1 B1
дy

A2 B2
NS ,

hsess︷ ︸︸ ︷
H (NC ,д

x ,NS ,д
y)

Figure 3: Secure multipath key exchange protocol (SMKEX)
in the 2-path case.

this additional information to verify that it has the same session
information as the server. Additionally, it allows the client to verify
that the server’s public key was created by the server itself and not
chosen by the attackers (because in our model the attackers are
unable to synchronize across both paths to forge both the server’s
public key and the hash).

In theA-P scenario, the protocol exploits the fact that the passive
attacker is unable to modify messages, so at least one path is safe
against tampering. If the Diffie-Hellman exchange happens on this
safe path, then the security of the key follows immediately from the
properties of the Diffie-Hellman protocol. If the session information
hash is sent on the path with the passive attacker, then it will
reach the client unchanged. Thus, the client can compare its own
session information to what it received from the server and abort
the protocol if it detects a mismatch.

For the A/A scenario, the protocol exploits the lack of synchro-
nization between attackers. The intuition here is that the attacker
that sees the session information hash does not glean any informa-
tion about the public keys themselves. Due to the random oracle
nature of the hash, this makes the attacker unable to construct a
new hash that matches the client’s own public key and a forged
server public key. The client thus either receives an acceptable hash
for a session where no man-in-the-middle attempt happened, or
a different hash that produces a mismatch and causes the client
to abort the session. If the public keys and the nonces match, the
client concludes that no man-in-the-middle attack happened and
accepts the negotiated secret.

The nonces NC and NS could also be sent on the first path, to-
gether with the Diffie-Hellman elements. The second path would
then only be used for sending the hash. This solution would, how-
ever, require the additional assumption that the attacker on the

NC , NS Client and server nonces
дx , дy Client and server Diffie-Hellman public

key shares
sess Session information (nonces and key

shares)
hsess Hash of session information
sk Negotiated Diffie-Hellman secret
ss Negotiated secret string
atk Application traffic key
Table 1: Notation for exchanged messages

HDKF-Extract

HKDF-Expand

0

sk

ss

atk

Figure 4: Key derivation tree using HKDF-Extract and
HKDF-Expand as defined in RFC5869 [29]. HKDF-Extract
with a 0 seed is a good randomness extractor in the random-
oracle model.

first path cannot send a message to A2, which is not required by
our protocol. The exact security property achieved by SMKEX is
described in §6 and in more detail in §A.

We define a session as a tuple containing the client’s and server’s
Diffie-Hellman key shares and hello fields:

sess =
(
NC ,д

x ,NS ,д
y) (1)

The value present at the client are indicated via ∗ in the super-
script. The session, as viewed by the client, is therefore:

sess∗ =
(
N ∗C ,д

x ∗,N ∗S ,д
y ∗
)

(2)
To guarantee session independence, each NC , NS , x and y must

be randomly generated for each new session.
The client starts the protocol by sending its public value дx on

the first path and its nonce NC on the second path.
The server uses a randomly generated secret y to compute the

shared Diffie-Hellman secret sk = дxy , which is, as we show in
§6, a secure Diffie-Hellman key. To extract a key for use in further
cryptographic schemes, such as symmetric encryption, one uses
a randomness extractor such as HKDF [29], which is depicted in
Figure 4. Alternatively, one can use an almost-universal hash func-
tion [8] and extract via the Leftover Hash Lemma [24], using NS as
the seed, at the cost of some entropy loss.

The server replies on the first path with its own public value дy ,
and sends its nonce NS and the hash of the entire session informa-
tion (hsess) on the second path. Upon receiving the two messages,
the client computes its own shared Diffie-Hellman secret sk∗ = дxy
and extracts a key analogously to the server. The client then hashes
its own session information and checks whether the result matches

with what it received from the server. If the hashes do not match
(hsess , hsess∗), the key exchange fails and the client outputs ⊥.

While SMKEX provides a clean extension of Diffie-Hellman to
multiple public channels, its careful design results in better security
than the approaches from the previous section: it enables a secure
key exchange with forward and backward secrecy for both A-P
and A/A adversaries. Therefore, it can protect even against some
categories of active adversaries, increasing the level of protection
achievable by opportunistic encryption.

As we describe in §C.2, the protocol can be extended to a larger
number of paths at low communication cost: the communication
on all further channels is similar to the one on the second channel.

6 FORMAL ANALYSIS
We analyze SMKEX in a model that adapts that of Canetti and
Krawczyk [6] to opportunistic multi-path key exchange.We provide
a high-level description of our modifications in this section and
defer a more formal description of the model to §A.

In the model of Canetti and Krawczyk [6], initiator and respon-
der of a key exchange session obtain as input a session identifier.
Since the existence of such a predetermined identifier seems un-
realistic in opportunistic protocols, we follow the approach of
Choo et al. [9] and define the session ID sid of a protocol is con-
sidered as an output—not an input—of the protocol. To model
the property that, in SMKEX, the initiator begins the protocol
by sending both messages A1 → B1 and A2 → B2 as in Fig-
ure 3, we let the initiator Pi first be initiated through an invocation
(Pi , Pj , initiate, id) analogously to [6], and subsequently through
an invocation (Pi , Pj , follow-up, id), which lets the initiator send
the second message A2 → B2 in Figure 3. (The value id is only
used locally by Pi to identify which one of the possibly multiple
sessions between Pi and Pj is referred to.) The responder need not
receive such an explicit invocation, as the sessions are started by
the messages received on the network. In the security game, ad-
versary A may start an arbitrary number of SMKEX sessions and
attack them by observing and modifying network messages, as well
as by corrupting parties. At some point, A selects a test session
and obtains either the correct key computed in that session or a
purely random key, and A must guess whether or not it received
the correct key. The advantage AdvSMKEX

sk (A) of adversaryA is then
defined as

AdvSMKEX
sk (A) = 2 Pr [A guesses correctly] − 1 ,

which is analogous to the original model [6].
An adversary for SMKEX can always emulate a client to a server;

therefore, the fact that a server session completes and accepts the
key although it does not communicate with the actual client is not
considered an attack. This resembles the server-only authentica-
tion scenario considered in previous work such as by Krawczyk
et al. [28], and analogously with that work we require that the
test session chosen by the adversary must be a client (or: initiator)
session. A-P and A/A adversaries in the sense of §2 are modeled
by restricting the types of adversaries considered in the security
definition, as follows.
• A-P adversary. The adversary A delivers at least one of
the messages B1 → A1 or B2 → A2 in the test session

unmodified to Pi . This model also implies that the active
attacker cannot inject a message on the path controlled by
the passive one, as stated in Section 2.1.
• A/A adversary. The adversary consists of two separate Tur-
ing machines A1 for A1↔ B1 and A2 for A2↔ B2. (For a
precise formal model see §A.) The query (Pi , Pj , initiate, id)
to Pi in the test session, as well as the queries to deliver the
messages A1→ B1 to Pj and B1→ A1 to Pi are made byA1.
The query (Pi , Pj , follow-up, id) to Pi in the test session is
made by A2, Adversaries A1 and A2 interact (in the sense
of activating, revealing state, or corrupting) with disjoint
sets of parties; that is, there is no party Pn such that both
A1 and A2 make a query targeting Pn .

The above conditions formalize the models described in §2.
In §B.2, we prove the following theorem and show that SMKEX

is secure against A-P adversaries if the DDH problem is hard in the
considered group. The proof exploits that if A1↔ B1 is attacked
passively, then the protocol corresponds to Diffie-Hellman against
passive adversaries, and if A2↔ B2 is attacked passively, then the
correct transmission of the hash value ensures that a modification
to the Diffie-Hellman elements is detected.

The proof, and the subsequent one, are in the random-oracle
model. Collision resistance of the hash function is not sufficient
for security, which can be seen as follows: In Theorem 2 the hash
function is also required to hide the input; otherwise the active
attacker on B2 → A2 could forge.3 This hiding is exactly what
we achieve by using the random-oracle assumption. We provide a
standard-model construction, based on split-state non-malleable
codes, in §D.

Theorem 1. Let A be an A-P adversary that makes at most q
queries to the random oracle and initiates at most s sessions. Then
there is an adversary B, described in the proof, such that

AdvSMKEX
sk

(A) ≤ 2sAdvG
ddh

(B) + sq/2λ ,

where AdvG
ddh

(B) is the advantage of B in distinguishing a DDH

triple in G from a purely random one and λ is the output length of

the hash function.

In §B.3, we then show that SMKEX is secure against A/A ad-
versaries, again under the assumption that the DDH problem is
hard. The term stq/22ν−1 corresponds to adversary A1 guessing
both NC and NS , mounting a successful man-in-the-middle attack,
and 2stq/#G corresponds toA2 guessing дx . The term st/2λ comes
from correctly guessing the hash value h.

Theorem 2. Let A be an A/A adversary that makes at most q
queries to the random oracle, initiates at most s sessions at clients and
at most t sessions at servers. Then there is an adversary B, described

in the proof, such that

AdvSMKEX
sk

(A) ≤ stAdvG
ddh

(B) + stq/22ν−1 + 2stq/#G + st/2λ ,

where #G is the group order of G.

Both theorems are proven via a sequence of game hops, a stan-
dard proof technique. The proofs are deferred to the appendix.

3Consider the identity function, which is trivially collision-resistant. Thereby the
attacker on B2→ A2 learns дx , and an A/A-attack with predefined дy will succeed.

LTE	 	
celltower	

WiFi	 AP	

Mobile	 ISP	

Campus	 ISP	

Core	 ISP	
Server	

Client	
Path	 overl

ap	

Figure 5: Path diversity available to mobile users.

Since different sessions of the protocol are completely indepen-
dent, the security statements imply both forward and backward
secrecy between multiple sessions, but not within a session. More
formally, the security game allows the adversary to obtain all infor-
mation except for the ephemeral secrets used in the test session.

7 EMERGING PATH DIVERSITY FOR SECURE
MULTIPATH COMMUNICATIONS

The Internet has evolved to the point where it offers physically
disjoint paths for many client-server pairs: the hierarchical inter-
connection between autonomous systems in the Internet is being
replaced by a flatter structure where content providers and CDNs
peer directly with access networks (DSL, hotspot and cellular), re-
ducing path length and latency and increasing path diversity [31];
content distribution networks deploy servers throughout the Inter-
net and allow content providers to move their data closer to the
users; finally, mobile devices, which are one of the main contribu-
tors to traffic growth in the Internet [10], connect to the Internet
via multiple wireless interfaces such as Wifi and cellular.

To understand the added security provided in practice by SMKEX,
in this section we present a brief measurement study of the path
diversity available to mobile devices. We have shown that SMKEX
is secure in the A/A and A-P settings; to break SMKEX, adversaries
must thus be present, active and synchronized across all paths
between endpoints, which raises the bar for successful attacks.
Consider the example in Figure 5 where the mobile uses Multipath
TCP to talk to the server via its two wireless interfaces. In this
example, the two paths start out on different networks and converge
a few hops away from the server. When the two paths are disjoint,
there must be active, synchronized attackers on both paths for
a successful attack; in the core operator, however, the attack is
simpler because all traffic crosses a single network operator and
even a single router.

To estimate the difficulty of executing an attack, we classify
attackers based on their ability to subvert one or more Autonomous
Systems (or ASes). In this classification, we consider only active
attackers, as this is the safer assumption, focusing on the difference
between A/A and A-A, since as we mentioned in Section 2 the A-P
case collapses to A-A if the active attacker can inject packets into
the passive path.4 Hence, we define the following classes of active
attackers, partially inspired from Unger et al. [49, Section III.A]:

4
Local or nation-wide MITM that cannot control both paths are not able to establish
the A-P setup. Hence, even with the possibility of injecting packets from the active
path, they cannot become A-A either. Therefore, the A/A and A-A cases capture the
more realistic scenarios to be considered.

Path
Overlap

0 AS 1 AS 2 AS 3+ AS

USA 16/70 10/34 0/17 0/26
UK 48/54 26/27 5/13 0/20
Switzerland 30/80 10/75 0/25 0/5
Romania 12/50 26/58 0/30 1/30
Israel 60/60 21/21 4/4 15/30

Figure 6: Path overlap measurements:
routes to popular websites are surpris-
ingly disjoint, with many having no over-
lap regardless of the origin country.

 0
 2
 4
 6
 8

 10

 0 10 20 30 40 50 60 70 80

O
ve

rla
pp

in
g

AS
es

Website rank
Figure 7: AS path overlap when a mobile
client uses a cellular and a fixed connec-
tion (USA)

 0
 2
 4
 6
 8

 10

 0 10 20 30 40 50 60 70 80

O
ve

rla
pp

in
g

AS
es

Website rank
Figure 8: AS path overlap when a mobile
client uses a cellular and a fixed connec-
tion (Romania)

• local MITM: an attacker controlling local networks (e.g.,
owners of Wifi access points or localized internet service
providers).
• nation-wide MITM : an attacker controlling small parts of the
Internet, such as the internet service providers (ISPs) of a
country or small geographical regions.
• global MITM: an attacker controlling large segments of the
Internet, such as powerful nation states or large ISPs.

7.1 Measurement study
We set out to measure the path diversity that exists in practice
for dual-homed mobile clients. As servers, we used Alexa’s top
100 websites to which we added some sites such as local news-
papers (which may be subject to surveillance or censorship). We
ran traceroute from client devices connected via a variety of fixed
and mobile networks in countries where we had access to mobile
clients (via volunteers): USA, UK, Switzerland, Romania and Israel.
While our study is by no means exhaustive, it does shed a light on
the amount of path diversity that exists today in the Internet. For
each traceroute, we first perform a DNS lookup and then traceroute
to the resulting address. This means that our traceroutes may be
redirected to different servers serving the same website.

A previous study has tried to examine the same question starting
from an inferred AS-level map of the Internet [38], estimating
offline the amount of path diversity there exists between any two
endpoints. The study’s conclusions paint a mixed picture, noting
that “only about 5% of the countries show good chances of being

robust against MITM from a device view”, however they note that
“careful choice of the edge providers could make this likelihood positive

for a majority of the countries”. Our study is complementary: it
only focuses on a subset of the Internet (a few edge ASes and the
top 100 servers) but it focuses on mobile devices and it is much
more accurate, because it uses actual Internet routing (as opposed
to estimated routes based on the AS graph) and because it also
measures the effect of CDNs on path diversity.

The basic metric we are interested in is path overlap: the number
of autonomous systems that are traversed by both the mobile and
wired path en-route to the server. We do not count the destination
AS as path overlap: if an attacker controls the server (or its AS)
there is little SMKEX can do.

To measure path diversity, we traced the paths from all or a
subset of the cable providers and mobile operators in each country
to our target websites (2-5 fixed operators and 1-5 mobile ones per

country). We then studied the path overlap when the client uses
any cable operator in conjunction with any mobile operator in their
country. When traceroutes include private addresses we assume
these belong to AS0; thus if AS0 appears in multiple traceroutes, we
assume the paths overlap, when in practice they might be different.

As expected, our experiments show that AS path lengths to Alexa
top 100 sites are short: 40% of paths have three AS hops or less, and
95% have six hops of less; the longest path contains 11 ASes.

Measurement results in Table 6 show the minimum and maxi-
mum path overlap across all mobile-fixed provider combinations
to the target websites that respond to traceroute, per country. De-
pending on the choice of providers, as many as 50 to 80 (out of
100) websites can be reached via AS paths without any overlap,
or 12 to 50 in the worst fixed/cellular provider combination. Most
remaining websites can be reached via paths that have only one AS
in common. In the best case, none of the paths to our targets had
overlaps including two or more hops for most countries. Israel is
a special case because we only had access to one mobile operator
and one cable operator - even so, 80 websites can be reached via
paths that have at most one AS hop in common.

In Fig. 7 and 8, we show the measurements for USA and Romania
in detail. Romania has the highest path overlap of all the countries
we studied; still, if one chooses the best fixed-mobile provider com-
bination, there is no path overlap for 50 websites, and a single AS
is present on the two paths for the remaining 25 servers in our set.
In the USA, almost 70 websites can be reached without any overlap,
and all that respond to traceroutes can be reached with paths that
overlap in at most one AS. Note that for these two countries, only
75 of the 100 websites can be traced via all the networks we used.
This is because ICMP TTL exceeded messages are filtered on at
least one path. We omit these servers from our detailed analysis,
and in the summary results shown in Table 6, we assume that they
are a worst case that have three or more overlapping AS.

These results are very encouraging: for most destinations no
single AS, including cable, mobile or transit operators, can by it-
self mount MITM attacks against dual-homed mobile clients using
SMKEX. This means that SMKEX is secure against local MITM for
most of Alexa’s top 100 websites in the countries we have studied.

On the downside, the Alexa top 100 sites we traced are likely
better connected at the AS-level than less popular destinations, so
these results might paint a rosier picture than reality. To understand
the level of overlap we might see for other less popular websites,
we examined connectivity to Akamai, the largest CDN in operation,

DigiMobil

AS8708

Vodafone

AS1273

Orange

AS5511UPC

AS3257

Roedu

3 hops

RDS

AS6830

Telekom

AS26769

Akamai

AS2914

AS0

AS5580

Figure 9: Routes to Akamai from endpoints in Romania.

and show the results for Romania (where path diversity is worst
among the countries we measured). While large content providers
are building their own distribution networks (e.g. Google, Facebook
and Microsoft), most other content providers are turning to Akamai
(or other CDNs) to help them fight DDoS attacks and terminate
TLS sessions close to the customers. Paths to Akamai are therefore
a proxy for path diversity in this large category of websites. In
Figure 9, we show paths from Romanian clients to Akamai. In the
figure, the operators shown in red offer mobile access, and the
ones in blue offer fixed connectivity. Paths to other major providers
(Google, Microsoft) are similar (ommited for brevity). The figure
shows very encouraging results: to successfully attack SMKEX
when communicating with Akamai from a single fixed operator, a
nation-wide attacker must intercept traffic flowing via that operator
and all possible secondary paths, such as the three mobile operators
shown in red. Therefore, in our experiments, SMKEX is secure
against local MITM adversaries also for websites using Akamai.

These results show that SMKEX can raise the bar for successful
attacks against opportunistic encryption beyond the reach of local
MITM to nation-wide MITM attackers in many practical situations.

7.2 Protection against nation-wide attackers
We discovered an interesting example of nation-wide attack be-
havior in the routes towards bet365.com, a betting website hosted
in Hong Kong. The routes we measured are shown in Figure 10.
We see that most clients are redirected to STS (special telecom-
munications service of the Romanian Government) while clients
using Roedunet or UPC reach the actual website in Hong Kong. In
fact, all other clients get a page saying that traffic is restricted to
Bet365 because it does not comply with Romanian law. Detailed
analysis has shown that the redirection is achieved via static DNS
routes to STS servers returned by the operators’ DNS resolvers;
if we switch the resolver to a public one (e.g. Google’s 8.8.8.8), all
clients resolve Bet365 to the correct address, and can reach the
website: IP traffic is not restricted at all. Note that both the DNS
resolvers of Roedu, the educational network operator, and that of
UPC resolve Bet365 correctly; we could not explain the reason for
this different behavior.

To protect against such nation-wide attackers, in our example
above it is sufficient to use a path through one of the operators
that was not rewriting DNS; but this will not work against more
diligent states. We propose a general and pragmatic solution to
create artificial path diversity that relies on tunneling. Before any

DigiMobil

AS8708

Vodafone

AS20530

Orange

AS6830 UPC

AS1273

Roedu

3 Hops

RDS

Telekom

STS

Bet365

AS0

AS34587

Figure 10: Routes to Bet365 from endpoints in Romania.

communication is made, all clients set up long-lived tunnels that
cross jurisdictional and geographical boundaries, and all servers
use a CDN that has a international footprint (i.e. deployments in
multiple countries).

To set up such tunnels, clients can rely on cloud computing and
rent virtual machines in other countries, as shown in Figure 11,
where a user based in Europe sets up a long-lived tunnel between
his machine and its VM in the US. This user will have IP address
A1 in Europe, and address A2 in the USA as provided by the cloud
provider. The tunnel is secured when the user first registers with the
cloud, and will be used to create path diversity for all connections
this user makes with other parties5. The benefits of this setup are
clear: the public path segments are small and completely disjoint
(in Europe and the US). Furthermore, only SMKEX setup messages
need to cross the Atlantic, all data traffic can stay on the European
path, avoiding unnecessary costs. To achieve this, the client can
simply close the trans-Atlantic subflow after SMKEX negotiation
finishes successfully.

To understand how well such a solution may work, we rented
virtual machines in multiple Amazon EC2 datacenters worldwide,
and ran measurements from these VMs to our Alexa top 100 servers
list.We analyzedAS path overlap between these routes and our local
ones, finding that there is little overlap in general. However, disjoint
AS paths are not enough to ensure protection against nation-wide
attackers (e.g. governments of the countries traversed by our traffic).

Ideally, we would place the traceroutes on the world map, and
examine whether there is any country that is crossed by both the
Amazon and the local (e.g. Romanian) path. Unfortunately, using IP
geolocation to map the routes yields big errors. Even worse, fiber
path layouts are not well known or easily traceable.

We use, instead, the idea of Alibi routing[34] that uses speed of
light as proof a certain path does not visit a remote country. This
concept is shown in Figure 11: if the sum of the RTTs measured
between A1 − B and A2 − B is smaller than the time it takes light
to travel from A1 to A2 and back, then the two paths cannot be
overlapping anywhere. Since we know the location of our client and
our datacenter (as reported by the cloud operator), we can compute
a lower bound beyond which it is impossible for the two paths
to overlap. In particular, it is impossible for nation-wide attackers
situated in Romania or USA to see both paths and break SMKEX.

5This is the only time the client will need to perform such setup. This can be done
by using SMKEX with many public channels – to reduce possibility of synchronized
attacks –, TLS with one ore more trusted certificates, a quantum key exchange, visiting
the remote site in person, or any other method that is deemed secure by the client,
since this secure connection only needs to be established a single time, enabling the
use of SMKEX for securing the communication to any other website.

USA UK Switzerland Romania Israel
Datacenter Thresh Mobile Fixed Thresh Mobile Fixed Thresh Mobile Fixed Thresh Mobile Fixed Thresh Mobile Fixed

Virginia N/A N/A N/A 60ms 3% 48% 68ms 0-50% 50-66% 82ms 34-48% 47-65% 97ms 24% 87%
Frankfurt 68ms 30-32% 39-56% 5ms 0 6% 8ms 0 0-15% 17ms 0-10% 6-13% 28ms 0 70%
Sydney 121ms 34-43% 38-46% 170ms 11% 50% 165ms 41-50% 51-68% 152ms 42-50% 48-68% 141ms 44% 76%

Table 2: Using geographic diversity to ensure security: for different country and location of our tunnel, we list the percentage
of Alexa top 100 websites to which the measured RTT across the “public” paths is smaller than the theoretical minimum RTT
between the two paths.

USA	

A1	 A2	

B	 B	

Encrypted	 	
tunnel	

Encrypted	 tunnel	

Figure 11: Using long-term tunnels to ensure path and juris-
diction diversity.

We present our results, for three Amazon datacenters (Frankfurt,
Virginia and Sydney) and clients in five countries in Table 2. For
each country / datacenter combination, we compute the theoretical
latency threshold by dividing the geographical distance between
the origin country and the country hosting the datacenter to the
speed of light in fiber. Then, we used the measured latency to Alexa
top 100 websites from various vantage points. If the added RTT
from the client to website A and from the datacenter to website A
is smaller than this threshold, then the paths are provably disjoint
and are safe against one nation-state attack.

In the table, we split our results based on the type of network
operator (fixed/mobile) and show the minimum and maximum
fraction of Alexa websites for which there exist such secure paths.

The table shows that a good fraction of websites can be reached
by paths that are secure against one nation state, but this percent-
age depends on a few factors. First, when the datacenter is close
to the origin country (e.g. Frankfurt for Switzerland, UK or Ro-
mania), there are very few sites with safe routes; this is because
the geographical distance is small, resulting in a small RTT; on
such distances, the router and server processing times affect the
measured RTTs considerably.

When we use VMs further away (e.g. USA), the fraction of
sites reachable via guaranteed non-overlapping paths by European
clients increases to 50%, which is quite remarkable and is explained
by the fact that all these sites have local replicas very close to the
clients. Non-replicated sites provide no guarantees of path disjoint-
ness. Finally, using a tunnel to Sydney only marginally improves
the results; this is because almost all replicated sites were already
“covered” by the US datacenter.

Another observation is that, in all our datasets, the fraction of
secure paths when using mobile operators is smaller than for fixed
operators. This is expected, since wireless latencies (e.g. LTE or 3G)
are known to add at least 20ms to the wired RTT for any given
destination.

These results show that SMKEX can also protect against nation-
wide attackers for a majority of popular websites, if we allow the
use of an encrypted tunnel between continents.

8 IMPLEMENTATION
Mobile devices are switching to Multipath TCP (MPTCP) [1], a
recently standardized TCP extension that can utilize multiple paths
(called subflows) within a single transport connection. Past research
has shown that MPTCP can be used to ensure smooth mobility
between cellular and Wifi networks [43] or between overlapping
Wifi deployments [12]. MPTCP has already been widely deployed
on mobile phones on all Apple devices and top-end Android devices
(such as the Samsung Galaxy 7 & 8 series).

Hence, to make experimentation with SMKEX simple for users
and to increase its impact, we have implemented SMKEX over
MPTCP. Our implementation has two main parts: a) the SMKEX
library, running in user-space that allows unmodified applications
to use our opportunistic encryption, and b) the integration with a
Multipath TCP Linux kernel implementation, including some minor
kernel changes.
User-space Library. Our user-space library allows apps that rely
on the TCP sockets API to run over SMKEX/MPTCP without any
changes. To this end, we overwrote the socket API calls and pack-
aged our algorithms as a dynamic library which can be pre-loaded
at program instantiation time before libc; this way unmodified
apps will use our implementations of the socket APIs instead of the
system implementations. Our library code relies on the system calls
to interact with the MPTCP implementation. We implemented all
the cryptographic operations using the OpenSSL crypto library. For
the key exchange part, we used 256-bit ECDH keys and SHA-256
hashes, and AES-GCM for data transfer experiments.
MPTCP integration. Integrating SMKEX with MPTCP is in prin-
ciple straightforward, however there are some subtleties to properly
ensure path diversity and to ensure resilience to DNS hijack attacks,
which we discuss in greater detail next.

An MPTCP connection contains one or more subflows, and it
starts when its first subflow is created. Each subflow looks very
much like an independent TCP connection to the network, with the
exception that its segments carryMPTCP-specific options. After the
initial subflow is set up, each endpoint computes an MPTCP token,
which is a unique identifier its peer has assigned to this connection.
This token is embedded in the handshake of additional subflows
within the same MPTCP connection and helps the remote end
find the appropriate connection to bind the subflow to. Secondary
subflows cannot be set up until the initial subflow has been set up.

Server	

Client	

Edge1	

Edge2	 Overlay	 	
network	

CDN	 	
servers	

Figure 12: CDNs terminate TCP close to
the end user.

 0

 20

 40

 60

 80

 100

 0.3 0.35 0.4 0.45 0.5 0.55 0.6

C
D

F
(%

)

Connection setup time (ms)

DH
SMKEX

Figure 13: CDF of connection setup
time, RTT=0.2ms.

 690

 695

 700

 705

 710

 715

 720

512 1024 2048 4096 8192 16384 32768

T
im

e
 (

m
ill

is
e
co

n
d
s)

File size (bytes)

Figure 14: Data transfer duration using
SMKEX over trans-atlantic tunnels.

To run SMKEX, our library implementation first opens anMPTCP
connection and uses an MPTCP API (from Hesmans et al.[23]) that
blocks until the specified number of subflows is created. If the con-
nection falls back to regular TCP the SMKEX handshake fails; the
same happens if the desired number of subflows is not created in a
predefined amount of time.

Once the MPTCP connection has enough active subflows (two
by default), SMKEX can start the handshake. However, if we simply
send SMKEX messages using the sockets API provided by default
by MPTCP, there is no control over the subflow that will carry the
handshake data. In most cases, all the messages will be delivered
by the first subflow, and this would break the security of SMKEX
making MITM attacks easy to execute.

To send and receive data on specific subflows, we have made
two changes to the MPTCP Linux kernel implementation as fol-
lows: a) the send syscall allows specifying which subflow must
carry the provided application data, and b) the receive syscall
allows specifying which subflow to receive data from. When data
is received on another subflow than the expected one, the recv
returns a specific error code telling the library which subflow it
should read data from. Finally, to avoid changing the syscall API,
our implementation reuses an unused byte in the flags parameter
to specify the desired subflow in the send and recv calls.

Finally, we use the fullmesh MPTCP path manager that, by de-
fault, creates one subflow for each interface: a mobile client, for
instance, will create two subflows to the server, one on cellular and
one on Wifi.
CDN integration. There are two deployment scenarios we target;
in both scenarios, a server and a mobile client support SMKEX
running over MPTCP. The first scenario is the one depicted in
Figure 5, where the MPTCP subflows are terminated at the server.
The second scenario involves a CDN and is shown in Figure 12: in
this case the two subflows do not reach the same server, and an
additional mechanism is required to direct the secondary MPTCP
subflows to the appropriate server. This is the preferred scenario
for SMKEX because it provides the best path diversity, as shown in
our measurement study; we discuss it next.

To route client traffic to nearby edge servers, CDNs use one of
two approaches: DNS redirection, where the client location is used
to select a local replica, or use IP anycast where all edge servers ad-
vertise the same IP address and Internet routing distributed clients
to their closest servers. In this paper, we assume the edge servers

rely on IP anycast; this solution is used by many, including the
Microsoft CDN [21].

Consider the example in Figure 12, where the service address
A is advertised in BGP by both edge servers. When the MPTCP
connection starts over the cellular interface, its first subflow will
be handled by edge server 1 which is closest to the client (from a
routing hops point of view). Edge server 1 will serve content from
its local cache, or contact the origin server the required content is
not cached.When the client opens its wireless subflow, the resulting
subflow will reach edge server 2. The only remaining problem is
that edge server 2 must now forward the subflow to edge server 1
over the CDN’s internal network.

To achieve this, we use Beamer [40], a load balancer that supports
MPTCP. To use Beamer, the CDN first assigns a unique numeric
identifier to each of its edge servers. Beamer works as follows: when
the first subflow is setup to edge server 1, the edge server will tell
the client its unique identifier. The client will include this identifier
into its second subflow which will reach edge server 2; this server
will simply proxy the connection to edge server 1.

Note that on-path attackers can modify the connection ID, but
the only effect is that the secondary subflows will be rerouted
incorrectly in the CDN network, and will be broken (i.e. edge server
2 will send the subflow to another edge server instead of sending
to edge server 1). In this case, the SMKEX handshake will fail.
Practicality of SMKEX. While this section shows that SMKEX
relies on CDN’s and popular websites to update their infrastructure
in order to ensure the highest security possible, it is important
to note that MPTCP deployment requires the same changes as
SMKEX: an MPTCP enabled kernel and a load balancer. We believe
such deployment is near because load balancers are already widely
deployed in production [18, 36, 41] and MPTCP is already widely
deployed on mobile clients.

9 EVALUATION
The goal of our evaluation is to test the correctness of our implemen-
tation and its behavior in practice. We tested our implementation
on our local testbed and using Amazon to create wide-area path
diversity.

Testbed experiments. In our first experiment, the client and server
run on two quad-core Xeon machines connected via two Gigabit
links emulating the different paths. Our client repeatedly sets up
an encrypted connection to the server and we measure the time it
takes to perform the connection handshake. Figure 13 shows the

CDF of connection setup times for SMKEX compared to standard
Diffie-Hellman. In the median, SMKEX takes about 50µs more than
standard Diffie Hellman; this difference is explained by the addi-
tional round-trip time our MPTCP-based implementation requires.
MPTCP only sets up the second subflow after the first subflow is
setup.

Amazon EC2 Experiments. To test our path diversity setup, we
rented two VMs in two EC2 datacenters on the east coast (Virginia
and Ohio). One VM terminates a long term client tunnel, offering
path diversity. The other VM is used to emulate an edge CDN server.

Our server and client are close to each other (5ms RTT), but they
also set up a path via the USA using long-term openVPN tunnels
to one of the Amazon VMs. Our client repeatedly downloads files
of different sizes from the server. In figure 14 we plot the total
download time. The measured latencies are as follows: the long
path has an RTT of 280ms (crossing the Atlantic four times), and
the short path has an RTT of 5ms.

For small files, the expected download latency should be domi-
nated by the long path RTT: our implementation requires two RTTs
over this path, one to setup the MPTCP subflow and one to perform
the key exchange. After the key is set up, the server sends all data
via the low latency path. The experiments confirm this hypothesis
the latency is around 650ms for all file sizes we tested. The file size
has little influence on the download because the local, high-speed
(50Mbps) link is used for data transfer.

10 EXTENSIONS OF SMKEX
Due to its simplicity, SMKEX may be easily extended to actually
increase the security of TOFU or TLS-like protocols. In the pre-
vious sections, we have focused on the basic version of SMKEX,
because this provides the highest degree of usability. As Unger et
al. [49] write, “defending against mass surveillance requires a com-

munication system that virtually all users can successfully use. Thus,

it may be wise to start from the basic user experience of today’s widely

deployed communication apps and try to add as much security as

possible...”. Hence, in this section we show two possible enhance-
ments of SMKEX: (a) TOFU enhancement; (b) TLS integration. In
§C.3, we also discuss the possibility of using double ratcheting to
provide forward and backward secrecy even across messages from
a single session. Note that these extensions are shown informally,
with the goal to show how SMKEX can be used in various other
scenarios. We leave a formal analysis of these extensions and their
implementation to future work.

10.1 TOFU enhancement
SMKEX can be enhanced by using a Trust-on-first-use (TOFU) ap-
proach6, increasing the security of applications that rely on TOFU
authentication, such as SSH or websites using self-signed certifi-
cates.

This could be done by having the server use a long-term pub-
lic/private key pair which is stored by clients and then used together
with the server’s ephemeral public key to derive the session key.
That is, if we let X = дx be the ephemeral public key of the client
(with corresponding private key x), Y = дy be the ephemeral public

6Term probably coined by Wendlandt et al. [50].

Client Server
A1 B1

дx

A2 B2
NC

A1 B1
дy ,дls

A2 B2
NS ,H (дx ,NC ,д

y ,NS ,д
ls)

Figure 15: TOFU-based SMKEX protocol.

key of the server (with private keyy) and LS = дls be the long-term
public key (with corresponding private key ls), then the client can
send as input to the key derivation the concatenation of Y x and
LxS , while the server would use Xy and X ls . A similar approach,
but requiring the client to also use a long-term key, is used in Sig-
nal [46], known as triple Diffie-Hellman, possibly inspired from
Protocol 4 of Blake-Wilson et al. [5]. A similar protocol has also
been proposed and analyzed by Krawczyk and Wee [30].

A depiction of our modified protocol with the server using a
long-term key is shown in Figure 15. As mentioned by Wendlandt
et al. [50], existing TOFU protocols suffer from two main issues: a)
possible active attacks during the first connection; b) possible active
attacks during an update of the server’s long-term key. With our
TOFU-based SMKEX protocol, such attacks are no longer possible
in the A/A and A-P scenarios. Therefore, by storing and checking
the server’s long-term public key, our TOFU-based SMKEX proto-
col provides partial protection against active adversaries (i.e., A/A
and A-P) during initial setup and during server key update (which
was not the case for previous TOFU approaches), while providing
protection even against A-A adversaries if these are not able to
synchronize during the initial key setup (or key update).

The main disadvantage of TOFU-based approaches (including
this extension of SMKEX), is that when long-term keys change
(either genuinely or due to an attack), the client is forced to either:
a) drop the connection (if we want no user interaction) or b) ask the
user about what to do in this case (which might hinder usability).

Nevertheless, given that previous TOFU-based methods pro-
vided the highest security for opportunistic encryption (see the
survey of Unger et al. [49, Table I]) and that SMKEX also increases
the security of TOFU approaches, we can conclude that using a

TOFU-enhanced SMKEX protocol provides the highest security for

opportunistic encryption to date.

10.2 Integration into TLS
We can also easily integrate SMKEXwith TLS, obtaining a combined
protocol (which we called MTLS) that provides increased security
over TLS, while retaining all the security benefits of the classic
single-path TLS. This extension benefits TLS security in two ways:
first, it provides improved opportunistic security to unauthenticated
TLS, which is described in [44, Section C.5]. Second, it works as an
additional barrier in case of Certificate Authority (CA) attacks, as
described below.

Several attacks on TLS have exploited problems with CAs: some
have issued certificates to invalid parties [33], some have been
attacked and rogue certificates issued [17, 20], checking revoked
certificates is difficult [35], many share their secret keys with possi-
bly less-secure partners [7]. Privacy issues also appear when large
institutions monitor employees with the help of fake certificates

Protocol A-P , A/A A-A
Auth Rogue Auth Rogue

SMKEX - X -
TLS X X

MTLS X
Table 3: Comparing the security features of SMKEX, TLS and
MTLS

Client Server

A1 B1
ClientHello,дx

A2 B2
NC

A1 B1
ServerHello,дy

A2 B2
NS ,H (NC ,д

x ,NS ,д
y)

Figure 16: Key exchange in Multipath TLS (MTLS) proto-
col. The first path executes the standard TLS key exchange,
while the second path is used to validate keying information
similarly to SMKEX.

installed in browsers. Finally, governments might force their ISPs
and local CAs to collaborate and trick users into using rogue certifi-
cates. By combining SMKEX with TLS we may thwart such attacks.
We illustrate the advantage of MTLS over single TLS or SMKEX
in Table 3 for the different attackers (A-P , A/A, A-A) and scenarios
(authentic and rogue certificates).

We illustrate our design using TLS1.3. SMKEX is supported with
the (EC)DHE exchange mode and the PSK with (EC)DHE key ex-
change mode. Accordingly, we assume that the client and servers
exchange some form of Diffie-Hellman public key shares дx and
дy (finite-field or elliptic curves). We only improve the security of
the server authentication portion of TLS; client authentication and
other key exchange extensions downgrade to the single path case.
Figure 16 illustrates the MTLS key exchange. The standard TLS
key exchange runs on the first path, with two modifications. First,
the Client Hello message indicates in an extension that MTLS is
used, and the ClientHello.random NC in this message, as well as
the ServerHello.random NS in the response, are dropped.7 MTLS
introduces two new messages on the second path. The client sends
NC , and the server responds with NS as well as a hash of NC , NS ,
дx and дy .

MTLS provides all the security of a standard TLS exchange, with
added protection against attackers that forge the server’s long term
secret. For example, in the case of a forged certificate an attacker
that is only present on the first path is unable to successfully com-
plete the key exchange with the client. The verification of the hash
fails at the client, and the key exchange terminates immediately.

More precisely, MTLS provides security against all attackers
for which the test session is either fresh according to the original
definition [6], i.e. the server session is uncorrupted, or the adversary

7To keep the message format compatible with standard TLS, the random fields can be
replaced by independent values and ignored in the computation.

behaves as an A/A adversary, in which case it can even corrupt the
(long term key of the) server session.

Theorem 3 (MTLS; informal). For the described type of adver-
sary, MTLS is secure under the condition that the DDH assumption

holds in the selected group and that the signature scheme used in TLS

is existentially unforgeable. The statement holds in the random-oracle

model.

The proof is essentially a combination of the proof of Theorem 2
and a standard analysis of the TLS 1.3 core protocol.

11 RELATEDWORK
There have been many schemes proposed for trust establishment.
We refer the reader to the survey of Unger et al. [49, Section III]
for a comprehensive treatment. Here, we shall focus mostly on
opportunistic approaches, popular protocols such as TLS, QUIC
and Signal, as well as some previous proposals for using multiple
channels to establish trust.

One of the best-known protocols for basic opportunistic encryp-
tion is Tcpcrypt [4]. It performs an efficient key exchange8 over a
TCP connection to derive keys and then can output an authentica-
tion tag over the session transcript, which could be verified using a
trusted certificate or using a different communication channel. As
in SMKEX, we could send the authentication tag over a secondary
public channel (secondary subflow in MPTCP) rather than relying
on a certificate or different form of communication channel. Hence,
our design can also be seen as a model for increasing the security
of previous opportunistic encryption methods such as Tcpcrypt.

An enhanced version of basic opportunistic encryption is done
through trust-on-first-use (TOFU), as is the case for SSH or using
self-signed certificates, where the client remembers the first long-
term key sent by the server. However, as Wendlandt et al. [50] men-
tion, such approaches are completely vulnerable to active MITM
attackers during the initial key setup or during key update. SMKEX
can protect against many active attackers at all all times. Hence,
by combining SMKEX with TOFU, we obtain the best protection
possible to date for opportunistic encryption.

The most popular protocols for securing client-server commu-
nications, TLS [13] and QUIC [22], as well as the most popular
protocol for secure messaging, Signal [46], all rely on trusted third
parties to issue correct certificates (TLS, QUIC) or long-term public
keys (Signal). However, such trust is problematic, as third parties
can become corrupted [17, 20, 33], verification is difficult [35] and
keys may be shared among many untrusted parties [7]. Hence,
several schemes have been proposed to cope with these issues
(mainly focusing on certificates), including: a) monitoring issued
certificates [19, 50]; b) creating and managing public logs of all
issued certs [32]; c) proposing modifications to the existing archi-
tecture [26, 27]. Unfortunately, all of these schemes still require
trust in one or more entities. Furthermore, solutions in the first cat-
egory add overhead to TLS connections, the solutions in the second
category cannot quickly cope with compromised private domain
keys, while those in the third category remain largely impractical
due to the many actors and work required.
8Shifts the expensive part of public-key encryption to the client in the case of key
exchange based on RSA encryption of a fresh symmetric key, reducing burden from
the server and encouraging wide adoption of encryption.

Finally, there have also been some proposals for using multiple
communication channels. Some of these require using a secure
channel [52], while others propose to use secret sharing for dis-
tributing the key [47], which we have shown not to be secure in our
setting (see §4). In contrast, SMKEX provides a secure key exchange,
proven againstA-P andA/A adversaries, which works across public
channels.

12 CONCLUSION
SMKEX allows the most secure opportunistic encryption method
to date, by relying on several public communication channels. We
have proven that it provides secure key exchanges with forward and
backward secrecy across a wide range of adversaries and we have
shown that the current path diversity across the Internet allows
SMKEX to protect against local and nation-wide active man-in-
the-middle attackers. Its simplicity also means that we can easily
integrate SMKEX with TOFU and TLS-like protocols, increasing
their security.

We have a fully-working implementation of SMKEX, based on
a modified Linux MPTCP kernel implementation and a user-level
library, which allow unmodified applications to use SMKEX. There-
fore, SMKEX is ready to be used. Servers only need to support
MPTCP across their edge servers, which can be easily done with
the methods we have shown. With the ongoing deployment of
MPTCP, we expect this to happen soon, but perhaps the advan-
tages of SMKEX can motivate some of the large web sites to deploy
MPTCP even sooner.
SOURCE CODE
The source code for SMKEX is available here:
https://github.com/nets-cs-pub-ro/smkex
and the modified MPTCP kernel, required for SMKEX, is here:
https://github.com/nets-cs-pub-ro/mptcp-smkex
Acknowledgement:
We thank all the people that have helped us in this work, through
ideas, experiments, comments in previous drafts and several other
ways. Among them, we thank Ross Anderson, Virgil Gligor, Markus
Kuhn, Mike Bond and Hugo Krawczyk.

This work was sponsored in part by the European Commission,
through the SSICLOPS H2020 project.

REFERENCES
[1] A. Ford and C. Raiciu and M. Handley and O. Bonaventure. RFC6824:TCP

Extensions for Multipath Operation ... https://tools.ietf.org/html/rfc6824.
[2] D. Aggarwal, S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, and M. Prabhakaran.

Optimal computational split-state non-malleable codes. In Theory of Cryptogra-

phy, volume 9563 of LNCS, pages 393–217, 2016.
[3] M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R.

Stinson, editor, Advances in Cryptology — CRYPTO 1993, volume 773 of Lecture
Notes in Computer Science, pages 232–249. Springer, 1993.

[4] A. Bittau, M. Hamburg, M. Handley, D. Mazieres, and D. Boneh. The case for
ubiquitous transport-level encryption. In USENIX Security Symposium, pages
403–418, 2010.

[5] S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their
security analysis. Crytography and Coding, pages 30–45, 1997.

[6] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In International Conference on the Theory and

Applications of Cryptographic Techniques, pages 453–474. Springer, 2001.
[7] F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. M.Maggs, A.Mislove, and C.Wil-

son. Measurement and analysis of private key sharing in the https ecosystem. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security, pages 628–640, New York, NY, USA, 2016. ACM.

[8] L. Carter and M. Wegman. Universal classes of hash functions. Journal of

Computer and System Sciences, 18(2):143–154, 1979.
[9] K.-K. R. Choo, C. Boyd, and Y. Hitckcock. Examining indistinguishability-based

proof models for key establishment protocols. In Advances in Cryptology —

ASIACRYPT 2005, volume 3788 of LNCS, pages 585–604. IACR, Springer, 2005.
[10] Cisco. Global Mobile Data Traffic Forecast. http://www.cisco.com/c/

en/us/solutions/collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html.

[11] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila. A formal
security analysis of the signal messaging protocol. In Security and Privacy

(EuroS&P), 2017 IEEE European Symposium on, pages 451–466. IEEE, 2017.
[12] A. Croitoru, D. Niculescu, and C. Raiciu. Towards wifi mobility without fast

handover. In 12th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 15), pages 219–234, Oakland, CA, 2015. USENIX Association.
[13] T. Dierks and E. Rescorla. The transport layer security (TLS) protocol version

1.2. RFC 5246. 2008.
[14] W. Diffie and M. Hellman. New directions in cryptography. IEEE transactions on

Information Theory, 22(6):644–654, 1976.
[15] V. Dukhovni. Opportunistic Security: Some Protection Most of the Time. 2014.
[16] S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. In ITCS, 2010.
[17] Eckersley, P. Iranian hackers obtain fraudulent HTTPS certificates: How close to

a Web security meltdown did we get? https://www.eff.org/deeplinks/2011/03/
iranian-hackers-obtain-fraudulent-https. Last accessed: November 2017.

[18] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-Hielscher,
A. das Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein. Maglev: A fast
and reliable software network load balancer. In 13th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 16), pages 523–535, Santa
Clara, CA, Mar. 2016. USENIX Association.

[19] Electronic Frontier Foundation. Ssl observatory. https://www.eff.org/observatory.
[20] Fisher, D. Final report on diginotar hack shows to-

tal compromise of ca servers. https://threatpost.com/
final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/
77170/. Last accessed: November 2017.

[21] A. Flavel, P. Mani, D. Maltz, N. Holt, J. Liu, Y. Chen, and O. Surmachev. Fastroute:
A scalable load-aware anycast routing architecture for modern cdns. In 12th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 15),
pages 381–394, Oakland, CA, 2015. USENIX Association.

[22] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk. QUIC: A UDP-Based Secure and
Reliable Transport for HTTP/2. 2016.

[23] B. Hesmans, O. Bonaventure, and F. Duchene. A socket api to control multipath
tcp (draft-hesmans-mptcp-socket-03). 2008.

[24] R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random generation from one-way
functions. In STOC, 1989.

[25] R. Joyce. Disrupting nation state hackers. San Francisco, CA, 2016. USENIX
Association.

[26] T. H.-J. Kim, L. Huang, A. Perrig, C. Jackson, and V. Gligor. Transparent key
integrity (tki): A proposal for a public-key validation infrastructure. Technical
Report CMU-CyLab-12-016, Carnegie Mellon University, 2012.

[27] T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and V. Gligor. Accountable
key infrastructure (aki): A proposal for a public-key validation infrastructure.
In Proceedings of the 22nd international conference on World Wide Web, pages
679–690. ACM, 2013.

[28] H. Krawcyzk, K. G. Paterson, and H. Wee. On the security of the TLS protocol:
A systematic analysis. In Advances in Cryptology — CRYPTO 2013, Heidelberg,
2013. Springer.

[29] H. Krawczyk and P. Eronen. Hmac-based extract-and-expand key derivation
function (hkdf). 2010.

[30] H. Krawczyk and H. Wee. The optls protocol and tls 1.3. In 2016 IEEE European

Symposium on Security and Privacy (EuroS&P), pages 81–96. IEEE, 2016.
[31] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jahanian. Inter-

net inter-domain traffic. In Proceedings of the ACM SIGCOMM 2010 Conference,
SIGCOMM ’10, pages 75–86, New York, NY, USA, 2010. ACM.

[32] B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. 2013.
[33] Lemos, R. Microsoft warns of hijacked certificates. https://www.cnet.com/news/

microsoft-warns-of-hijacked-certificates/. Last accessed: November 2017.
[34] D. Levin, Y. Lee, L. Valenta, Z. Li, V. Lai, C. Lumezanu, N. Spring, and B. Bhat-

tacharjee. Alibi routing. In Proceedings of the 2015 ACM Conference on Special

Interest Group on Data Communication, SIGCOMM ’15, pages 611–624, New York,
NY, USA, 2015. ACM.

[35] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs, A. Mislove, A. Schul-
man, and C. Wilson. An end-to-end measurement of certificate revocation in
the web’s pki. In Proceedings of the 2015 Internet Measurement Conference, pages
183–196, New York, NY, USA, 2015. ACM.

[36] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad: Making stateful layer-4 load
balancing fast and cheap using switching asics. In Proceedings of the Conference

of the ACM Special Interest Group on Data Communication, SIGCOMM ’17, pages
15–28, New York, NY, USA, 2017. ACM.

https://github.com/nets-cs-pub-ro/smkex
https://github.com/nets-cs-pub-ro/mptcp-smkex
https://tools.ietf.org/html/rfc6824
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.eff.org/deeplinks/2011/03/iranian-hackers-obtain-fraudulent-https
https://www.eff.org/deeplinks/2011/03/iranian-hackers-obtain-fraudulent-https
https://www.eff.org/observatory
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://www.cnet.com/news/microsoft-warns-of-hijacked-certificates/
https://www.cnet.com/news/microsoft-warns-of-hijacked-certificates/

[37] MPTCP Blog. Commercial usage of multipath tcp. http://blog.multipath-tcp.org/
blog/html/2015/12/25/commercial_usage_of_multipath_tcp.html. Last accessed:
November 2017.

[38] D. Nguyen, D. C. Phung, S. Secci, B. Felix, and M. Nogueira. Can MPTCP Secure
Internet Communications from Man-in-the-Middle Attacks? In In proceedings of

CNSM:International Conference on Network and Service Management, 2017.
[39] H.-D.-D. Nguyen, C.-D. Phung, S. Secci, B. Felix, and M. Nogueira. Can MPTCP

Secure Internet Communications from Man-in-the-Middle Attacks? 2017.
[40] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu. Stateless datacenter load-

balancing with beamer. In 15th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 18), pages 125–139, Renton, WA, 2018. USENIX Asso-
ciation.

[41] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz, R. K̃ern,
H. Kumar, M. Zikos, H. Wu, C. Kim, and N. Karri. Ananta: Cloud scale load
balancing. In SIGCOMM, 2013.

[42] Perrin T. Axolotl ratchet. https://github.com/trevp/axolotl/wiki.
[43] C. Raiciu, D. Niculescu, M. Bagnulo, and M. J. Handley. Opportunistic mobility

withmultipath tcp. In Proceedings of the Sixth InternationalWorkshop onMobiArch,
MobiArch ’11, pages 7–12, New York, NY, USA, 2011. ACM.

[44] E. Rescorla. The transport layer security (TLS) protocol version 1.3. internet
draft. 2018.

[45] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, Nov. 1979.
[46] Signal. Signal documentation. https://signal.org/docs/.
[47] Y. Takano, N. Isozaki, and Y. Shinoda. Multipath key exchange on p2p networks.

In First International Conference on Availability, Reliability and Security (ARES’06),
April 2006.

[48] The Intercept. The NSA’s Spy Hub in New York, Hid-
den in Plain Sight. https://theintercept.com/2016/11/16/
the-nsas-spy-hub-in-new-york-hidden-in-plain-sight/. Last accessed:
November 2017.

[49] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and M. Smith. Sok:
secure messaging. In Security and Privacy (SP), 2015 IEEE Symposium on, pages
232–249. IEEE, 2015.

[50] D. Wendlandt, D. G. Andersen, and A. Perrig. Perspectives: Improving ssh-
style host authentication with multi-path probing. In USENIX Annual Technical

Conference, volume 8, pages 321–334, 2008.
[51] Wired. WHAT WE KNOW ABOUT THE NSA AND AT&T’S SPYING PACT.

https://www.wired.com/2015/08/know-nsa-atts-spying-pact/. Last accessed:
November 2017.

[52] F. L. Wong and F. Stajano. Multichannel security protocols. Pervasive Computing,

IEEE, 6(4):31–39, 2007.

A DETAILED SECURITY MODEL
To analyze SMKEX, we extend the model of Canetti and Krawczyk [6] in
several aspects and describe how the protocol is analyzed in that framework.
We first shortly recall the Canetti-Krawczykmodel in §A.1, and then describe
the necessary modifications in §A.2.

A.1 Canetti-Krawczyk in a nutshell
Message-driven protocols. The model of Canetti and Krawczyk [6] models

the execution of a protocol, modeled through a Turing machine, between
a set of parties P1, . . . , Pn . A message-driven protocol is either triggered
at a party through an external “call” or through an arriving messages. At
each of these events, the protocol processes the incoming information and
may produce local output and/or transmit a message over the network.
Local outputs are explicitly labeled as either “public” or “secret”. Typically,
a message driven protocol is initiated through an external call at one party
and then proceeds by sending messages back and forth until the protocol is
finished.

Key-exchange protocols. A key-exchange protocol is a message-driven
protocol in which the interaction proceeds between pairs of parties and
which return, upon completion, a secret key called a session key. The protocol
is initiated at a party Pi through an external call (Pi , Pi , sid, role), where Pj
is the identity of the intended partner and role is either initiate or respond,
depending on whether the party sends the first message.

Session-key security. Security of a key-exchange protocol is defined
through a game in which an adversary A performs queries to certain
oracles given to it. In more detail, these oracles are as follows:

• New session. Adversary A can create a new key-exchange session
at a party Pi via a query (Pi , Pi , sid, role), and obtains the potential
public outputs and messages generated by the protocol invocation.

• Deliver message. Adversary A can deliver a messagem to a party
Pj , which results in the invocation of the protocol given message
m. The adversary again obtains the potential public outputs and
messages generated by the protocol invocation. The fact that the
adversary can deliver arbitrary messages models that it is assumed
to completely control the network.

• Session-state reveal. Adversary A specifies a party Pi and a protocol
session sid and obtains the state of an active but incomplete protocol
session. The exact information that is leaked through this query is
specified by each protocol.

• Session-key query. Adversary A specifies a party Pi and a protocol
session sid and obtains all “secret” outputs of the session.

• Party corruption. Adversary A specifies a party Pi and obtains the
long-term secrets of Pi . (This oracle call is actually not needed for
SMKEX.)

• Session expiration. Adversary A specifies a party Pi and a protocol
session sid. This deletes all data generated of that session, a feature
that is necessary for modeling forward secrecy of key-exchange
protocols.

• Session test. Adversary A specifies a party Pi and a protocol ses-
sion sid. Depending on a hidden, uniformly random bit b ∈ {0, 1},
adversary A obtains (i) either a uniformly random session key or
(ii) the actual key computed by Pi in session sid.

The choice of test session is, however, restricted; adversary A can only
choose sessions at (i) uncorrupted parties, where (ii) the session key has
not been queried and (iii) the session state has not been revealed. The same
restrictions also apply to the partner session; i.e. the session at some party
Pj that shares the same session identifier sid. To model forward secrecy,
the choice of expired sessions at corrupted parties is also allowed.

Finally, adversary A outputs a bit b′ which can be understood as a guess
for b , and A is said to win the game if b = b′ or if there are mismatching
keys in some session. The advantage of A is then defined as Advsk (A) =
2 Pr [A wins] − 1.

Often, the security definition is understood in an asymptotic sense;
however, we prefer a concrete-security treatment explicitly specifying the
advantages to obtain more useful guarantees for real-world use.

A.2 Formal model of protocol and sessions
We first observe that SMKEX can be seen as a message-driven protocol as
specified in Section A.1. We slightly modify the network model to incor-
porate differentiation between the two network endpoints associated to
each initiator by addressing all initiators P by either P .1 or P .2, depending
on whether the message is sent via the first or the second channel, and
the initiator protocol signals to the adversary whether a message appears
as sent from P .1 or P .2. Likewise, when a initiator protocol is invoked by
the adversary with a message from the network, it is signaled whether the
message is received on the first or the second channel. The initiator Pi ,
as in the definition of key-exchange protocol in [6], initially obtains an
invocation (Pi , Pj , initiate, id). The initiator uses the invocation to send
a message to the responder, which correspond to the message A1 → B1
in the diagram. Upon a second invocation (Pi , Pj , follow-up, id), the ini-
tiator sends a second (possibly empty) message to the responder, which
corresponds to the message A2→ B2 in the diagram. The responder need
not receive such an explicit invocation, as the sessions are started by the
messages received on the network. The value id is only used locally by Pi
to identify which one of the possibly multiple sessions between Pi and Pj is
referred to. The responder answers both messages according to the SMKEX
message flow (i.e., Ai → Bi is answered by Bi → Ai), and outputs the secret

http://blog.multipath-tcp.org/blog/html/2015/12/25/commercial_usage_of_multipath_tcp.html
http://blog.multipath-tcp.org/blog/html/2015/12/25/commercial_usage_of_multipath_tcp.html
https://github.com/trevp/axolotl/wiki
https://signal.org/docs/
https://theintercept.com/2016/11/16/the-nsas-spy-hub-in-new-york-hidden-in-plain-sight/
https://theintercept.com/2016/11/16/the-nsas-spy-hub-in-new-york-hidden-in-plain-sight/
https://www.wired.com/2015/08/know-nsa-atts-spying-pact/

key and the session ID sid, which is generated by the protocol and different
from id. The initiator, after receiving both messages, also computes the key.

The formal specification of protocol session then follows more closely
the variant of Choo et al. [9], in which the session ID of a protocol is
considered as an output—not an input—of the protocol. It is specified as the
concatenation of all messages sent and received by a protocol.

Rationale. Canetti and Krawczyk [6] consider the session ID as an input
to the protocol. In the opportunistic-encryption setting, however, it seems
unnatural to assume that the initiator and responder already share a session
ID prior to the start of the session. Therefore, we adapt a modification of
Choo et al. [9] in which the session ID is defined as the concatenation of all
protocol messages; this can be seen as an analogue to the model of Bellare
and Rogaway [3]. We also drop the requirement of the responder’s protocol
being invoked by an explicit message (Pj , Pi , respond); the corresponding
input is needed in [6] to define the session. The second, possibly empty,
message A2→ B2 sent by the initiator is included for definitional reasons.
Depending on the exact definition we consider, the two messages sent by
the responder may have to be given to different instances of the adversary—
therefore they must not be returned in the same oracle call. Generating the
message B1 → A1 as a response to the actual message and the message
B2 → A2 as a response to a subsequent empty message is one way of
modeling the protocol appropriately for this.

A.3 A-P and A/A adversaries
We first observe that all considered adversaries can emulate a client to a
server; therefore, the fact that a server session completes and accepts the key
although it does not communicate with the actual client is not considered an
attack. This resembles the server-only authentication scenario considered
in previous work such as by Krawczyk et al. [28], and analogously with that
work we require that the test session chosen by the adversary must be a
client (or: initiator) session.

A-P adversary. We require for the test session that the adversary A
delivers at least one of the messages B1→ A1 or B2→ A2 unmodified to
the client.

A/A adversary. This setting is a bit more complicated, because we must
have two active adversaries which are not allowed to communicate. Each
active adversary must obtain one message (B1→ A1 resp. B2→ A2) and
deliver it to the client. In between, we may want to allow the adversaries
to query other oracles, but they must not be able to use this for covert
communication.

We formalize this as follows. At any point during the game, the adversary
A can output two states S, T ∈ {0, 1}∗. The game then proceeds in the
following steps:

(1) Invoke A with input S to obtain output S ′, this stage of the adver-
sary is also denoted as A1,

(2) invoke A with input T to obtain output T ′, this stage of the adver-
sary is also denoted as A2,

(3) invoke A with input S ′ to obtain output S ′′, this is again A1,
(4) invoke A with input T ′ to obtain output T ′′, this is again A2,
(5) finally, invoke A with input (S ′′, T ′′) and continue the experiment

as before.

By the definition of an A/A adversary, A1 and A2 must not communi-
cate during the attack. This is formalized in our model by the following
conditions:

• the query (Pi , Pj , initiate, id) to Pi in session sid, as well as the
queries to deliver the messages A1→ B1 to Pj (i.e., messages from
Pi .1) and B1 → A1 to Pi (i.e., to Pi .1) in session sid were made
during steps 1 or 3, i.e. by A1,

• the query (Pi , Pj , follow-up, id) to Pi in session sid, as well as the
queries to deliver the messages A2→ B2 to Pj and B2→ A2 to Pi
in session sid were made during steps 2 or 4, i.e. by A2,

• adversaries A1 and A2 interact (in the sense of activating, revealing
state, or corrupting) with disjoint sets of parties; that is, there is no
party Pn such that both A1 and A2 make a query targeting Pn .

Furthermore, the freshness requirements of the original definition still
apply [6].

The model described above is valid only for one-round protocols, as the
number of activations admitted to each adversary allows to deliver only
one message on each of the four channels A1 → B1, A2 → B2, B1 → A1,
and B2 → A2. For multi-round protocols, the model can be extended by
invoking A1 and A2 in an alternating order for multiple rounds. For one-
round protocols, the two definitions are equivalent, as the views of A1
and A2, conditioned on the history up to the point where they were split,
are statistically independent, and therefore spreading their execution over
multiple phases does not give them an advantage.

Rationale. The idea behind splitting the adversary A during the interaction
with the test session into two invocations is to model the fact that, with an
A/A adversary, the two attackers controlling the links A1↔ B1 and A2↔
B2 cannot communicate. Before the SMKEX test session is initiated at the
sender, both attackers are allowed to interact, which is modeled by having
A output S, T during the game. During the session, the attackers may not
interact—this is achieved by running A on inputs S and T independently,
by requiring that A only obtain information about one link A1 ↔ B1
or A2 ↔ B2, respectively, and by restricting access to the other oracles
to prevent covert communication. The conditions stated above faithfully
model this isolation requirement of an A/A adversary, while the definition
at the same time allows A to choose the test session adaptively and after
the execution of the session is finished. Overall, the definition provides
maximum flexibility to A under the condition of being an A/A adversary.

A.4 Further preliminaries
The security of SMKEX depends on the hardness of the Decisional Diffie-
Hellman (DDH) problem in a given group G. The advantage of an adversary
in solving the DDH problem is defined as follows.

Definition 3. Let A be an algorithm, and G be a cyclic group with

generator д. The advantage of A in solving the DDH problem in G = ⟨д⟩ is
defined as

AdvG
ddh

(A) B Pr[A (дa, дb, дab) = 1] − Pr[A (дa, дb, дc) = 1] ,

where a, b, c ∈ {1, . . . , #G} are chosen uniformly at random.

B SECURITY PROOFS
B.1 Protocol specification
The protocol generates uniformly random keys from the groupG and works
as follows, for Diffie-Hellman in group G = ⟨д⟩ with order q:

• (Initiator) On input (Pi , Pj , initiate, id), choose a random exponent
x ∈ Zq . Send (id, дx), intended as message A1→ B1 to Pj ; i.e., the
message is sent with sender address Pi .1.

• (Initiator) On input (Pi , Pj , follow-up, id), choose a random nonce
NC ∈ {0, 1}ν and send message (id, NC), intended as message
A2→ B2, to Pj ; i.e., the message is sent with sender address Pi .2.
• (Responder) Receiving the first message (id, дx) from Pi .1, choose
a random nonce NS ∈ {0, 1}ν and an exponent y ∈ Zq . Respond
with (id, дy) to Pi .1; this is intended as message B1→ A1.
• (Responder) Receiving the message (id, NC) from Pi .2, compute
h = H (NC , дx , NS , дy) and send the response (id, NS , h) to Pi .2,
intended as message B2→ A2. Also, compute the session id sid ←

(NC , дx , NS , дy, h) and the secret key k ← дxy and output locally
(Pi , Pi , sid, k).

• (Initiator) Receiving the first response message (id, дy) from Pj in
a given session, store it in the session state.

• (Initiator) Receiving a message (id, NS , h′) from Pj in a given ses-
sion, check whether h′ = H (NC , дx , NS , дy). Abort if the check
fails. Otherwise, compute sid and k analogously to the responder
and output

(
Pi , Pj , sid, k

)
locally.

B.2 Analysis in the A-P model
The proofs in this section could also be given in the standard model, assum-
ing collision resistance of the hash function. If the first path is controlled
by a passive attacker, the hash function is not needed. If the second path
is controlled by a passive attacker, then collision resistance is sufficient to
prevent the attacker from modifying the messages on the first path. Yet, as
the proof in §B.3 crucially depends on the random-oracle model, we decided
to provide the proofs in this section in the same model.

Model the hash function as a random oracle with output space {0, 1}λ .
Theorem 1 follows as a combination of Lemmas 4 and 5, by choosing either
of the adversaries B described in the lemmas at random.

Lemma 4. Let A be an adversary that makes at most q queries to the

random oracle and initiates at most s sessions. A behaves as anA-P adversary

in the test session and keeps the message B2→ A2 constant. Then there is an

adversary B, described in the proof, such that

Adv
sk
(A) ≤ sAdvG

ddh
(B) + sq/2λ .

Proof. The proof proceeds via a sequence of games, starting with G0,
which is the game specified in Section A. In all games, we denote by дx
the message sent as A1→ B1 in the test session, and by NC the message
sent as A2 → B2. We denote by дy and (NS , h) the messages B1 → A1
and B2→ A2 sent in the test session, respectively. That is, we consider the
session sid = (NC , дx , NS , дy, h). Note that, at this point, the test session
and its transcript are defined via the adversary’s test query Pi , and there
may not be a corresponding session at Pj that has a matching transcript.
We consider adversaries that choose their test sessions non-adaptively; a
straightforward reduction choosing a uniformly random one out of the up to
s sessions shows that for such an A′ it holds that Advsk (A) ≤ sAdvsk (A′).

The next game G1 is defined as G0, but the adversary loses if it queries
the random oracle on some input X , (NC , дx , NS , дy), and this results
in output h. By the Union Bound, the probability of this event occurring is
bounded by q/2λ . That means Pr [G0] ≤ Pr [G1] + q/2λ .

We now observe that, if A wins in G1, then there is always a matching
session for the test session at Pj . By assumption, the value h is delivered
unmodified to Pi , from some session at Pj . As no collision in the random
oracle occurs in G1 and Pi accepts, the transcript of Pj in that session
must be exactly the same as that of Pi ; the session also computes the same
identifier sid. Furthermore, as the key is fully determined by the transcript,
as well as by the correctness of the protocol and the fact that the transcripts
match, the keys computed by Pi and Pj in session sid are equal.

We finally describe an adversary B that plays the DDH game and em-
ulates G1 to A, embedding the DDH challenge in the test session. This
adversary B simulates game G1 to A by emulating all oracles. In the test
session, B computes the messages almost as described by the protocol, but
embeds the Diffie-Hellman triple (дa, дb, дc) obtained from the DDH game
by using дa in the message A1→ B1, дb in the message B1→ A1, and дc
as the key revealed through the test query. All other sessions are simulated
independently of the test session using fresh randomness; in particular,
corruption, key and state reveal queries can be emulated easily in those
sessions. On the other hand, such queries are disallowed if they affect the
test session. Overall, B provides A with a perfect emulation of the game

(as by the above assumption, the test session is known). This concludes the
proof. □

Lemma 5. Let A be an adversary that initiates at most s sessions. A

behaves as an A-P adversary in the test session, and keeps the message B1→
A1 constant. Then there is an adversary B, described in the proof, such that

Adv
sk
(A) ≤ sAdvG

ddh
(B) .

Proof. The proof proceeds as the one of Lemma 4, but we can even
spare the game hop. For simplicity we denote the game as G, and use the
same notation for the messages as above.

If A wins in G, then there is always a matching session for the test
session at Pj . By assumption, the messages A1 → B1 and B1 → A1 are
delivered unmodified between Pi and Pj . As Pi accepts, the message h
received by Pi in that session must match the one sent by Pj ; the session
also computes the same identifier sid. As in Lemma 4, the keys computed
by Pi and Pj in session sid are equal.

The adversary B that plays the DDH game and emulates G to A is
described analogously to the one in Lemma 4. □

B.3 Proof of analysis in the A/Amodel
The proof proceeds in a sequence of games, starting with G0, which is the
game specified in Section A for the A/A adversary. Variable naming is as
in Lemma 4, and we also start by guessing the test session also as in that
lemma.

The next game G1 is defined as G0, but the adversary loses if the nonce
NC chosen by Pi in the test session is consistent with any prior random-
oracle query byA, i.e., if there has been a query (NC , ·, NS , ·) or (·, дx , ·, ·)
to the random oracle. As NC , NS , and дx are chosen uniformly at random,
the probabilities of these events are q/2ν−1 and q/#G, respectively, and
Pr [G0] ≤ s Pr [G1] + sq/2ν−1 + sq/#G.

The next game G2 is defined as G1, with two differences. First, the
challenger guesses the session at Pj that will be partnered with the test
session. Note that the adversary can forward the initial message from the
test session to Pj repeatedly and thereby start multiple sessions at the side
of Pj . In the reduction, however, we need to adapt the random oracle in
the correct session; therefore, we have to guess which one of the at most
t sessions at Pj will be completed. Furthermore, a value h̃←$ {0, 1}λ is
chosen in the beginning of the game. This value h̃ is then used as the output
of the random oracle in the session corresponding to the test session at Pj .
Overall, this means that Pr [G1] ≤ 1/t · Pr [G2].

The next game G3 is defined as G2, but the random oracle given to A2
is redefined to sample uniform random values for all inputs (·, дx , ·, ·),
which are independent of the random oracle used in the remainder of the
game. Furthermore, A loses in case any such query occurs. Note that the
model of protocol execution for valid A/A adversaries, together with pre-
sampling the value h̃, ensures that the execution of A2 is independent of
the execution of A1, given the execution of A up to the point where it
splits and the value h̃. As x is chosen independently of the previous state
within the execution of A1, and by the Union bound, we observe that the
probability for A2 making such a query to the random oracle is bounded
by q/(2ν #G). It follows that Pr [G2] ≤ Pr [G3] + q/#G.

In the next game G4, a similar modification is made with respect to
the random oracle given to A1 on inputs (NC , ·, NS , ·). By the analogous
arguments, Pr [G3] ≤ Pr [G4] + q/22ν .

In the next game G5, the adversary also loses if there is no session at Pj
that matches the test session at Pi . The fact that Pi accepts means that the
check value h′ ← H (NC , дx , NS , дy) computed by Pi matches the value h
generated by A2 and delivered to Pi as message B2→ A2. As, for any value
дy other than those generated by Pj , the value h′ is chosen independently
of the complete execution of A2 that generates h, the probability of this

event to occur (i.e., that the test session has no matching session at Pi) is
bounded by 1/2λ . Therefore, Pr [G4] ≤ Pr [G5] + 1/2λ .

As the client and server sessions match, we can again reduce to DDH
via an adversary B that embeds the DDH challenge into the test session
and simulates the remaining sessions; this step is analogous to the proofs
of the above lemmas. Finally, the theorem follows from combining all the
above equations.

C VARIANTS OF THE SMKEX PROTOCOL
Here we describe several variants of the SMKEX protocol and discuss their
respective security features.

C.1 Sending an additional hash to the server
The protocol can be modified to send a hash h = H (NC , дx , NS , дy, 0)
from Pj to Pi and another hash h̄ = H (NC , дx , NS , дy, 1) from Pi to Pj .
(This can alternatively be implemented by sending the first half of a hash
value computed as before from Pj to Pi and the second half from Pi to Pj ;
modulo adapting the error bound this is equivalent in the random-oracle
model.)

The advantage of this modification is that the server verifies that the
client controls both endpoints A1 and A2. While this may be advantageous
in certain scenarios, we do not consider it helpful in the setting considered
in this paper.

More formally, this additional guarantee is reflected in the security guar-
antee by allowing A to additionally choose sessions at the responder Pj as
the test session. With this strengthened definition, we can then prove the
following theorem analogously to the main result.

Theorem 6. Let A be an A/A adversary that makes at most q queries to

the random oracle, initiates at most s sessions at clients and at most t sessions
at servers. Then there is an adversary B, described in the proof, such that

Adv
sk
(A) ≤ 2stAdv

ddh
(B) + stq/(2ν−2#G) + st/2λ−1 .

Proof. The proof follows overall along the same lines as that of Theo-
rem 2. The main difference is, however, that initially we insert a reduction
step that guesses whether the test session will be at the initiator or responder,
which increases the overall reduction slack by a factor of 2. In case the test
session is at the initiator, the proof continues exactly as Theorem 2.

In case the test session is at the responder, the pre-sampled value h̃ is used
in the second message A2→ B2. The argument for the correct distribution
of h̃ based on the unguessability of NC proceeds exactly as in Theorem 2.
The argument for the existence of a matching session also proceeds similarly,
albeit with exchanged roles for Pi and Pj . This concludes the proof. □

C.2 SMKEX security for n paths
Expanding to more paths is desirable. If the paths are disjoint, this increases
the probability that at least one path lacks an active attacker or has an
attacker that cannot synchronize with the others.

Assume the two communicating parties are connected via n paths. In
this case, we have n attackers, each possibly active or passive, and n (n −
1)/2 relationships between attackers. While tackling every combination is
unfeasible, we show how our SMKEX protocol can be generalized to reduce
the n paths case to a 2 paths case.

Let αi → βi and βi → αi , for i = 1..n, be the messages exchanged
across the n paths between the two parties wanting to perform a key
exchange via n-paths SMKEX. We define the attacker for each pair of
messages αi → βi and βi → αi as Bi .

Without loss of generality, we assume the messages α1 → β1 and β1 →
α1 are identical to the A1 → B1 and B1 → A1 messages, respectively, in the
normal 2-path version of SMKEX. Additionally, for all i = 2..n, αi → βi
and βi → αi are identical to A2 → B2 and B2 → A2, respectively.

We build an undirected graph with the attackers as vertices. We then
add an edge to the graph for each pair of attackers that are synchronized.

If the graph is connected and all the attackers are active, we are in the
A-A case and security does not hold. We now prove that security holds
when at least one of the following is true: the graph is not connected (which
we reduce to the A/A case), or at least one of the attackers is passive (which
we reduce to the A-P case).

If the graph is not connected, we split the attackers into two sets S and
S ′ such that no edge exists between vertices in different sets. We view all
the attackers in S as a single active attacker A, and all the attackers in S
as a second active attacker A′. Since no edges exist between S and S ′, it
implies that A and A′ are unsynchronized. It quickly follows that (in the
worst case) this is the A/A case for 2 paths. Note that in this case some of
the hashes might be accepted (for example, if there are synchronized active
attackers in the set that sees all 4 messages); thus, the protocol must accept
the key only if all the hashes are accepted.

If at least one of the attackers is passive, we take all the passive attackers
(of which there is at least one) and put them in a set S . We then put the
rest of the attackers in set S ′. We view all the attackers in S as a single
passive attacker A, and all the attackers in S ′ as a single active attacker A′.
It quickly follows that, in the worst case, this is the A-P case for 2 paths.
Just as before, the protocol must accept the key only if all the hashes are
accepted.

C.3 Double ratcheting
Double ratcheting has been used by Axolotl [42] and is currently used by
its popular successor, Signal [46], in order to provide forward and backward
secrecy (aka future secrecy) [11, 49].

While our SMKEX protocol provides forward and backward secrecy
across sessions by default (since we use independent ephemeral keys per
session), it might be useful to provide forward and backward secrecy also
across messages from a single session. In this case, we can implement the
double ratcheting protocol from Signal [11, 46]: a) (asymmetric ratcheting)
by sending public keys with each message and refreshing these keys every
few messages and then updating the symmetric encryption keys based on
these newly exchanged public keys; b) (symmetric ratcheting) by deriving
new message encryption keys for each message and deleting the old ones.

The disadvantage of this approach is that clients and servers need to
maintain a larger key state and for messages received out of order we need
to keep old keys in memory, which goes against forward secrecy. Hence,
this solution might be useful for applications using long-lived sessions, but
the overhead might not be worth for short-lived sessions.

D STANDARD-MODEL SOLUTION
In this section we describe a protocol that does not require the use of the
random-oracle model in the proof of security. This protocol uses strongly
non-malleable codes for encoding the messages sent from the server to
the client. This section contains the fundamental material as well as the
protocol and the analysis.

D.1 Preliminaries for non-malleable codes
On a high level, a non-malleable code is an encoding scheme which guaran-
tees that, for a certain class of tampering functions, decoding a tampered
codeword either leads to the correct message or to a message that is inde-
pendent of that correct message [16]. In that sense, non-malleable codes
are weaker than error-correcting codes.

Definition 4. A (k, n)-coding scheme (Enc, Dec) consists of a random-

ized encoding function Enc : {0, 1}k → {0, 1}n and a deterministic decod-

ing function Dec : {0, 1}n → {0, 1}k ∪ {⊥} such that Dec(Enc(x)) = x
(with probability 1 over the randomness of the encoding function) for each

x ∈ {0, 1}k . The special symbol ⊥ indicates an invalid codeword.

In particular, for a split-state non-malleable code there are k1 + k2 = k
such that independently modifying the first k1 and the last k2 bits will yield
either the original plaintext, or an independently sampled one, or ⊥.

Definition 5 (Strong non-malleability). Let F be a family of func-

tions. A (k, n)-coding scheme (Enc, Dec) is ε -strongly non-malleablew.r.t. F
and adversary A if for any s0, s1 ∈ {0, 1}k and any f ∈ F , we have

Advf ,s0,s1
s-nmc

(A) = Pr
[
A

(
StrongNMf

s0

)]
− Pr

[
A

(
StrongNMf

s1

])
where

StrongNMf
s B

{
c ← Enc(s); c̃ ← f (c); s̃ ← Dec(c̃)

Output same∗ if c = c̃ , and s̃ otherwise

}
.

The value same∗ in Definition 5 is a constant that is different from any
value that can be encoded by the non-malleable code. The reason is that a
function f can leave the codeword unmodified, and so the two distributions
in the definition of the advantage become clearly distinguishable, as one
outputs s0 while the other one outputs s1. Replacing these values by the
same constant same∗ is both necessary and sufficient to make the definition
achievable.

D.2 The protocol
The protocol works similarly to SMKEX in the random oracle model. In
more detail:

• (Initiator) The initiator sends дx as A1→ B1 and NC as A2→ B2,
for the same choice of values as before.

• (Responder) Encodem ← ⟨(NC , дx , NS , дy)⟩ as a bit string, and
use the non-malleable code to obtain c ← Enc(m). Then, set c1, c2 ←
c with |c1 | = k1 and |c2 | = k2. Send c1 as B1 → A1 and c2 as
B2→ A2. Compute and output the key as usual.

• (Initiator) Receive c1 and c2, setm′ ← Dec(c1 ∥c2). Ifm′ = ⊥ then
abort, ifm′ does not start with NC then abort. Else, decodem′ to
obtain дy and NS and proceed as usual.

The protocol can be seen as an abstraction of SMKEX; indeed, SMKEX can
be viewed as the above protocol with a specific non-malleable code based
on hash functions. Yet, formalizing the protocol in terms of non-malleable
codes allows us to build a protocol secure in the standard model, by usiing
(for instance) the results in [2].

D.3 The security analysis for A/A adversaries
The security proof follows along the same line as in Theorem 2, but instead
of programming the random oracle we have to reduce from the security of
the strongly non-malleable code.

Theorem 7. Let A be anA/A adversary that initiates at most s sessions at
clients and at most t sessions at servers. Then there is are adversaries B, C1, C2,
described in the proof, such that

Adv
sk
(A) ≤ stAdvG

ddh
(B) + st/2ν + stAdv

s-nmc
(C1) + stAdv

s-nmc
(C2) .

Proof. The first step as above is that we guess the session that will be
chosen as a test session, losing a factor st . Otherwise, the first game is the
actual SK-security game.

The next game G1 idealizes the strongly non-malleable code. That is,
in the test session, when the concatenation c′1 ∥c

′
2 of the two messages c′1

and c2 provided by A1 and A2 in the test session does not exactly match
the concatenation c1 ∥c2 of messages sent by Pj , then the test session at Pi
aborts and the adversary loses. We now show that Pr [G1] ≤ Pr [G2]+2−ν +
Advf ,s0,s1

nmc (C1) + Advf ,s0,s1
nmc (C2) for distinguishers C1 and C2, split-state

function f and input values s0, s1 as described below.
The SK-security game can be changed such that the values NC , NS , x, y

used in the test session are pre-sampled. Message s0 is then defined as
(NC , дx , NS), and message s1 is the all-0 message of the same length.

Function f is defined through emulating the SK-security game to A, with
the valuesNC , NS , x, y as above. This function f is a split-state function, as
the first k1 bits of the message are processed through A1 and the following
k2 bits are processed through A2, and there is no interaction between the
two by the definition of a valid A/A adversary A. The distinguisher C1
is then defined as outputting 1 if the message is exactly (NC , дx , NS , дy)
and 0 otherwise. Distinguisher C2 outputs 1 if the message is (NC , ·, ·, ·)
and 0 otherwise.

The argument then proceeds as follows: If the test session aborts, the
probability of winning in bothG1 andG2 is exactly 1/2, since everything else
is independent of it. Also, if the function f keeps the value c1 ∥c2 constant is
the same in both cases, since by the correctness of the code, the games lead
to the same result. Therefore, there are two differences that can be exploited
are the probability of getting a message encoding (NC , ·, ·, ·) which is not
the same as the original one (this leads to the terms Advf ,s0,s1

s-nmc (C2) and
2−ν) and a different probability in leading to exactly (NC , дx , NS , дy) (this
leads to the term Advf ,s0,s1

s-nmc (C2).
The remainder of the proof proceeds just as in Theorem 2. □

D.4 Strengthening the code for A-P adversaries
For arbitrary strongly non-malleable codes, the construction is not nec-
essarily secure against A-P adversaries. The reason is that the split-state
functions requires the two parts of the functions to tamper with the code-
word parts independents; an A-P adversary corresponds to tampering with
only one part of the codeword, but instead the second part to the codeword
is known to this function.

Recall the notion of a commitment scheme (Com, Open) where Com
is a probabilistic algorithm that takes as input a message x and produces
as output a commitment c and opening information r . Algorithm Open
takes as input a message x ′, commitment c , and opening information r ′,
and outputs a bit that indicates whether or not the message contained in c
is actually x ′ = x .

Commitments are usually required to be hiding in the sense that c does
not leak information about the contained message x , and binding in the
sense that it is (at least computationally) difficult to produce an opening
information r ′ that makes Open accept a message x ′ , x .

A strongly non-malleable code can be modified to also work against
such types of attacks by (for instance) including a hash of a codeword
part in the respective other part of the codeword. More formally, for a
codeword e = e1 |e2 of a split-state non-malleable code, compute commit-
ments (c1, r1)←$ Com(e1) and (c2, r2)←$ Com(e2) and set the messages
tom1 ← e1 |r1 |c2 andm2 ← e2 |r2 |c1.

Using an information-theoretically hiding commitment means that an
A/A adversary does not gain a noticeable advantage by the additional
information; for instance, inm1 = e1 |r1 |c2 the opening information r1 is
merely an independent random string and the commitment c2 does not
contain significant information on e2; therefore, mauling c1 has not become
significantly easier than for a plain code.

For an A/P adversary, however, either one of the messagesm1 andm2
is transmitted unmodified, say m1. In that case e1 is transmitted to A1
without modification, as is c2 which then, by the binding property of the
commitment, also ensures that e2 is transmitted unmodified.

	Abstract
	1 Introduction
	2 Attacker Model
	2.1 Attack hierarchy for 2 paths

	3 Fundamental Goals
	4 Undesirable Extensions for Multipath Key Exchange
	5 Secure Multipath Key Exchange
	6 Formal analysis
	7 Emerging path diversity for secure multipath communications
	7.1 Measurement study
	7.2 Protection against nation-wide attackers

	8 Implementation
	9 Evaluation
	10 Extensions of SMKEX
	10.1 TOFU enhancement
	10.2 Integration into TLS

	11 Related Work
	12 Conclusion
	References
	A Detailed security model
	A.1 Canetti-Krawczyk in a nutshell
	A.2 Formal model of protocol and sessions
	A.3 A-P and A/A adversaries
	A.4 Further preliminaries

	B Security proofs
	B.1 Protocol specification
	B.2 Analysis in the A-P model
	B.3 Proof of analysis in the A/A model

	C Variants of the SMKEX protocol
	C.1 Sending an additional hash to the server
	C.2 SMKEX security for n paths
	C.3 Double ratcheting

	D Standard-model solution
	D.1 Preliminaries for non-malleable codes
	D.2 The protocol
	D.3 The security analysis for A/A adversaries
	D.4 Strengthening the code for A-P adversaries

