
Mechanisms to Provide Integrity in SCADA and PCS devices∗

Aakash Shah
Carnegie Mellon University
aakashs@andrew.cmu.edu

Adrian Perrig
Carnegie Mellon University

adrian@ece.cmu.edu

Bruno Sinopoli
Carnegie Mellon University

brunos@ece.cmu.edu

Abstract

Supervisory Control and Data Acquisition (SCADA) systems
control and monitor critical infrastructure such as natural gas,
oil, water, waste-water, and electric power distribution and
transmission systems. SCADA systems consist of a central
control center connected to Remote Terminal Units (RTUs)
which directly interface with sensors and actuators connected
to the physical infrastructure. Most RTUs are not designed
with security in mind and consequently are vulnerable to var-
ious attacks compromising their code integrity. In this paper,
we propose the use of software-only schemes that can be im-
plemented on RTUs to provide verification of code integrity,
untampered code execution and secure code updates.

1 Introduction

Supervisory Control And Data Acquisition (SCADA) systems
are Process Control Systems (PCS) that monitor and control
critical infrastructure such as the electric power, natural gas,
oil, water and waste-water distribution and transmission sys-
tems. They are distributed systems consisting of a central mas-
ter station and human machine interface (HMI), Remote Ter-
minal Units (RTUs) connected to sensors and actuators, and
a communications infrastructure. SCADA systems have his-
torically been designed without any information security con-
siderations. The use of private networks and proprietary pro-
tocols has provided some level of “security by obscurity” in
the past. Clearly, this is not sufficient to secure systems that
control critical infrastructure. Nowadays, SCADA systemsare
increasingly being connected to the corporate IT infrastructure
and Internet, making them vulnerable to a remote attacker. It is
imperative that these systems be secured as their compromise
could have severe consequences.

Many steps need to be taken to properly secure SCADA sys-
tems. We discuss a few of these steps. Appropriate access con-
trol mechanisms need to be implemented on the SCADA mas-
ter and RTUs. Technologies such as firewalls and intrusion

∗This research was supported in part by CyLab at Carnegie Mellon under
grant DAAD19-02-1-0389 from the Army Research Office, TRUST (Team
for Research in Ubiquitous Secure Technology), and the Gas Technology In-
stitute. The views and conclusions contained here are thoseof the authors
and should not be interpreted as necessarily representing the official policies
or endorsements, either express or implied, of ARO, CMU, GTI orthe U.S.
Government or any of its agencies.

detection/prevention systems need to be deployed to prevent
unauthorized access to the SCADA system. SCADA systems
have non-existent communications security. Strong message
authentication is required on the communications channelsbe-
tween the SCADA master and RTUs. Encryption should be
used to provide secrecy.

Prior work attempts to address these issues. The Ameri-
can Gas Association [1] describe a protocol for serial SCADA
communications designed to defend against a Dolev-Yao ad-
versary. The IEC 62351 standard [3] and the National
SCADA Testbed group [8] propose authentication protocols
for SCADA. Some commercial SCADA devices now allow
for SSL connections [9]. Cunningham et al. [5] present tools
to verify access policy implementations and a model-based in-
trusion detection system for SCADA systems.

However, despite many of these security mechanisms, it
may still be possible for an attacker to compromise the RTUs.
A concern in SCADA security is that an attacker would gain
remote access to a large set of RTUs in the SCADA net-
work and modify their software to launch a coordinated attack
against the critical infrastructure. Such an attack can be effec-
tive in disabling the critical infrastructure in a region despite
any inherent redundancies in the physical infrastructure.If the
attack spans multiple utilities then the inter-dependencyof the
critical infrastructures could make the consequences of the at-
tack worse. It is even possible for the attacker to program the
RTUs to report correct data to the central control center, thus
effectively hiding the attack.

In order to prevent such an attack, a SCADA operator should
be able to detect if malicious software has been installed on
the RTUs. In fact, the operator should be able to verify the
integrity of the code on the RTU, perform secure code up-
dates and ensure untampered execution of code. In this paper,
we use tamper evident software primitives to present such a
solution and contribute an implementation on a commercial
SCADA RTU. Such tamper evident software primitives are
discussed in prior work [6,10–12].

At the core of these primitives lies a self-checking verifica-
tion function that computes a checksum over its own instruc-
tions. A challenge-response protocol is employed between
a trusted external verifier and the RTU. The external verifier
sends a random challenge to the RTU. The verification func-
tion running on the RTU computes a checksum over its own
instructions and returns the result to the external verifier. The

checksum computation is designed in way such that if an ad-
versary tampers with this function either the checksum willbe
incorrect or there will be a noticeable increase in the compu-
tation time. Thus, if the external verifier receives the correct
checksum within the expected time, it can be sure that the ver-
ification function code on the device is unaltered.

The verification function also includes a cryptographic
hashing function. Once the integrity of the verification func-
tion has been verified, a hash of the RTU’s memory can be
computed. The external verifier can compare this hash to the
expected hash to ensure that the device has not been modi-
fied. Alternatively, a hash may be computed over a known
executable to ensure that it has not been modified and then the
hash function may invoke this executable in a way that ensures
untampered execution.

Our proposed solution has several advantages. It provides
strong guarantees regarding the integrity of the RTU’s mem-
ory and the code running on the device. The RTUs represent a
significant investment on part of the utilities and consequently
any solution needs to be low-cost. Our software-only solution
does not require any additional hardware and thus allows fora
low-cost solution. The RTUs are hardened devices with life-
times up to 30 years and hence there are many legacy RTUs
in production systems currently. Our solution can be applied
to present and legacy RTUs, thus allowing for a more secure
SCADA system.

This paper is structured as follows. We discuss related work
in Section 2. We present our assumptions and threat model
in Sections 3 and 4 respectively. We provide an overview of
an architecture independent implementation in Section 5 and
discuss our implementation in Section 6. We discuss some
practical considerations in Section 7. We discuss future work
and conclusions in Section 8.

2 Related Work

The Trusted Computing Group (TCG) develops specifications
for trusted computing and has designed the Trusted Platform
Module (TPM), a tamper-evident chip that allows for a way
to verify platform information by a series of attestations [13].
The TPM allows a verifier to obtain a guarantee of what code
was loaded into system memory initially. However, a hard-
ware based solution cannot be applied to legacy RTUs. Also,
the TPM cannot be updated in software and consequently, the
only way to modify them is to replace the hardware. The
software-only solution described in this paper does not require
any hardware extensions.

3 Assumptions

We assume that the external verifier (e.g., the SCADA control
center) knows the exact hardware configuration of the RTU in-
cluding the CPU model, CPU clock speed and the memory la-
tency. We assume that the hardware of the SCADA RTU is not

malicious and that it matches manufacturer specification. We
assume that the CPU is not overclocked. We assume that the
RTU has a single CPU without virtualization support. We as-
sume that the RTU cannot access a faster computing platform
(proxy) to perform computation on its behalf. We assume that
the communications channel between the external verifier and
RTU provides message-origin authentication i.e. the external
verifier is guaranteed that packets are coming from the RTU.

4 Threat Model

We assume that the adversary has complete control over the
software on the RTU including the OS. However, the adver-
sary cannot modify the firmware of any peripherals to perform
malicious DMA writes to the memory region containing the
executable. We assume that the adversary does not physically
modify the hardware of the device. This assumption may seem
naive as most RTUs do not have strong physical security and
are generally secured by a lock. Therefore, it is possible for an
attacker to gain access to a particular substation and, replace
or modify a RTU to allow for faster computation time. How-
ever, we assume that doing so at multiple substations is very
hard and also dramatically increases the chances of detection.
We are most concerned with remote attacks. Depending on
the SCADA architecture, the adversary may access the RTUs
directly over the Internet or by compromising devices in the
SCADA control center. However, we assume that there is at
least one trusted device at the SCADA control center that acts
as the external verifier and cannot be compromised by the ad-
versary. We assume that the adversary has control over the
communications media and can add delays to the response of
the checksum function to generate false positives, effectively
creating a denial of service. However, this is no different than
the adversary “cutting the wire” and therefore we do not ad-
dress this issue.

5 Overview

In this section we discuss mechanisms to provide verification
of code integrity, untampered execution and secure code up-
dates on a SCADA RTU. Such mechanisms are discussed in
detail in prior work [6, 10–12]. At the core of these schemes
lies a self-checking verification function that can guarantee its
own integrity by computing a checksum over its own instruc-
tions. The verification function thus dynamically establishes
a trusted base or dynamic root of trust on the RTU. This dy-
namic root of trust can then be used to verify other aspects of
the system such as code integrity. We present an architecture
independent design of the checksum code in this section.

5.1 Verification Function Design

The design of our verification function is based on the Pio-
neer primitive [12]. Figure 1 provides an overview of the ver-

ification function. The verification function consists of three
main components: the checksum function, send function and
the hash function.

1. Challenge

2.
C

om
pute

checksum

3. Checksum

4. Hash

5. Hash of code

6. Invoke

7. Result (optional)

Dispatcher Untrusted Platform

Verification funcVerification func

Checksum codeChecksum code

Send functionSend function

Hash functionHash function

ExecutableExecutable

Expected memory layout

Figure 1: Verification function overview. Numbers repre-
sent temporal order of events.

Checksum Function. The checksum function computes a
checksum over the entire verification function and sets up an
environment in which the send function, the hash function, and
the executable are guaranteed to run untampered by any mali-
cious software on the RTU [12]. The checksum function needs
to be designed such that even if a single byte of the verification
function is modified, the checksum will be different. A correct
checksum assures the external verifier that the code has not
been modified. However, an adversary could presumably mod-
ify the verification function, and calculate the checksum over
a valid copy of the verification function code, thus generating
the correct checksum. In order to prevent this, the checksumis
designed in way that any such modification would add consid-
erably to the running time of the checksum function. Then, a
correct checksum obtained within the expected amount of time
guarantees that the verification function has not been modified
and that there is an environment for untampered execution on
the RTU.

Hash Function. A cryptographic hash function that is sec-
ond preimage resistant (e.g., SHA-1) is used to perform the
integrity measurement of the executable. A random nonce re-
ceived from the external verifier and code for the executable
are hashed and the resulting digest is returned to the external
verifier. The external verifier can compare this digest to theex-
pected one to ensure that the executable has not been modified.
The hash function proceeds to invoke the executable when it is
done.

Send Function.The send function sends the checksum and
hash digest to the external verifier.

5.2 Required properties of checksum code

The checksum code has to be constructed such that any tam-
pering of the verification function either results in a incor-
rect checksum or causes a noticeable delay in the checksum
computation. We briefly discuss the required properties of the

checksum code below. Seshadri et al. [12] provide a detailed
description of these properties.

Time-optimal implementation. The checksum code needs
to be the checksum code sequence with the fastest running
time, otherwise the adversary could use a faster implementa-
tion of the checksum function and use the saved time to forge
the checksum. To achieve a time-optimal implementation we
use simple instructions such as “add” and “xor” that cannot be
implemented faster or with fewer operations. Also, the check-
sum code is structured as code blocks such that the operations
in one code block depend on previous blocks.

Instruction sequencing to eliminate empty issue slots.
We arrange the instruction sequence of the checksum code so
that the processor issue logic always has a sufficient number
of issuable instructions for every clock cycle.

CPU state inputs.We incorporate CPU state inputs such as
the Program Counter (PC) and the data pointer in the check-
sum function to defend against memory copy attacks discussed
in prior work [12]. In a memory copy attack the adversary
modifies the checksum function such that the checksum is gen-
erated over a good copy of the verification function code stored
elsewhere in memory.

Iterative Checksum code.Iterative checksum code allows
for a constant-time overhead per iteration, thus allowing for a
noticeable delay in the checksum computation time by running
the checksum for a large number of iterations.

Strongly-ordered checksum function.We use a strongly-
ordered checksum function to prevent parallelization. A
strongly-ordered checksum function is a function whose out-
put differs with a high probability if the operations are eval-
uated out of order. A strongly ordered function requires the
adversary to perform the same operations on the same data in
the same sequence as the original function to obtain the correct
result. We use a strongly ordered checksum function consist-
ing of alternating “add” and “xor” instructions. This prevents
parallelization, as at any step of the computation the current
value is needed to compute the succeeding values.

Small code size.The checksum code must fit in the proces-
sor cache to achieve a deterministic execution time. Also, the
relative per iteration overhead increases with a smaller check-
sum loop.

Low variance of execution time.We achieve this property
by ensuring that the checksum code is run uninterrupted, both
the verification code and checksum code are small enough to
fit in the L1 data and instruction caches, respectively, and hav-
ing sufficient issuable instructions for any CPU cycle.

Keyed-checksum. To prevent the adversary from pre-
computing the checksum, and to prevent replaying of old
checksum values, the checksum depends on a random chal-
lenge sent by the external verifier.

Pseudo-random memory traversal. We use pseudo-
random memory traversal to protect against the data substitu-
tion attack discussed in prior work [10,12]. In the data substi-
tution attack, the adversary modifies a certain memory region
containing the verification function code and redirects memory

reads for this region to another location containing a correct
copy of the data.

5.3 Execution Environment for Untampered
Code Execution

We discuss how the checksum function can be used to setup an
untampered execution environment for the hash function, the
send function and an executable.

We ensure that the checksum function runs at the high-
est privilege level and that all maskable interrupts are turned
off. We include the flags register that contains interrupt en-
able/disable flags in the checksum computation to ensure that
an adversary running a modified checksum function at lower
privilege levels will generate the incorrect checksum.

To ensure that the hash function and the executable will run
untampered, we have to guarantee that the the exception han-
dlers and the handlers for the non-maskable interrupts are not
malicious. To achieve this, we replace the existing exception
handlers and handlers for non-maskable interrupts with our
own handlers that return immediately. This ensures that the
send function, hash function and executable run uninterrupted
in an untampered environment.

5.4 Performing Secure Code Updates

The untampered code execution environment can be used to
ensure secure code updates. Seshadri et al. discuss such a
scheme for sensor networks [11]. The untampered code ex-
ecution can be used to execute the update executable to ensure
that no malicious code can interfere with its execution.

6 Implementation

In the following section we discuss our implementation on
a commercial SCADA RTU. We implemented a verification
function that provides a mechanism for software based code
attestation and verifiable code execution based on the Pio-
neer primitive discussed by Seshadri et al. [12]. We used
the SCADAPack 350 RTU made by Control Microsystems for
our implementation. The SCADAPack 350 is a programmable
logic controller geared towards the oil and gas, water, waste-
water and electric utilities. It has a simple architecture and can
be programmed using C/C++ or ladder logic.

6.1 Architecture Overview

The SCADAPack 350 uses a 32-bit ARM7TMDI processor
with a 32 MHz clock [4]. The processor also has two micro-
controller coprocessors with 20 MHz clocks. ARM CPUs use
a Von Neumann architecture where data and instructions re-
side in the same memory. The SCADAPack 350 has 16 MBs
of Flash ROM, 4 MBs of CMOS RAM and 4 KBs of EEP-
ROM. It has 3 serial ports, 2 USB ports and 1 Ethernet port. It

optionally comes with a wireless spread spectrum radio. The
device runs VxWorks 5.5 as its operating system.

The ARM7TMDI core is a member of the ARM family of
general purpose 32-bit RISC microcontrollers [2]. It imple-
ments two instruction sets: the 32 bit ARM and the 16 bit
Thumb instruction set. It has seven operating modes: User,
FIQ, IRQ, Supervisor, Abort, Undefined and System. While
the processor has 37 total registers, a subset of the registers are
“banked” across the operating modes. Each mode can access
16 general-purpose registers (including the program counter,
link register and stack pointer) and the Current Process Sta-
tus Register (CPSR). All operating modes except the user and
system modes also have access to the Saved Process Status
Register (SPSR).

6.2 Design of Checksum Code

We base the design of our checksum code on the PRISM im-
plementation [6] as it is also geared towards an ARM based
architecture.

Our checksum function must provide the properties dis-
cussed in Section 5.2. Any tampering should generate an in-
correct checksum or lead to a noticeable computation delay.
The checksum function takes a 68 byte input that is gener-
ated from the challenge provided by the external verifier. The
checksum function computes the checksum over the memory
region that the verification function resides in and returnsa 68
byte output.

The checksum function is a time-optimal iterative function
that uses all general-purpose registers and generates a 68 byte
checksum which we represent as a vector of seventeen 32-bit
checksum pieces. The use of all the general-purpose regis-
ters ensures that an adversary has no free registers at its dis-
posal. Each checksum piece is stored in one register. Before
the checksum loop begins, the checksum is initialized with the
random challenge obtained from the external verifier, prevent-
ing the adversary from pre-computing the checksum. Each
iteration of the checksum code performs the following steps:

Step 1.We use a 32-bit T-function [7] to generate a pseudo-
random number. Adding the pseudo-random number to the ad-
dress where the verification function is loaded ensures thatthe
attacker cannot predict the memory locations being accessed.
We use the following T-function, x = x + (x2 ∨ 5) mod 2n. The
initial x value is obtained from the random challenge issuedby
the external verifier.

Step 2. A 32-bit word is read from the computed memory
address.

Step 3. One checksum piece is updated based on all other
running checksum piece values, the pseudo-random memory
address read, memory word read and other state variables.

Step 4. The state variables are updated and steps 1-4 are
repeated for a different checksum piece.

Figure 2(a) shows the checksum function pseudocode.

//Input: Number of iterationsy of the checksum function,
// Random challenge to initialize checksum pieces
//Output: ChecksumC
// daddr - address of current memory access
// x - value of T-function
// status- CPSR register
// saddr- Address where verification function is loaded
for l = y to 0do

//T function updatesx where 0≤ x≤ 2n

x← x+(x2∨5) mod 2n

//Modifiesdaddrbased on thesaddrandx from T function
daddr← saddr+x[31 : 22]
//Read from memory addressdaddr, modify checksum.
//Let C be the checksum vector andj be the current index.
Cj ←Cj +Cj−1⊕Cj−2 +Cj−3⊕Cj−4 +Cj−5⊕Cj−6 +Cj−7⊕Cj−8 +
PC⊕daddr+mem[daddr]⊕status+ l
Cj ← rotate right(Cj)⊕x
//Update checksum index
j ← (j +1)mod9

end for
(a) Checksum Function Pseudocode

Assembly Instructions
mul r11, r10, r10
add r1, r1, r0
eor r1, r1, r8
orr r11, r10, #0x5
adds r10, r10, r11
mov r11, #0x12, 12
add r11, r11, r10, LSR #22
add r1, r1, r7
and r11, r11, #0xfffffffc
ldr r12, [r11]
eor r1, r1, r6
add r1, r1, r5
eor r1, r1, r4
add r1, r1, r3
eor r1, r1, r2
add r1, r1, r15
eor r1, r1, r11
add r1, r1, r12
eor r1, r1, r12
mrs r12, cpsr
add r1, r1, r9
eor r1, r10, r1, ROR #1
subs r9, r9, #1

(b) Checksum Assembly Code. r1 is the current checksum register.

Figure 2: Implementation of checksum function.

6.3 Checksum Implementation

We run the verification function as an application in Super-
visor mode. The checksum function is written in inline assem-
bly while the rest of the verification function is written in C.

Figures 2(a) and 2(b) show the checksum function pseudo-
code and assembly code, respectively. Our checksum compu-
tation includes the previous nine checksum pieces, stored in
registers r0 through r8, the program counter (r15), CPSR, the
pseudo-random memory address, memory word read and the
current iteration number. The checksum piece computation is
a series of alternating “add” and “xor” instructions to allow
for a strongly ordered function. We also rotate the running
checksum piece to prevent an attack discussed by Seshadri et
al. [10].

6.4 Empirical Analysis of Attack Overhead

In this section we discuss how any attack against the verifica-
tion function will lead to a noticeable overhead in the check-
sum computation.

Other than hardware attacks, the best known attacks against
the verification function attempt to forge the checksum in soft-
ware. Such attacks can be classified into memory copy attacks
or data substitution attacks. We show that such attacks incur a
significant overhead in the checksum computation.

Since we use all general-purpose registers, the attacker has
no free registers to use in its attack. The only way the attacker
can obtain free registers is by storing some of the checksum
state in memory or use the banked registers. However, access-
ing memory is slow and we show that this leads to a noticeable
overhead in the checksum computation. Using the banked reg-

isters requires that the adversary add at least 6 instructions in
assembly: 3 to switch into a different mode and 3 to switch
back. If the additional 6 instructions do not add enough delay
in computation, the checksum can be designed to use all the
banked registers, ensuring that the adversary cannot use them.

To implement any attack the attacker may need to load im-
mediate values (e.g. a specific memory address). The attacker
can load this value from memory but this is slow. The attacker
could encode the immediate operand within the instruction.
However, in the ARM architecture immediate operands are
limited to 8 bits. The attacker can use the barrel shifter to
shift the 8 bit value in the same instruction cycle, but this still
limits the number of 32-bit immediate values achievable in a
single instruction. The attacker would need to add an offset
to get the 32-bit number it desires. This requires that the at-
tacker have a free register which we show to add overhead to
the computation.

The attacker may implement its modified checksum loop
using the Thumb instruction set in order to get higher code
density. However, this would come at the expense of perfor-
mance and the computation time would increase considerably.
Also, including the CPSR in the checksum prevents the at-
tacker from switching to the Thumb instruction mode.

The attacker may use the two co-processors present in the
ARM7TDMI chip to get a faster checksum computation. We
ensure that the checksum code is non-parallelizable by us-
ing a strongly-ordered checksum calculation and having each
checksum piece depend on previous checksum pieces. Thus,
the attacker would only gain an advantage if the co-processors
were faster than the core ARM processor, which is not the
case.

We defend against the memory copy attack by including the
PC and the pseudo-random memory address in the checksum
piece calculation. In order to implement a memory copy at-
tack, the attacker has to forge either the PC or the memory
address. In order to forge the PC the attacker has to use an
immediate or load the value from memory. To forge the ran-
dom offset of the memory address being read, the attacker has
to read from memory. Both cases lead to a slow down in the
checksum computation. However, the ARM instruction set al-
lows one to load data from an offset from a memory location.
The attacker can place an unmodified copy of the verification
function at a fixed offset from the modified version. Then in-
stead of loading data from the modified memory locations, the
attacker can always load from the unmodified version of the
verification function. A self-modifying checksum functioncan
be used to prevent this attack. We do not use a self-modifying
checksum function in the current implementation.

We defend against the data substitution attack in several
ways. We access memory locations in a pseudo-random man-
ner. This ensures that the attacker must check to see if the
memory location being checked has been modified and then
read from an alternate memory location. This requires the at-
tacker to add a compare instruction to the checksum loop. This
has two problems. First, the attacker needs a register that con-
tains the memory address of the malicious code to perform the
compare or use an immediate value. Second, the compare in-
struction modifies the flags in CPSR which is included in the
checksum computation, thus requiring the attacker to save the
original CPSR.

We measured the computational overhead of three differ-
ent attack scenarios - data substitution attack, using the ARM
banked registers and the memory copy attack. In the data sub-
stitution attack we modified the contents of one memory loca-
tion and added the extra “if” statement to ensure that if the
modified memory location is about to be accessed then the
memory contents are loaded from an alternate memory loca-
tion. In the banked register scenario, we simulate the switch to
and from a different processor mode by adding six No OPera-
tion instructions (NOP) in the checksum loop. We simulate the
memory copy attack by adding appropriate load and store in-
structions to the checksum loop. We run the checksum loop for
16.2 million iterations in each case and compare the resultsto
that of the unmodified checksum function. A dedicated serial
link connected the SCADA RTU and external verifier. Figure
3 shows the results of our experiments. Note that the variance
in the computation time for each scenario is negligible. Also,
note that the banked register attack, memory copy attack and
data substitution attack led to a 25%, 36% and 51% increase
in computation time, respectively.

6.5 Untampered Execution Environment

We ensure an untampered execution environment by masking
all interrupts and running at the highest priority. We include
the CPSR in our checksum to ensure that an attacker cannot

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

Number of checksum runs

Unmodified checksum code
Using banked registers

Memory copy attack
Data substitution attack

Figure 3: Checksum Computation Time for Various
Tests.

switch to different processor mode. We do not replace in-
terrupt handlers with trusted handlers in this implementation.
Once the checksum function returns, a hash is computed of the
executable and sent to the external verifier, interrupts relevant
to the executable are enabled and the hash function invokes
the executable. Similarly, the hash function is also used to
compute a hash of memory to ensure the integrity of the RTU
memory.

7 Practical Considerations

We discuss some of the practical considerations related to our
work below.

Most SCADA RTUs have a simple architecture. This allows
for a straightforward implementation of the verification func-
tion. The SCADA manufacturers are best suited to implement
the verification function as they have an intimate knowledge
of their architecture and the development tools necessary to
modify the kernel. The external verifier can be a trusted de-
vice in the central control center. A SCADA operator must be
responsible for keeping a updated copy of the RTU image on
the external verifier.

There are hundreds of different SCADA manufacturers
and this could require unique implementations for different
SCADA manufacturer devices. However, different manufac-
turers may use common architectures (e.g., ARM) and exist-
ing designs and implementations for these architectures can
significantly reduce the development time.

There is a concern that the communications infrastructure
may add delays to the challenge-response protocol between
the external verifier and the SCADA remote field device. In
order to avoid false positives1 in detecting malicious code, the
threshold for detection must be increased to account for any

1Positive refers to the event that malicious code is detected.

such delays by running the checksum function for more itera-
tions. This can be achieved by generating baseline figures for
the delays on the communications channels. In cases where
the variance in communication delays is high, the checksum
function can be executed multiple times to ensure that there
are no false positives. It is important to note that this primar-
ily applies to PCS systems where the field devices reside in a
remote location. For example, the field devices for a chemi-
cal plant PCS may be stored locally and will not have a large
variance in communication delays.

Most SCADA systems are real-time distributed systems that
are constantly running. The real-time application must be
taken offline as running the checksum function in parallel
could affect the process. If the real-time application allows it,
it may be possible to stop the real-time application once a day
for maintenance and run the verification function. However,in
cases where the real-time application on the field device can-
not be taken offline, redundancy must be used. A secondary
field device must be brought online as the primary one is taken
offline to run the verification function.

Another concern is the frequency of checks on the field de-
vice. It may be sufficient to run the verification function once a
day to ensure that the field device software has not been mod-
ified. However, if the verification function is run on a fixed
schedule then the attacker can take advantage of this and en-
sure that there is no malicious code on the device when the
verification function is run and reload the malicious code right
after the verification function finishes.

We assume message-origin authentication between the ex-
ternal verifier and the remote field device. However, most
SCADA communications channels lack any form of authen-
tication. If the attacker has control over the communications
channel, it can launch a proxy attack where it computes the
checksum on a second device loaded with good software and
send the external verifier the correct checksum. Message au-
thentication is necessary to prevent this attack.

Many SCADA systems use a cascaded architecture where
RTUs are chained together. In such cases, the external verifier
may be able to run the verification function on the RTU it is
directly connected to, which in turn can run the verification
function on the chained RTU. The checksum and hash values
can be sent back to the original external verifier.

8 Conclusion and Future Work

We show how verification of code integrity, untampered code
execution and secure updates can be achieved in SCADA and
PCS field devices. We contribute an implementation on a com-
mercial SCADA RTU, discuss the practical implications and
demonstrate how such a scheme can be used to provide secu-
rity in SCADA systems.

In future work, we intend to propose a scheme that uses the
same tamper evident primitives to allow the SCADA master
to obtain a guarantee that the analog and digital readings from

the RTUs are authentic.

9 Acknowledgments

We would like to thank Arvind Seshadri and Tom Palarz for
invaluable technical discussions and the Gas Technology In-
stitute for loaning us equipment.

References

[1] AGA 12, Part 2 draft.American Gas Association, 2006.
[2] ARM. ARM7TDMI Technical Reference Manual.
[3] IEC 62351.Power systems management and associated infor-

mation exchange - Data and communications security.
[4] Control Microsystems.SCADAPack 350 Hardware Manual.
[5] R. Cunningham, S. Cheung et al. Securing Process Control Sys-

tems of Today and Tomorrow. InFirst Annual IFIP WG 11.10
International Conference on Critical Infrastructure Protection,
March 2007.

[6] J. Franklin, M. Luk, A. Seshadri and A. Perrig. PRISM: En-
abling Personal Verification of Code Integrity, Untampered Ex-
ecution, and Trusted I/O on Legacy Systems.CyLab, Feb 2007.

[7] A. Klimov and A. Shamir. A new class of invertible mappings.
In Proceedings of International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), 2003.

[8] Visualization and Controls Program Peer Review.National
SCADA Test Bed, Oct 2006.

[9] OSI Remote Information System.http://www.osii.
com/solutions/products/remote-telemetry.
asp.

[10] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT:
SoftWare-based ATTestation for Embedded Devices. InPro-
ceedings of the IEEE Symposium on Security and Privacy, Oak-
land, California, May 2004.

[11] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla.
SCUBA: Secure Code Update By Attestation in Sensor Net-
works. In ACM Workshop on Wireless Security (WiSe 2006),
Los Angeles, CA, September 29, 2006.

[12] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P.
Khosla. Pioneer: Verifying Integrity and Guaranteeing Execu-
tion of Code on Legacy Platforms. InProceedings of the ACM
Symposium on Operating Systems Principles (SOSP), Brighton,
United Kingdom, October 2005.

[13] Trusted Computing Group. Trusted platform module main
specification, Part 1: Design principles, Part 2: TPM structures,
Part 3: Commands.

