Mechanisms to Provide Integrity in SCADA and PCS devices

Aakash Shah Adrian Perrig Bruno Sinopoli
Carnegie Mellon University Carnegie Mellon University ~ Carnegie Mellon University
aakashs@andrew.cmu.edu adrian@ece.cmu.edu brunos@ece.cmu.edu
Abstract detection/prevention systems need to be deployed to preven

unauthorized access to the SCADA system. SCADA systems
Supervisory Control and Data Acquisition (SCADA) systemsave non-existent communications security. Strong messag
control and monitor critical infrastructure such as natligas, authentication is required on the communications charbeels
oil, water, waste-water, and electric power distributionda tween the SCADA master and RTUSs. Encryption should be
transmission systems. SCADA systems consist of a centrased to provide secrecy.
control center connected to Remote Terminal Units (RTUS) prior work attempts to address these issues. The Ameri-

which directly interface with sensors and actuators COMB&C 5 Gas Association [1] describe a protocol for serial SCADA
to the physical infrastructure. Most RTUs are not designed,,nmnications designed to defend against a Dolev-Yao ad-
with security in mind and consequently are vulnerable te var versary. The IEC 62351 standard [3] and the National
ious attacks compromising their code integrity. In this @ap SCADA Testbed group [8] propose authentication protocols
we propose the use of software-only schemes that can be ifs; scADA. Some commercial SCADA devices now allow
plemented on RTUs to prowde verification of code integrity,syr s connections [9]. Cunningham et al. [5] present tools
untampered code execution and secure code updates. to verify access policy implementations and a model-based i
trusion detection system for SCADA systems.

1 Introduction However, despite many of these security mechanisms, it
may still be possible for an attacker to compromise the RTUs.

Supervisory Control And Data Acquisition (SCADA) systems A concern in SCADA security is that an attacker would gain
are Process Control Systems (PCS) that monitor and contrémote access to a large set of RTUs in the SCADA net-
critical infrastructure such as the electric power, ndtgess, ~ Work and modify their software to launch a coordinated &ttac
oil, water and waste-water distribution and transmissigs s against the critical infrastructure. Such an attack carfiee-e
tems. They are distributed systems consisting of a centiat m tive in disabling the critical infrastructure in a regionsgée
ter station and human machine interface (HMI), Remote Terany inherent redundancies in the physical infrastructiitae
minal Units (RTUs) connected to sensors and actuators, angtack spans multiple utilities then the inter-dependesfdhe
a communications infrastructure. SCADA systems have hiscritical infrastructures could make the consequenceseoth
torically been designed without any information securitpc ~ tack worse. It is even possible for the attacker to prograen th
siderations. The use of private networks and proprietapy pr RTUs to report correct data to the central control centers th
tocols has provided some level of “security by obscurity” in effectively hiding the attack.
the past. Clearly, this is not sufficient to secure systeras th In order to prevent such an attack, a SCADA operator should
control critical infrastructure. Nowadays, SCADA systeans be able to detect if malicious software has been installed on
increasingly being connected to the corporate IT infrastme the RTUs. In fact, the operator should be able to verify the
and Internet, making them vulnerable to a remote attackisr. | integrity of the code on the RTU, perform secure code up-
imperative that these systems be secured as their comgromidates and ensure untampered execution of code. In this,paper
could have severe consequences. we use tamper evident software primitives to present such a
Many steps need to be taken to properly secure SCADA syssolution and contribute an implementation on a commercial
tems. We discuss a few of these steps. Appropriate access CdBCADA RTU. Such tamper evident software primitives are
trol mechanisms need to be implemented on the SCADA masdiscussed in prior work [6, 10-12].
ter and RTUs. Technologies such as firewalls and intrusion a; the core of these primitives lies a self-checking verifica
“This research was supported in part by CyLab at Camegieoheihder 10N function that computes a checksum over its own instruc-
grant DAAD19-02-1-0389 from the Army Research Office, TRUSEgm tions. A challenge-response protocol is employed between
for Research in Ubiquitous Secure Technology), and the ®abriblogy In- g trusted external verifier and the RTU. The external verifier
stitute. The views and conclusions contained here are thbtfee authors ge g 5 random challenge to the RTU. The verification func-
and should not be interpreted as necessarily represehingfficial policies . . .
or endorsements, either express or implied, of ARO, CMU, GTherU.S. tion running on the RTU computes a checksum over its own
Government or any of its agencies. instructions and returns the result to the external verifitve

checksum computation is designed in way such that if an admalicious and that it matches manufacturer specificatioa. W
versary tampers with this function either the checksumlpéll assume that the CPU is not overclocked. We assume that the
incorrect or there will be a noticeable increase in the compuRTU has a single CPU without virtualization support. We as-
tation time. Thus, if the external verifier receives the eotr sume that the RTU cannot access a faster computing platform
checksum within the expected time, it can be sure that the verproxy) to perform computation on its behalf. We assume that
ification function code on the device is unaltered. the communications channel between the external verifier an
The verification function also includes a cryptographic RTU provides message-origin authentication i.e. the azfer
hashing function. Once the integrity of the verificationdun verifier is guaranteed that packets are coming from the RTU.
tion has been verified, a hash of the RTU’s memory can be
computed. The external verifier can compare this hash to the
expected hash to ensure that the device has not been modk T hreat Model
fied. Alternatively, a hash may be computed over a known
executable to ensure that it has not been modified and then t¥€ assume that the adversary has complete control over the
hash function may invoke this executable in a way that essuresoftware on the RTU including the OS. However, the adver-
untampered execution. sary cannot modify the firmware of any peripherals to perform
Our proposed solution has several advantages. It providggalicious DMA writes to the memory region containing the
strong guarantees regarding the integrity of the RTU’s mem&xecutable. We assume that the adversary does not physicall
ory and the code running on the device. The RTUs represent @0dify the hardware of the device. This assumption may seem
significant investment on part of the utilities and consedjye ~Naive as most RTUs do not have strong physical security and
any solution needs to be low-cost. Our software-only sofuti aré generally secured by a lock. Therefore, itis possiblario
does not require any additional hardware and thus allowa for attacker to gain access to a particular substation ancagepl
low-cost solution. The RTUs are hardened devices with life-0f modify a RTU to allow for faster computation time. How-
times up to 30 years and hence there are many legacy RTURYET, We assume that. doing so at multiple substations is very
in production systems currently. Our solution can be apiplie hard and also dramatically increases the chances of dmtecti

to present and legacy RTUs, thus allowing for a more securdVe are most concerned with remote attacks. Depending on
SCADA system. the SCADA architecture, the adversary may access the RTUs
This paper is structured as follows. We discuss related worldirectly over the Internet or by compromising devices in the
in Section 2. We present our assumptions and threat mod&iCADA control center. However, we assume that there is at
in Sections 3 and 4 respectively. We provide an overview of€ast one trusted device at the SCADA control center that act
an architecture independent implementation in Sectionds an@S the external verifier and cannot be compromised by the ad-
discuss our implementation in Section 6. We discuss som¥ersary. We assume that the adversary has control over the

practical considerations in Section 7. We discuss futurswo COmmunications media and can add delays to the response of
and conclusions in Section 8. the checksum function to generate false positives, effelgti

creating a denial of service. However, this is no differératnt
the adversary “cutting the wire” and therefore we do not ad-
2 Related Work dress this issue.

The Trusted Computing Group (TCG) develops specifications)

for trusted computing and has designed the Trusted Platfor® OVverview

Module (TPM), a tamper-evident chip that allows for a way _ _ _ _) -

to verify platform information by a series of attestatioa8]| In this sgcnon.we discuss mechamsms to provide verifinatio
The TPM allows a verifier to obtain a guarantee of what code?f code integrity, untampered execution and secure code up-
was loaded into system memory initially. However, a hard-dates on @ SCADA RTU. Such mechanisms are discussed in
ware based solution cannot be applied to legacy RTUs. Alscdétail in prior work [6,10-12]. At the core of these schemes
the TPM cannot be updated in software and consequently, thé€s & self-checking verification function that can guaearits

only way to modify them is to replace the hardware. The©Wn integrity by computing a checksum over its own instruc-

software-only solution described in this paper does natireq tions. The verification function thus dynamically estaltis
any hardware extensions. a trusted base or dynamic root of trust on the RTU. This dy-

namic root of trust can then be used to verify other aspects of
the system such as code integrity. We present an archigectur
3 Assumptions independent design of the checksum code in this section.

We assume that the external verifier (e.g., the SCADA contr05_1 Verification Function Design
center) knows the exact hardware configuration of the RTU in-
cluding the CPU model, CPU clock speed and the memory laThe design of our verification function is based on the Pio-
tency. We assume that the hardware of the SCADA RTU is noheer primitive [12]. Figure 1 provides an overview of the-ver

ification function. The verification function consists oféle

checksum code below. Seshadri et al. [12] provide a detailed

main components: the checksum function, send function andescription of these properties.

the hash function.

Verification func

-

Untrusted Platform)

Verification func
|]

I
I
I
Checksum codge, 1. Challenge »| | Checksum code
| 3. Checksum |
. ! .

‘ Send functlon‘ ! 5. Hash of code ‘ Send functlon‘

|-
Hash function| |, Hash function
|
| 4. Hash' '6. Invoke
I
Executable 3 < Result (optional) Executable
- - Y, N

N Expected memory layout

wnsx2ayo andwod 2/

Figure 1: Verification function overview. Numbers repre-
sent temporal order of events.

Time-optimal implementation. The checksum code needs
to be the checksum code sequence with the fastest running
time, otherwise the adversary could use a faster implementa
tion of the checksum function and use the saved time to forge
the checksum. To achieve a time-optimal implementation we
use simple instructions such as “add” and “xor” that canm@ot b
implemented faster or with fewer operations. Also, the &hec
sum code is structured as code blocks such that the opesation
in one code block depend on previous blocks.

Instruction sequencing to eliminate empty issue slots.
We arrange the instruction sequence of the checksum code so
that the processor issue logic always has a sufficient number
of issuable instructions for every clock cycle.

CPU state inputs.We incorporate CPU state inputs such as
the Program Counter (PC) and the data pointer in the check-
sum function to defend against memory copy attacks disdusse
in prior work [12]. In a memory copy attack the adversary

Checksum Function. The checksum function computes a Modifies the checksum function such that the checksum is gen-
checksum over the entire verification function and sets up agrated over agood copy of the verification function codeestor
environment in which the send function, the hash functiod, a €lsewhere in memory.
the executable are guaranteed to run untampered by any mali- lterative Checksum code.lterative checksum code allows
cious software on the RTU [12]. The checksum function need$or a constant-time overhead per iteration, thus allowirgaf
to be designed such that even if a single byte of the verifinati Noticeable delay in the checksum computation time by rugnin

function is modified, the checksum will be different. A catre

the checksum for a large number of iterations.

checksum assures the external verifier that the code has notStrongly-ordered checksum function.We use a strongly-
been modified. However, an adversary could presumably moddrdered checksum function to prevent parallelization. A
ify the verification function, and calculate the checksurerov strongly-ordered checksum function is a function whose out

a valid copy of the verification function code, thus geneigti

put differs with a high probability if the operations are keva

the correct checksum. In order to prevent this, the checlisum uated out of order. A strongly ordered function requires the
designed in way that any such modification would add considadversary to perform the same operations on the same data in
erably to the running time of the checksum function. Then, ethe same sequence as the original function to obtain theaorr
correct checksum obtained within the expected amount @ timresult. We use a strongly ordered checksum function censist
guarantees that the verification function has not been nealdifi ing of alternating “add” and “xor” instructions. This prews

and that there is an environment for untampered execution oparallelization, as at any step of the computation the ofirre

the RTU.

Hash Function. A cryptographic hash function that is sec-

value is needed to compute the succeeding values.
Small code sizeThe checksum code must fit in the proces-

ond preimage resistant (e.g., SHA-1) is used to perform theor cache to achieve a deterministic execution time. Als®, t
integrity measurement of the executable. A random nonce re<€lative per iteration overhead increases with a smallecich
ceived from the external verifier and code for the executablesum loop.

are hashed and the resulting digest is returned to the ektern Low variance of execution time.We achieve this property
verifier. The external verifier can compare this digesttaethe by ensuring that the checksum code is run uninterrupteth, bot
pected one to ensure that the executable has not been modifigte verification code and checksum code are small enough to
The hash function proceeds to invoke the executable when it ffit in the L1 data and instruction caches, respectively, ad h

done.

ing sufficient issuable instructions for any CPU cycle.

Send Function. The send function sends the checksum and Keyed-checksum. To prevent the adversary from pre-
hash digest to the external verifier.

5.2 Required properties of checksum code

computing the checksum, and to prevent replaying of old
checksum values, the checksum depends on a random chal-
lenge sent by the external verifier.

Pseudo-random memory traversal. We use pseudo-

The checksum code has to be constructed such that any tamendom memory traversal to protect against the data substit
pering of the verification function either results in a incor tion attack discussed in prior work [10, 12]. In the data $ubs
rect checksum or causes a noticeable delay in the checksutation attack, the adversary modifies a certain memory regio
computation. We briefly discuss the required propertieb®f t containing the verification function code and redirects mm

reads for this region to another location containing a atrre optionally comes with a wireless spread spectrum radio. The
copy of the data. device runs VxWorks 5.5 as its operating system.

The ARM7TMDI core is a member of the ARM family of

5.3 Execution Environment for Untampered general purpose 3?—bit RISC microcqntrollers [2]. It imple'

Code Execution [I_nhents tyvo mstfuctlon sets: the 32 bit ARM and the .16 bit

umb instruction set. It has seven operating modes: User,
We discuss how the checksum function can be used to setup &iQ, IRQ, Supervisor, Abort, Undefined and System. While
untampered execution environment for the hash functiam, ththe processor has 37 total registers, a subset of the negiste
send function and an executable. “banked” across the operating modes. Each mode can access
We ensure that the checksum function runs at the highl6 general-purpose registers (including the program esunt
est privilege level and that all maskable interrupts areadr link register and stack pointer) and the Current Process Sta
off. We include the flags register that contains interrupt en tus Register (CPSR). All operating modes except the user and
able/disable flags in the checksum computation to ensute thgystem modes also have access to the Saved Process Status
an adversary running a modified checksum function at loweRegister (SPSR).
privilege levels will generate the incorrect checksum.
To ensure that the hash function and the executable will run

untampered, we have to guarantee that the the exception hag:2 Design of Checksum Code
dlers and the handlers for the non-maskable interruptsare n
malicious. To achieve this, we replace the existing exoepti We base the design of our checksum code on the PRISM im-
handlers and handlers for non-maskable interrupts with ouplementation [6] as it is also geared towards an ARM based
own handlers that return immediately. This ensures that tharchitecture.
send function, hash function and executable run uninttEde Our checksum function must provide the properties dis-

in an untampered environment. cussed in Section 5.2. Any tampering should generate an in-
correct checksum or lead to a noticeable computation delay.
5.4 Performing Secure Code Updates The checksum function takes a 68 byte input that is gener-

ated from the challenge provided by the external verifiee Th
The untampered code execution environment can be used thecksum function computes the checksum over the memory
ensure secure code updates. Seshadri et al. discuss suclegion that the verification function resides in and reta68
scheme for sensor networks [11]. The untampered code eXyte output.
ecution can be used to execute the update executable t@ensur The checksum function is a time-optimal iterative function

that no malicious code can interfere with its execution. that uses all genera|_purpose registers and generates)aeﬁs b
checksum which we represent as a vector of seventeen 32-bit
. checksum pieces. The use of all the general-purpose regis-
6 Implementatlon ters ensures that an adversary has no free registers as-ts di
])))) posal. Each checksum piece is stored in one register. Before
In the following section we discuss our implementation One checksum loop begins, the checksum is initialized vieh t
a commercial SCADA RTU. We implemented a verification ranqom challenge obtained from the external verifier, preve
function that provides a mechanism for software based codﬁ]g the adversary from pre-computing the checksum. Each
attestation and verifiable code execution based on the PiGteration of the checksum code performs the following steps

neer primitive discussed by Seshadri et al. [12]. We used e T . i
the SCADAPack 350 RTU made by Control Microsystems for Step 1.We use a 32. bit T-function [7] to generate a pseudo
random number. Adding the pseudo-random number to the ad-

our implementation. The SCADAPack 350isa programmabledress where the verification function is loaded ensureglhieat
logic controller geared towards the oil and gas, water, @ast

G . ; ttacker cannot predict the memory location in
water and electric utilities. It has a simple architecturd ean attacker cannot predict the memory locations being acdesse

be proarammed using C/C++ or ladder loai We use the following T-function, x = x ¢ v 5) mod 2. The
€ programmed using orladderfogic. initial x value is obtained from the random challenge issoxed

the external verifier.
6.1 Architecture Overview Step 2. A 32-bit word is read from the computed memory

The SCADAPack 350 uses a 32-bit ARM7TMDI processor0oress o
Step 3. One checksum piece is updated based on all other

with a 32 MHz clock [4]. The processor also has two micro- ; X
controller coprocessors with 20 MHz clocks. ARM CPUs usefUnning checksum piece values, the pseudo-random memory

a Von Neumann architecture where data and instructions re2ddress read, memory word read and other state variables.
side in the same memory. The SCADAPack 350 has 16 MBs Step 4. The state variables are updated and steps 1-4 are
of Flash ROM, 4 MBs of CMOS RAM and 4 KBs of EEP- repeated for a different checksum piece.

ROM. It has 3 serial ports, 2 USB ports and 1 Ethernet port. It Figure 2(a) shows the checksum function pseudocode.

Assembly Instructions
mul rll, r10, r10

/Ninput: Number of iterationyg of the checksum function, addri, r1,r0
I Random challenge to initialize checksum pieces eorrl,rl, r8
/[Output: Checksur@ orrrll, r10, #0x5
1 daddr- address of current memory access adds r10, r10, r11
7 X - value of T-function mov rll, #0x12, 12
1 status- CPSR register add rl1, r11, r10, LSR #22
1 saddr- Address where verification function is loaded addri,ri, r7
for | =yto 0do and r11, r11, #Oxfffffffc
/IT function updatex where 0< x < 2" Idrr12, [r11]
X X+ (x2v5) mod 2 eorrl, rl, r6
//Modifiesdaddrbased on theaddrandx from T function addri, rl,r5
daddr— saddr+x[31: 22 eorrl,rl, r4
/IRead from memory addredsddr, modify checksum. addri, rl, r3
/ILet C be the checksum vector afjde the current index. eorrl,rl, r2
Cj—Cj+Cj_10Cj 2+Cj 30Cj 4+Cj 50Cj_6+Cj 70Cj g+ addri, r1,rl5
PC@®daddr+ menjdaddir & status+ | eorrl,rl, ril
Cj — rotateright(C;) & x addril, rl,rl2
//Update checksum index eorrl, rl, rl2
j < (j+1)mod mrs rl12, cpsr
end for addrl, rl, r9
(a) Checksum Function Pseudocode eorri, r10, rl, ROR #1

subs r9, r9, #1
(b) Checksum Assembly Code. rl is the current checksum eggist

Figure 2: Implementation of checksum function.

6.3 Checksum Implementation isters requires that the adversary add at least 6 instnsciio
assembly: 3 to switch into a different mode and 3 to switch

. We run the verification functior_1 asan a_lppliqat_ior_l in SUper'back. If the additional 6 instructions do not add enoughyela
vIsor mode. The checksum_ func_tlon IS w_nttep n |_nI|ne.assem in computation, the checksum can be designed to use all the
bly while the rest of the verification function is written in C

) _ banked registers, ensuring that the adversary cannot ese th
Figures 2(a) and 2(b) show the checksum function pseudo- i J g v)
_To implement any attack the attacker may need to load im-

code and assembly code, respectively. Our checksum compu- "~ -
tation includes the previous nine checksum pieces, stored imediate values (e.g. a specific memory address). The aftacke
registers r0 through r8, the program counter (r15), CPS&, thcan load this value from memory but this is slow. The attacker

pseudo-random memory address, memory word read and tfould encode the immediate operand within the instruction.
current iteration number. The checksum piece computasion iHoyvever, in the ARM architecture immediate operan'ds are
a series of alternating “add” and “xor” instructions to aflo limited to 8 bits. The attacker can use the barrel shifter to

for a strongly ordered function. We also rotate the runningshlft the 8 bit value in the same instruction cycle, but thil$ s

checksum piece to prevent an attack discussed by Seshadrilié.f“ts the num_ber of 32-bit immediate values achievable in a
al. [10]. single instruction. The attacker would need to add an offset

to get the 32-bit number it desires. This requires that the at

. . tacker have a free register which we show to add overhead to
6.4 Empirical Analysis of Attack Overhead the computation.

In this section we discuss how any attack against the verifica The attacker may implement its modified checksum loop
tion function will lead to a noticeable overhead in the check Using the Thumb instruction set in order to get higher code
sum computation. density. However, this would come at the expense of perfor-
Other than hardware attacks, the best known attacks againdtance and the computation time would increase considerably
the verification function attempt to forge the checksum iit-so Also, including the CPSR in the checksum prevents the at-
ware. Such attacks can be classified into memory copy attackgcker from switching to the Thumb instruction mode.
or data substitution attacks. We show that such attacks ancu The attacker may use the two co-processors present in the
significant overhead in the checksum computation. ARM7TDMI chip to get a faster checksum computation. We
Since we use all general-purpose registers, the attacker hansure that the checksum code is non-parallelizable by us-
no free registers to use in its attack. The only way the agiack ing a strongly-ordered checksum calculation and havingp eac
can obtain free registers is by storing some of the checksurohecksum piece depend on previous checksum pieces. Thus,
state in memory or use the banked registers. However, acceshe attacker would only gain an advantage if the co-proeesso
ing memory is slow and we show that this leads to a noticeablevere faster than the core ARM processor, which is not the
overhead in the checksum computation. Using the banked regase.

We defend against the memory copy attack by including the 125 v v v v v v v v v
PC and the pseudo-random memory address in the checksum ,, |]
piece calculation. In order to implement a memory copy at-
tack, the attacker has to forge either the PC or the memory
address. In order to forge the PC the attacker has to use an 1
immediate or load the value from memory. To forge the ran-; o5} 1
dom offset of the memory address being read, the attacker hag
to read from memory. Both cases lead to a slow down in the
checksum computation. However, the ARM instruction setal- °°
lows one to load data from an offset from a memory location. o :
The attacker can place an unmodified copy of the verification
function at a fixed offset from the modified version. Then in-

115 - B

85 - B

! ! !

stead of loading data from the modified memory locations, the ~ ®c 10 2 2 0 s w 7 s s 10
attacker can always load from the unmodified version of the ‘ Number of checksum runs

verification function. A self-modifying checksum functioan G ing banked regsers Data subsition atack 5
be used to prevent this attack. We do not use a self-modifying

checksum function in the current implementation. Figure 3: Checksum Computation Time for Various

We defend against the data substitution attack in several€Sts-
ways. We access memory locations in a pseudo-random man-

ner. This ensures that the attacker must check to see if thSNitch to different processor mode. We do not replace in-
memory location being checked has been modified and the ot handlers with trusted handlers in this implemeoitat

read from an alternate memory location. This requires the alg e the checksum function returns, a hash is computed of the
tacker to add a compare instruction to the checksum loogs Thigyecytable and sent to the external verifier, interrupesvagit

has two problems. First, the attacker needs aregisterdimat C (5 the executable are enabled and the hash function invokes
tains the memory address of the malicious code to perform thg, o executable. Similarly, the hash function is also used to

compare or use an immediate value. Second, the compare iggmpte a hash of memory to ensure the integrity of the RTU
struction modifies the flags in CPSR which is included in thememory.
checksum computation, thus requiring the attacker to deve t

original CPSR.
We measured the computational overhead of three differ= i i i
ent attack scenarios - data substitution attack, using fREIA 7 Practical Considerations

banked registers and the memory copy attack. In the data Su9\79 discuss some of the practical considerations relatedrto o

stitution attack we modified the contents of one memory Ioca'vvork below.

tion and added the extra “if” statement to ensure that if the Most SCADA RTUs have a simple architecture. This allows

modified memory location is about to be accessed then th?or a straightforward implementation of the verificatioméu

memory contents are loaded from an alternate memory loca: . .
y y at|on. The SCADA manufacturers are best suited to implement

tion. In the banked register scenario, we simulate the suic the verification function as they have an intimate knowledge
and from a different processor mode by adding six No OPera Y 9

tion instructions (NOP) in the checksum loop. We simulage th of their architecture and the development tools necessary t

. . . modify the kernel. The external verifier can be a trusted de-
memory copy attack by adding appropriate load and store in-. .

X vice in the central control center. A SCADA operator must be
structions to the checksum loop. We run the checksum loop for

16.2 million iterations in each case and compare the retults rﬁ:i?(?::gg chr:;;?pmg a updated copy of the RTU image on
that of the unmodified checksum function. A dedicated seriaf)

link connected the SCADA RTU and external verifier. Figure Ther_e are hundrgds OT diffgrent SCADA manufapturers
and this could require unique implementations for différen

3 shows the results of our experiments. Note that the vagianc . .
SCADA manufacturer devices. However, different manufac-

in the computation time for each scenario is negligible.oAls hitect ARM d exist
note that the banked register attack, memory copy attack ant('J'rerS may use common architectures (e.g.,) and exist-

data substitution attack led to a 25%, 36% and 51% increas&Y qQSigns and implementations for.these architecturas ca
in computation time, respectively. significantly reduce the development time.

There is a concern that the communications infrastructure
may add delays to the challenge-response protocol between
6.5 Untampered Execution Environment the external verifier and the SCADA remote field device. In
order to avoid false positivésn detecting malicious code, the

We. ensure an untampgred executjon envirgnment by'maSkirl%reshold for detection must be increased to account for any
all interrupts and running at the highest priority. We irtgu

the CPSR in our checksum to ensure that an attacker cannot Positive refers to the event that malicious code is detected.

such delays by running the checksum function for more iterathe RTUs are authentic.

tions. This can be achieved by generating baseline figures fo

the delays on the communications channels. In cases wher

the variance in communication delays is high, the checksun§ ACknOWIedgmentS

function can be executed multiple times to ensure that there))]
are no false positives. It is important to note that this @rim We would like to thank Arvind Seshadri and Tom Palarz for

ily applies to PCS systems where the field devices reside in valuable technical discussions and the Gas Technology In

remote location. For example, the field devices for a chemiStitute for loaning us equipment.

cal plant PCS may be stored locally and will not have a large
variance in communication delays.

Most SCADA systems are real-time distributed systems thaB eferences
are constantly running. The real-time application must be 1] AGA 12, Part 2 draftAmerican Gas Associatip2006.
taken offline as running the checksum function in parallel [2] ARM. ARM7TDMI Technical Reference Manual
could affect the process. If the real-time application\aiat, [3] IEC 62351.Power systems management and associated infor-
it may be possible to stop the real-time application onceya da mation exchange - Data and communications security
for maintenance and run the verification function. Howeiver, [4] Control MicrosystemsSCADAPack 350 Hardware Manual
cases where the real-time application on the field device can [3] R.Cunningham, S. Cheung etal. Securing Process Control Sys-
not be taken offline, redundancy must be used. A secondary €ms of Today and Tomorrow. Irst Annual IFIP WG 11.10
field device must be brought online as the primary one is taken International Conference on Critical Infrastructure Protectjon

. e . March 2007.
offline to run the verification function.

. . [6] J. Franklin, M. Luk, A. Seshadri and A. Perrig. PRISM: En-
Another concern is the frequency of checks on the field de- * * ,jing Personal Verification of Code Integrity, Untampered Ex-

vice. It may be sufficient to run the verification function erec ecution, and Trusted /0 on Legacy Syste@gLah Feb 2007.
day to ensure that the field device software has not been mod{7] A. Klimov and A. Shamir. A new class of invertible mappings.
ified. However, if the verification function is run on a fixed In Proceedings of International Workshop on Cryptographic

schedule then the attacker can take advantage of this and en- Hardware and Embedded Systems (CHE8P3.

sure that there is no malicious code on the device when the[8] Visualization and Controls Program Peer RevieMational
verification function is run and reload the malicious codgati SCADA Test BedDct 2006.

after the verification function finishes. [9] OslI Remot_e Information Systemht t p: // www. osSi i .

We assume message-origin authentication between the ex- cont sol uti ons/products/remote-tel emetry.
ternal verifier an(_JI th_e remote field device. However, most[0l Z.Sg.eshadri, A. Perrig, L. van Doorn, and P. Khosla, SWATT:
S_CADA communications channels lack any form of ?'Uthen' SoftWare-based ATTestation for Embedded DevicesPio-
tication. If the attacker has control over the communicatio ceedings of the IEEE Symposium on Security and Priv@ay-
channel, it can launch a proxy attack where it computes the land, California, May 2004.
checksum on a second device loaded with good software anfl1] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla.
send the external verifier the correct checksum. Message au- SCUBA: Secure Code Update By Attestation in Sensor Net-
thentication is necessary to prevent this attack. works. InACM Workshop on Wireless Security (WiSe 2006)

Many SCADA systems use a cascaded architecture where L0s Angeles, CA, September 29, 2006.

RTUs are chained together. In such cases, the externakverifi [12] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doomn, and P.
may be able to run the verification function on the RTU it is '.(h05|a' Pioneer: Verifying Integrity and Gu.aramee'ng Execu-
. L - tion of Code on Legacy Platforms. Proceedings of the ACM

directly connected to, which in turn can run the verification

. . Symposium on Operating Systems Principles (SCEB#ghton,
function on the chained RTU. The checksum and hash values j,ited Kingdom, October 2005.

can be sent back to the original external verifier. [13] Trusted Computing Group. Trusted platform module main
specification, Part 1: Design principles, Part 2: TPM structures,
Part 3: Commands.

8 Conclusion and Future Work

We show how verification of code integrity, untampered code
execution and secure updates can be achieved in SCADA and
PCS field devices. We contribute an implementation on a com-
mercial SCADA RTU, discuss the practical implications and
demonstrate how such a scheme can be used to provide secu-
rity in SCADA systems.

In future work, we intend to propose a scheme that uses the
same tamper evident primitives to allow the SCADA master
to obtain a guarantee that the analog and digital readiogs fr

