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Abstract. This paper presents a protocol called SAKE (Software Attes-
tation for Key Establishment), for establishing a shared key between any
two neighboring nodes of a sensor network. SAKE guarantees the secrecy
and authenticity of the key that is established, without requiring any
prior authentic or secret information in either node. In other words, the
attacker can read and modify the entire memory contents of both nodes
before SAKE executes. Further, to the best of our knowledge, SAKE
is the only protocol that can perform key re-establishment after sensor
nodes are compromised, because the presence of the attacker’s code in
the memory of either protocol participant does not compromise the se-
curity of SAKE. Also, the attacker can perform any active or passive
attack using an arbitrary number of malicious, colluding nodes. SAKE
does not require any hardware modification to the sensor nodes, human
mediation, or secure side channels. However, we do assume the setting
of a computationally-limited attacker that does not introduce its own
computationally powerful nodes into the sensor network.
SAKE is based on ICE (Indisputable Code Execution), a primitive we
introduce in previous work to dynamically establish a trusted execution
environment on a remote, untrusted sensor node.

Key words: Key establishment, software attestation, sensor networks

1 Introduction

Sensor networks are expected to be deployed in the near future in many safety-
critical applications such as critical infrastructure protection and surveillance,
fire and burglar alarm systems, home and office automation, inventory control
systems, and medical applications such as patient health monitoring. Therefore,
securing sensor networks is of paramount importance.
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Many security mechanisms proposed for sensor networks rely on cryptogra-
phy, which makes the problem of key establishment one of the central issues
in sensor network security. The problem of key establishment can be described
as instantiating secret keys in the nodes of a sensor network in a manner that
the authenticity and confidentiality of keys can be guaranteed. Even though
key establishment in sensor networks is a well-studied problem, a major body
of research that addresses the problem assumes the presence of some secret in-
formation in the nodes [1–6]. The techniques that do not assume prior secret
information in the nodes namely Integrity Codes [7], Smart-Its Friends [8], Are
You with Me [9], Shake Them Up [10], Key Infection [11], and Message in a
Bottle (MiB) [12] all either require human mediation, extra hardware, or are
insecure.

In this paper, we present SAKE, a key establishment protocol for establishing
shared keys between any two neighboring nodes in a sensor network. SAKE is
immune to all active and passive attacks without requiring any prior secrets
or authentic information in either of the nodes. In order words, the attacker
is free to read and modify the entire memory contents of both participants
before the protocol executes. In addition, SAKE does not require any secure
side channels between the principals. The secrecy and authenticity of the key
that is established are guaranteed against an attacker that can perform any
active or passive attack using a arbitrary number of compromised, colluding
nodes. One consequence of this is that SAKE guarantees that a good node will
never establish a key with a malicious node i.e., SAKE is fail-safe.

Another interesting property of SAKE is that the attacker’s code can exist in
the memory of the participating nodes during the execution of SAKE. In other
words, the protocol participants can be compromised. Yet the attacker will not be
able to compromise the confidentiality of the key that is established. To the best
of our knowledge, this property is unique to SAKE. All other research in the area
of sensor network key establishment assumes a network-based adversary, whereby
the protocol participants are assumed to be uncompromised. This property of
the SAKE makes it suitable for key re-establishment after node compromise
since the presence of the attacker’s code in either (or both) participants does
not compromise the security of SAKE.

The results we present in this paper appear even more surprising since we as-
sume commodity sensor nodes, i.e., no hardware modification is required to the
sensor nodes, and do not require human mediation or secure side channels. How-
ever, we do assume that the attacker does not introduce its own computationally
powerful nodes into the network. Even with this assumption, we have dramat-
ically increased the level of difficulty for an attacker. In order to circumvent
our protocol, the attacker’s hardware must always be present and must partici-
pate actively in the SAKE protocol, which increases the chance of detection. For
example, researchers have recently shown that it is possible to use radio finger-
printing to uniquely identify the origin of messages in a sensor network [13]. Such
techniques can be used to create a list of nodes that are authorized members of
the network, thereby detecting the presence of the attacker’s devices. Compared



to today’s security scenario, where an attack could be launched remotely, SAKE
presents a substantial hurdle for the attacker by requiring physical presence. As
we discuss in the related work section, the SAKE protocol covers a new point in
the design space, offering an appealing trade-off between ease-of-use and security.

SAKE is based on a primitive called ICE (Indisputable Code Execution)
that we introduced in our earlier work [14]. Using ICE, a challenger can verify
if the execution of an arbitrary piece of code on a remote sensor node will
be untampered by any malicious code that might be present. In SAKE, either
principal can use ICE to verify if the execution of the SAKE protocol code will
be untampered, thereby obtaining the guarantee that the key that is established
will not be revealed to malicious code. We implement ICE and SAKE on Telos
sensor nodes.

2 Problem Definition, Attacker Model, and Assumptions

This section presents our problem definition, attacker model, and sensor network
architecture and assumptions, in that order.

2.1 Problem Definition

When nodes are newly deployed or when they are compromised, they need a
mechanism to establish pairwise shared keys with their neighbors. Once pairwise
shared keys between neighbors are established, it is trivial to establish shared
keys between non-neighboring nodes. Therefore, establishing pairwise shared
keys is the fundamental problem in key establishment.

The protocol used to establish shared keys must guarantee the authenticity
and confidentiality of the keys that are established. This requires the protocol
to be resilient to passive and active attacks. Also, the protocol cannot assume
the existence of any secret or authentic information in the participants, since
such information may not exist in newly deployed nodes or might have been
compromised in the case of compromised nodes.

2.2 Attacker Model

We assume an attacker that can compromise an arbitrary number of sensor
nodes and introduce its own sensor nodes into the network. Upon compromising
a sensor node, the attacker can read and modify its entire memory contents. Also,
the attacker’s code can exist in the memory of the SAKE protocol participants
during the execution of the SAKE protocol.

The malicious nodes controlled by the attacker can arbitrarily collude. How-
ever, the attacker does not introduce computationally powerful devices, such as
laptop computers, into the network. Note that introducing new hardware into
the network increases the attacker’s chance of being detected. The attacker’s
hardware must always be present in the network and must actively participate
in the SAKE protocol. For example, researchers have recently shown that it is



possible to use radio fingerprinting to uniquely identify the origin of messages
in a sensor network [13]. Such techniques can be used to create a list of nodes
that are authorized members of the network, thereby detecting the presence of
the attacker’s devices. In our future work, we will consider an attacker who is
present in the sensor network.

An example attacker that fulfills these requirements would be a remote at-
tacker. Such an attacker exploits software vulnerabilities, such as a buffer over-
flow vulnerability, to compromise a sensor node. Once a node is compromised,
the attacker can gain full control over the node. For example, the attacker can
inject and run arbitrary code, and steal cryptographic keys.

2.3 Sensor Network Architecture and Assumptions

We consider a wireless sensor network consisting of one or more base stations
and several sensor nodes. All sensor nodes have identical hardware configura-
tions. The sensor nodes communicate among themselves and the base station
using wireless communication links. Every sensor node has an unique, immutable
identifier, hereafter referred to as its Silicon ID. Such Silicon IDs are available
on commodity motes. Examples include the 64-bit DS2401 silicon serial number
chip present on the Mica2 motes [15], and the 48-bit serial ID chip present on
the Telos motes [16]. The immutability of the Silicon ID implies that an attacker
cannot modify it, even when it compromises the sensor node. The sensor net-
work is assumed to have a reliable transport layer protocol like PSFQ [17]. The
SAKE protocols require that all protocol messages be reliably delivered between
the participants. Finally, the nodes are assumed to have a hardware source of
randomness. This source of randomness is used to generate the shared key that
is established and for other cryptographic operations required by SAKE. A hard-
ware source of randomness ensures that the attacker cannot know the output
of the random source during the SAKE’s execution, even if it knows the entire
memory contents of the sensor node before SAKE beings executing.

The base stations are the gateway between the sensor network and the outside
world. Other sensor networks or computers on the Internet can send network
packets directly to the sensor nodes but these packets will always pass through
at least one of the base stations. This assumption is justified since the nodes have
short-range wireless radios. We also assume that the base stations are trusted.
This assumption is commonly made by most sensor network security researchers
since compromise of the base stations in most cases means the compromise of
the network.

3 The SAKE Protocol

In this section we describe the SAKE protocol. Section 3.1 presents an overview
of SAKE. Section 3.2 describes the construction of the SAKE in detail. In Sec-
tion 3.3, we discuss how we select cryptographic primitives for SAKE and present
our evaluation.



3.1 Overview

SAKE uses the well-known Diffie-Hellman (DH) key exchange protocol to es-
tablish a shared key between the two participating neighboring nodes. The DH
protocol is immune to passive attacks. However, it is vulnerable to the man-in-
the-middle (MitM) attack, unless the two participating nodes have some means
of authenticating each other’s DH protocol messages. Then, the key question we
face is: how to authenticate the DH protocol messages without relying on the
existence of prior secret or authentic information in both participating nodes?

We use the Guy Fawkes protocol by Anderson et al. [18] to authenticate the
DH protocol messages. This protocol uses one-way hash chains. We choose the
Guy Fawkes protocol rather than constructs based on asymmetric cryptography,
such as digital signatures. Hash chains, which are based on symmetric cryptog-
raphy, are computationally less expensive to generate. This is an advantage since
SAKE has to execute on resource-constrained sensor nodes.

To use the Guy Fawkes protocol, each of the two participants has to “commit”
to the other participant’s hash chain. That is, each participant needs to obtain at
least one authentic value of the other participant’s hash chain. The Guy Fawkes
protocol does not mention how the participants commit to each other’s hash
chains. Instead it assumes that an out-of-band mechanism exists for this purpose.
In SAKE, we use the ICE primitive to build a mechanism that allows the two
participating nodes to commit to each other’s hash chains, thereby addressing
this shortcoming of the Guy Fawkes protocol.

All the above constructions ensure that a network-based active or passive
attacker cannot compromise the confidentiality of the key that is established. The
final issue that needs to be addressed is: how can we prevent the attacker that
might be present on one of the participants from learning the key? This question
is particularly relevant in the case of key re-establishment after node compromise.
Even in the case of newly introduced nodes, we cannot be sure that there is no
malware present, unless we can trust the distribution channels through which
the new nodes are obtained. What we need is a mechanism that prevents the
attacker’s code, if present on either participating node, from compromising the
confidentiality of the key. The ICE primitive provides this mechanism.

3.2 Constructing SAKE

In this section, we progressively construct SAKE by first describing how we use
the ICE primitive to achieve two goals: one, prevent an attacker that may be
present on one of the participating nodes from compromising the confidentiality
of the key and two, build a hash chain commitment mechanism for the Guy
Fawkes protocol. Then, we describe how we use the Guy Fawkes protocol to
authenticate the DH protocol messages, thereby completing our construction of
SAKE.

Using ICE for SAKE (“SAKE on the Rocks”)
We start off with a short overview of ICE. Then, we describe how ICE can be



used to prevent the attacker’s code, that might be present on either participating
node, from compromising the confidentiality of the shared key. After that, we
discuss the asymmetry in the ICE primitive that we use as the basis of SAKE’s
hash chain commitment mechanism. Finally, we describe SAKE’s hash chain
commitment mechanism.

ICE overview. ICE is a challenge-response protocol through which the chal-
lenger can verify if an arbitrary piece of code (target code), that it invokes on
the responder, will execute untampered by any malicious code, that might be
present on the responder. In other words, when the ICE protocol succeeds, the
challenger obtains an indisputable guarantee that the expected target code ex-
ecutes unmolested by any potential malware present on the responder.

The verification in ICE is done using two checks. First, check that the in-
tegrity of the target code is intact before it is invoked for execution. This check
ensures that the correct target code image is invoked for execution. Second, check
that the execution environment for the target code is set up so that no malicious
code will execute concurrently with the target code. Given that the correct tar-
get code is invoked for execution, the second check verifies that malicious code
will never execute as long as the target code is executing. This prevents the ma-
licious code from attacking the target code during the latter’s execution, thereby
rendering the malicious code harmless.

ICE is based on a special checksum function that sets up the execution en-
vironment for the target code, and then computes a checksum over the memory
region containing itself, the target code and the CPU state corresponding to
the execution environment. The checksum constitutes a proof of integrity of
the target code and the correct instantiation of its execution environment. By
verifying the correctness of the checksum it obtains, the challenger can satisfy
itself of the indisputable execution of the target code. However, the attacker
can try to tamper with the checksum code to forge the correct checksum. To
detect such tampering, we construct the checksum function so that its execution
time increases on any attempt to tamper with its execution. Therefore, if the
challenger obtains the correct checksum within the expected period of time, it
obtains the guarantee of indisputable execution of the target code. This overview
skips several details of ICE, which can be found in our earlier work [14].

Achieving key confidentiality using ICE. The indisputable execution prop-
erty of ICE offers a direct mechanism to prevent any malware, that may be
present on either SAKE participant, from compromising the confidentiality of
the key that is established. Each of the two participants acts as the ICE chal-
lenger in turn and verifies that the SAKE protocol code will execute untampered
by malware on the other participant. If the verification fails, the challenging node
refuses to establish a key with the responding node and terminates the SAKE
protocol. This ensures that the SAKE protocol is fail-safe. The confidentiality
of the shared key is thus ensured, as long as the SAKE protocol is executing.

Further, as we discuss in our earlier work on ICE [14], we can use ICE to
undo the attacker’s modifications to the sensor node software. By undoing the
attacker’s modifications after the shared key is established, we can guarantee the



confidentiality of the shared key even after the SAKE protocol terminates. This
enables SAKE to re-establish shared keys after node compromise.

Asymmetry in ICE. We use the asymmetry in the checksum value and the
computing time of the ICE checksum, between the genuine checksum function
and a modified checksum function, as the basis of the mechanism for hash chain
commitment. The key observation here is that if we include the Silicon ID of a
node as part of the input used to compute the checksum, only the node with the
Silicon ID will be able to return the the correct ICE checksum within the ex-
pected time. In other words, we can use the ICE checksum as a short-lived secret.
No other node in the network will be able to compute the correct checksum until
sometime after the node with the correct Silicon ID finishes its computation.

The above conclusion assumes that all nodes in the network have the same
computing power and that a malicious node does not ask a remote colluding
device, with greater computing power, to compute the checksum on its behalf.
The first assumption is valid since the attacker does not introduce its own com-
putationally powerful nodes into the network. To justify the second assumption,
first note that one of the base stations has to act as the gateway between any
malicious node and a remote collaborator. Since the expected time taken to
compute the ICE checksum is around 3 seconds [14], by delaying all outgoing
packets by 3 seconds, the base stations can ensure that the checksum response
computed by a remote collaborator arrives too late at the malicious node.

If the ICE checksum function directly reads the Silicon ID during checksum
computation, to incorporate it into the checksum, then there is possibility of
the following attack. Since the Silicon ID is a constant, the attacker could place
the correct Silicon ID in the memory of a node with a different Silicon ID and
use this in-memory copy during checksum computation. Since reading the in-
memory copy of the Silicon ID is faster than reading the Silicon ID off the chip,
the attacker could actually compute the checksum faster, despite using a node
with an incorrect Silicon ID to compute the checksum!

To detect this attack, we design the ICE checksum function so that it reads
the Silicon ID into memory before starting checksum computation and refers to
the in-memory copy during the checksum computation. Now, we need a mecha-
nism to check whether the correct Silicon ID was read into memory before the
checksum computation started. We construct a function, called the ID check

function, that performs this check. After the checksum function sends the check-
sum to the challenger, it invokes the ID check function. This function reads the
Silicon ID of the node off the chip and compares it against its in-memory copy. If
the comparison does not succeed, the ID check function sends an error message
to the challenger.

The above approach works because the ICE checksum function computes the
checksum over itself, the ID check function, the SAKE protocol code, and the
execution environment. Therefore, as long as the challenger obtains the correct
ICE checksum within the expected time, it knows that the attacker has not
modified the ID check function and cannot tamper with its execution. Then,
if the challenger does not receive an error from the ID check function on the



responder, it obtains the guarantee that the responder used the correct Silicon
ID to compute the ICE checksum.

Using ICE for hash chain commitment. Now that we have a mechanism
that guarantees that the ICE checksum, computed by the node with the cor-
rect Silicon ID will be a short-lived secret, we can use ICE to build the hash
chain commitment mechanism for SAKE. Figure 1 shows SAKE’s hash chain
commitment mechanism based on ICE.

Each of the two nodes participating in the SAKE protocol acts as a ICE
challenger, and requests the other node to compute the ICE checksum using the
responder’s Silicon ID as one of the inputs. After computing the checksum, the
responding node uses the computed checksum and a random value to generate
its hash chain. Using a random value for generating the hash chain ensures that
the attacker will not know the hash chain even if it knows the entire memory
contents of the sensor node before the SAKE protocol executes.

The responding node then sends the first element of its hash chain along
with a Message Authentication Code (MAC) of this element, computed using
the checksum as the key, to the challenger. After sending this packet to the
challenger, the responding node invokes the ID check function. If the ID check
function finds that the in-memory copy of the responding node’s Silicon ID does
not match the actual value of its Silicon ID, it sends an error message to the
challenger and terminates the SAKE protocol.

If the MAC verifies correctly, the challenger obtains the guarantee that the
hash chain element it received was computed by a node with the correct in-
memory copy of the Silicon ID. This is the case since a node with an incorrect
in-memory copy of the Silicon ID will either return an incorrect checksum or
will return the correct checksum outside the expected time window. Further,
if the ID check function does not return an error, the challenging node knows
that the responding node has the correct hardware Silicon ID as well. Together,
these two checks assure the challenger that it has obtained an authentic value
of the responder’s hash chain. In this manner, the challenger commits to the
responder’s hash chain.

Authenticating DH Protocol Messages
In the previous section, we described how the two nodes participating in SAKE,

commit to each other’s hash chains. We now describe how we use these hash
chains in the Guy Fawkes protocol to authenticate the DH protocol messages.
We start off with a brief overview of the Guy Fawkes protocol.

The Guy Fawkes protocol. The Guy Fawkes protocol enables two partici-
pants that have previously committed to each other’s hash chains to exchange
authenticated messages. Each message exchanged between the participants is
accompanied by the MAC of the message. The sending participant computes
the MAC using the next undisclosed element of its hash chain, as the key. Once
the receiving participant acknowledges the receipt of the packet containing the
message and its MAC value in an authentic manner, the sending participant dis-
closes element of its hash chain that it used to compute the MAC. The receiving



A→ B : 〈ICE Challenge〉

A : T1 = Current time

B : Compute ICE checksum over memory region
containing the SAKE protocol code,
Check ID function, ICE code, and
in-memory copy of Silicon ID
CB = ICE checksum

rB
R
←{0, 1}128

Generate one-way hash chain,
b3 = H(CB ‖ rB),
b2 = H(b3), b1 = H(b2), b0 = H(b1)

B → A : 〈b0, MACCB
(b0)〉

A : T2 = Current time
Verify (T2 − T1) ≤ Time allowed to compute
ICE checksum

Compute MAC of b0 with
ICE checksum computed by A
If MAC of b0 computed by self equals MAC
of b0 sent by B

then B’s ICE checksum is correct

B : Invoke ID check function

B → A : 〈Result of ID check function〉

A : If ID check function on B sends error, abort

Now B acts as the challenger and obtains the first element
of A’s hash chain in a similar manner

Fig. 1. Using ICE to construct the hash chain commitment mechanism for SAKE. A

and B are two neighboring nodes. This commitment mechanism enables A and B to
commit to each other’s hash chains without requiring any prior secret or authentic
information, and without the existence of secure side channels. A and B can then
use their respective hash chains in the Guy Fawkes protocol to authenticate the DH
protocol messages.

participant then authenticates this hash chain element using the a previously
obtained authentic hash chain element. The receiving participant then verifies
the authenticity of the message by verifying its MAC using the newly received
(now authentic) hash element as the key. In this manner, both principals can use
their respective hash chains to exchange authenticated messages with each other,
provided they can acknowledge each others messages in an authentic manner.

The Guy Fawkes protocol can be used for sending authenticated acknowl-
edgements as well. The receiving participant simply sends the next undisclosed
element of its hash chain to acknowledge the receipt of a message from sending
participant. The sending participant verifies the authenticity of the receiving par-
ticipant’s acknowledgement by authenticating the hash chain element it receives,
using a previously received authentic hash chain element. If the authentication



is successful, then the sending participant knows that the receiving participant
has correctly received the message, and therefore, it is now safe to release the
hash chain element that the sending participant used to compute the MAC of
the message. If the sending participant were to disclose the hash element without
requiring an authenticated acknowledgement, then the attacker could suppress
the sending participant’s packet before it reaches the receiving participant, and
later on use the disclosed hash chain element to generate fake messages with the
correct MAC value.

As can be seen from the above description, the Guy Fawkes protocol pro-
ceeds in a lock-step manner between the two participants, with each of them
successively disclosing the next element of their respective hash chains. The
sending participant first sends the message along with the MAC. The receiv-
ing participant then discloses the next undisclosed element of its hash chain by
way of acknowledging the message. Finally, the sending participant discloses the
element of its hash chain that it used to compute the MAC of the message.

Using the Guy Fawkes protocol. We now describe how SAKE uses the Guy
Fawkes protocol to authenticate the DH protocol messages.

Figure 1 shows how the two nodes participating in the SAKE protocol commit
to each other’s hash chain, which is a requirement for using the Guy Fawkes
protocol. Figure 2 shows how the two nodes now use the Guy Fawkes protocol
to authenticate the DH protocol messages. Once both nodes have the authentic
first element of each other’s hash chain, they send acknowledgements to each
other indicating that they have successfully committed to each other’s hash
chains and are now ready to perform a DH key exchange. After verifying the
other participant’s acknowledgement, each of node generates its DH half-key. The
nodes then exchange their respective half keys and authenticate this exchange
using the Guy Fawkes protocol. Finally both nodes compute their shared secret
using the half keys they receive.

3.3 Cryptographic Primitive Selection and Evaluation

In this section, we first discuss how we select the cryptographic primitives for
use in SAKE, that are suitable for resource-constrained sensor nodes. Then, we
present our evaluation that shows the time taken to execute SAKE and energy
consumed.

Selection of cryptographic primitives. We have designed SAKE for sensor
nodes with limited computing resources. Hence, the choice of the cryptographic
primitives requires careful thought. To save program memory, we suggest code
reuse by using a block cipher to implement all required cryptographic primitives.
We suggest the use of RC5 [19] as the block cipher because of its small code size
and efficiency. In a prior work in sensor network security [20], Perrig et al. stated
that an optimized RC5 algorithm can encrypt an eight byte block in 120 cycles
on an 8-bit microcontroller. A MAC function can be obtained using the CBC-
MAC construction. A hash function can also be constructed with a block cipher
as follows: h(x) = C(x) ⊕ x, where C(x) stands for the encryption of x using



A→ B : 〈a1〉

B → A : 〈b1〉

A : Verify b0 = H(b1)

B : Verify a0 = H(a1)

With the above acknowledgements A and B indicate that
they are now ready to perform the DH key exchange protocol

A : x
R
←{0, 1}112

Compute (gx) mod p

A→ B : 〈(gx) mod p, MACa2
((gx) mod p)〉

B → A : 〈b2〉

A : Verify b1 = H(b2)

A→ B : 〈a2〉

B : Verify MAC of (gx) mod p using a2

B → A : 〈b3〉

A : Verify b2 = H(b3)

At this point A knows that B has obtained A’s authentic
DH half-key

Now B sends its DH half key (gy) mod p to A in a similar
manner

A : Compute (gymod p)x
mod p

B : Compute (gxmod p)y
mod p

Fig. 2. Using the Guy Fawkes protocol to authenticate DH protocol messages. A and B

are two neighboring nodes. This protocol uses the hash chains that A and B committed
to in the protocol shown in Figure 1.

the block cipher. The encryption uses a publically known value as the key. Both
the MAC function and the hash function are constructed out of the RC5 block
cipher with 128 bit blocks, 8 rounds, and 128 bit keys.

Diffie-Hellman parameters Generally, it is considered impractical to perform
expensive asymmetric cryptographic operations on sensor nodes because of re-
source constraints. In our work, by carefully picking the parameters, it is possible
to carry out the DH key exchange protocol on the Telos motes.

The DH key exchange protocol uses an exponentiation operation given by gx

mod p. The security of the DH key exchange protocol is based on the length of the
exponent x and the length of the prime p. For SAKE, we use 512 bit modulus p

and 112 bit exponent x. According to Lenstra and Verheul, these parameters are
deemed to be secure in the year 1990 considering the state of the art technology
at that time [21]. Since we are dealing with low cost, mass produced sensor
nodes, 1990 levels of security are sufficient. Of course, the attacker can break
the keys of the sensor nodes with considerable effort by employing technology
that is state-of-the-art. Greater security can be obtained by increasing the sizes



of x and p. The cost, though, is the computation time and energy. Since g is
unimportant for the security of the DH key exchange protocol, we set g to be
two in order to speed up computation. Using these parameters, the Telos motes
were able to perform gx mod p in 6.19 seconds.

4 Related Work

In this section, we review related work in the area of sensor network key estab-
lishment.

Many researchers have considered key establishment protocols, however, all
these efforts assume the presence of prior secret information to prevent man-in-
the-middle attacks [3, 5, 2, 4, 20, 22].

There are very few key establishment protocols that prevent man-in-the-
middle attacks without assuming the presence of authentic or secret information.
Some of these protocols require human-mediation or special hardware [8–10, 12].
SAKE requires neither but does assume that the attacker does not introduce its
own computationally-powerful nodes into the network. In this manner, SAKE
is an interesting point the key establishment space, offering a unique trade-off
between security and ease-of-use.

Integrity-code [7] attempts to perform key establishment without prior se-
crets. In this scheme, the presence of an RF signal represents a binary ’1’, while
its absence represents a ’0’. Assuming an attacker cannot remove radio energy,
an attacker would only be able to modify messages by changing a ’0’ into a ’1’,
but not the other way around. A carefully selected encoding scheme renders it
impossible for an attacker to modify the encoded messages. This ensures mes-
sage authenticity. However, the drawback to this approach is that the threshold
energy value that differentiates a ’0’ from a ’1’ needs to be known to the pro-
tocol participants in an authentic manner. When posed with this question, the
authors declined to specify such a method.

Like SAKE, Key Infection [11] also performs key establishment without as-
suming prior secret or authentic information. However, since the key is initially
transmitted in the clear, the scheme is insecure.

SAKE is the only protocol we are aware of that can also perform key re-
establishment after node compromise. This is the case since the presence of the
attacker’s code in the memory of the protocol participants does not affect the
security of SAKE.

5 Conclusion

We present SAKE, a new protocol for key establishment in sensor networks.
SAKE’s unique feature is that it can establish new keys without requiring any
secret values in any node, yet, active or passive attacking sensor nodes cannot
perform man-in-the-middle attacks, as long as the attacker is remote and does
not insert its own computationally more powerful nodes into the network. The



key idea behind our approach is to set up a short-lived shared secret between
the protocol participants through the use of the ICE primitive [14].

The main application domains we envision for SAKE are sensor networks
that are deployed in physically secure environment, such as in nuclear power
plants, financial institutions, military operations, or other critical infrastruc-
tures. In these domains, SAKE provides a powerful primitive to establish keys
upon network setup and to re-establish secret keys after a remote attacker has
compromised nodes, without requiring any human intervention. Hence, SAKE
represents a useful new primitive in the key establishment design space, offering
a unique trade-off between security and ease-of-use.
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