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ABSTRACT

This paper proposes a framework that enables secure one-to-many communication for networks with limited capabilities
in the face of a strong adversary that can capture an arbitrary set of nodes. Our approach consists of two main components:
(a) group key establishment protocol and (b) special key management. Especially, we try to address the following question:
How strong of security properties can we achieve for broadcast communication in hardware-limited networks with a strong
adversary? We propose approaches and their variants that neither require special hardware nor use costly cryptographic
operations. With thorough security and efficiency analyses, we discuss how our solutions can be applied to a variety of
hardware-limited distributed systems. We also describe the implementation and evaluation results of the most promising
variants. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Achieving a high level of security in distributed and
hardware-limited environments such as wireless sensor
networks (WSN) is a well-known challenge [1,2], because
of the following characteristics:

� The communication medium is open; consequently, it
is easy to eavesdrop and modify traffic.

� Nodes are distributed and unattended. In many sce-
narios, network itself is used for monitoring.

� Nodes are cheap, without hardware protection, and
their processing power is low.

� A strong adversary model is realistic, where an adver-
sary can capture [3] an arbitrary set of nodes.

Successful solutions must be efficient for long-term
deployment. Thus, one of the core design goals is to mini-
mize the computation, storage, and transmission overhead
on regular nodes. However, such a goal may be in conflict
with the security properties that the solutions must provide.

The main contribution of this work is to propose and
analyze a framework for secure broadcasting in the face
of an adversary that can control the traffic and capture

arbitrary network elements. In this framework, security
is considered as secrecy of the broadcast communi-
cation. Our proposed solutions include the following
high-level elements:

� efficient group key establishment method
(Section 4.1); and

� mechanisms to protect secret values (keys) at nodes
(Section 4.3).

The combination of these two elements results in meth-
ods providing different levels of security and per-
formance guarantees, which we investigate throughout
this paper.

Our approaches require neither special hardware mod-
ules nor costly public-key cryptography, and they are
efficient even for long-term deployment. We analyze the
proposed solutions as well as some of their variants and
implement one that provides the best trade-off between
security and efficiency. The proposed solutions can be
especially useful in applications where nodes are unat-
tended and prone to physical attacks. Example scenarios
include command and control, area and industrial monitor-
ing, and telemetry.
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This paper is structured as follows. In Section 2, we
postulate the problem by introducing the model of pro-
tected system and the required cryptographic primitives.
We also define the attacker model and the desired secu-
rity goals. In Section 3, we provide the high-level overview
of the proposed approach, which is described in detail
in Section 4. In Section 5, we present the security, effi-
ciency, and usability analyses of the proposed method, and
we present the modification and the implementation in
Section 6. In Section 7, we conduct comparative efficiency
analysis. Section 8 reviews related work, and Section 9
summarizes our findings.

2. PRELIMINARIES

2.1. System model

Distributed networks are composed of one special node
called a broadcast center (BC) and regular nodes. The
BC has sufficient hardware capabilities to perform effi-
cient computations and to broadcast messages to all nodes.
Unlike the BC, regular nodes are hardware-limited; that is,
their computational, storage, and transmission capabilities
are significantly lower than the capabilities of the BC. All
regular nodes have a unique ID, which is a numeric value
from 1 to n, and are capable of performing (some chosen)
cryptographic operations and storing small secret values.
We assume that the BC (or the network administrator) can
pre-load some secret values to the regular nodes before
their deployment.

In distributed networks, we consider the one-way
and one-to-many communication models when the BC
broadcasts messages to regular nodes. In terms of the
trust model, we do not assume that nodes are physically
protected and hence do not consider regular nodes as
trusted entities. Although the BC is generally considered
as the only trusted element in the system, we consider the
scenario where an attacker captures and controls the BC.

2.2. Cryptographic primitives

We utilize symmetric-key (or private-key) cryptography,
which is proven to be efficient in terms of computation,
energy consumption, and storage overhead [4].

We also use a pseudorandom keyed function (PRF)
F : K � X ! Y , where K is the key space (key k 2 K) and
Fk(�) denotes its execution; one-way function is denoted
as F0. We highlight important properties of a PRF: (1)
A function is a PRF if no adversary (which can be mod-
eled using a polynomial-time algorithm) can distinguish
whether it is interacting with Fk or some other function
chosen at random from a set of all functions mapping X to
Y; (2) a PRF is non-invertible, such that an adversary can-
not determine x given Fk(x); and (3) a PRF provides key
secrecy such that interacting with Fk does not enable an
attacker to compute key k.

We use a cryptographic primitive called broadcast
encryption (BE), the goal of which is to encrypt (and
broadcast) messages in such a way that only members of
the privileged set can decrypt it. Members are called nodes
or users that can be identified using their unique IDs. U
denotes a set of all users, S represents a privileged set, and
R = U \ S is an unprivileged set, whose members cannot
decrypt transmitted messages. Note that the membership
of the privileged set can change dynamically.

We use the following algorithms to define BE:

� Gen(n) takes the number of users n = |U| and returns
their initial private keys k1, : : : , kn.

� For a set of keys of privileged nodes, Enc({kx|x 2 S})
generates the following: (1) session key SK, which is
a shared group key for privileged nodes for the ses-
sion, and (2) header hdr, which helps the node derive
SK with the corresponding priviledged node’s private
key. Note that hdr does not contain the private keys of
privileged nodes.

� Dec(kid , S, hdr) takes a user’s private key kid , the set
S � {1, : : : , n}, and the hdr as inputs and returns
session key SK if id 2 S or ? otherwise.

The aforementioned definition describes BE in a sym-
metric setting, where every user shares its private key with
the BC. The BC executes Gen(n) once and then pre-loads
each of the generated keys into the corresponding node.
In order to establish the group session key, the BC deter-
mines privileged set S, computes hdr, and broadcasts these
values. Based on the received S and hdr, privileged nodes
obtain session key SK, which is a group key only known
to the members of S. A single transmission of hdr is
called a session and every session is numbered uniquely in
an ascending order from 1.

Efficiency of BE schemes is evaluated using the follow-
ing measures: (1) computational overhead, or the required
number of operations; (2) storage overhead, or the required
number of stored keys; and (3) transmission overhead, or
the size of the transmitted header. All measures are for both
the BC and nodes. BE schemes are generally divided into
stateless and stateful. Stateless schemes do not require a
regular node to update its internal state in each session,
while stateful schemes require such an operation.

2.3. Attacker model and security goals

The main goal of an attacker is to decrypt broadcast mes-
sages, which is equivalent to obtaining the session key SK.
Conversely, the goal of the BC is to prepare and broad-
cast transmission in a way that only the members of the
privileged set can decrypt it.

Because nodes are physically unprotected, an adversary
can almost freely observe and modify traffic. Furthermore,
an adversary has an access to various secret values (short-
and long-term private keys), and in particular, we consider
the following two cases:
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(1) When an adversary has the private keys of the
unprivileged nodes only, his goal is to obtain the
group key of the past or the current session.

(2) When an adversary has the private key(s) of the
privileged node(s), his goal is to obtain the group
key(s) of any previous session(s).

However, the proposed protocols must be secure in the
presence of relaxed, eavesdropping adversaries. In order
to securely broadcast messages, the system must support
the session key establishment for a dynamically changing
set of users. Consequently, the following security proper-
ties must be ensured. First, new members of privileged set
S for a given session should not be able to decrypt any
messages from the previous sessions (backward secrecy
(BS)). Second, any revoked node (removed from set S)
cannot decrypt the messages in the current and future ses-
sions (forward secrecy (FS)). Third, the BE system must
be resilient i.e., an adversary with even all the keys from
set R of unprivileged nodes, still cannot compute a ses-
sion key. This model is especially interesting in the case of
payment-based multimedia broadcasting systems in which
users without any subscription would collude to access the
media for free. Next, the attacker able to capture arbitrary
nodes, even from the set S, should not be able to decrypt
the messages in the previous sessions (break-backward
protection (BBP) or perfect forward secrecy). (Capturing
a privileged node automatically enables the attacker to
obtain the current and even the future session keys if it
remains undetected.) Finally, the system should support
traitor tracing to find a node that leaked its private key or
decrypted content. Phan et al. describe security notions of
BE and their relations in detail [5].

We consider detection of an adversary to be outside
the scope of this paper. However, approaches presented
throughout this paper can cooperate successfully with
such mechanisms. For instance, in the case of a battle-
field, the BC can observe terrain and decide which assets
are already occupied by an adversary. Using our meth-
ods, if the BC can detect captured nodes, removing these
nodes from the privileged set would prevent the adversary
from decrypting any previous and following transmis-
sion. When captured nodes are undetected, an adversary
would not be able to decrypt any previous session keys
at least.

3. APPROACH

An efficient broadcast encryption scheme is necessary for
our framework; unfortunately, it cannot be chosen arbitrar-
ily. By examining the definition of the BBP property, it is
trivial to notice that stateless BE schemes cannot provide
BBP. Let us denote the following notations:

hdri : header in ith session,
Si : privileged set in session i, consisting of the privi-

leged nodes’ IDs,

SKi : session key in session i (i.e., group key of Si’s
members), and

ki
j : private key of jth user in ith session (shared with

the BC).

Let us assume that user j is in the privileged set in
sessions i – 1 and i. Note that ki–1

j = ki
j, because

users do not update their private keys in the stateless
scheme. Thus, if an attacker successfully eavesdrops head-
ers hdri–1 and hdri and captures node j in session i,
he or she can easily compute the previous session key:
SKi–1 = Dec(ki

j, Si–1, hdri–1). Consequently, no stateless
schemes can hold BBP, and proper key management tech-
niques must be employed to ensure BBP. Such techniques
must include nodes’ private key update mechanism for
every session.

We now outline an execution of the protocol. In the ini-
tialization phase, the BC executes Gen(|U|) function, saves
the resulting long-term private keys, and pre-loads each
key into the corresponding node. Note that this phase is
performed only once. After keys are pre-loaded, the actual
protocol starts, and the BC performs the following for
ith session:

(1) Set the session number to i and select privileged
set Si.

(2) Generate new, session-specific private key ki
x for

each member x 2 Si for session i (various genera-
tion methods are presented in Section 4.3).

(3) Create session key and the header for session i
using the members’ session-specific private keys:
SKi, hdri = Enc({ki

x|x 2 Si}).
(4) Authenticate and broadcast i, Si, and hdri.
(5) Broadcast traffic encrypted using SKi.

Each node x 2 Si performs the following actions:

(1) Receive i, Si, and hdri.
(2) Exit if x 62 Si or authentication fails.
(3) Derive session-specific private key ki

x for ses-
sion i (we introduce the derivation methods in
Section 4.3).

(4) Derive SKi = Dec
�
ki

x, Si, hdri�.
(5) Receive and decrypt traffic using SKi.

For each session, nodes in Si and the BC establish the
shared session key SKi to protect messages in that session.
Authentication and protection of the broadcast transmis-
sion are out of scope of this paper, as existing approaches
can be applied [6,7,33]. If the BC wants to add or remove
nodes from the privileged set, it executes the protocol again
for the next session i + 1.

4. DETAILS OF THE APPROACH

Two main elements are required to build the system
as described in Section 3. First, a secure and efficient
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Protocol 1: Realization of broadcast encryption [8].
GF(q) - finite field with q elements (q is a large prime number),

interpolate(T) - interpolates polynomial based on points of T

(can be implemented, e.g., by Lagrange interpolation),

a B - element a is selected uniformly at random from set B.

Gen(n):
X = {0}

for i 2 {1, : : : , n} do

xi  GF(q) \ X

X = X [ {xi}

yi  GF(q)

ki = (xi, yi)

return k1, : : : , kn

Dec(kid , S, hdr):
if id 62 S then

return?

Kid = (xid , yid)

T = hdr [ {Kid}

P = interpolate(T)

SK = P(0)

return SK

Enc({(xi, yi)|i 2 S}):
SK GF(q)

k = |S|

find polynomial P of degree k such that:

SK = P(0)

8i 2 S : yi = P(xi)

8i 2 R : yi ¤ P(xi)

T = {}

for i 2 {1, : : : , k} do

(x, y) P \ (T [ S[ {(0, SK)})

T = T [ {(x, y)}

hdr = T .

return SK, hdr.

broadcast encryption scheme (Gen, Enc, and Dec func-
tions) is needed to generate the session key for the
privileged nodes. Next, for each session, a key manage-
ment is required to update the session-specific private key
between the BC and each node in S while providing the
desired security properties (Section 2.3). In this section, we
describe these two elements in detail.

4.1. Broadcast encryption

Berkovits introduced one of the first BE schemes [8] uti-
lizing Shamir’s scheme [9] for practical consideration. In
Protocol 1, we introduce the concrete and optimized broad-
cast encryption scheme, which employs Shamir’s scheme.
In comparison with the original construction, our scheme
omits special auxiliary secrets such that neither additional
secrets need to be sent nor processed. Note that this
optimization does not affect security.

A node’s private key is represented as point (x, y) 2
GF(q)2, and the session key is represented as (0, SK) 2
GF(q)2. Algorithm Enc creates polynomial P, which goes
through (0, SK) and keys (points) for users in S, but P does
not go through any of the keys (points) for users in R.
Header hdr is constructed as a set of |S| random points that
belong to P. After receiving these points, each node exe-
cutes function interpolate(), which interpolates polynomial
P using points from hdr and the current node’s private key.
Finally, session key SK is computed as P(0).

To establish a new session key, the BC needs to send
|S| messages, while each node stores only one private key.

Algorithm 2: One-time exploitation attack for Proto-
col 1 executed multiple times.

x, i, j satisfy: i ¤ j^ x 2 Si \ Sj,

O1(x) - function which returns current private key kx of xth node.

A(hdri, hdrj, x):

kx = O1(x)

Pi = interpolate(hdri [ {kx})

Pj = interpolate(hdrj [ {kx})

return {(X, Y) : Y = Pi(X)^ Y = Pj(X)}

Note that the computation of the session key is performed
using the polynomial interpolation, which can be executed
fast, even on the low-end hardware (Section 6).

This scheme is resilient, and its security depends on the
security of Shamir’s protocol [8,9]. Unfortunately, when
users’ private keys are not updated, the presented solution
is insecure as we illustrate next.

4.2. Attacks on BE scheme

Insecurity of the BE scheme is caused by its one-time prop-
erty. Let us assume that the BE protocol is used multiple
times (with the same long-term private keys of the users).
Then the protocol can be attacked as presented in Algo-
rithm 2. An attacker with only one node’s private key can
compute all private keys of users in Si \ Sj. Such a vul-
nerability makes this protocol unacceptable, and Schwenk
discusses similar attacks on one-time schemes [10].

Besides the weakness against this easy-to-launch and
effective attack, this scheme has other issues. For exam-
ple, if node x was in the privileged set in some previous
sessions, the attacker with only kx can decrypt all the
messages in the previous sessions.

Of course, the most powerful attack is capturing the
node such that the adversary has access to not only
all the secrets but also the memory of the node (i.e.,
the adversary knows all the past network traffic). In
such a condition, it is impossible to protect the secrecy of
the current session (and the next sessions if the attacker
remains undetected), but a proper scheme can protect the
confidentiality of the previous sessions (equivalent to BBP
property). Hence, proper key managements are required to
address the attacks as described above.

4.3. Key management

As a stateless scheme cannot hold BBP, a state for the
sessions must be introduced, which requires some type of
synchronization between the BC and regular nodes (BC
and corresponding nodes must use the appropriate keys
for each session). One way to achieve this is to send the
unique session number and use it during the key update
process. More specifically, the BC sets the session num-
ber, updates the privileged nodes’ session-specific private
keys, and uses them to create the header with the session
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key. Each privileged node updates its own session-specific
private key and uses it to obtain the session key.

The rest of this section introduces four key update meth-
ods. For simplicity, PRF is defined as F : GF(q)2 �

GF(q)2 ! GF(q)2. This is due to the BE scheme, where
keys are represented as points in GF(q)2.

Method 1. This method generates the session-specific
private key based on session number i and the long-term
private key as follows:

ki
j = Fsj (i), (1)

where sj stands for a long-term private key that jth node
shares with the BC. In each session, the BC performs a key
update operation ki

x = Fsx (i) for every privileged node x 2
S. Each privileged node stores only one long-term private
key and performs only one operation per session to derive
the session-specific key. This key update scheme provides
an unpredictable key for each session, and because of
the PRF’s properties, the long-term key remains secret,
even if an attacker successfully obtains the session-specific
private keys from multiple sessions. Moreover, this scheme
protects the attack as presented in Algorithm 2.

Schwenk proposed a similar solution to mitigate the
one-time property using a random value instead of the
session number [10]. Unfortunately, Schwenk’s approach
does not provide BBP: Given the adversary that captures
a node as presented in Algorithm 3, two consecutive ses-
sions’ headers and the long-term secret of a privileged node
reveals the previous session keys.

Algorithm 3: Node capture attack for Method 1.
O2(x) - a function that returns long-term secret key sx of xth

node,

i, j satisfy: j 2 Si \ Si–1.

A(hdri–1, hdri, Si–1, Si, j):

sj = O2(j)

ki–1
j = Fsj (i – 1)

ki
j = Fsj (i)

SKi–1 = Dec(ki–1
j , Si–1, hdri–1)

SKi = Dec(ki
j , Si, hdri)

Method 2. This method mitigates the node capture attack
as follows. The current node’s session-specific private key
is derived from the previous session-specific private key
using one-way function F0. Initial key k0

j is pre-loaded
(and shared with the BC), and the private key for session i
is computed by jth node as follows:

ki
j = F0

�
ki–1

j

�
. (2)

Although this method is more secure than Method 1, it
has some requirements. A crucial aspect is erasing the
old session-specific private key from the node’s memory.

More specifically, after obtaining key ki
j, previous session-

specific key ki–1
j must be permanently erased from its

memory. Because keys form a one-way chain, the compu-
tational overhead increases. In the worst case, the BC and
the node must perform i computations to synchronize the
key for the ith session.

An adversary that captures node j in session i acquires
only session-specific key ki

j. Let us assume that an adver-
sary has access to the following function:

ki
j = O3(i, j), (3)

which returns private key ki
j for the given session number i

and node number j. An adversary queries O3(m, j) multiple
times (where m � i), and if he can compute ki–1

j effectively,
then it leads to a contradiction as computing the previous
key ki–1

j is equivalent to inverting pseudorandom function
F0, which is assumed to be impossible. As a result, the
adversary can decrypt the current and future sessions but
cannot obtain the key(s) for any previous session(s).

However, let us consider an attack in which only
the current key of a given node is leaked (without cap-
turing the entire node’s state). This threat is realistic,
for example, because of some unknown weaknesses in
the BE scheme, side-channel attacks, or an implementa-
tion bug. After this attack succeeds, the adversary using
leaked session-specific key ki

j based on Equation (2) can
compute any arbitrary private key(s) of jth node and the
session key(s) of any future session(s), assuming that
the node belongs to the privileged set. Consequently,
Method 2 is vulnerable to such a threat despite holding the
BBP property.

Method 3. This method improves the weakness of the
previous method: an attacker capturing just one session-
specific private key of a node can compute that node’s
secret keys of the future. Hence, a secure key update
method should exclude such an attack by using a keyed
pseudorandom function as follows:

ki
j = Fsj

�
ki–1

j

�
. (4)

This solution requires the node and the BC to share long-
term sj and initial private key k0

j . Similar to Method 2,

after generating key ki
j, previous key ki–1

j must be perma-
nently removed from the node’s memory. Note that the
computational cost is the same as in Method 2.

In Method 3, it is trivial to notice that an adversary
cannot compute ki

j even with an access to ki–1
j without

knowing sj. In other words, to capture the current and the
future keys, an attacker must obtain the long-term secret
as well. Even with sj and ki

j, the attacker cannot compute

previous key ki–1
j . Hence, BBP is achieved.

A stronger attacker model is when an adversary
observes output keys (either independent random values, or
values produced by consecutive executions of a key update
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function at a node), and the attacker is allowed to dynami-
cally choose when he wants to capture the node [11]. The
adversary wins if he can distinguish whether the output
keys were produced by the key update function or they
were independent random values. Such a notion of secu-
rity is quite strong and Method 3 cannot defend such an
attacker model. For example, an adversary observes two
consecutive output keys ki–1

j and ki
j, and then breaks in.

Now with the knowledge of the node’s current state (sj), the
adversary can easily check if the keys were produced by

the key update function, simply by checking if Fsj

�
ki–1

j

�

and ki
j are equal.

Method 4. This method is secure even to the attack as
presented in the previous text. Key update is performed as
the following atomic operation:

ki
j = Fsi–1

j
(0), (5a)

si
j = Fsi–1

j
(1). (5b)

This method requires two executions of PRF and one initial
secret s0

j shared between the BC and the node. This shared
secret is updated in every session; hence, each private
key is generated using a different secret. Consequently,
an adversary with consecutive keys cannot determine their
origin, because at the moment of the attack he has access to

current state
�

si
j, ki

j

�
only. Hence, he is unable to compute

the previous states that were used to produce the current
keys. Bellare and Yee formally analyzed this method (see
Construction 2.2) [11].

Method 4 provides an extremely strong security prop-
erty. However, the attack as presented above may be
impractical and unrealistic for various applications and
networks. Furthermore, this solution introduces com-
putational overhead, since every key update operation
requires two Fk executions, whereas other solutions only
require one.

5. SECURITY ANALYSIS

The major disadvantage of the initial BE scheme as pre-
sented in Protocol 1 is its one-time feature. For enhance-
ment, Section 4.3 presents four key update methods with
different efficiency and security properties. However, even
if the initial BE protocol is secure for one execution,
combining the protocol with the key update functions
may introduce new attack vectors. For example, we can
consider five attacks: (1) one-time exploitation attack in
Algorithm 2; (2) single-session-key FS exploitation attack
(i.e., an attacker has only one session-specific private key
of a privileged node and tries to decrypt the next ses-
sion); (3) single-session-key BS exploitation attack (i.e., an
attacker has only one session-specific private key of a priv-
ileged node and tries to decrypt the previous session); (4)
BBP attack (i.e., an attacker knows a node’s entire state and
attempts to decrypt the messages in the previous session);

Table I. Attack resilience of presented key update methods.

Method

I II III IV

Attack

One-time exploitation attack + + + +
in Algorithm 2

Single-session-key FS + – + +
exploitation attack

Single-session key BS + + + +
exploitation attack

BBP attack – + + +
Multi-session-key FS – – – +

exploitation attack

’+’ represents resilience to the given attack, and ’–’ represents that the

method is insecure in the face of the given attack.

FS: forward secrecy; BS: backward secrecy; BBP: break-backward

protection.

and (5) multi-session-key FS exploitation attack (i.e., an
attacker observes multiple keys and distinguishes legiti-
mate keys from random values [11]). The attack resilience
of the presented methods in Section 4.3 is summarized
in Table I.

Method 4 (Equation 5) is resilient to all five attacks and
hence is the most secure method. However, it consumes
twice more computations than any other methods, and the
security advantage is achieved for the unrealistic adversar-
ial model (i.e., attack (5)). Method 3 (Equation 4), on the
other hand, is resilient to attacks (1)–(4) and hence can be
considered as the relaxed method, with a trade-off between
security and efficiency. Hence, in the following analysis,
we consider Method 3 as the default and recommended
solution. By using Method 3 with the initial BE scheme,
a session key is protected from various identified attacks.
As an effect, even an adversary that captures nodes can-
not get the previous session key(s). We now present the
formal arguments.

Let us assume that privileged set S consists of nodes
with long-term keys s1, s2, : : : , sn shared with the BC. Sup-
pose that an adversary obtains all keys except one key
sn. Then he or she is still unable to compute anything
about sn before the protocol’s execution. The adversary has
knowledge of private keys of nodes with id 1, 2, : : : , n – 1.
However, because keys were selected uniformly at random,
he or she cannot determine anything about the private key
of the node with id n.

Let us further assume that the adversary can capture
nodes 1, 2, : : : , n–1 and obtain session key k1

n (e.g., using a
side-channel attack) after the protocol executes once. Now,
the adversary’s goal is to compute the initial key k0

n, and
we show that this private key after one round of the pro-
tocol remains secret with the key update Method 3. Let us
assume that such an attack exists and function O4 given an

input
�

{s1, : : : , sn–1}, k1
n, hdr1

�
can compute k0

n:

k0
n = O4

�
{s1, : : : , sn–1} , k1

n, hdr1
�

. (6)
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Algorithm 4: Security proof for the protocol after a
single execution.
A(y):

s1, s2, : : : , sn–1 = Gen(n – 1)

k0
1, k0

2, : : : , k0
n–1 = Gen(n – 1)

for m 2 {1, : : : , n – 1}

k1
m = Fsm (k0

m) (Equation 4)

k1
n = y

S1 = {1, 2, : : : , n}

SK1, hdr1 = Enc({kx |x 2 S1})

x = O4({s1, s2, : : : , sn–1}, y, hdr1)

return x

Then there exists an adversary (presented in Algorithm 4)
that can invert pseudorandom function Fk. Thus, if the
method is broken by this adversary, it implies that Fk
is inverted, contradicting our assumption that Fk is non-
invertible. A similar reasoning can be applied to prove the
secrecy of long-term key sn, as it is ensured by the assumed
PRF properties.

The previous argument is for one execution of the pro-
tocol and for the secrecy of an initial key. The security of
the protocol after many executions (and for the secrecy of
next keys) is supported by the following reasoning. Let us
assume that there exists function O5 which, after j proto-

col executions, can break the method and return key kj+1
n .

Given
�

{s1, : : : , sn–1}, {k0
1, : : : , kj

n}, {hdr0, : : : , hdrj}
�

as

an input, this function computes kj+1
n :

kj+1
n = O5

�
{s1, : : : , sn–1} , {k0

n, : : : , kj
n}, {hdr0, : : : , hdrj}

�

(7)
If such O5 exists, then Fk can be broken by the adversary
in Algorithm 5. The adversary without key k and without
querying Fk(xj) can produce the next value of Fk, indi-
cating that he can distinguish Fk from a truly randomly
selected function, contradicting the assumption that Fk is
a PRF. Thus, an adversary after j rounds cannot compute
the next private key of the targeted node, implying that the
adversary cannot compute long-term key sn.

Algorithm 5: Security proof for the protocol executed
many times.
A(n, j):

s1, : : : , sn–1 = Gen(n – 1)

k0
1, : : : , k0

n–1, x0 = Gen(n)

S = {1, 2, : : : , n}

for l 2 {1, : : : , j}

for m 2 {1, : : : , n – 1}

kl
m = Fsm (kl–1

m ) (Equation 4)

xl = Fk(xl–1)

SKl, hdrl = Enc({kx |x 2 S}

xj+1 = O5({s1, : : : , sn–1}, {x0, : : : , xj},

{hdr0, : : : , hdrj})

return xj+1

Protocol 1 by itself provides resilience such that an
adversary knowing the secrets of all nodes from unprivi-
leged set R cannot compute the session key. Additionally,
the private key of each node is chosen randomly. Hence, in
order to compute one node’s key, collusion of the rest of the
users is insufficient. Moreover, this solution achieves FS,
BS, and BBP properties with a proper key update method.

Although validating group keying protocols is a
research problem itself and hence outside the scope of
this paper, we conducted security analysis with a tool
for automated validation. Verifying group key protocols is
challenging because of their complexity and the size of
both states and knowledge sets [12]. Thus, we bounded
our reasoning to a fixed number of users and sessions.
We also modeled the Enc algorithm (Protocol 1) as a
pseudorandom function. To perform our analysis, we used
On-the-Fly Model Checker (OFMC) and AtSe backends
of the AVISPA tool [13]. We chose Automated Validation
of Internet Security Protocols and Applications (AVISPA)
because it provides the communication model [14] that
characterizes WSN, (e.g., adversary can eavesdrop, mod-
ify, and block the traffic) and allows us to model node’s
compromise attack by expressing adversary’s knowledge.
We confirmed how our methods satisfy the security prop-
erties, and the example model for the main property (BBP)
is publicly available.�

Another important aspect of the method is the key. Key
length is strictly connected with length of prime number
q, which is constant and known by only the users and
BC. Nodes’ private keys are represented as points (x, y) 2
GF(q)2, while the group session key is SK 2 GF(q). Thus,
the effective security level is log2 q bits, but not 2 log2 q
bits as users’ private keys suggest. An adversary launching
a brute-force attack can search the session key in GF(q)
instead of GF(q)2. Besides the brute-force attack protec-
tion, parameter q should be selected in such a way that the
probability of collisions is negligible while updating users’
private keys.

Our method supports key’s leakage tracing that allows
to identify owners of captured keys in a session. As initial
private keys are shared with the BC, it should be possi-
ble to find the source of the leakage. However, with the
key update method, the complexity increases. An under-
lying assumption is that the BC does not erase nodes’ (at
least initial) keys from its memory after the key update
process. The computational effort depends on the used key
update and the BC’s knowledge of a leakage. Table II
shows required computations for different methods under
two different scenarios. For example, under a brute-force
attack, the BC starts from initial keys and tries to find the
leaked key by updating the sequence of keys one by one.
Such a strategy can be optimized [15,16].

One can consider a variant where the BC may be cap-
tured as well. In such a case, a reasonable strategy is to
erase old nodes’ private keys from the BC’s memory and

� http://people.inf.ethz.ch/spawel/broad_enc/model.hlpsl.
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Table II. Computational effort needed for leakage tracing
when: (a) key is leaked in ith session, or (b) moment of leakage

is unknown and the current session is i.

Key update method

I II III IV

(a) Brute-force O(n) O(in) O(in) O(in)

(a) Using [15] — O
�

nlog2
2i
�

O
�

nlog2
2i
�

O
�

nlog2
2i
�

(b) Brute-force O(in) O(in) O(in) O(in)

(b) Using [15] — O
�

nlog2
2i
�

O
�

nlog2
2i
�

O
�

nlog2
2i
�

n = |U|

store the current keys only. Then key update on the BC is
performed exactly in the same way as performed in regu-
lar nodes. In this setting, even if the BC (or even the entire
network) is captured, the adversary cannot decrypt any
messages in previous sessions. However, as a consequence
of this configuration, leakage tracing becomes infeasible.

6. SCHEME MODIFICATIONS AND
IMPLEMENTATION

One major disadvantage of the BE scheme is its lack
of effective user management in common scenarios: To
remove one user from set S, the BC has to execute the pro-
tocol again and send |S| – 1 messages. Similar issues arise
for adding a new member. Consequently, such a scheme
can be considered as effective only when the node’s stor-
age overhead becomes a priority, or when the privileged set
changes radically every session.

A feasible solution to address this problem is to group
nodes into hierarchical structures. Then group keys are
first established for small groups, and small-group keys are
used for larger-group keys. This process continues until
the session key is established for the entire privileged set.
Consequently, transforming the proposed BE scheme into
a tree-based scheme is promising [17]. To establish an
initial session key for a privileged set, the BC needs to
send |S| – 1 messages, and to add or remove a member,
the BC needs to send only O(log2 |S|) messages, which
is significantly better than sending |S| – 1 in the original
scheme. The storage and computational overheads at nodes
are also O(log2 |S|). For an adversarial network scenario in
Section 2.1, this tree structure can be constructed to opti-
mize operations; for example, nodes that are expected to be
captured concurrently form one sub-tree. This strategy is
shown in Figure 1. The BC first sends headers to establish
K12, K34, K56, and K78, then along with these keys headers
for K1234 and K5678 are sent. The last header establishes
session key SK. With this structure, even after nodes 5, 6,
7, and 8 are captured, the rest of the network can still use
shared key K1234 that remains to be unknown to captured
nodes 5, 6, 7, and 8.

We implemented the tree-based variant of the scheme
because of its efficiency, supporting two security parame-

Figure 1. Tree-based hierarchy where some nodes have greater
probability of being captured.

ters with length 80 and 128 bits. Although these parameters
are the characteristics for lightweight cryptography [18],
we emphasize that security parameters should be selected
carefully, as they depend on multiple factors, such as
amount of traffic, characteristics of data, and number of
nodes as well as their capabilities. The implementation was
tested on both regular node and BC sides. The BC was
implemented on a PC machine with Intel i5 Core 3.2 GHz
and 8GB of RAM. For a regular node, we used Alix.3d [19]
equipped with 500 MHz AMD Geode LX800 and 256MB
of RAM. We utilized GMPlib [20] for mathematical oper-
ations and OpenSSL [21] for cryptographic operations
(Advanced Encryption Standard (AES) cipher [22] was
selected as pseudorandom function Fk). In terms of secu-
rity parameters, we selected to implement four groups with
different numbers of privileged users, and each group was
composed of 8, 32, 256, and 1024 nodes.

Performance results are presented in Table III using
required CPU time (in milliseconds) for a given opera-
tion on both regular node and the BC. The first operation,
denoted as Init, is for the initial session key establish-
ment for |S| users. This operation from the privileged set
forms a balanced binary tree structure. The Add operation
is for adding a new node to the tree structure, while Del
denotes removing a node from the privileged set. Addmax

node
and Delmax

node results are for the worst case computations,
which must be performed by a newcomer or the sibling of a
removed node. However, because of tree-structure proper-
ties, most of the nodes from S perform fewer computations.
Minimum and average computation times are denoted as
Addmin

node, Delmin
node, and Addavg

node, Delavg
node, respectively.

Our implementation results show that the construction
is efficient in the common case. The initial group establish-
ment (Init) is the most expensive operation. For 1024 nodes
with 128-bit-long keys, forming a tree and establishing a
session key require every node to perform computations
for approximately 221 ms, while this operation on the BC
takes only 11 ms. After this initialization, the manage-
ment of nodes’ membership is effective. To add a node to
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Table III. Performance results (expressed in milliseconds) for presented protocol in tree-based setting.

dlog2 qe 80 128

|S| 8 32 256 1024 8 32 256 1024

Initnode 1.11 4.96 40.82 163.76 1.49 6.66 55.52 221.40
InitBC 0.05 0.23 1.99 8.00 0.07 0.33 2.71 11.17

Addmax
node 0.65 1.00 1.44 1.75 0.88 1.32 1.91 2.36

Addmin
node 0.33 0.33 0.33 0.33 0.44 0.44 0.44 0.44

Add
avg
node 0.46 0.49 0.50 0.50 0.64 0.68 0.69 0.69

AddBC 0.03 0.04 0.07 0.08 0.04 0.06 0.09 0.16

Delmax
node 0.40 0.56 1.11 1.44 0.44 0.88 1.48 1.92

Delmin
node 0.25 0.25 0.25 0.25 0.32 0.32 0.32 0.32

Del
avg
node 0.36 0.48 0.50 0.50 0.39 0.68 0.69 0.69

DelBC 0.01 0.03 0.05 0.07 0.02 0.04 0.07 0.09

Table IV. Computation and communication cost of the
protocols.

Msgs Msgs
Operations sent received

GDHinit |S| 1 |S| – 1

GDHadd |S| + 3 1 |S|

GDHdel |S| – 1 1 0
TGDHinit 2 log2 |S| |S| |S|

TGDHadd,del 2 log2 |S| – 2 0 1
STRinit |S| – 1 |S| – 1 0
STRadd 4 2 1
STRdel

3|S|
2 + 2 0 1

Our schemeinit |S| – 1 0 |S| – 1

Our schemeadd,del log2 |S| 0 log2 |S|

Column operations describes number of operations required to

accomplish given action.

a set consisting of 1024 privileged nodes, the newcomer
must perform computations for 2.4 ms. Revocation of a
node from the same set can take 1.9 ms at maximum.
The same operations on the BC take 0.115 and 0.093 ms,
respectively. Lowering security parameter q also reduces
the computation effort. However, increasing the security
parameter by 60% (from 80 to 128 bits) increases the com-
putational effort by 35% only. Thus, there is an incentive
to employ a better security parameter.

7. COMPARATIVE EFFICIENCY
ANALYSIS

We compared the efficiency of our scheme with other
prominent protocols: Group Diffie-Hellman (GDH) [23]
(version 3, which is the most efficient one), Tree-based
GDH (TGDH) [24] (improvement of GDH), and STR [25].
The performance results are shown in Table IV, where our
scheme is presented in tree-based setting. Results are given
for the worst case (i.e., number of messages and operations
required by a node with the highest overhead [24]) and for
three main actions: (1) initialization (one-time operation
per group of users), (2) addition (when a node joins the
privileged set), and (3) deletion (when a node leaves the
privileged set). Note that the number of operations required
to accomplish actions depends on the scheme. For exam-
ple, the number of modular exponentiation is considered
for Diffie–Hellman-based protocols, while the number of
pairwise key establishment is considered for our scheme.
For hierarchical approaches, we assume that the privileged
set forms a balanced tree.

While theoretical comparison may not show the actual
performance, we built the simulation environment dedi-
cated for WSN networks. We prototyped and simulated
all compared schemes using RELIC [26] library and
AVR simulation and analysis framework Avrora [27].
These two tools allowed us to (a) employ AVR-optimized

Figure 2. Comparative simulation results for three types of operations (note that both axes are logarithmic scales).
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cryptography for prototyping compared schemes and (b)
simulate and analyze energy consumption on such a plat-
form (through Avrora’s energy monitor). In tests, we
replaced modular exponentiations with significantly faster
operations over elliptic curve (curve NIST K163 provided
by RELIC). We used a 158-bit-long prime (BN 158 pro-
vided by RELIC) for our scheme. In this configuration,
multiplication over elliptic curve, pairwise key establish-
ment, and key derivation of Method 3 consumes 7.45,
3.88, and 0.22 mJ, respectively. As previously, we analyzed
the worst case scenario, and the performance results are
presented in Figure 2.

Both theoretical and simulation comparisons confirm
efficiency of our proposal, even for large-scale deploy-
ment. Only TGDH achieves similar results when adding
or removing nodes to/from large privileged set. STR has
the best efficiency for addition; however, it does not scale
when a nodes needs to be removed from large set. It is
also important to note that no other scheme provides BBP
property or its equivalent besides our scheme.

8. RELATED WORK

For secure group key establishment, most of the proposed
solutions address a standard adversary model or their con-
structions deploy cryptography, which is inefficient in net-
works with limited capabilities. For example, He et al. [28]
present a nice survey of key management schemes for sen-
sor networks, but many of the described schemes satisfy
only standard security requirements (i.e., without assuming
a strong adversary model). Some researchers also propose
prominent approaches that provide most of the intro-
duced properties, except BBP property [24,25]. Several
researchers propose key management schemes assuming
the node capture attack [29,30]. For example, Guo and
Qian [29] present the pairwise key update protocol that
is motivated by the results of Chadha et al. [31]. Also,
Zhang et al. propose a scheme that aims to prevent the
node-capturing attacker for hierarchical sensor networks
using perturbation polynomical properties for the key
update mechanism [32]. Divya and Thirumurugan intro-
duce a dynamic key management scheme that mitigates
node capture and collusion attacks based on Hamming
distance [30].

Schwenk describes attacks on one-time broadcast
encryption schemes and the defense against such
attacks [10]. Although one of his methods to secure broad-
cast encryption is similar to Method 1 in Section 4.3,
the main distinction is that he utilizes random numbers
instead of consecutive session numbers. Schwenk also
provides formal arguments for the final construction, but
his analysis encompasses the standard attacker model and
few security properties only. Szalachowski and Kotulski
improve Schwenk’s results by introducing a secure scheme
in the face of node capture attacks [7]. Their solution uti-
lizes a hash-chain-based key update scheme and addresses
security of the ciphertext transmission (from the BC to

nodes), providing confidentiality, authentication, and weak
freshness, and the security of such transmission is further
studied [33].

Bellare and Yee study forward security in private key
cryptography [11]. They introduce a new security model
and present cryptographic constructions that are secure
in their model (e.g., PRF, message authentication codes,
and encryption). In the context of our work, their forward
secure pseudorandom bit generator is especially interest-
ing, because it provides the similar properties of Method 4
in Section 4.3.

Mauw et al. [34] provide a set of cryptographic mea-
sures to provide forward security in WSN environments.
Their paper focuses on node-to-BC communication and
their methods address confidentiality, authentication, and
weak freshness. For ensuring the security of private keys in
the face of node capture attacks, they also introduce a key
update function.

Detecting node capture attacks is outside the scope of
this paper, but such a detection mechanism would be a
great supplement. For example, Conti et al. [35] propose
two detection solutions in mobile WSN, given an assump-
tion that an adversary removes the captured node from the
network and then tamper with it.

9. CONCLUSIONS

This paper presents an efficient framework for secure
broadcast in the presence of a strong adversary that can
physically capture nodes. Our construction consists of two
main elements. First, we modify the broadcast encryption
protocol that is required for a secure group key estab-
lishment. Second, we present several key management
approaches that improve the initial broadcast encryption
protocol and provide certain security properties even if an
attacker captures a node. These two elements construct the
secure and efficient final solution.

Our solutions provide the high level of security
guarantees for hardware-limited and distributed networks.
For example, an eavesdropper cannot obtain the session
key or the private key of any node. Furthermore, even if
an adversary has additional knowledge of all the keys from
the revoked node set, his advantage stays the same. In other
words, the adversary cannot obtain previous, current, and
any of the future session keys. By capturing a node, the
strongest action an adversary can launch is obtaining the
state of the (even privileged) node, and learning the current
session key (as well as the future keys if the attack remains
undetected and the captured node is privileged). However,
the attacker cannot obtain the keys in the previous sessions,
which is a significant advantage. Our solutions support
other features such as the key’s leakage tracing, which can
be optimized for the key update schemes.

All our approaches attempt to move the computational
and storage burden to the BC, which is a reasonable
strategy when regular nodes within the network are
hardware-limited. We introduce two topological variants of
the protocol: (1) The flat scheme is efficient when the
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privileged set changes significantly and/or when the stor-
age overhead on regular nodes is low; and (2) The
tree-based variant increases the storage overhead but
decreases the computational and transmission overheads
given slightly different privileged sets over two consec-
utive sessions. Based on our implementation of the tree-
based variant, our evaluation and performance results on
both BC and regular nodes prove that our solution provides
efficiency along with security.
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