
ReDMArk: Bypassing RDMA Security Mechanisms

Benjamin Rothenberger∗, Konstantin Taranov∗, Adrian Perrig, and Torsten Hoefler
Department of Computer Science, ETH Zurich

Abstract
State-of-the-art remote direct memory access (RDMA) tech-
nologies such as InfiniBand (IB) or RDMA over Converged
Ethernet (RoCE) are becoming widely used in data center
applications and are gaining traction in cloud environments.
Hence, the security of RDMA architectures is crucial, yet po-
tential security implications of using RDMA communication
remain largely unstudied. ReDMArk shows that current se-
curity mechanisms of IB-based architectures are insufficient
against both in-network attackers and attackers located on
end hosts, thus affecting not only secrecy, but also integrity of
RDMA applications. We demonstrate multiple vulnerabilities
in the design of IB-based architectures and implementations
of RDMA-capable network interface cards (RNICs) and ex-
ploit those vulnerabilities to enable powerful attacks such as
packet injection using impersonation, unauthorized memory
access, and Denial-of-Service (DoS) attacks. To thwart the dis-
covered attacks we propose multiple mitigation mechanisms
that are deployable in current RDMA networks.

1 Introduction
In recent years, numerous state-of-the-art systems started to
leverage remote direct memory access (RDMA) primitives as
a communication mechanism that enables high performance
guarantees and resource utilization. Deployments in public
clouds, such as Microsoft Azure and IBM Cloud, are becom-
ing available and an increasing number of systems make use
of RDMA for high-performance communication [8,11,18,28].
However, the design of RDMA architectures is mainly fo-
cused on performance rather than security. Despite the trend
of using RDMA, potential security implications and dangers
that might be involved with using RDMA communication in
upper layer protocols remain largely unstudied. For example,
RFC 5042 [30] analyzes basic security issues and potential
attacks in RDMA-based implementations, but lacks an in-
depth analysis of state-of-the-art RDMA architectures and
implementations.

∗These authors contributed equally to this work.

Current RDMA technologies include multiple plaintext
access tokens to enforce isolation and prevent unauthorized
access to system memory. As these tokens are transmitted
in plaintext, any entity that obtains or guesses them can read
and write memory locations that have been exposed by using
RDMA on any machine in the network, compromising not
only secrecy but also integrity of applications. To avoid com-
promise of these access tokens, RDMA architectures rely on
isolation and the assumption that the underlying network is a
well-protected resource. Otherwise, an attacker that is located
on the path between two communicating parties (e.g., bugged
wire or malicious switch) can eavesdrop on access tokens of
bypassing packets.

Unfortunately, encryption and authentication of RDMA
packets (e.g., as proposed by Taranov et al. [36]) is not part of
current RDMA specifications. While IPsec transport recently
became available for RoCE traffic, the IPsec standard does
not support InfiniBand traffic. Furthermore, application-level
encryption (e.g., based on TLS) is not possible since RDMA
operations can be handled without involvement of the CPU.
As TLS cannot support purely one-sided communication rou-
tines, the applications would need to store packets in a buffer
before decryption, completely negating RDMA’s performance
advantages. We discuss these potential mitigation techniques
to secure RDMA in more detail in §7.3.

In this work, we analyze current security mechanisms of
RDMA architectures based on InfiniBand (IB) such as native
InfiniBand and RDMA over converged Ethernet (RoCE) ver-
sions 1 and 2. ReDMArk reveals multiple vulnerabilities and
flaws in the design of InfiniBand, but also in implementations
of several RDMA-capable network interface cards (RNICs)
by Mellanox and Broadcom. These vulnerabilities enable
powerful attacks on RDMA networks, such as unauthorized
memory access or breaking of existing connections based on
packet injection. To show the feasibility of the discovered at-
tacks in practice, we implemented an attack framework, that is
able to inject bogus packets into the network and impersonate
other endpoints to corrupt the memory state of remote end-
points. For each of the discovered attacks, we discuss potential

long-term mitigation mechanisms. In addition, we propose
short-term mitigations that can be deployed in today’s RDMA
networks before the long-term mitigations become available.
Finally, we assess the vulnerability of open-source systems
that rely on RDMA for high-performance communication
against the discovered attacks.

2 Remote Direct Memory Access
RDMA enables direct data access on remote machines across
a network. Memory accesses are offloaded to dedicated hard-
ware and can be processed without involvement of the CPU
(and context switches). Using RDMA read and write requests
application data is read from/written to a remote memory ad-
dress and directly delivered to the network, reducing latency
and enabling fast message transfer. RDMA can also enable
one-sided operations, where the CPU at the target node is not
notified of incoming RDMA requests.

Even though several network architectures support RDMA,
in this work we focus on the most widely used interconnects
for RDMA: InfiniBand (IB) [3] and RDMA over Converged
Ethernet (RoCE) [4]. InfiniBand is a network architecture
specifically designed to enable reliable RDMA and defines its
own hardware and protocol specification. RoCE is an exten-
sion to Ethernet to enable RDMA over an Ethernet network
and exists in two versions. RoCEv1 uses the IB routing header,
whereas RoCEv2 uses UDP/IP for routing. Even though this
work focuses on IBA and RoCE, the proposed attacks could
also be extended to other RDMA architectures.

2.1 RDMA packet format
The RDMA packet header consists of a routing header and
a base transport header (see Figure 1). The routing header
contains the source and destination ports, that identify link
layer endpoints. The IB protocol uses the IB link layer proto-
col as a data link, whereas RoCE relies on Ethernet. RoCEv1
encapsulates an IB packet, including its IB routing header,
into an Ethernet frame. RoCEv2 is designed as an Internet
layer protocol and uses a UDP/IP header for routing.

All data communication in RDMA is based on queue pair
(QP) connections between the two communicating parties.
QPs are a bi-directional message transport mechanism used
to send and receive data in InfiniBand. Endpoints in RDMA
are identified by the combination of an adapter port address
and a queue pair number (QPN), a unique identifier of a QP
connection within destination port. For all QP endpoints at a
destination port, the RNIC generates a unique QPN.

2.2 InfiniBand Architecture Security Model
Processing of incoming packets is based on the base transport
header that contains the destination QPN and also a packet
sequence number (PSN). The PSN is used to enforce in-order
delivery and detect duplicate or lost packets. Packets with

Routing
Header

Base Transport
Header

InfiniBand: IB Routing Header
RoCEv1: Ethernet + IB RH

RoCEv2: Ethernet + UDP/IP

Queue Pair Number
Packet Sequence Number

RDMA
Header

Target virtual address
Memory key (rkey)
Data Length

Payload Checksums

Two integrity
checksums

Figure 1: General format of an RDMA packet.

invalid QPN or PSN are dropped without any notification to
the receiving application.

To detect errors that may have been introduced during the
transmission, each packet contains two checksums that are
checked by the receiving node. The checksum algorithms are
defined in the IB specification and use pre-defined seeds.

In addition to packet integrity checks, IBA defines three
memory protection mechanisms to restrict unauthorized ac-
cess to local memory by remote entities: Memory Regions,
Memory Windows, and Protection Domains (PD) [37]. These
mechanisms allow enforcing memory access restrictions (e.g.,
the application allows reads, but no writes to a memory re-
gion).

Memory Regions. To access host memory, the RNIC first
allocates the memory region, which involves copying page
table entries of the corresponding memory to the memory
management unit of the RNIC. Then, the RNIC creates a
memory region to enforce access restrictions to the memory
such as read-only, write-only, or local-only. Memory regions
can also be reregistered to change its properties or deregis-
tered to destroy its memory mappings.

For each memory region RNIC generates two keys for local
and remote access, namely lkey and rkey. To remotely access a
memory location using RDMA read or write operations, each
packet must include a virtual address and its associated rkey
as depicted in Figure 1. The rkeys are not used in any form of
cryptographic computation, but used as access tokens that are
transmitted in plaintext. The lkeys are not part of the transport
protocol, but used as a local authorization token allowing the
channel adapter to access local memory of an application.

Memory Windows. To allow different access rights
among remote QPs within a memory region or grant access
to a part of the region, IBA makes use of Memory windows
type 1. Memory windows type 2 further extend this protection
mechanism by assigning a single QP to a memory window
and enforcing that only the assigned QP can access it.

Protection Domain. IBA protection domains (PD) group
IB resources such as QP connections and memory regions,
such that QP connections within a PD can only access mem-
ory regions allocated in the same PD, providing protection
from unauthorized or inadvertent use of a memory area. All
QPs and memory regions are always assigned to a specific
PD and can only be a member of one PD.

3 Adversary Model
In our adversary model we consider three parties (see Fig-
ure 2): an RDMA service which hosts one or several RDMA
applications, a client who interacts with the service through
RDMA, and an adversary who can legitimately connect to the
RDMA service, but tries to violate RDMA’s security mecha-
nisms (e.g., access memory of other clients using RDMA).

We assume that the adversary is located within the same
network as the other parties and consider four different at-
tacker models.

Model T1 . First, we consider an adversary that is located
at a different end host than the victim (off-path) and have
rightfully obtained these hosts (e.g., by renting an instance
in a public cloud). This attacker cannot conduct any network-
based attacks such as packet injection, but can connect to
RDMA services and issue RDMA messages over these con-
nections.

Model T2 . Second, we consider attackers (potentially
off-path) that can actively compromise end hosts and fab-
ricate and inject messages. To successfully inject an arbitrary
RDMA request the adversary must have root administrative
access. The adversary is required to know the host’s address
(local identifier for IBA / IP address for RoCE), QP numbers,
and the PSN to forge a valid RDMA packet. Additionally,
to read or write a memory location on the remote host, the
adversary needs to include a valid virtual memory address
and the corresponding memory protection key rkey.

Model T3 . Third, we consider network-based attackers
where the attacker is located on the path between the victim
and the service. On-path attacks require the attacker to con-
trol routers or links between the victims (e.g., rogue cloud
provider, rogue administrator, malicious bump-in-the-wire de-
vice). A network-based attacker can passively eavesdrop on
messages, but also actively tamper with the communication
between hosts by injecting, dropping, delaying, replaying, or
altering messages. This includes altering and forging any in-
formation in any packet header, including all IB and Ethernet
headers. Since RDMA communication is in plaintext and the
IB protocol does not provide any mechanisms for authenticat-
ing a message to prevent on-path packet alteration, this only
requires recalculation of packet checksums, whose algorithms
and seeds are publicly available in the IBA specification.

Model T4 . Finally, we consider an adversary that makes
use of RDMA as a covert channel for exfiltrating data. For this
purpose, the adversary manipulates code or libraries executed
by the victim (e.g., using malware) such that it establishes an
RDMA connection to an RDMA-capable attacker machine in
the same network as the victim (e.g., by renting an instance
in a public cluster). This allows the adversary to exploit one-
sided RDMA operation to "silently" access memory of the
victim process.

Since both the network and control over a machine are
well protected resources in cloud datacenters, we assume that

 Service BT2 RNIC RNICT2 inject
 connect

sudo

T1 RNICT1

RNIC T4Client A RNIC covert channel

T3

victim connection
adversary connection
on-path adversary

Figure 2: Illustration of the adversary model including poten-
tial adversary locations.

these potential attack locations are much harder to achieve
than obtaining or compromising an arbitrary end-host.

4 Security Analysis of IB Architectures
Given the aforementioned adversary model, we analyse exist-
ing security mechanisms in IB-based architectures including
memory protection key generation, QP number generation,
memory regions, memory windows, and protection domains.
We identify 10 vulnerabilities, labeled V1 – V10 .

4.1 Analysis Setup

Our analysis setup includes multiple IB-based architectures
such as native InfiniBand (IBA), RoCEv1, and RoCEv2. To
execute and evaluate our tests we use a server cluster with
RNICs from Broadcom, Mellanox, and also run tests on Mi-
crosoft Azure HPC instances that support RDMA (A8, A9,
H16r). Additionally, we consider software-based RoCE (soft-
RoCE), a software implementation of RoCE that has been
integrated into the Linux kernel [21]. Table 1 lists the analyzed
devices and summarizes the discovered memory protection
issues.

4.2 Memory Protection Keys

V1 Memory Protection Key Randomness. To protect re-
mote memory against unauthorized memory access, IBA re-
quires that RDMA read/write requests include a remote mem-
ory access key rkey, which is negotiated between communicat-
ing peers and is checked at the remote RNIC. Packets with an
invalid rkey cause a connection error leading to disconnection.
The requirement of including an rkey is built into the silicon
and the driver code cannot be disabled by an attacker. Thus,
to successfully circumvent this protection mechanism against
unauthorized memory access, an attacker needs to include a
valid rkey in his requests.

We analyze the randomness of the rkey generation process
for different RNIC models and drivers. For all tested devices,
rkey generation is independent of the address and length of
the buffer to be registered. Changes in access flags have no
influence on the generation of an rkey. The generated rkeys

Table 1: Summary of Memory protection issues across different IBA drivers.

Model Driver Arch. Static
Init.

Shared
Gen.

Key Step QPNs QP limitd

Broadcom NetXtreme-E BCM57414 bnxt_re RoCEv2 3 3 0x100 sequential 32,707
Broadcom Stingray PS225 BCM58802 bnxt_re RoCEv2 3 3 0x100 sequential 61,438
Mellanox ConnectX-3 MT27500 mlx4 IB/RoCEv1 3 3 0x100a sequential 261,359
Mellanox ConnectX-4 MT27700 mlx5 IB/RoCEv2 7 3 randomb sequential 64,443
Mellanox ConnectX-5 MT27800 mlx5 IB/RoCEv2 7 3 randomb sequential 65,449
Mellanox ConnectX-6 Dx MT28841 mlx5 RoCEv2 7 3 randomb sequential 262,100
softRoCE rxe RoCEv2 3 3 0x100 + lfsr-8bitc sequential 32,707
a for a subsequent registrations b has low entropy c seed and states are known d bound by the OS limit on active file descriptors

only depend on previous registration/deregistration operations.
Further, we investigate how registration/deregistration affects
memory registration.

RNIC models from Broadcom (using the bnxt_re driver)
always increase the rkey value by 0x100 independent of the
previously mentioned factors. The exact algorithm can be
found in Appendix A. Thus, assuming the attacker is able
to obtain an rkey that is part of this series of increasing key
values, predicting preceding or subsequent rkeys is trivial.

For devices based on the mlx4 driver, the sequence of rkeys
depends on registration/deregistration operations. For con-
secutive registration operations each rkey gets incremented
by 0x100. However, after a deregistration operation, the next
rkey gets incremented by 0x80000 based on the rkey for the
memory region that has been deregistered. In case of multiple
consecutive deregistration operations, the rkeys of the dereg-
istered memory regions are queued and for each upcoming
registration operation a key gets dequeued. The algorithm
for key generation can be found in Appendix A. All tested
Azure HPC instances (A8, A9, H16r) use the mlx4 driver and
allocate rkeys with the previously described algorithm.

The software implementation of RoCE, SoftRoCE, also in-
creases the rkey by 0x100 for each registration operation, but
additionally randomizes the last 8 bit using a linear-feedback
shift register (LFSR). However, since LFSRs are determin-
istic and the initial seed is known, all subsequent states are
easily computable. Moreover, the LFSR implementation used
by SoftRoCE generates only 15 distinct numbers, which does
not increase the randomness of rkeys. The full algorithm for
key generation can be found in Appendix A.

Devices based on the mlx5 driver do not use a fixed increase
between subsequent registrations, but still strictly increase the
values with a random value (modulo 232). An analysis of these
values shows that with more than 60% probability either the
value 0x101 or 0x102 (see Figure 3) is chosen. Thus, even
though the key generation process of devices based on mlx5
driver contains higher entropy than other drivers, the sequence
of generated keys is still predictable by an adversary with
moderate effort.

Key Entropy Analysis. Given that the rkey generation

0x
10

2
0x

10
1

0x
10

3
0x

20
1

0x
10

9
0x

20
2

0x
30

2
0x

40
2

0x
50

2
0x

30
1

0x
40

1
0x

50
1

0x
60

2
0x

70
1

0x
60

1
ot

he
rs

0.0

0.1

0.2

0.3

p(
δ i

)
Figure 3: Probabilities of differences for random rkey value
generated using mlx5 device.

process for all tested drivers seems predictable, we further
quantify the randomness of the key generation process by
calculating the min-entropy [5, 24], which denotes a measure
to describe the uncertainty associated with a random variable
by guessing the key until a correct key is found. Thus, the min-
entropy measures the difficulty of guessing the most likely
output of an entropy source. Following, the optimal strategy
for successive guessing is to try all possible values in order
of decreasing probability.

If we consider this problem of guessing a discrete random
variable X on x1,x2, . . . ,xm with probability distribution P =
(p1, p2, . . . , pm), where pi =P(X = xi), 1≤ i≤m. We assume
that p1≥ p2≥ . . .≥ pm. Then the min-entropy of X is defined
as

H∞(X) = min
1≤i≤m

(− log2 pi)

=− log2 max
1≤i≤m

pi =−log2 p1
(1)

Our observations showed that for all tested drivers the se-
quence of generated rkeys was strictly increasing (modulo
232). Thus, we define the dependency of a newly generated
key on the previous key as follows:

xi+1 = xi +δi (2)

where δi denotes the difference between key xi and xi+1 and
is further described using a discrete random variable ∆ with
probability density function P(∆ = δi). Thus, given key xi the
generation of key xi+1 is dependent on the randomness of ∆

and quantified by the min-entropy of ∆ (see Table 2).

Table 2: Entropy of rkey generation for key differences

Driver H∞(∆) H(Y |X)

bnxt_re 0 0
mlx4 0.14 1
mlx5 2.16 2.85
rxe 2.04 0

This dependency can further be generalized by calculating
the conditional entropy [23] of subsequent key generations,
which quantifies the amount of information needed to predict
a newly generated key xi+1 given the previous key xi (e.g., if
an attacker obtains a key legitimately by registering a memory
region) and is defined as:

H(Y |X) =− ∑
x∈X ,y∈Y

p(x,y) log2
p(x,y)
p(x)

(3)

where p(x,y) denotes the joint probability of x and y.
For bnxt_re and rxe we can always predict which rkey will

be generated next, making the value of xi+1 completely deter-
mined by xi, which results in the conditional entropy being
equal to 0 [23]. For mlx4, the value of Y only depends on
whether a region has been deregistered before the next rkey is
generated. Assuming that this occurs with probability 0.5, the
conditional entropy is 1 bit. Finally, for mlx5 the distribution
of key differences ∆ is illustrated in Figure 3. If an attacker
guesses that the next key is incremented by the difference
with the highest probability, his guess would be correct in one
out of three guesses on average. The computation of the con-
ditional entropy of mlx5 results in 2.85 bits of entropy, which
enables an attacker to guess the rkey of future registrations
with high probability.

V2 Static Initialization State for Key Generation. In ad-
dition to the limited number of rkeys, the RNICs based on the
bnxt_re and mlx4 drivers are initialized using static state and
the same set of keys persists across different physical reboots
of the machine. Assuming that an adversary has observed the
entire key set, the same keys will be reused even after the
physical machine rebooted.

Since the IB network adapter on Azure instances is virtu-
alized and a reboot of the instance does not lead to physical
reboot of the machine, the tested Azure instances were not
affected by static initialization.

V3 Shared Key Generator. On all tested devices the key
generator is fully shared between applications using the same
network interface even if they use different protection do-
mains. Thus, if multiple RDMA applications are running on
the same service the prediction of rkeys of other applications
based on own rkeys is trivial as they have been generated
using the same key generator.

In addition to enabling memory key prediction across mul-
tiple application, this vulnerability can also be exploited to
open a side-channel between applications sharing the same

RNIC, e.g., by encoding a bit-stream in the number of regis-
trations they perform per a time unit. This is especially critical
if an adversary is located on the same physical host as the
victim (e.g., two VMs on the same physical host in a public
cloud environment).

4.3 Memory Allocation Randomness

V4 Consecutive Allocation of Memory Regions. In addi-
tion to the rkey associated to a memory location, the adversary
is also required to predict the corresponding memory address.
Typically, techniques such as address space layout randomiza-
tion (ASLR) randomly arrange the address space positions of
a process. This prevents an attackers from directly referring
to other objects in memory by randomizing their locations.
However, subsequent objects in memory are allocated in con-
secutive addresses with respect to a random address base [40].
For example, all objects allocated via the mmap() Linux sys-
tem call are placed side by side in the mmap area.

Since RDMA-based applications run in a single process on
the target host, they are not protected by ASLR, but instead
objects in memory are allocated side-by-side. Assuming an
attacker knows the address of a memory object on a target host,
predicting the memory address of other objects is possible.
Even though consecutive allocation of memory regions is not
caused by RDMA protocols, it still affects the security of
RDMA applications.

4.4 QP Number Identifiers & Packet Se-
quence Numbers

V5 Linearly Increasing QP Numbers. Our evaluation
(see Table 1) shows that for all tested devices and drivers
the QP numbers are allocated sequentially. Assuming that an
adversary registers a QP himself or observes a QP registration
request, predicting preceding or subsequent QP numbers is
trivial. Furthermore, as IBA uses 24 bit QP numbers, it is not
possible to establish more than 224 QP connections within an
RNIC.

V6 Fixed Starting Packet Sequence Number (PSN).
The implementation of RDMA offers two ways of establish-
ing RDMA connections: a native RDMA connection interface
or using the RDMA connection manager [20] to establish
connections. Using the native connection interface, the con-
nection parameters, such as destination QP number, local
and remote starting PSNs, are set by the application devel-
opers. The RDMA connection manager moves this burden
away from application developers and randomly generates a
starting PSN (using a cryptographic pseudorandom number
generator), thereby making the process of RDMA connection
establishment similar to TCP sockets. Our analysis (see §6)
shows that many RDMA-based open-source applications opt
for using the native interface and manually set the starting

PSNs. In case the starting PSNs are not randomized on a per
QP connection basis, predicting PSNs of established connec-
tions becomes much simpler.

4.5 Other Security Weaknesses in IBA/RoCE

Furthermore, we describe four security weaknesses that
greatly enable or facilitate attacks on RDMA applications.

V7 Limited Attack Detection Capabilities. RDMA al-
lows one machine to directly access data on remote machines
across the network. Due to network offloading of one-sided
RDMA operations, all memory accesses are performed using
dedicated hardware on RNIC without any CPU interaction.
This makes memory accesses completely invisible to applica-
tions and limits their capabilities of detecting attacks.

V8 Missing Encryption and Authentication in RDMA
Protocols. Existing RDMA network protocols do not pro-
vide any mechanisms for authentication nor encryption of
the header and the payload of RDMA packets. An adversary
can spoof any field in the packet header or alter any byte in
the packet payload of RDMA messages. In-network packet
alteration only requires recalculation of packet checksums,
whose algorithms and seeds are known and specified by the
IBA. Potential solutions for encryption and authentication in
IBA are further discussed in §7.3.

V9 Single Protection Domain for all QPs. To reduce the
state overhead on RNICs the RDMA connection manager
by default uses a single protection domain for all established
QPs and memory registrations within a single process. As
a result, all QPs of a single process can access memory of
each other. Nonetheless, even developers using the native
connection interface seem to opt for using a single PD for all
its QPs and memory registrations (see §6).

V10 Implicit On-Demand Paging (ODP). Implicit On-
Demand Paging (ODP) enables a process to register its com-
plete memory address space for I/O accesses. This feature
is used for high-performance communication settings, where
the overhead of frequently registering communication buffers
leads to performance degradation. ODP removes the need to
register memory as any memory address can be registered by
RNIC on demand. If ODP is enabled, an attacker can remotely
access the entire memory space of a process resulting in high
attack potential. While this feature is disabled by default, re-
cent advances in high-performance communication systems
lead to this feature gaining traction in IB deployments [19].

5 Attacks on IBA
Using the discovered vulnerabilities, an adversary could
launch attacks in RDMA networks, e.g., by using unautho-
rized access to memory regions or by disrupting communica-
tion using DoS. Furthermore, vulnerabilities in RDMA could
also be misused as an attack vector for application-level at-
tacks (e.g., malware). In this section, we describe six potential

attacks on RDMA networks, labeled A1 – A6 . For each of
the attacks we explain the experiments we conducted and
discuss potential mitigation mechanisms, which are discussed
in greater detail in §7. Table 3 outlines the dependency on
attacker locations and vulnerabilities, and potential mitigation
mechanisms for each of the attacks.

5.1 A1: Packet Injection using Impersonation

As current RDMA systems enforce no source authentica-
tion V8 , an adversary can impersonate any other endpoint
and inject packets that seem to belong to an established con-
nection by another client. To inject an RDMA packet that
is considered valid by the receiving endpoint, the adversary
needs to know the QPN of the victim and the current PSN.

Apart from obtaining these parameters by on-path eaves-
dropping or impersonation of end hosts, an attacker could
try to predict them. Given that QP numbers are generated
sequentially for each new client V5 , an attacker can obtain
expected QPNs of clients by simply connecting to the RDMA-
enabled service and decrement the QPN that gets assigned to
the attacker. Thus, a valid PSN remains the only protection
mechanism that prevents an attacker from injecting a packet.
If an application also does not generate starting PSNs ran-
domly, the attacker can start bruteforcing PSN by exploiting
the fixed starting PSN issue V6 , which significantly reduces
the search space. Otherwise, even with random PSNs, the at-
tacker can bruteforce the PSN within a reasonable amount of
time as only 223 packets are required on average to generate
a valid PSN. Bruteforcing the current PSN of a QP connec-
tion is related to enumerating the sequence number of a TCP
connection [41], with the main difference that packets with
invalid PSN simply get discarded by the RNIC and do not
affect the established QP connection.

In addition to regular RDMA packets, injection of RDMA
read and write packets additionally requires the attacker to
know a valid memory address and its corresponding memory
protection key rkey. This attack is further discussed in §5.3.

In the remainder of this work, attacks based on imperson-
ation are referenced to as A1 .

Experiments. To verify the feasibility of the attacks on
RDMA protocols, we implemented a spoofing tool for RoCE*.
The tool can fabricate any custom RoCEv1 and RoCEv2
packet including RDMA read and write operations and is
fully compatible with the IBA specification [3]. Our RoCEv1
implementation uses Linux raw Ethernet sockets, and Ro-
CEv2 uses IPv4 raw sockets and UDP as a transport layer.
The tool can mimic any RDMA request initiator and inject
custom RDMA packets over any Ethernet links. RDMA over
IB link cannot be fabricated in software, as the IB protocol is
implemented fully in hardware. The tool has been tested on
all RoCE devices listed in the Table 1.

*https://github.com/spcl/redmark

https://github.com/spcl/redmark

Table 3: Overview of dependency on attacker location and vulnerabilities for attacks on RDMA combined with an overview of
mitigation mechanisms that thwart the attack.

T1 T2 T3 T4 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 M1 M2 M3 M4 M5 M6 M7 M8

A1 ; 7 7 7 7 3 7 3

A2 ; 7 7 7 7 3 7 3

A3 7 3 7 3 3 7 7 7

A4 7 7 7 7 7 7 ; 7

A5 7 7 ; 7 7 7 ; 7

A6 7 7 ; 7 7 7 7 7

weak rkey

static init.

shared key gen.

weak mem. rand.

lin. inc. QPN

fixed starting PSN

lim. attack detect.

no enc./auth.

single PD

ODP enabled

rand. QPN

rand. rkey

HW
counters

mem. win. type 2

multiple PDs

enc./auth. in IB

resource const.

in-network filt.

enables attack facilitates attack does not affect attack
3 mitigates attack ; increases attack complexity 7 does not mitigate attack

In these experiments (see Table 4), we measure the injec-
tion throughput of our RoCE spoofing tool, which allows an
estimation of the time required to bruteforce a random PSN
and a PSN that has been generated based on a known initializa-
tion value. The injection tool for RoCEv1 was able generate
1.30 millions packets per second (Mpps), whereas the tool for
RoCEv2 was able to generate 0.74 Mpps for Broadcom and
1.57 Mpps for ConnectX-5. Full enumeration of a random
PSN thus took 13 s for RoCEv1. RoCEv2 enumeration tool
takes 10.60 s for Mellanox and 23 s for Broadcom.

The performance of ReDMArk’s spoofing and packet in-
jection framework could not achieve line-rate for the tested
devices as: 1) the packet checksums are calculated by the
CPU and not offloaded to the NIC. 2) our framework does
not bypass the OS, whereas native RDMA messages do. To
improve the performance of packet injection and thus exhaust-
ing this bruteforce search even faster, a hardware appliance
could be used. Furthermore, specific Mellanox NICs support
raw Ethernet programming with a kernel bypass [2].

Table 4: Injection throughput of the RoCE spoofing tool.

Model Link speed Protocol Throughput

Mellanox ConnectX-3 40 Gbps RoCEv1 1.31 Mpps
Mellanox ConnectX-5 100 Gbps RoCEv2 1.57 Mpps
Broadcom NetXtreme-E 25 Gbps RoCEv2 0.74 Mpps
Broadcom Stingray 25 Gbps RoCEv2 0.74 Mpps

Interestingly, injection of a single correct packet does not
cause a victim’s connection to break. A mismatch in the PSN
counter by 1 packet between sender and receiver is resolved
by the protocol. The protocol treats the victim’s packet as a re-
peated packet and always acknowledges it without processing.
The sender receives the acknowledgment about successful
transmission, even though the packet has not been processed
by the remote RNIC. As a result, the attacker is able to replace
the victim’s packet with a forged one.

Injection of multiple valid packets causes a connection
loss on the victim side. The QP of the victim who has been
impersonated by the adversary experiences a "Transport Retry
Counter Exceeded" error and transitions its connection to an
error state, when it tries to send packets. However, the other
endpoint of the QP only transitions into error state if it tries
to reply to the disconnected victim QP side. Otherwise, the
connection remains open. Moreover, since packet injection
increases the PSN counter on the receiver, the victim’s packets
will get discarded due to a PSN mismatch. This effectively
prevents the victim from closing the connection and allows
the attacker to inject messages over an extended period.

Furthermore, our experiments showed that if the attacker
injects exactly 224 packets (i.e., the size of the PSN counter),
then the injection remains completely unnoticed by the vic-
tim and it can continue communication due to matching PSN
counters. Our injection tool requires approximately 13 s to
inject 224 packets. Therefore, if the victim does not use its
connection for this amount of time, the attacker can success-
fully inject 224 packets without disrupting the connection of
the victim.

Practicality. Packet injection based on impersonation can
be performed under the assumption of the T2 model, i.e.,
the attacker requires root access to any machine in the same
network as the victim. Similarly, an on-path attacker T3
(e.g., bump-in-the-wire) also has packet injection capabilities.
Since root access to machines in public cloud environments
is a well protected resource (and would require a sandbox
escape [27]), this attack is more realistic in the setting of
small cloud providers or private RDMA cluster as used by
companies and research groups.

Mitigation. To effectively mitigate attacks based on imper-
sonation, source authentication could be deployed. However,
since this is on-going research and not yet available for IB-
based RDMA deployments, we suggest the following miti-
gations to increase the complexity of packet injection by an

off-path attacker: each QP connection should be initialized
with a random starting PSN instead of using a per-device
starting PSN. As this only marginally increases the attack
complexity also QPN should be randomly assigned to QPs.
We suggest a mechanism for randomizing QPNs for existing
RDMA deployments and that can be deployed for all vendors
of RNICs in §7.1. As modern RNICs provide hardware coun-
ters that are accessible by the application (see §7.2), these
counters should be used to detect bruteforcing attempts. Fur-
thermore, operators of RDMA networks could also perform
ingress filtering for all end hosts (see §7.4).

5.2 A2: DoS Attack by Transiting QPs to an
Error State

In IB-based architectures, connections based on the RC QPs
are sensitive to content of the header of requests. Protocol
errors, such as inconsistencies in the sequence number or QP
number, are recoverable errors and resolved by the protocol.
However, memory errors, such as incorrect operation numbers
or an inconsistency between payload length and DMA length
immediately leads to unrecoverable errors, which will cause
the RNIC to transit the QP to the error state and the QP to
disconnect [3]. We refer to this attack as A2 .

An on-path attacker T3 can trivially modify the operation
numbers or payload lengths to drop connections. However,
even an off-path adversary can inject incorrect packets to-
wards a victim QP endpoint and effectively disrupt communi-
cation of other entities (see §5.1).

Experiments. To conduct an attack that transits a QP to an
error state, we use the packet injection tool with the goal to
inject invalid packets into the victim’s QP connection such
that it triggers an unrecoverable error, which results in the QP
being forced to disconnect. These experiments showed that
a single fabricated packet injected into the connection was
sufficient to effectively break the victim’s connection.

Given these insights, an attacker could try to repeatedly
drop the connection of a specific client or drop all connec-
tions of clients that are trying to connect to a service. The fact
that QPNs are generated sequentially V6 highly facilitates
the realization of such attacks. In addition, if an application
uses non-random starting PSNs V7 , the attacker needs to
guess only small number of PSNs to break a connection. For
example, our injection tool for RoCEv2 can drop one con-
nection every 10.60 s by fully enumerating all possible 224

PSNs for a single QP. Then it transits to the next QPN and
thus sequentially breaks all QP connections.

Practicality. As this attack relies on packet injection, it
assumes the same threat models as A1 .

Mitigation. As this attack relies on packet injection to
successfully break a victim’s connection, similar mitigation
techniques should be applied to thwart such DoS attacks. In
addition, our QPN randomization technique can significantly

reduce performance of the attack, as the attacker will be un-
aware of the QPN of other clients, making enumeration in-
feasible. If QPNs are randomly generated, the attacker needs
to probe approximately 224

o QPNs, where o is the number of
open connections on the victim’s machine. For example, if
the victim has 1024 open QPs, the attack tool can only break
one connection per 48 h on average.

5.3 A3: Unauthorized Memory Access
Unauthorized memory access effectively breaks secrecy of
applications running on a victim host, but might also influence
their behavior. Even worse, since RDMA operations can be
performed purely one-sided V7 , the victim is unable to detect
such attacks. Attacks based on unauthorized memory access
are referred to as A3 .

As illustrated in Figure 4, an attacker establishes an RDMA
connection with a service and tries to access memory of other
clients connected to this service. RDMA applications typi-
cally share a PD for all RDMA resources V9 and allocate
private RDMA-accessible buffers for each new user. These
buffers are allocated in close proximity to each other, e.g.,
as chunks of a larger continuous memory region, allowing
an attacker to predict the virtual memory address of buffers
belonging to other clients V4 . In the example, the attacker
tries to access the memory region adjacent to its own memory
region. To gain access, the attacker is also required to guess
the corresponding memory protection key rkey for a mem-
ory region. Given that rkeys are highly predictable V1 , the
attacker can guess the keys of adjacent memory regions based
on its rkey that he obtained after registering a memory region.

The attacker can also exploit other vulnerabilities of rkey
generator such as static initialization of memory key gener-
ator V2 and shared key generator V3 . V2 can be used to
guess rkey after a reboot of the machine. V3 can be employed
by an attacker sitting on the same physical machine. Finally,
ODP allows accessing any virtual address by having a single
rkey V10 . If the attacker can successfully guess the rkey of
ODP registration, it can access the whole memory space of
the process.

Client A

0x7FF1234
0x200

RDMA Read

owner = A
0x7FF1234

r_key = 0x100

owner = M

0x7FF2345

r_key = 0x200
0x7FF3456

M

Figure 4: Unauthorized memory access on the same host.

Due to the missing integrity protection V8 , an on-path
attacker T3 would even be able to alter remote memory by
spoofing valid RDMA write packets. Similarly, an off-path
attacker T2 can perform this attack via impersonation by
tricking the victim host into processing fabricated packets.

Experiments. Using our attack framework, an attacker con-
nects to an RDMA-enabled system to obtain a memory access
key and memory address. Then, it tries to gain unauthorized
access by trying combinations of rkeys and memory locations.
The attacker polls for RDMA completion events to receive
acknowledgment on the success of the unauthorized access.
If the guess is incorrect, the attack framework reconnects and
retries the attack.

Successful unauthorized access without sniffing requires
knowing the code of the system under attack to see the pat-
terns in memory allocation and registration. This is required to
reduce the search space of potential virtual addresses. We fur-
ther analyzed open-source RDMA applications to see whether
they are vulnerable to these type of attacks (see §6). Unfortu-
nately, almost all of the tested application were vulnerable to
unauthorized memory access (see Table 5).

Practicality. Unauthorized memory access is possible un-
der the assumption of the T1 model, as it can be performed
by any client located on an RDMA-enabled service without
requiring any special capabilities, and even in a trusted net-
work. If an RDMA-based system (e.g., see Table 5) would be
deployed in a public cloud environment with RDMA support,
any client could perform unauthorized memory access.

Mitigation. To mitigate unauthorized memory access, each
new RDMA client could be assigned to a different PD. How-
ever, this would increase the resource usage per client on
RNICs. Additionally, more modern RDMA devices can em-
ploy memory windows type 2 to pin a memory region to a
specific QP, which prevents other clients from accessing it.
Memory windows type 2 further allow applications to choose
the 8 least significant bits of the rkey randomly.

Another measure to prevent unauthorized memory access
would be the randomization of memory addresses chosen for
buffers (similar to ASLR [40] / PIC [29] for regular applica-
tions).

Finally, RDMA applications should randomize rkey gener-
ation, especially, if the RDMA devices with low entropy are
used. We propose a mechanism, working on all RDMA de-
vices, that randomizes the rkey generation process (see §7.1).

5.4 A4: DoS Attack based on Queue Pair Allo-
cation Resource Exhaustion

Another exhaustion attack focuses on the number of QPs a
device can handle. Theoretically, up to 224 connections could
be opened on a device V5 . In reality, the tested devices were
able to handle much lower numbers. Thus, an attacker could
try to open as many QP connections as possible and keep
them open with minimal effort. Thus, if the attacker is able
to saturate the limit for QP allocations of the victim service,
he could effectively deny other benign clients from opening a
QP connection, which is further referenced as A4 .

Experiments. According to our findings, tested devices
had different limit on the number of active QP connections

per application: the results varied from 32,707 for Broadcom
to 261,359 for Mellanox. Thus, the attacker needs to keep
alive a much smaller number of active connections than 224.
The variation in the numbers comes from default settings of
the drivers and the OS. Drivers put a limit on the number of
open QP connections per application.

In addition, if an application uses the RDMA connection
manager to establish connections, each RDMA connection
gets a file descriptor assigned for receiving link events. The
underlying operating system usually enforces strict limits on
the number of concurrently open file descriptors. Thus, by
opening QP connections the attacker can exhaust the number
of available file descriptors (instead of QPs), which might
be much smaller. Experiments in our testbeds showed a file
descriptor limit of 4096, whereas for instances deployed on
Microsoft Azure we were able to open 65,535 file descriptors.

Practicality. Resource exhaustion of QP allocations is pos-
sible under the assumption of the T1 model and does not
require any special capabilities.

Mitigation. RDMA-capable devices should limit the num-
ber of open QP connections from the same remote endpoint.
This could be realized based on the IB endpoint identifiers or
the IP addresses for RoCE.

5.5 A5: Performance Degradation using Re-
source Exhaustion

Since RDMA allows an attacker to target offloading resources
to an RNIC V7 , an attacker might try to exhaust these re-
sources by issuing a large number of RDMA reads or writes.
For example, an attacker might target computational resources
of the RNIC’s packet processing units. This will cause an in-
creased latency for other entities accessing the same end host,
but might eventually lead to disruption of service access. In-
terestingly, due to the one-sided nature of RDMA reads and
writes, resource exhaustion attacks can be executed "silently",
i.e., with minor detection possibilities on the victim host. We
refer to performance degradation attacks based on resource
exhaustion as A5 .

Experiments. We analyze the influence of resource ex-
haustion using a varying number of attackers on the latency
and bandwidth of RDMA read or write operations. Each at-
tacker is located on a dedicated machine equipped with a
Mellanox ConnectX-3 RNIC and connected to the victim ser-
vice through a switch. Each attacker floods the victim service
with RDMA write requests of maximum transmission unit
size, (4 KB in the testing environment) with the intention of
exhausting packet processing resources of the victim’s RNIC.
Since RDMA write are enabled by default, but RDMA read
operations must be explicitly enabled during connection es-
tablishment, exhaustion attacks based on RDMA writes are
more likely to occur.

To observe the effect of this attack, we measure the latency
and available bandwidth as observed by a client of the vic-

16 32 64 128 256 512 1024 2048 4096
Packet size (byte)

0
5

10
15
20
25
30
35
40

L
at

en
cy

(u
s)

10x

16 32 64 128 256 512 1024 2048 4096
Packet size (byte)

0

1000

2000

3000

4000

5000

T
h

ro
u

gh
p

u
t(

re
q/

se
c)

10x

orig. 1 att. 2 att. 3 att. 4 att. 5 att. 6 att. 7 att. 8 att.

Figure 5: Effect of an exhaustion attack using RDMA write
on latency and bandwidth of RDMA read.

tim service. Figures 5 and 6 illustrate the results of these
experiments. During normal operation, the latencies for both
RDMA read and write operations as observed by the client
remain largely unaffected by the size of the requests as the
requests fit in a single packet. However, given the presence of
only two attackers that flood the victim service with requests,
the latency for regular RDMA requests increases by factor
3. For each additional attacker the latency further increases
by 4.20 µs. In terms of throughput, the resource exhaustion
attack is even more severe. For two or more attackers, the
throughput of a victim reduces by factor 8 – 10 for RDMA
read requests. For RDMA writes, the attack should be per-
formed by at least five attackers to notably affect the write
throughput of legitimate applications.

Practicality. This resource exhaustion attack does not re-
quire any special capabilities and is achievable under the
assumption of the T1 model. However, collusion of several
attackers is required to effectively disrupt a public service.

Mitigation. Due to the nature of one-sided RDMA opera-
tions, the misuse of RDMA for performance degradation is
almost undetectable. However, modern RNICs (e.g., based
on mlx5) support hardware counters on the device which are
accessible by the host. Thus, a host would be able to detect
resource exhaustion attacks based on excessive issuance of
requests. Using this detection based on HW counters would
allow a host to mitigate these attacks.

16 32 64 128 256 512 1024 2048 4096
Packet size (byte)

0
5

10
15
20
25
30
35
40

L
at

en
cy

(u
s)

16 32 64 128 256 512 1024 2048 4096
Packet size (byte)

0

1000

2000

3000

4000

5000

T
h

ro
u

gh
p

u
t(

re
q/

se
c)

orig. 1 att. 2 att. 3 att. 4 att. 5 att. 6 att. 7 att. 8 att.

Figure 6: Effect of an exhaustion attack using RDMA write
on latency and bandwidth of RDMA write.

5.6 A6: Facilitating Attacks using RDMA

In addition to attacks that use RDMA as an attack vector,
RDMA can also facilitate attacks (e.g., for data extraction).
As RDMA read and write operations do not require any inter-
action by a remote host’s CPU V7 , they allow an attacker to
“silently” read and write data.

For example, if an attacker has the privilege to preload a
library to a victim’s application, the attacker can misuse this
ability to inject code that establishes an RDMA connection
to the attacker’s application. This RDMA connection can
then be used by the attacker to read memory from the victim
without involvement of the victim CPU or intervention with
applications executed by the victim.

Since the memory registered by an application must also
be readable by the RNIC, the attacker can either preregis-
ter a large chunk of memory or enable ODP access which
grants access to any valid virtual address without memory
registration V10 . Then, by continuously sweeping the read-
able memory, the attacker can eavesdrop on sensitive data of
applications.

Experiments. To illustrate the feasibility of using RDMA
as an attack vector, we implemented a proof-of-concept appli-
cation that preloads a malware library to a binary and allows
an attacker to intercept a secret passphrase entered by the
victim by reading memory using RDMA read operations. The
malware (see Listing 1) preallocates a memory space and
register it for RDMA Read access. Then it sends the rkey and
the memory address of the memory region to the attacker,
and deallocates the memory. Freed memory is still RDMA

//Initialization
rdma_connection* con = connect("Attacker's IP and PORT")
//Size of adversarial memory
const uint32_t length = 4096;
//Pre-allocate the adversarial memory
void* buf = malloc(length);
//Register the pre-allocated buffer
// with RDMA READ access
ibv_mr * mr = ibv_reg_mr(PD,buf,size,RDMA_READ);
//Send the memory region to the attacker
con->send(mr->address,mr->rkey,mr->length);
//Free the buffer so that
// the victim can use it.
free(buf);

Listing 1: Pseudocode of RDMA malware library

accessible, as it is not deregistered. Since the memory is deal-
located, the victim is able to use it for storing its passphrase.
The remote attacker can continuously read the memory using
RDMA to gain the passphrase. ODP strengthens the attack by
allowing the attacker to read the whole memory space, and
not just the pre-registered region.

Practicality. The attack is achievable under T4 model.
Both attacker and the victim needs to be in the same network
and be equipped with RDMA-capable NICs. In addition, the
attacker should be capable of replacing or modifying the ex-
ecution binaries of the victim. Note that this attack can not
only be applied to RDMA applications, but can also be used
to obtain sensitive data from other applications.

Mitigation. A mitigation mechanism that prevents an ad-
versary from misusing RDMA as an attack vector would be
check to what libraries are preloaded with a binary. How-
ever, to more generally prevent attacks that include RDMA
operations in code, the system should rely on remote code
attestation (e.g., based on Intel SGX [6]).

6 Vulnerability Assessment of Open-Source
RDMA Systems

We analyse whether recent open-source applications and sys-
tems that use RDMA as a communication mechanism are
vulnerable to the aforementioned attacks. Table 5 lists the
analyzed systems and their security issues.

Infiniswap [11] is a remote memory paging system that uses
remote memory as a swap block device and is specifically
designed to be used in an RDMA network. To “swap out”
memory pages a local block is sent over RDMA to a remote
block using an RDMA write operation. Similarly, to “swap in”
memory pages RDMA read operations are used. Using A1 , an
attacker can inject a packet and modify the content of swapped
pages. Infiniswap is also vulnerable to DoS attacks using

A2 which breaks connections of other clients. Furthermore,
the Infiniswap daemon uses posix_memalign in a loop to
allocate and register buffers of 1 GB, allowing an attacker
to predict the position and rkey of newly allocated buffers

Table 5: Summary on vulnerabilities of open-source RDMA-
enabled systems, and how they establish connections: using
native interface or connection manager.

System Connection A1 A2 A3 A4 A5

Infiniswap [11] Manager 3a 3a 3 3 3
Octopus [22] Native 3a 3a 3 3 3
HERD [13] Native 3a 3a 3 3 3
RamCloud [28] Native 3a 3a 3 3 7
Dare [31] Native 3a 3a 3 7 3
Crail [34, 35] Manager 3a 3a 3 3 3

a if deployed over RoCE
3 vulnerable to attack 7 resilient to attack

(difference of 0x40002000 bytes). Using A3 , an attacker
can connect to the Infiniswap service and get access to the
memory of other clients in the same PD. Since Infiniswap
does not limit the number of connections and resources per
client, a single client can occupy all connections using A4 or

execute performance degradation attacks using A5 .
Octopus [22] is an RDMA-enabled distributed persistent

memory file system. As Octopus uses a hard-coded fixed start-
ing PSN, an attacker can trivially predict subsequent PSNs
and a perform packet injection attack A1 and A2 . Further-
more, all clients share a single buffer that can be accessed
using a single rkey A3 . Thus, the Octopus system relies on
strict trust in all participating parties, i.e., clients must write
remote procedure call (RPC) requests to predefined offsets,
as otherwise the system would fail. Additionally, even though
Octopus does not use RDMA reads, all buffers are registered
with read permissions enabled. Thus, a misbehaving client
can read and change RPCs of all other clients and force the
system to execute a wrong RPC. Finally, Octopus also does
not limit the number connections and resources per client

A4 , and clients are able to obtain RDMA writable memory

regions after establishing a connection A5 .
The HERD [13] system implements an RDMA-enabled

key-value store. Similar to Octopus, HERD uses a single
memory buffer with a single registration for all RPC requests
by clients, does not limit the number of connections and re-
sources per client and is thus vulnerable to A3 , A4 , and

A5 . However, unlike Octopus HERD generates PSNs ran-
domly. Unfortunately, systems such as Hermes [14] and cc-
NUMA [10] that are implemented using HERD inherit all its
vulnerabilities.

RamCloud [28] is a distributed key-value store based on
two-sided RDMA. As one-sided RDMA operations are not
enabled, performance degradation using A5 is not possible.

However, unauthorized memory access A3 is still possible
because RamCloud registers memory with enabled remote

accesses and the memory allocation is static. RamCloud starts
memory allocation at address 0x40000000 and all subsequent
allocations are offset by adding 1 GB to the previous address.
Furthermore, the number of clients is also not limited, and a
single client can exhaust all QP resources A5 .

Dare [31] specifies an RDMA-accelerated consensus pro-
tocol that is based on trust in all participating entities. Un-
fortunately, a static initial PSN is used and all control data
is registered using a single registration. Thus, a misbehav-
ing participant can forge the votes of other participants using
packet injection A1 or unauthorized memory access A3 , and
manipulate the consensus decision to his benefit. However,

A4 is not possible as the the number of clients is fixed and
defined by the consensus quorum size.

Crail [34, 35] is a high-performance distributed data store
designed for fast sharing of ephemeral data in distributed
data processing workloads. Crail has similar vulnerabilities as
Infiniswap as it maps and registers 1 GB fixed-size files in a
loop, making the memory addresses and corresponding rkeys
highly predictable. Finally, the number of connections is not
limited and all memory buffers are accessible using RDMA.

7 Mitigation Mechanisms

7.1 Software-based Security Mechanisms

In the following, we propose two mitigation mechanisms
that are readily deployable by RDMA applications without
requiring changes to hardware or the IB protocol. While these
mechanisms introduce some computational overhead on the
application, they could be deployed until other mitigations
mechanisms become available.

M1 Randomization of QPNs. We propose the following
mechanism for randomization of QPNs (see Listing 2). An
RDMA application creates a pool of unconnected QP de-
scriptors with random QPNs. As soon as QP connection is
required, one of the QP descriptors is fetched and registered.
This measure will introduce some overhead on the RDMA
host, but can be deployed without modification of existing
RDMA protocols and will increase the number of packets that
an adversary needs to inject to 224. Given that modern RNICs
provide hardware counters that are accessible by applications,
such bruteforce attempts could be detected.

M2 Randomization of rkeys. In addition to randomizing
QPNs, we propose a mechanism to randomize memory pro-
tection keys rkeys. Similar to the first mitigation mechanism,
the application preregisters a pool of empty memory regions
with different rkeys (see Listing 3). When a new buffer needs
to be registered, the application can randomly get a mem-
ory descriptor and remap it to the specified buffer using an
ibv_rereg_mr call.

//Initialization
RandomPool pool;
//Create a pool of QP connections
// by skipping a random number of QP connections
for(int i=0; i<POOL_SIZE; i++){
int random_value = secure_prng();
//Create and destroy QPs to get a random QP number
for(int j=0; j<random_value; j++){
//Each new QP has a predictable QPN

ibv_qp * qp = ibv_create_qp(params);
ibv_destroy_qp(qp);

}
// Only random QPs are stored
pool.add(qp);

}

//On connection request, a random QP is taken
ibv_qp * create_qp(){
//Take random QP, which has a random QP number
struct ibv_qp * qp = Pool.get_random();
return qp;

}

Listing 2: Algorithm for randomization of QP numbers

7.2 Leveraging Existing IB Security Mecha-
nisms

M3 Hardware Counters in RNICs. Recent RNICs from
Mellanox (based on the mlx5 driver) support port and hard-
ware counters that are accessible by RDMA applications [26].
These counters enable precise monitoring of requests for de-
bugging, load estimation and error detection. For example,
resp_remote_access_errors could be used to monitor in-
valid requests that resulted in access errors. Attacks based on
flooding a victim with malicious RDMA traffic could be de-
tected using these counters. Even though attack detection does
not directly prevent attacks, it is an important countermeasure
to A3 , A5 , and A6 .

M4 Type 2 Memory Windows. IBA offers type 2 mem-
ory windows which bind a memory region to a specified QP
and prevent unauthorized memory access by other QPs. How-
ever, since IBA has no means of source authentication, an
attacker can mimic any RDMA request initiator and inject
RDMA write packets to corrupt memory of the victim host
by spoofing an RDMA packet which contains the memory
address and its rkey. Additionally, type 2 memory windows
have the disadvantage that the RNIC is required to store the
QP number and the corresponding rkey for each QP which is
allowed to access the window.

M5 Protection Domains. Memory regions can also be
protected using PDs, which prevents accesses to the mem-
ory across different memory domains by enforcing that each
memory region must be part of a single PD and that all QPs
can be only member of a single PD. Thus, only QPs within
the same PDs can access these memory regions. However,
in practice many RDMA applications use only a single PD

//Initialization
RandomPool pool;
//Allocate an anchor buffer
void *anchor=mmap(0, PAGESIZE, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
//Create a pool of memory registration
// register the anchor buffer many times.
for(int i=0; i<POOL_SIZE; i++){
//Register a buffer
//Each registration can have a predictable rkey
ibv_mr * mr = ibv_reg_mr(PD,anchor,PAGESIZE,0);
pool.add(mr);

}
//On registration, a random registration is taken
// and reregistered to the requested address
// with requested length and access permissions.
ibv_mr * reg_mr(void* addr, size_t len, int access){
//Take random mr, which has a random rkey
struct ibv_mr * mr = Pool.get_random();
int flags = IBV_REREG_MR_CHANGE_TRANSLATION |

IBV_REREG_MR_CHANGE_ACCESS;
//After reregistration rkey will not change.
ibv_rereg_mr(mr,flags,PD,addr,len,access);
return mr;

}

Listing 3: Algorithm for randomization of rkey

for all connections and memory regions to reduce memory
overhead on the RNIC. For example, the RDMA connection
manager (librdmacm) by default uses a single PD for all
RDMA related operations such as connection establishment
and memory registration within a process.

7.3 Encryption and Authentication in RDMA
Protocols

Since the existing IBA security mechanism can be circum-
vented due to the lack of endpoint and packet authentication,
IBA could make use of encryption and authentication at any
layer in the protocol stack M6 . In the following, we discuss
the most relevant options.

RDMA-over-IPsec. RDMA protocols based on IP (e.g.,
RoCE) would allow the use of IPsec [7] for packet encryption
and authentication of end points. Recent NICs support IPsec
for RoCE traffic (e.g., Mellanox ConnectX-6 DX [25]) by pro-
viding IPsec tunnels as a transport and simply encapsulating
RoCE packets inside IPsec. However, since IPsec does not
directly support RDMA traffic and encapsulates the RDMA
headers, it authenticates traffic based on IP address and UDP
port. To prevent the injection of RoCE packets into IPsec-
enabled QPs from other end hosts, the NIC stores QP context
information and enforces an association the QP number and
the source IP address. Using an IPsec tunnel between two
end points would be able to prevent A1 and A2 for Ethernet
networks, but cannot be applied to the InfiniBand protocol.

Application-layer Encryption and Authentication.
Application-level encryption and authentication (e.g.,

based on TLS with client authentication [32]) of RDMA
applications is not possible, because RDMA read and write
operations can operate as purely one-sided communication
routines (without involvement of the other parties CPU).
An approach based on application-layer encryption would
require a temporal buffer for the incoming encrypted
messages. These would then be decrypted by the CPU and
then copied to the destined location completely negating
RDMA’s advantages.

Encryption and Authentication Integrated in IBA. In
contrary to application-layer cryptography, encryption and
authentication of RDMA messages could also be integrated
into the design of IBA. Lee et al. [16,17] suggested to replace
the Invariant CRC field with a MAC to achieve packet authen-
tication. Recently, Taranov et al. [36] proposed sRDMA, a
protocol that extends IBA by designing a connection mode
that provides authentication and encryption for RDMA based
on symmetric cryptography.

Encryption and authentication integrated into IBA can pre-
vent information leakage to on-path attackers and also prevent
message tampering as the RDMA message header is authenti-
cated. Thus, it becomes impossible for an attacker to spoof
RDMA header fields, prevents him conducting all attacks
based on packet injection.

7.4 Other Mitigation Mechanisms

M7 Per-Client Resource Constraints. RDMA-capable de-
vices should limit the number of concurrently open QP con-
nections and allocated resources on a per-client basis. Oth-
erwise, attacks based on resource exhaustion cannot be pre-
vented. With per-client resource constraints in place an at-
tacker would need to collude with a large number of end-
points to successfully execute resource exhaustion attacks.
Allocating resources per-client could be realized based on the
InfiniBand adapter identifiers for native IB connections and
using the IP address for RoCE connections.

M8 In-Network Filtering. Apart from modifying IB-
based architectures, packet injection could also be prevented
using in-network filtering. In datacenter deployments, oper-
ators could deploy a filtering mechanism at the ingress of
the network to effectively prevent an attacker from injecting
spoofed packets (e.g., similar to [9]).

8 Related Work on RDMA attacks
RFC 5042 [30] analyzes the security issues around uses
of RDMA protocols. It defines an architectural model for
RDMA-based implementations and reviews various basic at-
tacks including spoofing, tampering, information disclosure,
and exhaustion of shared resources. The authors suggest the
use of IPsec encryption and authentication to mitigate at-
tacks that target end-to-end security, which unfortunately fails
to solve the problem of endpoint authentication. RFC 5042

aims to provide a guideline for designing protocols based
on RDMA, but is completely implementation agnostic and
only mentions potential vulnerabilities specific to RDMA
protocols. ReDMArk tests the applicability of vulnerabilities
to specific implementations of RDMA (such as InfiniBand)
and shows that the security pitfalls of using RDMA remain
misunderstood.

Tsai et al. [39] discuss the threats and opportunities of
one-sided communication. They raise concerns about the pre-
dictability of hardware-managed memory protection key and
the potential misuse of one-sided RDMA communication for
DoS. Compared to previous work, ReDMArk provides an
in-depth security analysis of RDMA networking (e.g., investi-
gates the algorithms behind rkey generation in detail) covering
not only vulnerabilities, but discussing the full chain of vul-
nerabilities, proposes specific attacks based on the discovered
vulnerabilities, and mitigations for these attacks.

Kornfeld Simpson et al. [33] summarize the security flaws
in RDMA protocols (e.g., missing authentication and encryp-
tion) and discuss security challenges of designing RDMA-
enabled storage systems. In addition to the attacks discussed
by ReDMArk, they suggest to exploit priority flow control
(PFC) pause frames in RoCE [12] to flood buffers on switches.
However, they mention that the most recent version of RoCE
is not subject to this attack as it does not require PFC.

Furthermore, Tsai et al. [38] discovered that RNICs could
be exploited for side-channel attacks. They implemented an
RDMA-based side channel attack that allows an attacker on
one client machine to learn how victims on other client ma-
chines. The attacker uses RDMA access latency and a trained
classifier to statistically predict victim accesses.

Kurth et al. [15] have shown that the Intel DDIO [1] and
RDMA features facilitate a side-channel attack named Net-
CAT. Intel DDIO technology allows RDMA read and write
accesses not only to a pinned memory region, but also parts
of the lowest CPU cache. NetCAT remotely measures cache
activity caused by a victim’s SSH connection to perform a
keystroke timing analysis and recovers words typed in the
SSH session. Using this analysis, an attacker can recover
words typed in the SSH session on another computer. These
works based on side-channel attacks using RDMA are com-
plementary to ReDMArk.

9 Conclusion

RDMA architectures such as RoCE and InfiniBand were de-
signed for HPC and private networks, and have neglected
security in their design in favor of focusing on high perfor-
mance. As illustrated by ReDMArk, the design of IBA and
the implementation of IB-capable NICs contain multiple vul-
nerabilities and design flaws. These weaknesses allow an ad-
versary to inject packets, gain unauthorized access to memory
regions of other clients connected to an RDMA-based service
with potentially drastic consequences, and effectively disrupt

communication in RDMA networks. Given that InfiniBand is
deployed in public infrastructure and more providers plan to
adopt RDMA networking, weak RDMA security creates real-
world vulnerabilities in RDMA-enabled systems. This work
shows the security implications of RDMA on cloud systems
and demonstrates the critical importance of security in the
design of upcoming versions of InfiniBand and RoCE (e.g.,
by fully integrating header authentication and payload encryp-
tion). In addition, developers of RDMA-enabled systems must
be aware of the threats introduced by RDMA networking and
should employ mitigations such as using type 2 memory win-
dows, a separate PD for each connection, and our proposed
algorithms to randomize the QPN and the rkey generation.

Responsible Disclosure
We have notified and responsibly disclosed the weaknesses to
Mellanox, Broadcom, and Microsoft prior to the submission
of this work.

Acknowledgments
We would like to thank our shepherd, Haya Shulman, and
the anonymous reviewers for their constructive feedback. We
thank Mellanox Technologies and Broadcom Inc. for the hard-
ware donations as well as their feedback during the disclosure
of this work. In addition, we thank Igor Zablotchi for assisting
with the evaluation of this work. We gratefully acknowledge
support from ETH Zurich, and from the Zurich Information
Security and Privacy Center (ZISC). Furthermore, we thank
the Microsoft Swiss Joint Research Centre for their support.

References
[1] Intel® Data Direct I/O Technology Overview.

https://www.intel.co.jp/content/dam/www/
public/us/en/documents/white-papers/data-
direct-i-o-technology-overview-paper.pdf,
2019. [Online; accessed 19-Sep-2020].

[2] Raw Ethernet Programming: Basic Introduction -
Code Example. https://community.mellanox.com/
s/article/raw-ethernet-programming--basic-
introduction---code-example, 2019. [Online;
accessed 19-Sep-2020].

[3] InfiniBand Trade Association. The InfiniBand archi-
tecture specification. https://www.infinibandta.org/ibta-
specifications-download/, 2000.

[4] Infiniband Trade Association. Supplement to Infini-
Band architecture specification volume 1, release 1.2. 1:
Annex a16: RDMA over Converged Ethernet (RoCE),
2010.

[5] Christian Cachin. Entropy measures and unconditional
security in cryptography. PhD thesis, ETH Zurich, 1997.

https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example

[6] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. IACR Cryptology ePrint Archive, (086), 2016.

[7] Naganand Doraswamy and Dan Harkins. IPSec: the
new security standard for the Internet, intranets, and
virtual private networks. Prentice Hall Professional,
2003.

[8] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. Farm: Fast remote memory.
In Proceedings of USENIX Conference on Networked
Systems Design and Implementation (NSDI), pages 401–
414, 2014.

[9] P. Ferguson and D. Senie. Network ingress filtering:
Defeating denial of service attacks which employ IP
source address spoofing. BCP 38, 2000.

[10] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi,
Nicolai Oswald, Boris Grot, and Vijay Nagarajan. Scale-
out ccnuma: Exploiting skew with strongly consistent
caching. In Proceedings of the Thirteenth EuroSys Con-
ference, pages 1–15, 2018.

[11] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient memory dis-
aggregation with INFINISWAP. In Proceedings of the
USENIX Conference on Networked Systems Design and
Implementation (NSDI), pages 649–667, 2017.

[12] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma
over commodity ethernet at scale. In Proceedings of the
ACM SIGCOMM Conference, pages 202–215, 2016.

[13] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Using RDMA efficiently for key-value services. In
Proceedings of ACM SIGCOMM, pages 295–306, 2014.

[14] Antonios Katsarakis, Vasilis Gavrielatos, MR Siavash
Katebzadeh, Arpit Joshi, Aleksandar Dragojevic, Boris
Grot, and Vijay Nagarajan. Hermes: a fast, fault-tolerant
and linearizable replication protocol. In Proceedings of
the International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 201–217, 2020.

[15] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. NetCAT:
Practical cache attacks from the network. In IEEE Sym-
posium on Security and Privacy (S&P), 2020.

[16] Manhee Lee and Eun Jung Kim. A comprehensive
framework for enhancing security in InfiniBand archi-
tecture. IEEE Transactions on Parallel and Distributed
Systems, 18, 2007.

[17] Manhee Lee, Eun Jung Kim, and Mazin Yousif. Security
enhancement in InfiniBand architecture. In Proceedings
of the IEEE International Parallel and Distributed Pro-
cessing Symposium, 2005.

[18] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao
Zhang. Socksdirect: Datacenter sockets can be fast and
compatible. In Proceedings of the ACM Special Interest
Group on Data Communication, pages 90–103. 2019.

[19] Mingzhe Li, Xiaoyi Lu, Hari Subramoni, and Dha-
baleswar K Panda. Designing registration caching free
high-performance MPI library with implicit on-demand
paging (ODP) of InfiniBand. In IEEE International
Conference on High Performance Computing (HiPC),
pages 62–71, 2017.

[20] Linux RDMA. RDMA core userspace libraries and
daemons. https://github.com/linux-rdma/rdma-
core/, 2020. [Online; accessed 19-Sept-2020].

[21] Linux RDMA. Software RDMA over Converged Eth-
ernet. https://github.com/SoftRoCE/rxe-dev/,
2020. [Online; accessed 19-Sept-2020].

[22] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-
pus: an RDMA-enabled distributed persistent memory
file system. In USENIX Annual Technical Conference
(ATC), pages 773–785, July 2017.

[23] David JC MacKay. Information theory, inference and
learning algorithms. Cambridge university press, 2003.

[24] James L Massey. Guessing and entropy. In Proceedings
of 1994 IEEE International Symposium on Information
Theory, page 204. IEEE, 1994.

[25] Mellanox. NVidia Mellanox ConnectX-6 DX.
https://www.mellanox.com/files/doc-2020/
pb-connectx-6-dx-en-card.pdf, 2020. [Online;
accessed 19-Sept-2020].

[26] Mellanox. Understanding mlx5 Linux Counters and Sta-
tus Parameters. https://community.mellanox.com/
s/article/understanding-mlx5-linux-
counters-and-status-parameters, 2020. [Online;
accessed 19-Sept-2020].

[27] Microsoft. Cve-2019-1372, azure stack re-
mote code execution vulnerability. https:
//portal.msrc.microsoft.com/en-US/security-
guidance/advisory/CVE-2019-1372, 2020. [On-
line; accessed 19-Sept-2020].

[28] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego Ongaro,
Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen

https://github.com/linux-rdma/rdma-core/
https://github.com/linux-rdma/rdma-core/
https://github.com/SoftRoCE/rxe-dev/
https://www.mellanox.com/files/doc-2020/pb-connectx-6-dx-en-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-6-dx-en-card.pdf
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-1372
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-1372
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-1372

Rumble, Ryan Stutsman, and Stephen Yang. The RAM-
Cloud storage system. ACM Trans. Comput. Syst.,
33(3):7:1–7:55, August 2015.

[29] R Kim Peterson. Position independent code location
system, 1996. US Patent 5,504,901.

[30] J. Pinkerton and E. Deleganes. Direct Data Placement
Protocol (DDP) / Remote Direct Memory Access Proto-
col (RDMAP) Security. RFC 5042, October 2007.

[31] Marius Poke and Torsten Hoefler. Dare: High-
performance state machine replication on rdma net-
works. In Proceedings of the International Symposium
on High-Performance Parallel and Distributed Comput-
ing (HPDC), pages 107–118, 2015.

[32] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, 2018.

[33] Anna Kornfeld Simpson, Adriana Szekeres, Jacob Nel-
son, and Irene Zhang. Securing RDMA for high-
performance datacenter storage systems. In USENIX
Workshop on Hot Topics in Cloud Computing (Hot-
Cloud), 2020.

[34] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana
Klimovic, Adrian Schuepbach, and Bernard Metzler.
Unification of temporary storage in the nodekernel ar-
chitecture. In Proceedings of USENIX Conference
on Usenix Annual Technical Conference (ATC), page
767–781, 2019.

[35] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu
Stoica, Bernard Metzler, Nikolas Ioannou, and Ioannis
Koltsidas. Crail: A high-performance I/O architecture
for distributed data processing. IEEE Data Eng. Bull.,
40(1):38–49, 2017.

[36] Konstantin Taranov, Benjamin Rothenberger, Adrian
Perrig, and Torsten Hoefler. sRDMA: Efficient nic-
based authentication and encryption for remote direct
memory access. In USENIX Annual Technical Confer-
ence (ATC), 2020.

[37] Mellanox Technologies. RDMA Aware Networks
Programming User Manual, Rev 1.7. https://
www.mellanox.com/related-docs/prod_software/
RDMA_Aware_Programming_user_manual.pdf, 2015.

[38] Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang.
Pythia: Remote oracles for the masses. In USENIX
Security, pages 693–710, 2019.

[39] Shin-Yeh Tsai and Yiying Zhang. A double-edged
sword: Security threats and opportunities in one-sided
network communication. In USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud), 2019.

[40] Fernando Vano-Garcia and Hector Marco-Gisbert.
KASLR-MT: Kernel address space layout randomiza-
tion for multi-tenant cloud systems. Journal of Parallel
and Distributed Computing, 137:77–90, 2020.

[41] Michal Zalewski. Strange attractors and tcp/ip sequence
number analysis. RAZOR/Bindview Corporation, 2001.

A Algorithms of rkey generators

static uint32_t bnxt_get_key(void){
static uint32_t key = 0x100;
key += 0x100
return key;

}

Listing 4: rkey generation of bnxt_re

static uint32_t rxe_get_key(void){
static uint32_t base = 0x100;
static unsigned key = 1;
base += 0x100;
key = key << 1;
key |= (0 != (key&0x100))^(0 != (key&0x10))

^(0 != (key&0x80))^(0 != (key&0x40));
key &= 0xff;
return base + ((uint8_t)key);

}

Listing 5: rkey generation of SoftRoCE

static Queue key_queue;//queue for deregistered keys
static uint32_t base = 0x100; // is device-specific
static uint32_t MASK = 0xFFFFFFFF; // 24bit mask
static uint32_t mlx4_get_key(void){

static uint32_t key = 0x100;
if(key_queue.is_empty()){

key+= 0x100;
return base + (key & MASK);

}
uint32_t old_key = key_queue.pop();
return base + (old_key & MASK);

}
static void mlx4_dereg_key(uint32_t old_key){

base += 0x8000000;
key_queue.push(old_key);

}

Listing 6: rkey generation of mlx4

https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf

	Introduction
	Remote Direct Memory Access
	RDMA packet format
	InfiniBand Architecture Security Model

	Adversary Model
	Security Analysis of IB Architectures
	Analysis Setup
	Memory Protection Keys
	Memory Allocation Randomness
	QP Number Identifiers & Packet Sequence Numbers
	Other Security Weaknesses in IBA/RoCE

	Attacks on IBA
	A1: Packet Injection using Impersonation
	A2: DoS Attack by Transiting QPs to an Error State
	A3: Unauthorized Memory Access
	A4: DoS Attack based on Queue Pair Allocation Resource Exhaustion
	A5: Performance Degradation using Resource Exhaustion
	A6: Facilitating Attacks using RDMA

	Vulnerability Assessment of Open-Source RDMA Systems
	Mitigation Mechanisms
	Software-based Security Mechanisms
	Leveraging Existing IB Security Mechanisms
	Encryption and Authentication in RDMA Protocols
	Other Mitigation Mechanisms

	Related Work on RDMA attacks
	Conclusion
	Algorithms of rkey generators

