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Abstract

An ad hoc network is a collection of wireless computers (nodes), communicating among themselves over possibly

multihop paths, without the help of any infrastructure such as base stations or access points. Although many previous

ad hoc network routing protocols have been based in part on distance vector approaches, they have generally assumed a

trusted environment. In this paper, we design and evaluate the Secure Efficient Ad hoc Distance vector routing protocol

(SEAD), a secure ad hoc network routing protocol based on the design of the Destination-Sequenced Distance-Vector

routing protocol. In order to support use with nodes of limited CPU processing capability, and to guard against Denial-

of-Service attacks in which an attacker attempts to cause other nodes to consume excess network bandwidth or pro-

cessing time, we use efficient one-way hash functions and do not use asymmetric cryptographic operations in the

protocol. SEAD performs well over the range of scenarios we tested, and is robust against multiple uncoordinated

attackers creating incorrect routing state in any other node, even in spite of any active attackers or compromised nodes

in the network.
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1. Introduction

In a mobile wireless ad hoc network, computers

(nodes) in the network cooperate to forward

packets for each other, due to the limited wireless

transmission range of each individual node. The

network route from some sender node to a desti-

nation node may require a number of intermediate
nodes to forward packets to create a ‘‘multihop’’

path from this sender to this destination. The role
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of the routing protocol in an ad hoc network is to

allow nodes to learn such multihop paths. Since

the nodes in the network may move at any time, or

may even move continuously, and since sources of

wireless interference and wireless transmission

propagation conditions may change frequently,

the routing protocol must also be able to react to

these changes and to learn new routes to maintain
connectivity.

Ad hoc networks require no centralized admin-

istration or fixed network infrastructure such as

base stations or access points, and can be quickly

and inexpensively set up as needed. They can thus

be used in scenarios where no infrastructure exists,

or where the existing infrastructure does not meet
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application requirements for reasons such as se-

curity, cost, or quality. Examples of applications

for ad hoc networks range frommilitary operations

and emergency disaster relief, to community net-

working and interaction between attendees at a

meeting or students during a lecture. In these and
other applications of ad hoc networking, security

in the routing protocol is necessary in order to

guard against attacks such as malicious routing

misdirection, but relatively little previous work has

been done in securing ad hoc network routing

protocols.

Secure ad hoc network routing protocols are

difficult to design, due to the generally highly dy-
namic nature of an ad hoc network and due to the

need to operate efficiently with limited resources,

including network bandwidth and the CPU pro-

cessing capacity, memory, and battery power (en-

ergy) of each individual node in the network.

Existing insecure ad hoc network routing protocols

are often highly optimized to spread new routing

information quickly as conditions change, requir-
ing more rapid and often more frequent routing

protocol interaction between nodes than is typical

in a traditional (e.g., wired and stationary) net-

work. Expensive and cumbersome security mech-

anisms can delay or prevent such exchanges of

routing information, leading to reduced routing

effectiveness, and may consume excessive network

or node resources, leading to many new opportu-
nities for possibleDenial-of-Service attacks through

the routing protocol.

Routing protocols for ad hoc networks gener-

ally can be divided into two main categories: pe-

riodic protocols and on-demand protocols. In a

periodic (or proactive) routing protocol, nodes

periodically exchange routing information with

other nodes in an attempt to have each node al-
ways know a current route to all destinations (e.g.,

[4,5,8,10,23,31,34]). In an on-demand (or reactive)

protocol, on the other hand, nodes exchange

routing information only when needed, with a

node attempting to discover a route to some

destination only when it has a packet to send to

that destination (e.g., [22,33,35]). In addition,

some ad hoc network routing protocols are hy-
brids of periodic and on-demand mechanisms

(e.g., [12]).
Each style of ad hoc network routing protocol

has advantages and disadvantages. In this paper,

we focus on securing ad hoc network routing using

periodic (or proactive) protocols, and in particu-

lar, using distance vector routing protocols. Dis-

tance vector routing protocols are easy to
implement, require relatively little memory or

CPU processing capacity compared to other types

of routing protocols, and are widely used in net-

works of moderate size within the (wired) Internet

[14,27,28]. A number of proposed periodic ad hoc

network routing protocols are based on adapting

the basic distance vector routing protocol design

for use in mobile wireless ad hoc networks, in-
cluding PRNET [23], DSDV [34], WRP [31],

WIRP [10], and ADV [5]. Distance vector routing

has also been used for routing within a zone in the

ZRP hybrid ad hoc network routing protocol [12].

We present the design and evaluation of a new

secure ad hoc network routing protocol using

distance vector routing. Our protocol, which we

call the Secure Efficient Ad hoc Distance vector

routing protocol (SEAD), is robust against mul-

tiple uncoordinated attackers creating incorrect

routing state in any other node, even in spite of

active attackers or compromised nodes in the

network. We base the design of SEAD in part on

the Destination-Sequenced Distance-vector ad hoc

network routing protocol (DSDV) [34], which was

designed for trusted environments. In order to
support use of SEAD with nodes of limited CPU

processing capability, and to guard against Denial-

of-Service attacks in which an attacker attempts to

cause other nodes to consume excess network

bandwidth or processing time, we use efficient one-

way hash functions and do not use asymmetric

cryptographic operations in the protocol.

In Section 2 of this paper, we summarize the
basic operation of distance vector routing, and we

describe the DSDV ad hoc network routing pro-

tocol on which we base our work. Section 3 pre-

sents our assumptions about the network and

nodes involved in the ad hoc network. In Section

4, we describe possible attacks on distance vector

routing protocols and specifically on DSDV

routing, and in Section 5, we present the design of
SEAD, our ad hoc network distance vector rout-

ing protocol that protects against those attacks.
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Section 6 presents the results of a simulation-based

study of the performance of SEAD in ad hoc

networks of 50 mobile nodes, comparing its per-

formance to that of the original (insecure) DSDV

protocol; we show the overhead created by the

security mechanisms and the impact of these
mechanisms on the protocol�s ability to success-

fully route packets. In Section 7, we discuss related

work, and finally, in Section 8, we present con-

clusions.
2. Distance vector routing and DSDV

A distance vector routing protocol finds short-

est paths between nodes in the network through a

distributed implementation of the classical Bell-

man–Ford algorithm. As noted in Section 1, dis-

tance vector protocols are easy to implement and

are efficient in terms of memory and CPU pro-

cessing capacity required at each node. A popular

example of a distance vector routing protocol is
RIP [14,28], which is widely used in IP networks of

moderate size. Distance vector routing can be used

for routing within an ad hoc network by having

each node in the network act as a router and

participate in the routing protocol.

In distance vector routing, each router main-

tains a routing table listing all possible destina-

tions within the network. Each entry in a node�s
routing table contains the address (identity) of

some destination, this node�s shortest known dis-

tance (usually in number of hops) to that desti-

nation, and the address of this node�s neighbor

router that is the first hop on this shortest route to

that destination; the distance to the destination is

known as the metric in that table entry. When

routing a packet to some destination, the node
transmits the packet to the indicated neighbor

router, and each router in turn uses its own routing

table to forward the packet along its next hop

toward the destination.

To maintain the routing tables, each node pe-

riodically transmits a routing update to to each of

its neighbor routers, containing the information

from its own routing table. Each node uses this
information advertised by its neighbors to update

its own table, so that its route for each destination
uses as a next hop the neighbor that advertised the

smallest metric in its update for that destination;

the node sets the metric in its table entry for that

destination to 1 (hop) more than the metric in that

neighbor�s update. A common optimization to this

basic procedure to spread changed routing infor-
mation through the network more quickly is the

use of triggered updates, in which a node transmits

a new update about some destination as soon as

the metric in its table entry for that destination

changes, rather than waiting for its next scheduled

periodic update to be sent.

Distance vector routing protocols are simple,

but they cannot guarantee not to produce routing
loops between different nodes for some destina-

tion. Such loops are eventually resolved by the

protocol through many rounds of routing table

updates in what is known as ‘‘counting to infinity’’

in the metric for this destination; to reduce time

needed for this resolution, the maximum metric

value allowed by the protocol is typically defined

to be relatively small, such as 15 as is used in RIP
[14,28]. To further reduce these problems, a num-

ber of extensions, such as split horizon and split

horizon with poisoned reverse [14,28], are widely

used. These extensions, however, can still allow

some loops, and the possible problems that can

create routing loops are more common in wireless

and mobile networks such as ad hoc networks, due

to the motion of the nodes and the possible
changes in wireless propagation conditions.

The primary improvement for ad hoc networks

made in DSDV over standard distance vector

routing is the addition of a sequence number in

each routing table entry. The use of this sequence

number prevents routing loops caused by updates

being applied out of order; this problem may be

common over multihop wireless transmission,
since the routing information may spread along

many different paths through the network. Each

node maintains an even sequence number that it

includes in each routing update that it sends, and

each entry in a node�s routing table is tagged with

the most recent sequence number it knows for that

destination. When a node detects a broken link to

a neighbor, the node creates a new routing update
for that neighbor as a destination, with an ‘‘infi-

nite’’ metric and the next odd sequence number
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after the even sequence number in its corre-

sponding routing table entry. When a node re-

ceives a routing update, for each destination in the

update, the node prefers this newly advertised

route if the sequence number is greater than in the

corresponding entry currently in the node�s rout-
ing table, or if the sequence numbers are equal and

the new metric is lower than in the node�s current
table entry for that destination; if the sequence

number in the update is less than the current se-

quence number in the table entry, the new update

for that destination is ignored.

DSDV sends both periodic routing updates and

triggered updates. These updates may be either a
‘‘full dump’’, listing all destinations, or an ‘‘incre-

mental’’ update, listing only destinations for which

the route has changed since the last full dump sent

by that node. A node in DSDV chooses to send a

triggered update when important routing changes

should be communicated as soon as possible, al-

though there are multiple interpretations suggested

in the published description of DSDV as to which
changes should cause a triggered update. One in-

terpretation suggests that the receipt of a new

metric for some destination should cause a trig-

gered update, while the alternative interpretation

suggests that the receipt of a new sequence number

also should cause a triggered update. The latter

interpretation has been shown to outperform the

former in detailed ad hoc network simulations
[6,21] and is referred to as DSDV-SQ (for sequence

number) to distinguish it from the interpretation

based only on metrics.
3. Assumptions

As a matter of terminology in this paper, we use
the acronym ‘‘MAC’’ to refer to the network

Medium Access Control protocol at the link layer,

and not to a Message Authentication Code used

for authentication.

We assume that all wireless links in the network

are bidirectional, since this is necessary for the

distributed Bellman–Ford algorithm of distance

vector routing to function correctly. Specifically, if
a node A�s wireless transmissions reach B, then B�s
transmissions would reach A. Wireless links are
often bidirectional, and many MAC layers require

bidirectional frameexchange toavoidcollisions [20].

Network physical layer and MAC layer attacks

are beyond the scope of this paper. Use of spread

spectrum has been studied for securing the physi-

cal layer against jamming [40]. MAC protocols
that do not employ some form of carrier sense,

such as ALOHA and Slotted ALOHA [1], are less

vulnerable to Denial-of-Service attacks, although

they generally use the channel less efficiently.

We assume that the wireless network may drop,

corrupt, duplicate, or reorder packets. We also

assume that the MAC layer contains some level of

redundancy to detect randomly corrupted packets;
however, this mechanism is not designed to replace

cryptographic authentication mechanisms.

The network diameter of an ad hoc network is

the maximum, across all pairs of nodes in the

network, of the length of the optimal route be-

tween that pair of nodes. As noted in Section 2,

standard distance vector routing protocols limit

the maximum metric value (and thus the maxi-
mum network diameter supported by the proto-

col). We also limit the maximum network

diameter, and we use m� 1 to denote this upper

bound, such that all routes that can be used by the

routing protocol are of length less than m hops.

Internal to a node�s routing table, the value m can

be used to denote the infinity metric in distance

vector routing, although in SEAD, entries in the
routing table with an infinite metric are not in-

cluded in routing update messages sent by a node.

We assume that nodes in the ad hoc network

may be resource constrained. Thus, in securing our

distance vector ad hoc network routing protocol

SEAD, we use efficient one-way hash chains [26]

and Merkle hash trees [30] rather than relying on

expensive asymmetric cryptographic operations.
Especially on CPU-limited devices, symmetric

cryptographic operations (such as block ciphers

and hash functions) are three to four orders of

magnitude faster than asymmetric operations

(such as digital signatures).

3.1. One-way hash chains

A one-way hash chain is built on a one-way

hash function. Like a normal hash function, a one-
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way hash function, H , maps an input of any length

to a fixed-length bit string. Thus, H : f0; 1g� !
f0; 1gq, where q is the length in bits of the output

of the hash function. The function H should be

simple to compute yet must be computationally

infeasible in general to invert. A more formal
definition of one-way hash functions is provided

by Goldwasser and Bellare [11], and a number of

such functions have been proposed, including

MD5 [44] and SHA-1 [32].

To create a one-way hash chain, a node chooses

a random initial value x 2 f0; 1gq and computes

the list of values

h0; h1; h2; h3; . . . ; hn

where h0 ¼ x, and hi ¼ Hðhi�1Þ for 0 < i6 n, for
some n. The node at initialization generates the

elements of its hash chain as shown above, from

‘‘left to right’’ (in order of increasing subscript i)
and then over time uses certain elements of the

chain to secure its routing updates; in using these

values, the node progresses from ‘‘right to left’’ (in

order of decreasing subscript i) within the gener-

ated chain.
Given an existing authenticated element of a

one-way hash chain, it is possible to verify ele-

ments later in the sequence of use within the chain

(further to the ‘‘left’’, or in order of decreasing

subscript). For example, given an authenticated hi
value, a node can authenticate hi�3 by computing

HðHðHðhi�3ÞÞÞ and verifying that the resulting

value equals hi.
To use one-way hash chains for authentication,

we assume some mechanism for a node to dis-

tribute an authentic element such as hn from its

generated hash chain. A traditional approach for

this key distribution is for a trusted entity to sign

public-key certificates for each node; each node

can then use its public-key to sign new a hash

chain element for itself. Hubaux, Butty�aan, and
�CCapkun bootstrap trust relationships from PGP-

like certificates without relying on a trusted public

key infrastructure [19]. Alternatively, a trusted node

can securely distribute an authenticated hash chain

element using only symmetric-key cryptography

[17,39] or non-cryptographic approaches [46].

Since in SEAD, a node uses elements from its

one-way hash chain in groups of m (Section 5.2),
we assume that a node generates its hash chain so

that n is divisible by m. When a node first enters

the network, or after a node has used most of its

available hash chain elements, it can pick a new

random x, generate a new hash chain from this x,
and send the new generated hn value to a trusted
entity or an alternative authentication and distri-

bution service, as described above.

3.2. Tree-authenticated values

The mechanism of tree-authenticated values is

an efficient hash tree authentication mechanism,

first presented by Merkle and also known as
Merkle hash trees [30]. To authenticate values

v0; v1; . . . ; vw�1, we place these values at the leaf

nodes of a binary tree. (For simplicity we assume a

balanced binary tree, so w is a power of two.) We

first blind all the vi values with a one-way hash

function H to prevent disclosing neighboring val-

ues in the authentication information (as we de-

scribe below), so v0i ¼ H ½vi�. We then use the
Merkle hash tree construction to commit to the

values v00; . . . ; v
0
w�1. Each internal node of the bi-

nary tree is derived from its two child nodes.

Consider the derivation of some parent node mp

from its left and right child nodes ml and mr:

mp ¼ H ½mlkmr�, where k denotes concatenation.

We compute the levels of the tree recursively from

the leaf nodes to the root node. Fig. 1 shows this
construction over the eight values v0; v1; . . . ; v7,
e.g., m01 ¼ Hðv00kv01Þ, m03 ¼ H ½m01km23�.

The root value of the tree is used to commit to

the entire tree, and in conjunction with additional
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information, it can be used to authenticate any leaf

value. To authenticate a value vi the sender dis-

closes i, vi, and all the sibling nodes of the nodes

on the path from vi to the root node. The receiver

can then use these nodes to verify the path up to

the root, which authenticates the value vi. For
example, if a sender wants to authenticate key v2 in
Fig. 1, it includes the values v03;m01;m47 in the

packet. A receiver with an authentic root value m07

can then verify that

H ½H ½m01kH ½H ½v2�kv03��km47�

equals the stored root value m07. If the verification

is successful, the receiver knows that v2 is au-

thentic.

The extra v00; v
0
1; . . . ; v

0
7 in Fig. 1 are added to the

tree to avoid disclosing (in this example) the value

v3 for the authentication of v2.
4. Attacks

Kumar [25] and Smith et al. [45] discuss attacks

against distance vector routing protocols. In ad-
dition, in prior work we presented some attacks

against ad hoc network routing protocols [17]. In

this section, we summarize relevant attacks.

An attacker can attempt to reduce the amount

of routing information available to other nodes, by

failing to advertise certain routes or by destroying

or discarding routing packets or parts of routing

packets. A node failing to advertise a route indi-
cates its unwillingness to forward packets for those

destinations. We do not attempt to defend against

this attack, since the attacker could also otherwise

drop data packets sent to those destinations. A

node can drop routing packets it receives, in which

case it becomes ignorant of links available to it and

fails to pass potentially improved knowledge to its

neighbors. This ignorance attack has even more
limited impact than failing to advertise routes that

the node itself knows. Finally, an intruder can jam

routing packets; we will disregard such attacks in

this paper, since prevention of such attacks begins

at the physical layer.

An attacker can modify an advertisement by

changing the destination, metric, or source address

(and hence next-hop). For example, an attacker
advertising a zero metric for all destinations can

cause all nodes around it to route packets for all

destinations toward it rather than toward each

actual destination. Alternatively, an attacker can

modify the source address of the advertisement,

thus spreading inaccurate next-hop information.
An attacker can mount a replay attack by

sending an old advertisement to some node, in an

attempt to get that node to update its routing table

with stale routes.

A more subtle type of attack is the creation of a

wormhole in the network, using a pair of attacker

nodes A and B linked via a private network con-

nection. In a wormhole, every packet that A re-
ceives from the ad hoc network, A forwards

through the wormhole to B, to then be forwarded

normally by B; similarly, B may send all ad hoc

network packets to A. Such an attack potentially

disrupts routing by short circuiting the normal

flow of routing packets, and the attackers may also

create a virtual vertex cut of nodes in the network

that they control. We describe the wormhole at-
tack and solutions [38] and we give more details on

the vertex cut and other attackers [17] elsewhere.

An attacker may be a compromised node. If so,

it will have access to all cryptographic keys of that

compromised node, and it may cooperate with

other attackers or compromised nodes.
5. Securing distance vector routing

5.1. Basic design of SEAD

We base the design of our secure routing pro-

tocol SEAD on the DSDV-SQ version [6] of the

insecure DSDV ad hoc network routing protocol,

as described in Section 2. In particular, to avoid
long-lived routing loops in SEAD, we use desti-

nation sequence numbers, as in DSDV; we also use

these destination sequence numbers to provide

replay protection of routing update messages in

SEAD.

We differ from DSDV in that we do not use an

average weighted settling time in sending triggered

updates. To reduce the number of redundant
triggered updates, each node in DSDV tracks, for

each destination, the average time between when
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the node receives the first update for some new

sequence number for that destination, and when it

receives the best update for that sequence number

for it (with the minimum metric among those re-

ceived with that sequence number); when deciding

to send a triggered update, each DSDV node de-
lays any triggered update for a destination for this

average weighted settling time, in the hope of only

needing to send one triggered update, with the best

metric, for that sequence number.

SEAD does not use such a delay, in order to

prevent attacks from nodes that might maliciously

not use the delay. Since a node selects the first

route it receives with highest sequence number and
lowest metric, an attacker could otherwise attempt

to cause more traffic to be routed through itself, by

avoiding the delay in its own triggered updates.

Such an attack could otherwise put the attacker in

a position to eavesdrop on, modify, or discard

other nodes� packets.
In addition, unlike DSDV, when a node detects

that its next-hop link to some destination is bro-
ken, the node does not increment the sequence

number for that destination in its routing table

when it sets the metric in that entry to infinity.

Since higher sequence numbers take priority, this

node�s routing update with this new sequence

number must be authenticated, but we did not

include a mechanism for authenticating these lar-

ger sequence numbers. Instead, the node flags its
routing table entry for this destination to not ac-

cept any new updates for this same sequence

number, effectively preventing the possible routing

loop and traditional distance vector ‘‘counting to

infinity’’ problem [14,28] that could otherwise oc-

cur in this case.

5.2. Metric and sequence number authenticators

In addition to the differences between our

SEAD protocol and DSDV-SQ described in Sec-

tion 5.1, the lower bound on each metric in a

routing update in SEAD is secured through au-

thentication; in addition, the receiver of SEAD

routing information also authenticates the sender

(ensures that the routing information originates
from the correct sender). We describe the authen-

tication of the lower bound on the distance metric
in this section and the neighbor authentication in

the following section. Whereas DSDV-SQ (and

DSDV) are subject to all of the attacks in Section

4, SEAD thus resists those attacks. SEAD is ro-

bust against multiple uncoordinated attackers

creating incorrect routing state in any other node,
even in spite of active attackers or compromised

nodes in the network. A description of the detailed

security properties provided by the complete

SEAD protocol is provided in Section 6.1.

One possible approach that could be used for

authenticating routing updates in a distance vector

routing protocol is for each node to sign each of its

routing updates using asymmetric cryptography.
However, this approach raises three distinct

problems for use in an ad hoc network.

First, an attacker could send a large number of

arbitrary forged routing updates to some victim

node, such that the victim is forced to spend all of

its CPU resources attempting to verify this stream

of updates, creating an effective Denial-of-Service

attack; this attack would be particularly easy in
many ad hoc networks, since ad hoc network

nodes tend to have less powerful CPUs than

workstations in wired networks. Second, an at-

tacker who has compromised a node can send

updates claiming that any other node is a neighbor

(metric 1), causing other nodes to incorrectly direct

packets for this destination node toward the at-

tacker. Finally, even with no attacker present, the
larger signatures and longer signature generation

and verification times of asymmetric cryptography

would reduce the resources that could otherwise be

used for running useful applications and doing

useful communication; this problem is more severe

in an ad hoc network than in a traditional (i.e.,

wired and stationary) network due to the limited

resources of nodes and links in an ad hoc network,
such as available bandwidth, CPU capacity, and

battery power (energy).

Instead, in securing routing in SEAD, we use

efficient one-way hash chains [26]. The basic op-

eration of a one-way hash chain was described in

Section 3. Each node in SEAD uses a specific

single next element from its hash chain in each

routing update that it sends about itself (metric 0).
Based on this initial element, the one-way hash

chain conceptually provides authentication for the
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lower bound of the metric in other routing updates

for this destination; the authentication provides

only a lower bound on the metric, since it does not

prevent a malicious node from claiming the same

metric as the node from which it heard this route.

In particular, the one-way hash function provides
the property that another node can only increase a

metric in a routing update, but cannot decrease it.

Due to the properties of the one-way hash func-

tion, given any value in the hash chain, an attacker

cannot generate any value in the chain that will be

used by this node in a future update that it sends

about itself (a value to the ‘‘left’’ of the given value

in the chain, with smaller subscript). Similarly, for
each entry in its routing update describing a route

to another destination, the hash chain of that

destination node allows the metric in that entry to

be authenticated by nodes receiving it.

As noted in Section 3, we assume that an upper

bound can be placed on the diameter of the ad hoc

network, and we use m� 1 to denote this bound.

Thus, within the routing protocol, all metrics in
any routing update are less than m. The method

used by SEAD for authenticating an entry in a

routing update uses the sequence number in that

entry to determine a contiguous group of m ele-

ments from that destination node�s hash chain, one

element of which must be used to authenticate that

routing update. The particular element from this

group of elements that must be used to authenti-
cate the entry is determined by the metric value

being sent in that entry. Specifically, if a node�s
hash chain is the sequence of values

h0; h1; h2; h3; . . . ; hn

and n is divisible by m, then for a sequence number

i in some routing update entry, let k ¼ ðn=mÞ � i.
An element from the group of elements

hkm; hkmþ1; . . . ; hkmþm�1

from this hash chain is used to authenticate the

entry; if the metric value for this entry is

j; 06 j < m, then the value hkmþj here is used to

authenticate the routing update entry for that se-

quence number.

When a node in SEAD sends a routing update,

the node includes one hash value with each entry
in that update. If the node lists an entry for itself in
that update, it sets the address in that entry to its

own node address, the metric to 0, the sequence

number to its own next sequence number, and the

hash value to the first element in the group of its

own hash chain elements corresponding to that

sequence number. In the example given above for
sequence number i, the node sets the hash value in

that entry to its hkm. If the node lists an entry for

some other destination in that update, it sets the

address in that entry to that destination node�s
address, the metric and sequence number to the

values for that destination in its routing table, and

the hash value to the hash of the hash value re-

ceived in the routing update entry from which it
learned that route to that destination.

This use of a hash value corresponding to the

sequence number and metric in a routing update

entry prevents any node from advertising a route

to some destination claiming a greater sequence

number than that destination�s own current se-

quence number, due to the one-way nature of the

hash chain. Likewise, no node can advertise a
route better than those for which it has received an

advertisement, since the metric in an existing route

cannot be decreased.

Nodes receiving any routing update can easily

authenticate each entry in the update, given any

earlier authentic hash element from the same hash

chain, as described in Section 3. In order to guard

against attacks in which a malicious update
claiming a high sequence number attempts to force

a receiving node to perform a large number of

hash operations in order to authenticate the up-

date, a receiving node may limit the number of

hashes it is willing to perform for each such au-

thentication, discarding updates that cannot be

authenticated; since DSDV-SQ (and thus SEAD)

spreads new routing information across the net-
work, this limit assumes a bound on the number of

routing updates about a destination that the re-

ceiving node may have missed before any au-

thentic update is received. A similar solution to

such an attack would be to have each node tie its

own sequence number generation to a loosely

synchronized clock value, thus allowing a receiving

node to determine if a claimed sequence number in
an update could be authentic before performing

the implied hashes to confirm that fact.
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When a node receives a routing update, for each

entry in that update, the node checks the authen-

tication on that entry, using the destination ad-

dress, sequence number, and metric in the received

entry, together with the latest prior authentic hash

value received by this node from that destination�s
hash chain. Based on the sequence number and

metric in the received entry and the sequence

number and metric of this latest prior authentic

hash value for that destination, the node hashes

the hash value received in this entry the correct

number of times, according to the description

above as to which hash value must be used for any

given sequence number and metric, to confirm that
the resulting value equals the prior authentic hash

value. If so, the entry is authentic and the node

processes it in the routing algorithm as a normal

received routing update entry; otherwise, the node

ignores the received entry and does not modify its

routing table based on it.

It may be possible for an attacker to modify

routing update messages in transit, and such an
attacker would be able to prevent certain routes

from being advertised; however, such an attacker

would also be able to corrupt the entire routing

update, which is equivalent to a jamming attack.

The protocol can also be secured against modifi-

cation of the source address for a routing update

and against wormhole attacks, by use of other

mechanisms at the MAC layer, including mecha-
nisms that rely only on symmetric cryptography

[38]. In particular, these MAC layer approaches

authenticate the transmitting source of a packet

and ensure that this transmitting source is within

some distance of the receiver.

5.3. Neighbour authentication

The source of each routing update message in

SEAD must also be authenticated, since otherwise,

an attacker may be able to create routing loops.

Any efficient broadcast authentication mechanism,

such as TESLA [37], HORS [42], or TIK [38], can

be used to authenticate the neighbor. The draw-

backs of these approaches are that they require

synchronized clocks, and that they incur either an
authentication delay or a relatively high commu-

nication overhead.
An alternative approach that does not require

time synchronization is to assume a shared secret

key among each pair of nodes, and to use the re-

spective key in conjunction with a Message Au-

thentication Code. The sender would include one

Message Authentication Code for each neighbor
with each routing update. Since SEAD includes

periodic neighbor sensing functionality, each node

knows the set of neighbors for which it needs to

authenticate routing updates. In particular, each

node trusts any zero-metric update with a valid

authenticator; if a node has received such an up-

date from another node for a recent sequence

number, it considers that node a neighbor and
computes a Message Authentication Code for it in

subsequent updates.

When two nodes first become neighbors, one of

the two nodes will transmit a routing update first.

That update will cause the receiving node to detect

the new neighbor. As a result of hearing this up-

date, the receiving node will send a triggered

routing update, allowing the other node to detect
the new neighbor.

5.4. Preventing same-distance fraud

In Section 5.2, we authenticate the metric and

sequence number with a one-way hash chain. This

solution does not protect against same-distance

fraud: that is, a node receiving an advertisement
for sequence number s and distance (metric) d can

re-advertise the same sequence number s and dis-

tance d. To defend against same-distance fraud, we

designed hash tree chains, which have properties

similar to hash chains but allow the detection of

same-distance fraud, when used in conjunction

with packet leashes [18] to prevent an adversary

from replaying a routing update in wireless net-
works.

We prevent same-distance fraud by tying the

authenticator to the address of the node sending a

route advertisement, thus preventing an attacker

from replaying an authenticator that it hears from

a neighbor. We construct a special one-way chain,

which we call a hash tree chain, where each ele-

ment of the chain encodes the node id, thus forcing
a node to increase the distance metric if it wants to

encode its own id. Each step in this one-way chain
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contains a collection of values, one or more of

which are used to authenticate any particular

node. This approach is similar to that used in the

HORS signature scheme [43]. These values are

authenticated using a Merkle tree, and the root of

that Merkle tree is used to generate the collection
of values in the next step.

A hash tree chain is a hybrid between a hash

tree and a one-way chain. The one-way chain

property is used in the same way as in Section 5.2

(to enforce that nodes cannot decrease the distance

metric), and the hash tree property is used to au-

thenticate the node id. We construct the hash tree

between each pair vi�1; vi of one-way chain values
as follows. From the value vi, we derive a set of

values b0; . . . ; bn, using a one-way hash function H
as bj ¼ H ½vikj�, for each j. We then build a hash

tree above those values for authentication, as de-

scribed in Section 3.2. The root of the tree becomes
Fig. 2. Authenticating one distance metric within a sequence of a ha

router, so this hash tree chain supports four routers.
the previous value of the one-way chain vi�1 ¼ b0n.
Fig. 2 shows an example. The node with the id 1

forwards the shaded values b00, b1, and b23 to the

neighboring nodes, which can compute the one-

way hash tree chain forward to verify the au-

thenticity of values b00, b1, and b23, and use the
value b03 to sign their own id when forwarding

the route update, thus automatically increasing

the distance metric.

We now present two examples of how the hash

tree chain can be used: when a single value corre-

sponds to a node, and when a c-tuple of values

corresponds to a node. For notational and analytic

convenience, we describe hash tree chains for
which the number of values between each hash

chain value is a power of two.

In a small network, each value bj can corre-

spond to a single node; since no two nodes share a

single value, an attacker has no way to derive its
sh tree chain. In this example, each element bi stands for one
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value from the advertisements of neighboring

nodes, and hence it must follow the hash tree chain

to the next step in order to provide a valid au-

thenticator.

In larger networks, with n nodes, the OðnÞ
overhead of generating each step of the chain may
be too great; as a result, we authenticate each node

with a c-tuple of values. Although no two nodes

share the same c-tuple of values, an attacker could

learn each of its c values from different neighbors

that advertise the same metric, and could then

forge an advertisement without increasing the

metric. We show that an attacker�s probability of

success may be sufficiently small. We also change
the encoding of a node id for each update, so that

an attacker in a static network cannot continue to

forge updates once it finds an appropriate set of

values from its neighbors. Consider a hash tree

chain with 2m values in each step (and thus a hash

tree of height mþ 1). For example, if each node

has a unique node id between 0 and
2m

c

� �
� 1,

then the c-tuple encodes

x ¼ ðnode idþ H ½sequence number�Þ mod
2m

c

� �

such that the c-tuple changes for each sequence

number.
5.5. Bounding verification overhead

The overhead to verify authentication values

can be large if a node has missed several routing

updates. In particular, an attacker can force a

victim node to verify a hash chain as long as OðksÞ,
where k is the maximum number of hops and s is
the maximum number of sequence numbers rep-

resented by a hash chain. We can prevent this at-

tack by using a new hash chain for each sequence

number.

A node using this scheme generates a random

hash chain root h0;s for each sequence number s,
for example by using a PRF F and a secret master

key X to derive h0;s ¼ FðX; sÞ. Given the au-
thentic anchor of this hash chain hk;s ¼ Hk½h0;s�
(where k is the maximum metric), any node can

authenticate hm;s, which is the authenticator for

sequence number s and metric m.
To allow nodes to authenticate these anchors

hk;s, each node builds a hash tree, using the hash

chain anchors as leaves (Section 3.2). When a node

sends an update with a new sequence number s, it
includes the root of the hash chain h0;s, the anchor
of the hash chain hk;s, and the path to the root of
the hash tree. To authenticate any update, the

node verifies the anchor by following the path to

the root of the hash tree. It then verifies the hash

value hm;s by verifying that hk;s ¼ Hk�m½hm;s�. Since
the maximum hash chain length is k and the an-

chor verification requires OðlogðsÞÞ effort, where s
is the number of sequence numbers represented by

any root, the computation required to verify any
update is bounded by k þ logðsÞ.
6. Evaluation

6.1. Security analysis

Securing a distance vector protocol seems fun-
damentally harder than securing link-state or on-

demand protocols such as DSR [22]. Since distance

vector protocols compress the route information

into a hop count value and a next hop, it is chal-

lenging to verify the correctness of the hop count

value. In this section, we discuss some of the se-

curity properties of the SEAD protocol.

Using SEAD, any attacker cannot create a valid
advertisement with larger (better) sequence num-

ber that it received. Furthermore, for advertise-

ments sent using the largest received sequence

number, attackers that do not collude cannot ad-

vertise a route shorter than the one it has heard.

For example, if the best metric m received by a

node at the current sequence number s, the at-

tacker cannot advertise a better metric than m.
When hash tree chains are used (as described in

Section 5.4), SEAD achieves even stronger prop-

erties:

• If each node corresponds to a single hash tree

chain value ðc ¼ 1Þ, the attacker is forced to ad-

vertise metric at best mþ 1.

• Otherwise, the attacker is forced to advertisemet-
ric at bestmþ 1 with high probability, and other-

wise cannot advertise with metric better than m.
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We now explore the probability of successful

metric replay using the hash tree chain scheme

when each node corresponds to a set of hash tree

chain values ðc 6¼ 1Þ. Let Ai be the set of combi-

nations of nodes that do not include value bi
needed by the attacker. The attacker, then, has
j [c

i¼1 Aij ways to fail. We now apply the inclusion–

exclusion principle:

[c
i¼1

Ai

�����
�����¼
X
i

jAij�
X
i1;i2

jAi1 \Ai2 jþ �� �þð�1Þcþ1
\c
i¼1

Ai

�����
�����

¼
Xc
i¼1

ð�1Þiþ1 c

i

� � 2m� i

c

� �
q

0
@

1
A:

Then the probability of a successful defense is

Pc
i¼1

ð�1Þiþ1 c
i

� � 2m � i
c

� �
q

 !

2m

c

� �
� 1

q

 ! :

This probability can be quite high; for example,

when m ¼ 6, c ¼ 3, and q ¼ 3 as before, an at-
tacker has a 1.675 · 10�3 probability of success;

when three consecutive advertisements are re-

quired for the same metric before a routing change

is made, the attacker succeeds once every 6.74

years.

An attacker that has not compromised any

node (and hence does not possess any crypto-

graphic keys from a node) cannot successfully send
any routing messages, since an uncompromised

neighbor node will reject the messages due to the

failed neighbor authentication. A repeater can

function as a one-node wormhole; this is not ad-

dressed by SEAD, though TIK [38] can prevent

this attack.

A collection of a number of attackers that have

compromised one or more nodes can only redirect
the path from a source to a destination through

one or more attackers if the length of the best

(minimum metric) attacker-free route for which

the source receives an advertisement is at least as

large as the number of nodes between the desti-

nation and the first attacker, plus the number of

nodes between the last attacker and the destina-

tion.
If each node using SEAD (including attackers)

keeps routing tables where the next-hop for a given

destination is set to the authenticated source ad-

dress of the first advertisement received by that

node containing the minimum metric for the

greatest sequence number, then the next-hop
pointers in all nodes� routing tables will describe a

route back to the destination.

With SEAD, no routing loop is possible, unless

the loop contains one or more attackers. Fur-

thermore, no loop is possible unless no non-

attacker node on the loop has received a better

advertisement (in terms of sequence number and

metric) for this destination than the best adver-
tisement received by some attacker on the loop.

If a collection of attackers form a vertex cut

between two groups of nodes in the network [17],

the attackers can arbitrarily control the routes

between any node in one group and a node in the

other group. Since in a vertex cut, any packet be-

tween such nodes must physically pass through a

node on the vertex cut, no routing protocol can
eliminate such attacks.

6.2. Simulation evaluation methodology

To evaluate the performance impact of our se-

curity approach in SEAD without attackers, we

modified the DSDV-SQ implementation in our

extensions to ns-2 [6]. Specifically, we increased the

size of each routing update to represent the au-

thentication hash value in each table entry. We

also removed the settling time and the sequence

number changes, as described in Section 5.1. We
did not simulate the mechanisms in Section 5.4

because they provide minimal protection without

the use of packet leashes, and packet leashes pro-

vide no-cost packet authentication. Because we

wanted to determine the cost of SEAD without

significant additional assumptions, we simulated

pairwise shared key authentication. We also did

not simulate the mechanisms in Section 5.5, be-
cause such precautions are not always necessary.

For example, if nodes are loosely time synchro-

nized, an upper bound on the maximum sequence

number can be easily determined. Alternatively,

intrusion detection techniques can be used to

avoid the need to authenticate many bogus up-
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dates. In particular, a node can check the neighbor

authentication very easily. If certain neighbors

persist in sending updates with bogus metric au-

thenticators, those neighbors can be ignored, or

the verification of their updates can be relegated to

a lower priority.
We chose the ns-2 simulator for this study be-

cause it realistically models arbitrary node mobility

as well as physical radio propagation effects such as

signal strength, interference, capture effect, and

wireless propagation delay. Our propagation model

is based on the two-ray ground reflection model [41].

The simulator also includes an accurate model of

the IEEE 802.11 Distributed Coordination Func-
tion (DCF) wireless MAC protocol [20].

In our simulations, nodes moved according to

the random waypoint mobility model [22]. Each

node is initially placed at a random location and

pauses for a period of time called the pause time; it

then chooses a new location at random and moves

there with a velocity randomly chosen uniformly

between 0 and the maximum speed vmax. When it
arrives, it repeats the process of pausing and then

selecting a new destination to which to move. The

data communication pattern in our study uses 20

source-destination pairs, each sending a Constant

Bit Rate (CBR) flow of 4 data packets/s. Each data

packet is 512 bytes in size. Table 1 details the pa-

rameters used in our simulations.
Table 1

Parameters for SEAD performance study

Scenario parameters

Number of nodes 50

Maximum velocity ðvmaxÞ 20 m/s

Dimensions of space 1500· 300 m2

Nominal radio range 250 m

Source–destination pairs 20

Source data rate (each) 4 packets/s

Application data payload size 512 bytes/packet

Total application data load 327 kilobytes/s

Raw physical link bandwidth 2 Megabytes/s

SEAD parameters

Periodic route update interval 15 s

Periodic updates missed before

link is declared broken

3

Maximum packets buffered

per node per destination

5

Hash length (q) 80 bits
We evaluated SEAD by comparing it to DSDV-

SQ, as described in Section 2. We measured per-

formance along four metrics:

• Packet delivery ratio. The total over all nodes of

the number of application-level packets re-
ceived, divided by the total number of applica-

tion-level packets originated.

• Byte overhead. The total over all hops of the

number of overhead bytes transmitted.

• Packet overhead. The total over all hops of the

number of overhead packets transmitted.

• Median latency. The median packet delivery la-

tency, where latency is calculated as the elapsed
time between the application layer passing a

packet to the routing layer and that packet first

being received at the destination.

6.3. Simulation results

The results of our performance study of SEAD

are shown in Fig. 3 as a function of pause time in
the random waypoint mobility model. Each figure

represents the average over 65 randomly generated

runs at each pause time, and the error bars show

the 95% confidence intervals; the runs used for

SEAD and those for DSDV-SQ were identical. On

the right side of each graph (pause time 900), the

nodes are stationary, and on the left side of each

graph (pause time 0), the nodes are all in contin-
uous motion.

The packet delivery ratios for SEAD and

DSDV-SQ are shown in Fig. 3(a), and the median

latency of delivered application-level packets for

these simulations is shown in Fig. 3(b). Surpris-

ingly, SEAD consistently outperforms DSDV-SQ

in terms of packet delivery ratio. By not using a

weighted settling time delay in sending triggered
updates in SEAD, the number of routing adver-

tisements sent by SEAD generally increases rela-

tive to DSDV-SQ, allowing nodes to have more

up-to-date routing tables.

However, SEAD also increases overhead, both

due to this increased number of routing adver-

tisements, and due to the increase in size of each

advertisement from the addition of the hash value
on each entry for authentication. This increased

overhead is shown in Fig. 3(c) and (d), which show
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and (d) byte overhead.
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the number of routing overhead packets and the
number of routing overhead bytes, respectively,

caused by the two protocols in these same simu-

lations. The vertical scale in Fig. 3(c) is magnified

to show the difference between the two protocols;

the vertical scale here ranges only between 40 and

46.

The increased overhead in SEAD causes some

congestion in the network in these simulations, as
shown in the latency results in Fig. 3(b). At all

pause times, SEAD exhibits higher latency than

DSDV-SQ, due to the decreased available network

capacity from the increased overhead in SEAD.

The rise in latency at higher pause times is due to

the nonuniform distribution of nodes in space

caused by node motion in the random waypoint
model. Although the initial node locations and the
locations to which each node moves during the run

are uniformally chosen over the space, the straight

line path of a node from one location to the next

tends to distribute nodes on average closer to the

center of the space; at higher pause times, nodes

spend most (or all) of the time in their initial

uniformally distributed locations. For example

over the 65 simulation runs, the average route
length used by SEAD at pause time 900 was about

28% longer than at pause time 0 (for DSDV-SQ,

the average route length at pause time 900 was

about 33% longer than at pause time 0). This in-

creased route length, together with SEAD�s in-

creased overhead, created additional congestion at

higher pause times in the simulations.
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7. Related work

Kumar [25] discusses attacks against distance

vector routing protocols, and describes mecha-

nisms to secure them using Message Authentica-
tion Codes. Although these mechanisms ensure the

integrity of router-to-router communications, they

do not withstand node compromise. In particular,

they do not secure the metric in each routing table

entry, and thus a compromised router could claim

routes of any length to any destination.

Smith et al. [45] discuss attacks against distance

vector routing protocols, and present counter-
measures that provide security. However, their

techniques do not apply well in an ad hoc network

since they require knowledge of which links are

possible, whereas in an ad hoc network, any pair

of nodes could be within range and form a link.

Zapata [47] proposes SAODV, which uses a

new one-way hash chain for each Route Discovery

to secure the metric field in an RREQ packet.
Zapata�s protocol differs in two ways. First, it uses

a digital signature to authenticate the anchor of

each such chain, which is significantly more ex-

pensive than the use of a single hash chain (Section

5.1) or the use of Merkle hash trees (Section 5.2).

Second, SAODV operates on-demand, which re-

sults in somewhat different assumptions in areas

such as neighbor authentication.
A number of security protocols have been de-

signed for RIPv2 [2,28]. These protocols protect

the integrity of the packet from modification, but

they do not prevent a node from advertising a

route that does not actually exist.

Several researchers have proposed the use of

asymmetric cryptography to secure both wired and

ad hoc network routing protocols [9,24,36,47,48].
However, when the nodes in an ad hoc network

are unable to verify asymmetric signatures quickly

enough, these protocols may not be suitable and

may create Denial-of-Service attacks; these pro-

tocols also generally require more network band-

width than does SEAD with its hash values.

Cheung [7] and Hauser et al. [13] describe

symmetric-key approaches to the authentication of
updates in link state protocols, but neither work

discusses the mechanisms for detecting the status

of these links. In wired networks, a common
technique for authenticating HELLO packets is to

verify that the incoming network interface is the

expected interface and that the IP TTL of the

packet is 255. In a wireless network, this technique

cannot be used. Heffernan [15] and Basagni et al.

[3] use shared keys to secure routing communica-
tion, which is vulnerable to some single-node

compromises. Perrig et al. [39] use symmetric

primitives to secure routing only between nodes

and a trusted base station.

As mentioned in Section 3, some researchers

have explored the establishment of trust relation-

ships and authenticated keys in ad hoc networks

[17,19,39,46].
Marti et al. [29] consider the problem of de-

tecting intermediate nodes that do not forward

packets. However, their scheme is limited to certain

types of network Medium Access Control layers

andmay trigger false alarms in congested networks.

In other work, we have designed a secure on-

demand routing protocol for ad hoc networks,

called Ariadne [17]. The mechanisms we used for
security in Ariadne are end-to-end in nature,

whereas our approach here for SEAD operates on

a hop-by-hop basis due to the basic operation of

distance vector routing. Furthermore, unlike Ari-

adne, the techniques presented here do not rely on

a Message Authentication Code to authenticate

routing table entries, but instead directly use ele-

ments from a one-way hash chain to provide au-
thentication for both the sequence number and the

metric in each entry. An earlier version of SEAD

appeared as [16].
8. Conclusions and future work

In this paper, we have presented the design and
evaluation of SEAD, a new secure ad hoc network

routing protocol using distance vector routing.

Many previous routing protocols for ad hoc net-

works have been based on distance vector ap-

proaches (e.g., [5,10,12,23,31,34]), but they have

generally assumed a trusted environment. Instead,

in designing SEAD, we carefully fit inexpensive

cryptographic primitives to each part of the protocol
functionality to create an efficient, practical proto-

col that is robust against multiple uncoordinated
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attackers creating incorrect routing state in any

other node, even in spite of active attackers or

compromised nodes in the network. Together with

existing approaches for securing the physical layer

and MAC layer within the network protocol stack,

the SEAD protocol provides a foundation for the
secure operation of an ad hoc network.

We base the design of SEAD in part on the

DSDV ad hoc network routing protocol [34], and

in particular, on the DSDV-SQ version of the

protocol, which has been shown to outperform

other DSDV versions in previous detailed ad hoc

network simulations [6,21]. For security, we use ef-

ficient one-way hash functions and do not use asym-
metric cryptographic primitives. Consequently,

SEAD is efficient and can be used in networks of

computation- and bandwidth-constrained nodes.

SEAD actually outperforms DSDV-SQ in terms of

packet delivery ratio, although it does create more

overhead in the network, both due to an increased

number of routing advertisements it sends, and due

to the increase in size of each advertisement due to
the addition of the hash value on each entry for

authentication.

In future work, we plan to also consider

mechanisms to detect and expose nodes that ad-

vertise routes but do not forward packets, and to

merge this work with our other work in securing

on-demand routing protocols to create a secure

protocol based on ZRP [12]. We are also consid-
ering the possibility of extending DSDV to behave

like a path-vector routing protocol, allowing the

source address of each advertisement to be more

readily authenticated.
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