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ABSTRACT
Google’s BBR is the most prominent result of the recently revived

quest for efficient, fair, and flexible congestion-control algorithms

(CCAs). While BBR has been investigated by numerous studies,

previous work still leaves gaps in the understanding of BBR perfor-

mance: Experiment-based studies generally only consider network

settings that researchers can set up with manageable effort, and

model-based studies neglect important issues like convergence.

To complement previous BBR analyses, this paper presents a

fluid model of BBRv1 and BBRv2, allowing both efficient simulation

under a wide variety of network settings and analytical treatment

such as stability analysis. By experimental validation, we show

that our fluid model provides highly accurate predictions of BBR

behavior. Through extensive simulations and theoretical analysis,

we arrive at several insights into both BBR versions, including a

previously unknown bufferbloat issue in BBRv2.

CCS CONCEPTS
• Networks → Transport protocols; Network performance
modeling.
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1 INTRODUCTION
To this day, ever changing applications, traffic patterns, network

capacities, and path types prompt research into new and better

congestion-control algorithms (CCAs). Most prominent in recent

years was Google’s introduction of BBR [9], which was promptly

enabled in 2017 for some Google services and thus widely deployed

in the public Internet [10]. Since then, several theoretical and ex-

perimental studies of the behavior of BBR [16, 24, 51, 54, 58] have

identified issues with this first version of BBR, relating to both

fairness (especially towards loss-based CCAs) and efficiency (e.g.,

excessive queue buildup). As a result, BBRv2 [11] has been proposed,

triggering another series of evaluation studies [20, 31, 41, 52].

Still, the characterization of BBR performance remains incom-

plete. Experiment-based studies [20, 24, 31, 41, 51, 54], by their
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Figure 1: Competition of sending rates (in % of link band-
width) between a Reno flow and a BBRv1 flow.

nature, allow statements relating to the concrete network settings

in the experiments. Given the variety of scenarios in which a CCA

might be deployed, such experimental investigations could only be

made exhaustive with great effort and large-scale testbeds which

only a minority of researchers has access to. Previous model-based

studies contain BBR steady-state models that are valuable for spe-

cific settings (e.g., deep buffers [57] or wireless links [60]); however,

a deep theoretical understanding requires a model that allows in-

vestigation of general settings and the convergence process.

In this paper, we complement previous approaches to BBR analy-

sis with a classic approach in CCA research: fluid models consisting

of differential equations [18, 36, 37, 39, 48, 53, 56]. Such fluid mod-

els are unique in their suitability for both efficient simulation and

theoretical stability analysis. Enabling efficient simulation is critical

because the model must be simulated under a plethora of config-

urations, including settings that are expensive to build. Enabling

theoretical stability analysis is crucial because the equilibria (i.e.,

steady states) of the CCA dynamics are only relevant for perfor-

mance characterization if stable in a control-theoretic sense, i.e., if

the dynamics actually converge to the equilibria.

While a fluid model for BBR is thus well-suited to complement

previous work, constructing such a model is challenging because

BBR does not naturally fit into the existing fluid-model framework

for loss-based CCAs [37, 56]. In fact, BBR does not exclusively rely

on a congestion window affected by loss, but includes traffic pulses

for capacity probing and measurement-driven state transitions. By

using new techniques, e.g., by mimicking the probing pulses with

sigmoid functions, this work establishes the first highly accurate

and highly general model of BBR, both for versions 1 and 2.

Our fluidmodel predicts BBR behavior with high accuracy, which

we validatewith experimentswith the network emulatormininet [34].

The validated model confirms BBR performance issues from previ-

ous studies and yields new insights. Moreover, we apply dynamical-

system analysis (i.e., Lyapunov method) to our fluid model to iden-

tify asymptotically stable equilibria of the BBR dynamics.

Our main contributions are the following:

• We introduce the first general fluid model for BBR (versions

1 and 2), using new techniques such as sigmoid pulses and

mode variables.
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• We present extensive, systematic model-based calculations,

experimentally validate the results of these calculations, and

provide profound insights into fundamental metrics of BBR.

• We analytically identify asymptotically stable equilibria of

BBRv1 and BBRv2.

• We analytically confirm the previous insight that BBRv1

can lead to unfair bandwidth allocations—especially when it

competes against loss-based CCAs, but also in competition

with itself given unequal RTTs.

• We confirm that BBRv2 eliminates most of the undesirable

behavior of BBRv1, but we also identify settings in which

BBRv2 leads to bufferbloat and unfairness.

2 NETWORK FLUID MODEL
In this section, we present our network fluid model, which closely

follows the work by Low et al. [37]. However, we have made several

improvements to the network model, which we will highlight in

the following. We denote function 𝑓 (𝑡) by 𝑓 and its derivative by ¤𝑓 ,
unless the argument differs from the default time variable 𝑡 .

In our model, the network consists of links ℓ with capacity 𝐶ℓ ,

buffer size 𝐵ℓ , and propagation delay 𝑑ℓ .

Link-Arrival Rate. The arrival rate 𝑦ℓ (𝑡) at link ℓ is

𝑦ℓ =
∑︁
𝑖∈𝑈ℓ

𝑥𝑖

(
𝑡 − 𝑑 f𝑖,ℓ

)
, (1)

where𝑈ℓ is the set of agents using link ℓ , 𝑥𝑖 (𝑡) is the sending rate of
agent 𝑖 at time 𝑡 , and 𝑑 f

𝑖,ℓ
is the propagation delay between agent 𝑖

and link ℓ . Together with Low et al. [37], we neglect queuing delay

and packet losses previous to link ℓ .

Queue Length. In general, the queue length grows or shrinks

according to the discrepancy between combined arrival rate 𝑦ℓ and

the transmission capacity 𝐶ℓ at the respective link [37], but never

exceeds its buffer size 𝐵ℓ :

¤𝑞ℓ = (1 − 𝑝ℓ ) · 𝑦ℓ −𝐶ℓ , 𝑞ℓ (𝑡) ∈ [0, 𝐵ℓ ], (2)

where 𝑝ℓ (𝑡) is the loss probability of link ℓ at time 𝑡 (cf. §2). We

have refined the model by Low et al. to additionally capture the

effect of packet drops on the queue length.

Latency. The link latency is the fixed link propagation delay plus

the queuing delay, which depends on queue size 𝑞ℓ (𝑡). The latency
of a path is the sum of link latencies:

𝜏𝜋𝑖 =
∑︁
ℓ∈𝜋𝑖

𝜏ℓ =
∑︁
ℓ∈𝜋𝑖

𝑑ℓ +
𝑞ℓ

𝐶ℓ
. (3)

Loss Probability and Queuing Disciplines. Without active queuing

discipline, loss occurs if the buffer of a link is full. Given such a

simple drop-tail policy, the loss probability is given by the relative

excess rate whenever the queue is full, and is 0 otherwise [59].

To facilitate analytical treatment, we refine previous models by a

smooth approximation:

𝑝ℓ (𝑡) = 𝜎
(
𝑦ℓ (𝑡) −𝐶ℓ

)
·
(
1 − 𝐶ℓ

𝑦ℓ

)
·
(
𝑞ℓ

𝐵ℓ

)𝐿
(4)

where 𝐿 ≫ 1 and 𝜎 (𝑣) is a relatively sharp sigmoid function:

𝜎 (𝑣) = 1

1 + e
−𝐾 ·𝑣 (5)

with 𝐾 ≫ 1 controlling the sharpness of the increase at 𝑣 = 0.

In contrast to drop-tail, the loss probability under the RED queu-

ing discipline moves synchronously with the queue size. More

precisely, RED keeps the drop probability at 0 if the queue size is

below a configurable threshold 𝑞0, increases the drop probability

linearly to a configurable value 𝑝1 for queue sizes up to 𝑞1, and

drops all packets for larger queue sizes. We approximate the RED

behavior as follows, representing the general idea of RED:

𝑝ℓ =
𝑞ℓ

𝐵ℓ
∈ [0, 1] . (6)

which corresponds to a RED configuration with 𝑝1 = 1, 𝑞1 = 𝐵ℓ ,

and 𝑞0 = 0. The extension of the fluid-model simulator to other

RED configurations is straightforward.

Regarding the loss probability of paths, link-specific loss prob-

abilities are assumed to be small enough such that the following

approximations regarding loss hold:

𝑝𝜋𝑖 (𝑡) = 1 −
∏
ℓ∈𝜋𝑖

(
1 − 𝑝ℓ

(
𝑡 + 𝑑 f𝑖,ℓ

))
≈

∑︁
ℓ∈𝜋𝑖

𝑝ℓ

(
𝑡 + 𝑑 f𝑖,ℓ

)
. (7)

Congestion Window and Sending Rate. For the window-based

congestion-control algorithms Reno and CUBIC (cf. Appendix B),

the sending rate of agent 𝑖 is determined by the congestion-window

size𝑤𝑖 and round-trip latency:

𝑥𝑖 =
𝑤𝑖

𝜏𝑖
. (8)

3 BBR FLUID MODEL
In this section, we introduce the first fluid model for BBR, both for

BBRv1 [9] and BBRv2 [11]. Interestingly, the fluid-model techniques

used for the loss-based CCAs cannot reflect essential BBR features,

in particular its phases with different behavior. Hence, we construct

our BBR model using new techniques, i.e., periodic probing pulses

and mode variables (for simulating the BBR state machine). In the

following, we first describe the behavior of BBR for both versions

1 and 2. Then, we present our fluid model for BBR by means of a

basic fluid model, which can be concretized for each version.

3.1 Description of BBR
Fundamentally, BBR continuously performs measurements to esti-

mate two core properties of the network path, namely the bottle-

neck bandwidth BtlBw and the minimal round-trip time (RTT)

RTprop (i.e., propagation delay). To estimate these properties, BBR

constantly switches between two states, namely the ProbeBW state

and the ProbeRTT state. While the ProbeBW state consumes most of

flow lifetime and is considerably different across the two BBR ver-

sions, the ProbeRTT state is only infrequently and briefly entered

and is mostly identical across both BBR versions.

ProbeRTT state. BBR enters the ProbeRTT state if no smaller

round-trip time than the existing RTprop estimate is observed for 10

seconds. To discover the propagation delay, the ProbeRTT state tries
to eliminate queuing delay by restricting the data in flight (inflight
in BBR terminology) to a small volume during 200 ms. In BBRv1,

this small volume has a fixed size of 4 segments; since this volume

has been found to be too conservative, the ProbeRTT inflight limit

in BBRv2 has been chosen to half the estimated bandwidth-delay

product, i.e., half the product of BtlBw and RTprop.
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ProbeBW state in BBRv1. The ProbeBW state aims at measuring

the bottleneck bandwidth of the network path, and includes a peri-

odic probing strategy with the pacing rate as the primary control of

the sending rate. In this probing strategy, each period consists of 8

phases with the duration of RTprop. In one phase randomly chosen

from the first 7 phases, BBRv1 sets its pacing rate to 5/4 · BtlBw to

find the capacity limit of the path. In the subsequent phase, BBRv1

decreases its pacing rate to 3/4 · BtlBw to drain the queues poten-

tially built up during the aggressive previous phase. In the other

6 phases of the period, BBRv1 paces at rate BtlBw. At the period
end, the maximum delivery rate from the period is then considered

the new bottleneck bandwidth estimate and thus serves as a base

pacing rate for the next period.

BBRv1 congestion window. BBRv1 also maintains a conges-

tion window, which amounts to twice the estimated BDP and was

intended as a safeguard against ‘common network pathologies’

such as delayed ACKs [9]. Contrary to design intention, this in-

flight limit by the congestion window is the essential constraint

on the sending rate of BBRv1 when competing with loss-based

CCAs given large buffers [24, 58], letting BBRv1 degenerate into a

window-based CCA in these circumstances.

ProbeBW state in BBRv2. This unintentional relevance of the in-
flight limit in some circumstances, plus the unfairness towards loss-

based CCAs in shallow buffers, led Google to revise the ProbeBW
mechanism for BBRv2. This revision mainly aimed at making BBR

less aggressive, through increasing its sensitivity to loss and ECN

signals (where we henceforth only consider loss for simplicity),

less frequent probing, and a persistent coupling between inflight

limits and the sending rate. To be precise, BBRv2 tries to obtain

additional bandwidth only every few seconds, where the time be-

tween such probings is given by the minimum of 62 estimated

RTTs (chosen for fairness reasons) and a random value between

2 and 3 seconds. In this probing, BBRv2 first paces at the rate

given by BtlBw for one RTprop, with the goal to achieve an in-

flight corresponding to the bandwidth-delay product. Then, BBRv2

sets its pacing rate to 5/4 · BtlBw and increases the inflight until it

reaches 5/4 of the estimated BDP or the loss rate exceeds 2%. At
this point, the bottleneck-bandwidth estimate BtlBw is updated

to the maximum delivery rate from the last two ProbeBW periods.
Moreover, BBRv2 also records the maximum tenable inflight in state

variable inflight_hi, which tracks the observed inflight, but is

reduced by a multiplicative decrease 𝛽 if the exponential-increase

phase has been terminated by excessive loss. Afterwards, BBRv2

chooses a pacing rate of 3/4 · BtlBw until the inflight is reduced to

an arguably safe level, which corresponds to the minimum of the

estimated BDP and 85% of the previously measured inflight_hi
(where the erased 15% are termed headroom in BBRv2). Once the

inflight has been reduced to that level, BBRv2 enters into cruising
mode. In cruising mode, BBRv2 aims to keep its inflight on a safe

level by introducing the additional inflight bound inflight_lo,
which is activated if packet loss occurs: inflight_lo starts from
the congestion-window size at the moment of loss and is reduced

by 𝛽 upon packet loss. In contrast to inflight_hi, which serves

as a long-term inflight bound, inflight_lo serves as a short-term
inflight bound and is therefore reset at the end of the bandwidth-

probing period. In summary, at any point in time, the congestion-

window size of a BBRv2 flow is the minimum of the general BBR

congestion window of two BDP, the long-term bound inflight_hi
(discounted by headroom in cruising mode), and the short-term

bound inflight_lo (if activated).

3.2 Basic fluid model for BBR
We rely on a skeleton fluid model that captures the common proper-

ties of BBRv1 and BBRv2. As mentioned in the previous section, the

two versions of BBR are mostly similar regarding the estimation

of the minimum RTT given by RTprop, which we represent with

variable 𝜏min

𝑖
(𝑡) for the RTprop estimate of agent 𝑖 at time 𝑡 . The

variable 𝜏min

𝑖
is continuously adjusted downwards upon encoun-

tering smaller RTTs:

¤𝜏min

𝑖 = −Γ
(
𝜏min

𝑖 (𝑡) − 𝜏𝑖 (𝑡 − 𝑑p𝑖 )
)

(9)

where Γ(𝑣) is a differentiable function approximating the ReLU

function max(0, 𝑣). Such a function can be constructed using the

sigmoid function from Eq. (5):

Γ(𝑣) = 𝑣 · 𝜎 (𝑣). (10)

In Eq. (9), this formulation of Γ leads to a proportional decrease in

minimum RTT estimate 𝜏min

𝑖
if the currently observed delay 𝜏𝑖 (𝑡 −

𝑑p
𝑖
) is below the previously observed minimum 𝜏min

𝑖
, i.e., if the

argument of Γ exceeds 0. Otherwise, 𝜏min

𝑖
is preserved.

To describe that BBR is in ProbeRTT state, we use a discrete
mode variable 𝑚prt

𝑖
, which is 1 if BBR is in ProbeRTT state and 0

otherwise. In both BBR versions, the ProbeRTT mode is switched

on or off upon time-out of the ProbeRTT timer 𝑡
prt

𝑖
:

Δ𝑚
prt

𝑖
= 𝜎

(
𝑡
prt

𝑖
−𝑇 prt

𝑖

)
·
(
(1 −𝑚prt

𝑖
) −𝑚prt

𝑖

)
(11)

where 𝑇
prt

𝑖
is the time period between entries and exits of the

ProbeRTT state for agent 𝑖 . Note that Eq. (11) represents an update

rule for simulations rather than a differential equation, as𝑚
prt

𝑖
is

discrete. Upon time-out of the current ProbeRTT timer (i.e., 𝜎 ≈ 1),

Eq. (11) leads to an inversion of𝑚
prt

𝑖
:

𝑚
prt

𝑖
+ Δ𝑚

prt

𝑖
=

{
1 + 1 − 2 · 1 = 0 if𝑚

prt

𝑖
= 1

0 + 1 − 2 · 0 = 1 if𝑚
prt

𝑖
= 0.

(12)

The two time-related variables in Eq. (11) behave as follows:

𝑇
prt

𝑖
=𝑚

prt

𝑖
· 0.2 +

(
1 −𝑚prt

𝑖

)
· 10 (13)

¤𝑡prt
𝑖

= 1 − 𝜎
(
𝑡
prt

𝑖
−𝑇 prt

𝑖

)
· 𝑡prt
𝑖

− 𝜎
(
𝜏min

𝑖 − 𝜏𝑖 (𝑡 − 𝑑ℓ )
)
· 𝑡prt
𝑖

(14)

The constants in Eq. (13) cause BBR to remain in ProbeRTT state

for 0.2 seconds and to wait 10 seconds before re-entering the state

after exiting it. Eq. (14) causes a reset of the ProbeRTT timer to 0

if the timer has reached the limit 𝑇
prt

𝑖
or a lower RTT has been

measured, and to tick up otherwise.

In ProbeRTT mode, the sending rate is limited by a version-

dependent inflight limit𝑤
prt

𝑖
(𝑡):

𝑥𝑖 =𝑚
prt

𝑖
·
𝑤
prt

𝑖

𝜏𝑖
−
(
1 −𝑚prt

𝑖

)
· 𝑥pbw
𝑖

(15)
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where the ProbeBW sending rate 𝑥
pbw

𝑖
follows the relevant con-

straint (congestion window or pacing rate):

𝑥
pbw

𝑖
= min

©­«
𝑤
pbw

𝑖

𝜏𝑖
, 𝑥

pcg

𝑖

ª®¬ (16)

Similar to the ProbeRTT state, we also introduce the two time-

related variables 𝑇
pbw

𝑖
and 𝑡

pbw

𝑖
for the ProbeBW state, where 𝑇

pbw

𝑖

is the duration of a ProbeBW period and 𝑡
pbw

𝑖
is the time within the

current period. While 𝑇
pbw

𝑖
is version-dependent, 𝑡

pbw

𝑖
grows with

time and is reset to 0 when exceeding the period duration for both

BBR versions:

¤𝑡pbw
𝑖

= 1 − 𝜎
(
𝑡
pbw

𝑖
−𝑇 pbw

𝑖

)
· 𝑡pbw
𝑖

(17)

In the ProbeBW state, the bottleneck-bandwidth estimation is

based on measurements of the delivery rate 𝑥dlv
𝑖

(with link ℓ being

the bottleneck link of agent 𝑖):

𝑥dlv𝑖 =
𝑥𝑖
(
𝑡 − 𝑑p

𝑖

)
𝑦ℓ

(
𝑡 − 𝑑b

𝑖,ℓ

) ·
{
𝐶ℓ if 𝑞ℓ (𝑡 − 𝑑b𝑖,ℓ ) > 0

𝑦ℓ

(
𝑡 − 𝑑b

𝑖,ℓ

)
otherwise

(18)

where 𝑑p
𝑖
is the propagation delay of flow 𝑖 , and 𝑑b

𝑖,ℓ
is the propa-

gation delay from link ℓ to sender 𝑖 (via the destination host). As

a result, the fraction in Eq. (18) denotes the share of flow 𝑖’s traf-

fic, emitted one RTT before time 𝑡 , among the aggregate traffic

simultaneously arriving at link ℓ .

We accommodate the recorded maximum delivery rate 𝑥max

𝑖
(𝑡)

per ProbeBW period as follows:

¤𝑥max

𝑖 = Γ(𝑥𝑖 − 𝑥max

𝑖 ) − 𝜎 (0.01 − 𝑡pbw
𝑖

) · 𝑥max

𝑖 (19)

where the second term provokes a reset of 𝑥max

𝑖
in the first ten mil-

liseconds of the period. Themechanism for adjusting the bottleneck-

bandwidth estimate 𝑥btl
𝑖

(corresponding to BtlBw) to 𝑥max

𝑖
is specific

to each BBR version.

Finally, we choose the following natural formulation to model

the inflight volume 𝑣𝑖 (𝑡):

¤𝑣𝑖 = 𝑥𝑖 − 𝑥dlv𝑖 (20)

3.3 BBRv1 Fluid Model
Given the basic BBR fluid-model framework, the biggest challenge

in modelling BBRv1 is to model the randomized probing behavior

with varying pacing rates. As described in §3.1, BBRv1 proceeds

in bandwidth-probing periods that are 8 phases long, where each

phase has a duration of 𝜏min

𝑖
, i.e., 𝑇

pbw

𝑖
= 8 · 𝜏min

𝑖
. The bottleneck-

bandwidth estimate 𝑥btl
𝑖

is updated to the maximum delivery rate

𝑥max

𝑖
at the end of the period, which we formalize as follows:

¤𝑥btl𝑖 = 𝜎

(
𝑡
pbw

𝑖
−𝑇 pbw

𝑖
+ 0.01

)
·
(
𝑥max

𝑖 − 𝑥btl𝑖
)

(21)

In general, BBRv1 prescribes a pacing rate 𝑥
pcg

𝑖
equal to 𝑥btl

𝑖
in

each phase, but increases 𝑥
pcg

𝑖
to 5/4 · 𝑥btl

𝑖
in one randomly chosen

phase and decreases it to 3/4·𝑥btl
𝑖

in the subsequent phase. To restrict

a given behavior to a certain phase 𝜙 ∈ {0, ..., 7}, we introduce the

following pulse function Φ, which is 1 if BBRv1 is in phase 𝜙 and 0

otherwise:

Φ𝑖 (𝑡, 𝜙) = 𝜎
(
𝑡pbw (𝑡) − 𝜙 · 𝜏min

𝑖

)
· 𝜎

(
(𝜙 + 1) · 𝜏min

𝑖 − 𝑡pbw
)

(22)

This pulse function allows to model the pacing behavior of an

agent 𝑖 that employs the augmented pacing rate in phase 𝜙𝑖 :

𝑥
pcg

𝑖
= 𝑥btl𝑖 ·

(
1 + 1

4
· Φ𝑖 (𝑡, 𝜙𝑖 ) − 1

4
· Φ𝑖 (𝑡, 𝜙𝑖 + 1)

)
(23)

In the implementation of BBRv1, the phase 𝜙𝑖 is randomly chosen

from {0, ..., 6} every time BBRv1 switches from ProbeRTT state back
to ProbeBW state. Since such randomness is incompatible with the

determinism of fluid models, we mimic the randomness of 𝜙𝑖 by

choosing it as 𝑖 mod 6, wherewe assume the agent identifier 𝑖 to be a

natural number. This agent-dependent choice of 𝜙𝑖 desynchronizes

the pacing-rate variation of agents 𝑖 on paths with equal RTT, which

is the central goal of the randomization, without sacrificing the

determinism of the fluid model. The interplay of BBRv1 variables

in pacing-based mode is visualized in Fig. 2a.

The basic BBR fluid-model allows a straightforward integration

of the state-dependent inflight limits of BBRv1:

𝑤
prt

𝑖
= 4 𝑤

pbw

𝑖
= 2 ·𝑤𝑖 = 2 · 𝑥btl𝑖 · 𝜏min

𝑖 (24)

where𝑤𝑖 denotes the BDP estimated by agent 𝑖 .

3.4 BBRv2 Fluid Model
BBRv2 mostly differs from BBRv1 with regard to the structure of

the bandwidth-probing phase in several ways.

First, a bandwidth-probing period is considerably longer than

in BBRv1: The duration of bandwidth-probing periods in BBRv2 is

given by the minimum of 62 estimated RTTs and a random value

between 2 and 3 seconds. This randomness in BBRv2 poses a similar

challenge as the randomness in BBRv1, such that we again use an

approach based on the agent identifier to achieve the central goal

of agent desynchronization without sacrificing determinism:

𝑇
pbw

𝑖
= min

(
62 · 𝜏min

𝑖 , 2 + 𝑖

𝑁

)
(25)

Second, the behavior in the bandwidth-probing phases of BBRv2

differs from BBRv1. To model the BBRv2 phases, we introduce

two additional mode variables, namely𝑚dwn

𝑖
(𝑡), which indicates

whether agent 𝑖 is attempting to reduce its inflight at time 𝑡 , and

𝑚crs

𝑖
(𝑡), which indicates whether agent 𝑖 is cruising at time 𝑡 . The

mode variable𝑚dwn

𝑖
affects the pacing rate 𝑥

pcg

𝑖
as follows:

𝑥
pcg

𝑖
= 𝑥btl𝑖 ·

(
1 + 1

4
· 𝜎

(
𝑡
pbw

𝑖
− 𝜏min

𝑖

)
·
(
1 −𝑚dwn

𝑖

)
− 1

4
·𝑚dwn

𝑖

)
(26)

where 𝑚dwn

𝑖
increases the pacing rate to 5/4 · 𝑥btl

𝑖
if 𝑚dwn

𝑖
= 0

(and one RTT has passed in the bandwidth-probing period), and

decreases the pacing rate to 3/4 · 𝑥btl
𝑖

if𝑚dwn

𝑖
= 1.

Third, while we modelled phase transitions in BBRv1 as purely

dependent on time 𝑡
pbw

𝑖
, the phase transitions in BBRv1 are trig-

gered by probing observations. In particular, the inflight-reducing

mode𝑚dwn

𝑖
is activated if the inflight 𝑣𝑖 exceeds 5/4 ·𝑤𝑖 or loss 𝑝𝜋𝑖

exceeds 2%, and is disabled once the reduced pacing rate has re-

duced the inflight 𝑣𝑖 to the draining target𝑤
−
𝑖
= min(𝑤𝑖 , 0.85 ·𝑤hi

𝑖
),

4
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Figure 2: Visualization of BBR fluid-model variables link capacity normalized to 100%, single flow)

where 𝑤hi
is the variable accommodating the long-term bound

inflight_hi in our model:

Δ𝑚dwn

𝑖 =
(
1 −𝑚crs

𝑖

)
·
(
1 −𝑚dwn

𝑖

)
· 𝜎

(
𝑡
pbw

𝑖
− 𝜏min

𝑖

)
·min (𝜎 (𝑣𝑖 − 5/4 ·𝑤𝑖 ) + 𝜎 (𝑝𝜋𝑖 − 0.02) , 1)

−𝑚dwn

𝑖 · 𝜎
(
𝑤−
𝑖 − 𝑣𝑖

) (27)

Moreover, the disabling of𝑚dwn

𝑖
automatically leads to the activa-

tion of𝑚crs

𝑖
, which is then disabled again when a new bandwidth-

probing period starts:

Δ𝑚crs

𝑖 = −Δ𝑚dwn

𝑖 − 𝜎
(
𝑡
pbw

𝑖
−𝑇 pbw

𝑖

)
·𝑚crs

𝑖 (28)

The fourth difference concerns the adjustment of the bottle-neck-

bandwidth estimate 𝑥btl
𝑖

. In BBRv2, 𝑥btl
𝑖

is adjusted to the maximum

delivery rate from the last two probing periods when the inflight-

growing phase has stopped:

¤𝑥btl𝑖 =𝑚dwn

𝑖 ·
(
max

(
𝑥max

𝑖 , 𝑥max

𝑖 (𝑡 −𝑇 pbw)
)
− 𝑥btl𝑖

)
(29)

Fifth, BBRv2 operates with another two additional state variables,

namely inflight_hi and inflight_lo, which we accommodate

in our fluid model with𝑤hi

𝑖
and𝑤 lo

𝑖
, respectively. The upper inflight

bound 𝑤hi
is exponentially adjusted upwards when it represents

the relevant constraint on the sending rate (𝑣𝑖 = 𝑤
hi

𝑖
) during the

aggressive probing phase and no excessive loss occurs. In con-

trast, inflight_hi is reduced by a multiplicative decrease of 30%

if encountering loss exceeding 2%. To be precise, the BBRv2 im-

plementation applies this multiplicative decrease at most once per

bandwidth-probing period. We approximate this behavior with a

reduced multiplicative decrease in presence of excessive loss:

¤𝑤hi

𝑖 =
(
1 −𝑚crs

𝑖

)
· 𝜎

(
𝑡
pbw

𝑖
− 𝜏min

𝑖

)
· 𝜎

(
𝑣𝑖 −𝑤hi

)
· 2𝑡

pbw

𝑖
/𝜏min

𝑖

− 𝜎
(
𝑝𝜋𝑖 − 0.02

)
· 0.3

𝜏min

𝑖

·𝑤hi

𝑖

(30)

Outside of cruising mode, the lower inflight bound 𝑤 lo

𝑖
is unset

(which we represent with an assimilation to𝑤−
𝑖
). In cruising mode,

𝑤 lo

𝑖
is also decreased by 30% per RTT upon encountering loss:

¤𝑤 lo

𝑖 =
(
1 −𝑚crs

𝑖

)
·
(
𝑤−
𝑖 −𝑤 lo

𝑖

)
−𝑚crs

𝑖 · 𝜎 (𝑝𝜋𝑖 ) ·
0.3𝑤 lo

𝑖

𝜏min

𝑖

· (31)

In summary, the congestion-window size in ProbeBW state is given

as follows in BBRv2:

𝑤
pbw

𝑖
= min

(
2 ·𝑤𝑖 ,

(
1 −𝑚crs

𝑖

)
·𝑤hi

𝑖 +𝑚crs

𝑖 ·𝑤 lo

𝑖

)
(32)

A final difference between BBRv1 and BBRv2 concerns the congestion-

window size in ProbeRTTmode. Instead of using a fixed congestion-

window size of 4 segments, BBRv2 cuts the congestion window to

half the estimated BDP in this mode:

𝑤
prt

𝑖
=
𝑤𝑖

2

(33)

The interplay of the variables in the BBRv2 fluid model is visual-

ized by means of an example in Fig. 2b.

4 EXPERIMENTAL VALIDATION
In this section, we experimentally validate our BBR fluid model,

building on the network emulator mininet [34].

4.1 Validation Set-up
4.1.1 Model-Based Computations. The implementation of the fluid

models uses NumPy [42] and is available online [50]. Differential

equations are solved with the method of steps [17, §1.1.2] with a

step size of 10 µs.

4.1.2 Experiments. To compare themodel output with implementa-

tion behavior, we perform experiments using the network emulator

mininet [34]. In mininet, we use OvS to emulate switches [19]. The

emulated hosts send traffic by using iPerf [38]. All experiments are

run with an Intel Core Intel Xeon E5-2695 v4 CPU.

4.1.3 Topology. As usual in the literature [20, 24, 31, 41, 51, 52, 58],

we consider the dumbbell topology in Fig. 3. In this topology,

𝑁 agents 𝑎𝑖 , 𝑖 ∈ {1, ..., 𝑁 }, communicate with a destination host 𝑎
d

via a switch 𝑆 . In all paths, the shared link ℓ between switch 𝑆 and

destination host 𝑎
d
constitutes the bottleneck link. The links ℓ𝑖 ,

𝑖 ∈ {1, ..., 𝑁 }, which connect the individual senders to switch 𝑆 , are

never saturated and therefore do not affect the sending rates. The

propagation delays of these non-shared links are heterogeneous

(randomly selected from a given range) such that the individual

senders experience different RTTs. Switch 𝑆 is equipped with a

buffer, the size of which is measured in bandwidth-delay prod-

uct (BDP) of the bottleneck link ℓ .
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Figure 3: Dumbbell topology.

4.2 Validation of Trace Results
Using the validation set-up described in §4.1, we first verified traces

as predicted by the fluid models regarding their similarity with

traces from experimental measurements. The concrete network

setting in this validation included a single sender, a bottleneck link ℓ

with a rate of𝐶ℓ = 100Mbps (as recommended by mininet [33]) and

with a propagation delay of 𝑑ℓ = 10ms, a non-bottleneck link ℓ1
with a delay of 𝑑ℓ1 = 5.6ms, and a switch buffer of 1 BDP.

Figs. 4 and 5 visualize the comparison of the thus obtained traces

for the BBRv1 and BBRv2, respectively, where each CCA was tested

under both a drop-tail and a RED queuing discipline (A validation

for Reno and CUBIC can be found inAppendix B). All measurements

have been normalized: The sending rate is given in percent of the

bottleneck-link rate, the queue in percent of buffer volume, loss in

percent of traffic volume, the RTT as relative excess delay, and the

congestion window in percent of the path BDP. The comparisons

highlight both important commonalities and differences between

the model and the experiments.

Similarities. The fluid models are highly predictive regarding

the rate patterns over time. In addition, the fluid models correctly

capture that the loss-sensitive BBRv2 lead to considerably smaller

loss (barely visible) than BBRv1, which is insensitive to loss. Finally,

the fluid model correctly predicts that the sending rate of the loss-

sensitive BBRv2 barely exceeds the bottleneck rate under RED,

while RED has no impact on the loss-insensitive BBRv1. The model

thus also reflects the relatively low buffer usage of BBRv2 under

RED, although it slightly overestimates the buffer usage of BBRv2

under RED (cf. Fig. 5b).

Difference: RED idealization. The difference above is due to
the idealization of RED: In the model, the queue size affects the loss

probability instantly; in reality, RED relies on outdated and averaged

measurements of the queue size, causing some lag between queue

build-ups and loss surges. In effect, a larger queue can build up until

the increased drop probability stabilizes the queue, which translates

into larger buffer usage in the experiments.

Difference: ProbeRTT state in BBRv2. The BBRv2 flow in the

model simulation for drop-tail regularly enters the ProbeRTT state,

unlike in the corresponding experiment. This observation can be ex-

plained as follows. In the model, BBRv2 regularly manages to drain

the queue, therefore discovers the propagation delay early, and can-

not detect a lower RTT afterwards; hence, it enters the ProbeRTT
state every 10 seconds. In the experiment, however, BBRv2 never

fully uncovers the propagation delay, and experiences random fluc-

tuations in the RTT measurements. Hence, BBRv2 occasionally

observes RTTs that fall short of the current minimum-RTT esti-

mate, which keeps it from entering the ProbeRTT state.

In summary, the fluid models capture the differences among

CCAs and queuing disciplines with high accuracy, especially rela-

tively (e.g., which CCAs lead to lower buffer usage) and to a lesser

degree also absolutely (e.g., level of buffer usage).

4.3 Validation of Aggregate Results
The trace validations in the previous subsection indicate that the

presented CCA fluid models yield reasonable predictions for single

senders. The more important question, however, is whether these

fluid models can acceptably predict network-performance metrics

given interacting senders. To test the fluid models in this metric-

oriented aspect, we compare aggregate results from model compu-

tations and experiments for a wide variety of network parameters,

in particular with respect to Jain fairness (Fig. 6), packet loss (Fig. 7),

buffer occupancy (Fig. 8), bottleneck-link utilization (Fig. 9) and

jitter, i.e., packet-delay variation (Fig. 10). All metrics were obtained

from the aggregation of 5-second traces, where the experiment re-

sults are averaged over 3 runs. In contrast, fluidmodels are determin-

istic and do not require averaging. The network setting was based

on the topology in Fig. 3, 𝑁 = 10 senders, a bottleneck-link rate

of 𝐶ℓ = 100Mbps, a bottleneck-link propagation delay 𝑑ℓ = 10ms

and total RTTs randomly selected between 30 and 40ms. For hetero-

geneous CCAs, each CCA was employed by 𝑁 /2 = 5 senders. To

strengthen our validation, we conduct the same analysis for shorter

delays, which confirms our results (cf. Appendix C).

As in the trace validation, the comparisons reveal that the model

predictions and the experiment results have both striking similari-

ties and notable differences regarding all metrics.

4.3.1 Fairness. Regarding fairness (cf. Fig. 6), we first observe that

the least fairness arises when a loss-sensitive CCA (Reno, CUBIC or

BBRv2) competes with BBRv1 in shallow buffers, which has already

been well documented in previous research [51, 58]. This unfairness

is the result of the loss insensitivity of BBRv1, which maintains its

rate despite loss while loss-sensitive CCAs practically stop sending

in reaction to the loss caused by BBRv1.

Starting at buffer sizes from 4 BDP, however, the fairness in these

settings increases for two reasons. First, these large buffers reduce

the occurrence of loss, which prevents the back-off of loss-sensitive

CCAs. Second, in large buffers, the inflight limit of the congestion

window restricts the sending rate of BBRv1 and allows competing

flows to obtain a higher share of bandwidth than in shallow buffers.

Given a RED queue, however, the fairness of BBRv1 towards loss-

sensitive CCAs is consistently low because RED (1) increases loss

and (2) restricts the buffer build-up such that the inflight of the

BBRv1 flows is substantially below their inflight limit.

The fairness issues of BBRv1 have been largely resolved in BBRv2,

as the fluidmodel and the experiment results show. However, BBRv2

is still unfair towards loss-based CCAs in RED buffers, where the

higher loss sensitivity of loss-based CCAs is revealed.

One substantial difference between the fluid-model predictions

and the experiment results is the decreasing fairness of BBRv1 in

homogeneous settings in deep drop-tail buffers, which only appears

in the fluid model. The fluid model reveals the RTT unfairness of

BBRv1, which has indeed been experimentally confirmed [51, 58],

although for higher RTT differences than used in our network

setting. This RTT unfairness stems from the inflight limit of BBRv1,

6



Performance, Fairness, and Stability of BBR IMC ’22, October 25–27, 2022, Nice, France

0 2 4 6
Time [s]

0

50

100

%

Model

0 2 4 6
Time [s]

Experiment

(a) Drop-tail

0 2 4 6
Time [s]

0

50

100

%

Model

0 2 4 6
Time [s]

Experiment

Rate

Queue

Loss

RTT

(b) RED
Figure 4: BBRv1 trace validation
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Figure 5: BBRv2 trace validation

which becomes relevant in deep buffers: Since flows with a lower

RTT are estimating a lower BDP and hence maintain a smaller

congestion window, lower-RTT flows are more severely restricted

by the inflight limit. Our fluid model can reveal this effect. In deep

buffers with large queues, each BBRv1 sender 𝑖 is restricted by its

congestion-window size𝑤𝑖 , resulting in the following sending rate:

𝑥𝑖 =
𝑤𝑖

𝜏𝑖
=

2𝜏min

𝑖
𝑥btl
𝑖

𝜏𝑖
=

2𝑑p
𝑖

𝑑p
𝑖
+ 𝑞ℓ/𝐶ℓ

𝑥btl𝑖 , (34)

where ℓ is the bottleneck link shared among all flows, and we

assume 𝜏min

𝑖
= 𝑑p

𝑖
(i.e., the propagation delay has been successfully

uncovered). With these sending rates, the delivery rate for sender 𝑖

is according to Eq. (18):

𝑥dlv𝑖 =
𝑥𝑖𝐶ℓ

𝑥𝑖 +
∑
𝑗≠𝑖 𝑥 𝑗

. (35)

Moreover, since the sending rates are static (because the varying

pacing rate is overruled by the congestion-window constraint), the

delivery rates are static across the bandwidth-probing interval as

well, resulting in 𝑥max

𝑖
= 𝑥dlv

𝑖
. This maximum delivery rate 𝑥max

𝑖
is

monotonically increasing in propagation delay 𝑑p
𝑖
of sender 𝑖:

𝜕𝑥max

𝑖

𝜕𝑑p
𝑖

=
2𝑥btl
𝑖

∑
𝑗≠𝑖 𝑥 𝑗(

2𝑑p
𝑖
𝑥btl
𝑖

+ (𝑑p
𝑖
+ 𝑞ℓ/𝐶ℓ )

∑
𝑗≠𝑖 𝑥 𝑗

)
2
> 0 (36)

Hence, flows with a higher RTT have a larger congestion window,

can thus send at a higher rate, measure a higher maximum de-

livery rate, and in turn estimate a higher bottleneck bandwidth.

This bottleneck-bandwidth estimate then increases the congestion-

window size, leading to a positive feedback loop. However, the

representation of the delivery rate in Eq. (35) idealizes the noisy

relationship between sending rates and delivery rates in real-world

buffers. This noise can eliminate the difference in measured deliv-

ery rates for flows with small RTT differences, and thus break the

positive feedback loop in that case. Hence, the described effect only

appears for relatively large RTT differences in reality.

In conclusion, the fluid models correctly predict fairness effects

from a qualitative perspective, i.e., they rank CCA settings correctly

according to their fairness, and approximately also from a quanti-

tative perspective. Interestingly, the fluid model also predicts RTT

unfairness among BBRv1 flows in deep drop-tail buffers, which does

not appear in the corresponding experiments. However, this RTT

unfairness is a real issue in more extreme settings than tested in

this validation, i.e., for higher RTT differences between the senders.

Since the role of a fluid model is to reveal problematic CCA fea-

tures, we argue that the exaggeration of an existing problem barely

weakens the methodological value of the BBR fluid model.

4.3.2 Loss. Fig. 7 suggests that fluid models are highly suitable to

predict loss rates for different CCAs, both in homogeneous settings

and heterogeneous settings and both qualitatively and quantita-

tively. Our model correctly predicts (1) that the loss rate of loss-

sensitive CCAs (Reno, CUBIC, BBRv2 and combinations thereof) in

drop-tail buffers is below 1% and goes to 0% for increasing buffer

size, (2) that BBRv1 leads to considerable loss of at most 20%, where

the loss rate is indirectly proportional to the buffer size for drop-tail

queuing, and (3) that a RED queuing discipline keeps loss rates

roughly consistent across buffer sizes.

One obvious prediction error of the fluid model is the underesti-

mation of loss rates for loss-sensitive CCAs given RED in Fig. 7d.

This underestimation stems again from an idealization of the RED

queue in the model, which determines the loss rate based on the

current queue length. In contrast, real RED tracks the queue length

with a moving average and hence reacts to queue build-up with de-

lay. Since the queue has more time to accumulate until stabilization

by RED, the queue length is higher than given an instantaneously

reacting RED algorithm (cf. also Fig. 8b). Moreover, since the RED

dropping probability is proportional to the queue size, the loss rate

given delayed RED is slightly higher than for instantaneous RED.

However, since this underestimation only amounts to 0.5 percent-

age points, we still consider our fluid model highly predictive with

respect to loss.
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Figure 6: Fairness validation
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Figure 7: Loss validation

4.3.3 Queuing. Fig. 8 shows the average queue size as a share of
buffer capacity. Notably, the fluid model captures the effect that

the traditional loss-based CCAs Reno and CUBIC cause bufferbloat,
i.e., lead to consistently high buffer utilization. This effect is visi-

ble in combined settings of BBRv2 with loss-based CCAs, as the

generally lower buffer usage of BBRv2 in a homogeneous setting

demonstrates that BBRv2 is not responsible for the bufferbloat.

Interestingly, BBRv1 leads to even more intense buffer usage

than loss-sensitive CCAs, whether in homogeneous or in combined

settings. Under drop-tail (Fig. 8a), BBRv1 uses most of the buffer

independent of buffer size, where the relative buffer usage is only

moderately reduced in large buffers. This effect is surprising, as a

major design goal of BBR is exactly to avoid the bufferbloat caused

by traditional loss-based CCAs [9].

The validation analysis reveals another unexpected phenomenon,

which concerns the buffer utilization of BBRv2 in homogeneous set-

tings given a drop-tail queuing discipline. In particular, BBRv2 leads

to constant absolute buffer usage for buffer sizes up to 4 BDP, which

is visible as decreasing relative buffer usage in Fig. 8a. In these sce-

narios, the adjustments to BBR appear to have resolved the issue

of bufferbloat in BBRv1. In large buffers, however, the buffer uti-

lization increases again with buffer size. Through trace inspection,

we found that this phenomenon is caused by initial measurements

of inflight_hi during the start-up phase of BBRv2: Given large

buffers, this initial inflight_hi bound may be set too high or not

set at all. Moreover, inflight_lo may never be set either, because

large buffers prevent loss, whichwould activate inflight_lo. In ab-
sence of stringent bounds given by inflight_hi and inflight_lo,
BBRv2 falls back on the standard BBR congestion-window size of

2 estimated BDP (cf. Eq. (32)). In comparison with the empirically

found inflight_hi and inflight_lo, this congestion-window
size is a loose bound that allows higher sending rates of BBRv2 and

thus causes more intense buffering. To the best of our knowledge,

this behavior of BBRv2 has not been publicly documented so far.

While our BBRv2 fluid model does not model the start-up phase

which causes this issue, the same effect can be observed in the

model when choosing the initial condition of the differential equa-

tion for 𝑤hi

𝑖
(cf. Eq. (30)) dependent on the buffer size. Therefore,

we note that fluid models have to be evaluated under a variety of

initial conditions to reveal design issues.

4.3.4 Utilization. The fluid model captures three important aspects

of link utilization (cf. Fig. 9). First, the fluid model correctly predicts

that BBRv1 (or combinations with BBRv1) lead to full utilization of

the bottleneck link, both under drop-tail and RED. This high utiliza-

tion by BBR is unsurprising given the aggressiveness of the CCA,

which alsomanifests in high loss (Fig. 7) and intense queuing (Fig. 8).

Second, the fluid model mirrors the increasing link utilization by

8
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Figure 8: Queuing validation
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Figure 9: Utilization validation
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Figure 10: Jitter validation

loss-sensitive CCAs for increasing buffer size under drop-tail: Loss-

based CCAs grow their rate while the buffer is filling up and cut

it by a constant factor when the buffer is full, so larger buffers im-

ply higher rates and thus higher utilization. Third, the fluid model

reflects that BBRv2 yields the lowest utilization given drop-tail

among all CCAs, although the wasted capacity only amounts to 3%

at most. This incomplete utilization stems from the ProbeRTT state

of BBRv2, in which the inflight is reduced to half the estimated

BDP. Under RED, BBRv2 does not enter the ProbeRTT phase for 10

senders; neither does BBRv1 for both queueing disciplines.

The only major prediction error of the model is the underesti-

mation of utilization by the BBRv2/Reno combination in shallow

RED buffers. This result again points to the idealization of instantly

reacting RED queues: The Reno flows in the model back off as soon

as the arrival rate exceeds the bottleneck capacity, whereas this

back-off is delayed in the experiments. Hence, the arrival-rate evo-

lution moves on a lower level in the model than in the experiment,

leading to an underestimation of utilization.

4.3.5 Jitter. Jitter corresponds to the mean delay difference be-

tween consecutive packets. The experimental jitter results in Fig. 10

are calculated in this manner. As the fluid model misses a notion of

packets, we compute the jitter for fluid-model traces by sampling

the RTT at a virtual packet rate, i.e., every 𝑔 ·𝑁 /𝐶ℓ seconds, where 𝑔
is a given packet size.

However, as Fig. 10 makes clear, also this makeshift calcula-

tion unsurprisingly fails to predict jitter: Fluid models intention-

ally abstract from small-scale fluctuations and describe only the

macroscopic tendency of network indicators with smooth curves.

Nonetheless, fluid models could be combined with packet-level

models aimed at modeling jitter [14, 15]; we leave this challenge

for future research.

5 THEORETICAL ANALYSIS
In this section, we analyze the BBR fluid models to characterize

the stability of these CCAs. Unless given directly, the proofs of all

theorems are presented in Appendix D.

5.1 BBRv1 Stability Analysis
While the fluid model in §3.3 is suitable for simulation, we have to

simplify it to a high-level model for analysis (§5.1.1). In §5.1.2, we

investigate the existence, form and stability of BBRv1 equilibria.

5.1.1 Model Reduction. The first simplification step is given by

disregarding the ProbeRTT state, which lets flow discover their prop-

agation delay and generally achieves this goal. Hence, we assume

9
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that 𝜏min

𝑖
=

∑
ℓ∈𝜋𝑖 𝑑ℓ =: 𝑑𝑖 . Since this minimum-RTT measure-

ment is present in the congestion-window size𝑤
pbw

𝑖
= 2𝜏min

𝑖
𝑥btl
𝑖
,

also 𝑤
pbw

𝑖
can be simplified to 2𝑑𝑖𝑥

btl

𝑖
. Apart from affecting the

congestion-window size, the ProbeRTT state has no lasting effects

and can hence be omitted for the purpose of stability analysis.

The second step involves understanding the evolution of the

maximum measurement 𝑥max

𝑖
. This maximum measurement is

the maximum delivery rate 𝑥dlv
𝑖

over a period, which in turn de-

pends on the sending rates of all flows and the queue length at

the bottleneck link (cf. Eq. (18)). The sending rate of a sender 𝑖 is

either min(𝑤pbw

𝑖
/𝜏𝑖 , 5/4𝑥btl

𝑖
) (if flow 𝑖 is probing), min(𝑤pbw

𝑖
/𝜏𝑖 ,

3/4𝑥btl
𝑖

) (if draining), or min(𝑤pbw

𝑖
/𝜏𝑖 , 𝑥btl𝑖 ) (otherwise). Hence, the

maximum delivery rate depends on the concurrent behavior of

the other flows on the bottleneck link, which may be probing

or draining during the measurements of flow 𝑖 . For many flows,

the probing and draining flows can be expected to offset each

other such that the total background-traffic volume is similar as

if 𝑥
pbw

𝑗
= min(𝑤pbw

𝑗
/𝜏 𝑗 , 𝑥btl𝑗 ) for all flows 𝑗 ∈ 𝑈ℓ𝑖 , 𝑗 ≠ 𝑖 . Given

this background traffic, a sender 𝑖 measures the maximum delivery

rate in the probing phase. Hence, the maximum measurement is

determined as follows:

𝑥max

𝑖 =


min(5/4, Δ𝑖 ) ·𝑥btl𝑖

·𝐶ℓ𝑖

min(5/4, Δ𝑖 ) ·𝑥btl𝑖
+∑𝑗≠𝑖 min(1, Δ𝑗 ) ·𝑥btl𝑗

if 𝑞ℓ𝑖 > 0

min(5/4,Δ𝑖 ) · 𝑥btl𝑖 otherwise

(37)

where Δ𝑖 = 2𝑑𝑖/(𝑑𝑖 +
∑
ℓ∈𝜋𝑖

𝑞ℓ
𝐶ℓ

), and ℓ𝑖 is flow 𝑖’s bottleneck link.

The final simplification step concerns the adaptation of the

bottleneck-bandwidth estimate 𝑥btl
𝑖

. Over a long duration, this reg-

ular update can be approximated by a continuous assimilation:

¤𝑥btl𝑖 = 𝑥max

𝑖 − 𝑥btl𝑖 (38)

5.1.2 Stability Analysis. To characterize stability of a CCA, we

first need to identify its equilibria, i.e., configurations from which

the fluid-model dynamics cannot depart. In the case of BBRv1, the

network state may change if the maximum measurement 𝑥max

𝑖
by

some flow 𝑖 differs from the bottleneck-bandwidth estimate 𝑥btl
𝑖
,

or if the queue length 𝑞ℓ of some link ℓ grows; both events may

lead to subsequent rate changes. To formalize this condition, we

henceforth consider 𝑁 senders which share a single bottleneck

link ℓ∗. Moreover, we first assume that buffer capacities do not

constrain the dynamics, and modify this assumption later.

Definition 1. 𝑁 BBRv1 senders sharing a bottleneck link ℓ∗ are
in equilibrium if and only if {𝑥btl

𝑖
}𝑖∈𝑈ℓ∗ and 𝑞ℓ∗ satisfy:∑︁

𝑖∈𝑈ℓ∗

min(1, Δ𝑖 ) · 𝑥btl𝑖 = 𝐶ℓ∗ ∀𝑖 ∈ 𝑈ℓ∗ . 𝑥btl𝑖 = 𝑥max

𝑖 (39)

The first condition keeps the aggregate rate 𝑦ℓ∗ at line rate 𝐶ℓ∗

and hence ensures a static queue length. The remaining constraints

rule out rate adaptations.

Theorem 1. 𝑁 BBRv1 senders sharing a bottleneck link ℓ∗ are in
equilibrium if and only if propagation delay equals queuing delay for
every sender, i.e.,

∀𝑖 ∈ 𝑈ℓ∗ . 𝑑𝑖 =
∑︁
ℓ∈𝜋𝑖

𝑞ℓ

𝐶ℓ
.

Interestingly, Theorem 1 suggests that the equilibria of BBRv1

in single-bottleneck scenarios (with non-limiting buffers) can be

arbitrarily unfair as long as

∑
𝑖∈𝑈ℓ∗ 𝑥

btl

𝑖
= 𝐶ℓ∗ . Furthermore, we

note that the BBRv1 equilibrium requires equal path propagation

delay 𝑑 for all senders if all senders only encounter a non-empty

queue at the bottleneck link ℓ∗. For our stability analysis, we focus

on that case, i.e., a scenario where the queue lengths on all involved

links except the bottleneck link ℓ∗ are zero, which is a scenario

frequently investigated in the literature [1, 25, 63]. In this case, we

can prove asymptotic stability of BBRv1 with the indirect Lyapunov

method, meanining that initial configurations exist for which the

BBRv1 dynamics converge to the equilibrium.

Theorem 2. In a single-bottleneck network with a queue exclu-
sively at the bottleneck, the BBRv1 equilibrium from Theorem 1 is
asymptotically stable.

Proof. In the scenario under consideration, it holds that 𝑞ℓ =

0 ∀ℓ ≠ ℓ∗. Given Theorem 1, it thus holds that the equilibrium is

valid only for equal RTTs:

∀𝑖 ∈ 𝑈ℓ∗ . 𝑑𝑖 =
𝑞ℓ∗

𝐶ℓ∗
=: 𝑑. (40)

Hence, we can simplify: Δ𝑖 = Δ(𝑞ℓ∗ ) := 2𝑑/(𝑑 + 𝑞ℓ∗/𝐶ℓ∗ ). As a
result, the equilibrium requires that Δ(𝑞ℓ∗ ) = 1 ⇐⇒ 𝑞ℓ∗ = 𝑑𝐶ℓ∗ .

We now consider a configuration where the senders are out of

equilibrium and constrained by the congestion-window limit, i.e.,

Δ(𝑞ℓ∗ ) < 1 ⇐⇒ 𝑞ℓ∗ > 𝑑𝐶ℓ∗ . The dynamics of the bottleneck-

bandwidth estimates by sender 𝑖 are then given by:

¤𝑥btl𝑖 =
Δ(𝑞ℓ∗ )𝑥btl𝑖 𝐶ℓ∗

Δ(𝑞ℓ∗ )
∑
𝑘∈𝑈ℓ∗ 𝑥

btl

𝑘

− 𝑥btl𝑖 =
𝑥btl
𝑖
𝐶ℓ∗∑

𝑘∈𝑈ℓ∗ 𝑥
btl

𝑘

− 𝑥btl𝑖 (41)

Moreover, the dynamics of the bottleneck-link queue 𝑞ℓ∗ are:

¤𝑞ℓ∗ = 𝑦ℓ∗ −𝐶ℓ∗ = Δ(𝑞ℓ∗ )
∑︁
𝑖∈𝑈ℓ∗

𝑥btl𝑖 −𝐶ℓ∗ (42)

where 𝑦ℓ∗ is the arrival rate at bottleneck link ℓ∗. Based on these

dynamics, we derive the dynamics of the arrival rate 𝑦ℓ∗ :

¤𝑦ℓ∗ = ¤Δ(𝑞ℓ∗ )
∑︁
𝑖∈𝑈ℓ∗

𝑥btl𝑖 + Δ(𝑞ℓ∗ )
∑︁
𝑖∈𝑈ℓ∗

¤𝑥btl𝑖 (43)

= − 1

𝐶ℓ∗ (𝑑 + 𝑞ℓ∗
𝐶ℓ∗

)
𝑦2ℓ∗ + ( 1

𝑑 + 𝑞ℓ∗
𝐶ℓ∗

− 1)𝑦ℓ∗ + Δ(𝑞ℓ∗ )𝐶ℓ∗

Building on this formalization, we can define a classic non-linear

dynamic system with 𝑦ℓ∗ and 𝑞ℓ∗ as state variables, and ¤𝑦ℓ∗ and ¤𝑞ℓ∗
as entries of the vector-valued function 𝑓 describing the dynamics.

To characterize the stability of that system, we can then employ the

indirect Lyapunov method [46]. This method states that a system

is locally asymptotically stable if the Jacobian matrix of the system

dynamics 𝑓 has eigenvalues with exclusively negative real parts

when evaluated at the equilibrium. The Jacobian matrix J𝑓 ∈ R2×2
has the following entries:

10
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𝜕 ¤𝑦ℓ∗
𝜕𝑦ℓ∗

= − 2

𝐶ℓ∗ (𝑑 + 𝑞ℓ∗
𝐶ℓ∗

)
𝑦ℓ∗ +

1

𝑑 + 𝑞ℓ∗
𝐶ℓ∗

− 1 (44)

𝜕 ¤𝑦ℓ∗
𝜕𝑞ℓ∗

=
𝑦2
ℓ∗

𝐶2

ℓ∗ (𝑑 + 𝑞ℓ∗
𝐶ℓ∗

)2
− 𝑦ℓ∗

𝐶ℓ∗ (𝑑 + 𝑞ℓ∗
𝐶ℓ∗

)2
− 2𝑑

(𝑑 + 𝑞ℓ∗
𝐶ℓ∗

)2
(45)

𝜕 ¤𝑞ℓ∗
𝜕𝑦ℓ∗

= 1

𝜕 ¤𝑞ℓ∗
𝜕𝑞ℓ∗

= 0 (46)

Evaluating this Jacobian matrix at the equilibrium, i.e., 𝑦ℓ∗ = 𝐶ℓ∗

and 𝑞ℓ∗ = 𝑑𝐶ℓ∗ , yields a matrix for which the maximum eigen-

value 𝜆+ can be found via the characteristic equation:

J𝑓 (𝐶ℓ∗ , 𝑑𝐶ℓ∗ ) =
(
− 1

2𝑑
− 1 − 1

2𝑑
1 0

)
=⇒ 𝜆+ = −( 1

4𝑑
+ 1

2

) + 1

2𝑑
(±(𝑑 − 1

2

))
(47)

Performing a case distinction on 𝑑 confirms that the maximum

eigenvalue 𝜆+ is always negative:

𝑑 ≤ 1

2

: 𝜆+ =
−( 1

2𝑑
+ 1) − 1

𝑑
(𝑑 − 1

2
)

2

= −1 < 0

𝑑 >
1

2

: 𝜆+ =
−( 1

2𝑑
+ 1) + 1

𝑑
(𝑑 − 1

2
)

2

= − 1

2𝑑
< 0

(48)

Hence, we observe that the Jacobian matrix J𝑓 has consistently neg-
ative eigenvalues, which by the indirect Lyapunov method proves

the asymptotic stability of the dynamics. □

As the proof of Theorem 2 makes clear, the BBRv1 equilibrium

from Theorem 1 is only viable if the bottleneck-link buffer ca-

pacity 𝐵ℓ∗ permits the equilibrium queue length 𝑞ℓ∗ = 𝑑𝐶ℓ∗ . In-

tuitively, the equilibrium is valid for a bottleneck buffer that is

large enough for the congestion-window constraint Δ𝑖 to have an

impact. To analytically investigate the shallow-buffer case where

the congestion-window limit is not effective, we assume that the

bottleneck queue length 𝑞ℓ∗ is restricted by the buffer size 𝐵ℓ∗

such that the congestion-window limit has no effect for any flow 𝑖 ,

i.e., Δ𝑖 ≥ 5/4 for all 𝑖 ∈ 𝑈ℓ∗ (cf. Eq. (37)). With this assumption, we

find a different equilibrium for BBRv1:

Theorem 3. 𝑁 BBRv1 senders sharing a bottleneck link ℓ∗ that has
a shallow buffer (i.e. Δ𝑖 > 5/4 ∀𝑖 ∈ 𝑈ℓ∗ ) are in equilibrium if and only
if each flow 𝑖 has the following bottleneck-bandwidth estimate 𝑥btl

𝑖
:

𝑥btl𝑖 =
5𝐶ℓ∗

4𝑁 + 1

.

This equilibrium is perfectly fair and asymptotically stable.

Theorem 3 thus implies that without an effective congestion-

window limit, the aggregate rate 𝑦ℓ∗ in equilibrium consistently

exceeds the link capacity𝐶ℓ∗ , except for 𝑁 = 1. As a result, multiple

BBRv1 senders fill the shallow bottleneck-link buffer, eventually in-

curring a loss rate equal to the excess sending rate (20% for𝑁 → ∞).

While this consistent packet loss does not reduce the rate of loss-

insensitive BBRv1 senders, the loss is fatal for loss-based CCAs on

the same bottleneck link, which produces high inter-CCA unfair-

ness. Among each other, BBRv1 flows must converge to perfect

fairness in shallow buffers, whereas such fairness is only possible,

but not required in deep buffers (cf. Theorem 1).

5.2 BBRv2 Stability Analysis
This section again presents a condensed version of the BBRv2 fluid

model from §3.4, which is then used for stability analysis.

5.2.1 Model Reduction. Thanks to the shared foundation of BBRv1

and BBRv2, our reduced fluid model for BBRv2 largely matches

the reduced model for BBRv1 (cf. §5.1.1) such that we only discuss

different simplification steps.

In particular, the specific probing process of BBRv2 affects the

maximum measurement 𝑥max

𝑖
. This probing process is centered

around a traffic pulse, which raises the pacing rate to 5/4 · 𝑥btl
𝑖

and

the inflight volume to 5/4 ·𝑤𝑖 , except the loss exceeds 2%. Since we
limit our analysis to networks with buffers large enough to prevent

loss, the traffic-pulse rate is:

𝑥
pls

𝑖
= 5/4 ·min(1, 𝛿𝑖 ) · 𝑥btl𝑖 , 𝛿𝑖 =

𝑑𝑖

𝑑𝑖 +
∑
ℓ∈𝜋𝑖 𝑞ℓ/𝐶ℓ

. (49)

In addition to this pulse rate, the background traffic co-determines

the maximum delivery rate 𝑥max

𝑖
. This background traffic can be

assumed to consist of flows in cruising mode, in which any BBRv2

flow spends the vast majority of its lifetime. In cruising mode, a

BBRv2 flow 𝑖 sets its pacing rate to 𝑥btl
𝑖

and keeps its inflight vol-

ume at the minimum of the estimated BDP𝑤𝑖 and 85% of the upper

inflight bound inflight_hi (𝑤hi

𝑖
). Since we can exclude packet

loss,𝑤hi

𝑖
corresponds to the maximum measured inflight from the

probing pulse, which is 5/4 ·𝑤𝑖 . Since the estimated BDP𝑤𝑖 is con-

sistently smaller than 0.85 · 5/4 · 𝑤𝑖 , the sending rate in cruising

mode is:

𝑥𝑖 = min(1, 𝛿𝑖 ) · 𝑥btl𝑖 (50)

Based on the sending rates of pulses and the cruising mode, the

evolution of the maximum delivery rate 𝑥max

𝑖
is approximated as

follows (with ℓ𝑖 as the bottleneck link):

𝑥max

𝑖 =


5/4·min(1, 𝛿𝑖 ) ·𝑥btl𝑖

·𝐶ℓ𝑖

5/4·min(1, 𝛿𝑖 ) ·𝑥btl𝑖
+∑𝑗≠𝑖 min(1, 𝛿 𝑗 ) ·𝑥btl𝑗

if 𝑞ℓ𝑖 > 0

5/4 ·min(1, 𝛿𝑖 ) · 𝑥btl𝑖 otherwise

(51)

5.2.2 Stability Analysis. For BBRv2, the equilibrium conditions

match the equilibrium conditions for BBRv1 (cf. Definition 1), withΔ𝑖
substituted by 𝛿𝑖 = Δ𝑖/2. However, the modified adaptation rule

for 𝑥btl
𝑖

induces a different equilibrium for BBRv2:

Theorem 4. 𝑁 BBRv2 senders sharing a bottleneck link ℓ∗ are in
a perfectly fair equilibrium if propagation delay and queuing delay
for each flow have the following relation:

∀𝑖 ∈ 𝑈ℓ∗ .
𝑁 − 1

4𝑁 + 1

· 𝑑𝑖 =
∑︁
ℓ∈𝜋𝑖

𝑞ℓ

𝐶ℓ

Importantly, the above equilibrium is not necessarily the only

equilibrium for BBRv2, which may thus induce unfair equilibria

like BBRv1. Nevertheless, the above BBRv2 equilibrium has an

inter-dependency with the rate distribution; no BBRv1 equilibrium

involves such an inherent dependency.

Similar to the BBRv1 equilibrium, however, the above equilib-

rium implies equal path propagation delay 𝑑 for all senders if only

the bottleneck link has a non-empty queue. For our stability analy-

sis, we thus again focus on a scenario where the queue lengths on

all involved links except the bottleneck link ℓ∗ are zero:
11
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Theorem 5. In a single-bottleneck network with a queue exclu-
sively at the bottleneck, the BBRv2 equilibrium from Theorem 4 is
asymptotically stable.

If a network has a queue exclusively at the bottleneck link, The-

orem 4 implies equilibrium queue length 𝑞ℓ∗ =
𝑁−1
4𝑁+1𝑑𝐶ℓ∗ . In com-

parison with BBRv1, BBRv2 thus reduces buffer utilization by at

least 75% (for 𝑁 → ∞), assuming the buffer is large enough to

accommodate the BBRv1 equilibrium queue.

5.3 Summary of Theoretical Results
To provide a practical interpretation of our theoretical findings, we

summarize the key takeaways from the preceding sections below.

BBRv1 in deep buffers. In deep buffers, BBRv1 converges to

rate distributions with no fairness guarantees (cf. Theorems 1 and

2). Indeed, previous research has already demonstrated that unfair-

ness can arise among BBRv1 flows with strongly different RTTs,

with longer-RTT flows obtaining higher bandwidth shares [24, 58].

However, we find that RTT diversity is not necessary for unfairness:

Even flows with equal RTTs can obtain different bandwidth shares

as long as the propagation delay of each flow equals the cumulative

queuing delay on the used path. Hence, if flows with equal RTT 𝑑

share a bottleneck link ℓ∗ with capacity 𝐶ℓ∗ and only encounter

a queue at that bottleneck link, the steady-state queue length of

BBRv1 is the product of path propagation delay and bottleneck

capacity, i.e., 𝑑 ·𝐶ℓ∗ .
BBRv1 in shallow buffers. BBRv1 converges to different steady

states (i.e., equilibria) in shallow buffers than in deep buffers (cf. The-

orem 3). In particular, the steady states that are attained given shal-

low buffers involve perfectly fair rate distributions. However, the

aggregate equilibrium rate for shallow buffers necessarily exceeds

the bottleneck capacity for more than one concurrent flow; hence,

BBRv1 causes permanently full buffers and enduring loss (of up

to 20% for a high number of flows) in shallow buffers.

BBRv2 improvements. Our analysis illustrates the improve-

ments of BBRv2 over BBRv1 for the scenario where all flows have

equal propagation delay and only encounter a queue at the bottle-

neck link. In that case, BBRv2 necessarily converges to a steady

state (cf. Theorems 4 and 5), which is preferable to the BBRv1 steady

state in two respects. First, the steady state that is attained by BBRv2

necessarily involves a perfectly equitable rate distribution (unlike

the steady states of BBRv1, which can be arbitrarily unfair). Sec-

ond, the steady state involves a bottleneck queue length which is

shorter than the BBRv1 equilibrium queue length by at least 75%

and is even 0 for a single sender. Our theoretical analysis thus con-

firms that BBRv2 improves upon BBRv1 in the essential aspects of

fairness and buffer utilization.

6 INSIGHTS AND DISCUSSION
In this section, we summarize the most interesting insights from

our experimental validation (§4), and our theoretical analysis (§5).

These insights reflect properties of CCAs (§6.1) and properties of

the fluid-model methodology (§6.2).

6.1 Insights into CCA Performance
In the following, we will distinguish previously known insights

that were confirmed by our fluid model, and novel insights that our

fluid model disclosed. For this distinction, we will indicate the type

of insight by (P) (for previous) and (N) (for novel).
One of the most consistent findings in the previous sections

relates to the packet loss caused by different types of CCAs:

Insight 1. Loss Rates of CCAs. BBRv1 causes considerable loss
of up to 20% of traffic under drop-tail, while the loss-sensitive CCAs
Reno, CUBIC, and BBRv2 cause loss rates of around 1% (P). The same
behavior is observed for a RED queuing discipline (N).

While such a difference between BBRv1 and loss-based CCAs

is not surprising given different loss sensitivity, the large extent

of the loss caused by BBRv1 is unexpected. Importantly, while the

loss insensitivity of BBRv1 does not lead to throughput reductions

of BBRv1, the high packet loss will still lead to unsatisfactory appli-

cation performance. Moreover, in competition with loss-sensitive

CCAs, the loss insensitivity of BBRv1 poses a fairness concern,

which is also reflected in previous work [51, 58]:

Insight 2. BBRv1’s Unfairness Towards Loss-Based CCAs.
BBRv1 is highly unfair towards loss-sensitive CCAs, leading to near
starvation of loss-based flows in shallow buffers (given a drop-tail
queuing discipline) (P) or buffers of any size (given a RED queuing
discipline) (N). In large drop-tail buffers, the congestion window of
BBRv1 becomes effective, leading to improvements in fairness towards
loss-sensitive CCAs (P).

The aggressiveness of BBRv1, causing high loss and unfairness,

has two other effects:

Insight 3. Utilization and Buffer Usage of BBRv1. In all in-
vestigated settings, BBRv1 (also in combination with other CCAs)
achieves full link utilization, but also significant bufferbloat indepen-
dent of the queuing discipine (P).

Many of these insights gained from our fluid model have already

been identified by previous, experiment-based analyses. In response

to documentations of these issues, Google has begun to develop

BBRv2, which can be characterized as follows:

Insight 4. Performance of BBRv2. BBRv2 mostly achieves the
redesign goals of reduced buffer usage, avoiding excessive loss, and
preserving fairness to loss-based CCAs (P).

However, we have identified two settings in which BBRv2 does

not achieve its design goal:

Insight 5. BBRv2 in Large Drop-Tail Buffers. In drop-tail
buffers with a size exceeding five BDP, BBRv2 causes higher buffer
utilization than for smaller buffers, caused by distortions in an initial
inflight_hi estimate in the start-up phase (N).

Insight 6. BBRv2 in RED Buffers. When competing with loss-
based CCAs (Reno and CUBIC) under a RED queuing discipline, BBRv2
is unfair towards the loss-based CCAs. The reason for this unfairness
is that on high-capacity links, the loss sensitivity of loss-based CCAs
is markedly higher than the loss sensitivity of BBRv2 (N).

6.2 Insights into Fluid Models
The preceding sections not only yield valuable insights into the

performance characteristics of BBR, but also illustrates the strengths

and limitations of fluid models as an analysis tool. We assess the

predictive power of fluid models as follows:
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Insight 7. Qualitative Accuracy of Fluid Models. Fluid mod-
els are highly predictive from a qualitative perspective, i.e., they accu-
rately capture the direction of correlations between CCA performance
and network parameters as well as the ranking of different CCAs
according to performance metrics.

Insight 8. Quantitative Accuracy of Fluid Models. The accu-
racy of the quantitative predictions by fluid models depends on the
metric: While the quantitative predictions of fluid models are highly
accurate regarding loss and fairly accurate regarding buffer usage, the
quantitative predictions regarding fairness and utilization are only
partially accurate.

Despite their overall high predictive power, fluid models yield

misleading results in some cases.We identified the following sources

of potentially inaccurate predictions:

Insight 9. Sources of Inaccuracy. Inaccurate predictions by
fluid models can result from at least three sources:

• idealizations, e.g., assuming instantly reacting RED queues
(cf. §4.3.2);

• difficulty of capturing discrete phenomena, e.g., jitter (cf. §4.3.5);
• and negligence of the start-up phase, e.g., BBRv2 has to be
simulated with varying initial conditions to find issues arising
from the start-up phase (cf. §4.3.3).

If the developers of CCAs are aware of the above pitfalls of fluid

models, they can interpret the fluid-model results in the context of

these caveats.

7 RELATEDWORK
While our focus on this paper is on congestion-control algorithms

(CCAs), we note that there exist several orthogonal approaches to

deal with congestion, for example, related to buffer management [4,

12, 13], scheduling [3, 26, 43, 44], and bandwidth reservation [7, 8].

Since the seminal work by Jacobson [28], a wide range of CCAs

have been proposed and analyzed [6, 25, 27, 29, 30, 45]. While

traditional CCAs are based on loss (timeout) signals, more recent

protocols leverage explicit congestion notification (ECN) [2, 55, 62]

or delay [1, 23, 32, 35, 40] to react in a more informed and fine-

grained manner. With BBR [9], recently another flavor of CC has

been introduced, which is often referred to as model-based.

Fluid models (also known as differential-equation models) pro-

vide a particularly powerful framework for an analytical under-

standing of CC protocols and their equilibria [53], and have been

widely used in the literature [18, 36, 37, 39, 48, 56]. These models

are attractive for their flexibility (e.g., supporting different topolo-

gies and queuing disciplines), and for allowing fast initial analyses.

In general, the models come in different flavors and can for ex-

ample be analyzed using dynamical-systems techniques [47]. In

one prominent work [39], a dynamic model of TCP behavior is

proposed using a fluid-flow and stochastic differential-equation

analysis. Using the Runge-Kutta algorithm, the fluid model also

allows efficient time-stepped network simulations [36]. However,

we are not aware of any work devising fluid models for BBR.

That said, BBR has been studied in a number of papers. In partic-

ular, Hock et al. [24] present a first independent study of BBRv1 and

found fairness issues, and that multiple BBR flows operate at their

in-flight cap in buffer-bloated networks. This work led to several in-

teresting follow-upworks [16, 51, 54]. In particular, Scholz et al. [51]

show that BBRv1 flows are robustly able to claim a disproportionate

share of the bandwidth. Ware et al. [58] recently complement these

empirical studies by presenting a first analytical model (although

not based on differential equations) capturing BBR’s behavior in

competition with loss-based CCAs in deep buffers. Yang et al. [60]

devise a simple fluid model for Adaptive-BBR, i.e., their adaptation

of BBR specialized for wireless links. Neither of these model-based

works possesses the generality of our fluid model, nor do they in-

clude a rigorous convergence analysis. BBRv2 has been investigated

by a number of experiment-based studies [20, 31, 41, 52], finding

mostly that BBRv2 resolves the most serious issues of BBRv1, but

also identifying problematic facets of BBRv2 behavior, although

not the ones found by this paper.

Recently, CCA research methodology has experienced innova-

tion with promising proposals for an axiomatic approach [61] and a

formal-verification approach [5]. These approaches are complemen-

tary to the fluid-model approach: While the axiomatic approach

allows to identify fundamental design constraints and the formal-

verification approach allows to identify network configurations

in which CCA performance does not conform to specifications,

neither of them is equally well-suited as the fluid-model approach

to reveal the qualitative and quantitative effects of network settings

and competing CCAs on CCA performance.

8 CONCLUSION
In this paper, we take a deep dive into the recent CCA proposals of

BBRv1 and BBRv2 by complementing previous analyses with an

approach based on fluid models. Fluid models are a classic but lately

seldom employed approach to evaluating CCA properties, and are

unique in their ability to allow both theoretical stability analysis

and efficient simulation for a wide range of network scenarios.

We devise such a fluid model for both BBR versions by using new

modelling techniques such as sigmoid pulses and mode variables,

and perform an experiment-based validation to show that the model

is highly predictive regarding performance and fairness properties.

We further leverage the model for both an extensive simulation

and a theoretical stability analysis. This investigation confirms

previously found issues in BBRv1, but also yields new insights, e.g.,

regarding the structure and asymptotic stability of BBR equilibria,

as well as regarding bufferbloat and inter-CCA unfairness in BBRv2.

While our model is accurate and general, we understand our

analysis as a first step in exploring the investigation opportunities

that our fluid model opens up. Indeed, it will be interesting to

evaluate the BBR fluid models in multiple-bottleneck scenarios,

both through simulations and further theoretical analysis.
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B LOSS-BASED CCA MODELS
In this section, we discuss the existing CCA models for Reno and

CUBIC, which have been used in our simulations. We also validate

these CCA fluid models in isolation

B.1 Reno
In its congestion-avoidance phase, TCPReno increases the congestion-

window size by 1/𝑤 upon successful transmission (signaled by an

ACK) and cuts it in half upon loss. This adaptation logic is approx-

imated by the following differential equation for the congestion-

window size𝑤𝑖 (𝑡) of agent 𝑖 using path 𝜋𝑖 [37]:

¤𝑤𝑖 = 𝑥𝑖
(
𝑡 − 𝑑p𝑖

)
·
(
1 − 𝑝𝑖

(
𝑡 − 𝑑p𝑖

) )
· 1

𝑤𝑖

− 𝑥𝑖
(
𝑡 − 𝑑p𝑖

)
· 𝑝𝜋𝑖

(
𝑡 − 𝑑p𝑖

)
· 𝑤𝑖
2

(52)

B.2 CUBIC
In contrast, TCP CUBIC cannot directly be described with a differ-

ential equation for the congestion-window size. Instead, Vardoyan

et al. [56] suggest to track two instrumental variables in CUBIC,

namely the time since last loss of agent 𝑖 , 𝑠𝑖 , and the congestion-

window size at that moment of loss,𝑤max

𝑖
:

¤𝑠𝑖 = 1 − 𝑠𝑖 · 𝑥𝑖
(
𝑡 − 𝑑p𝑖

)
· 𝑝𝑖

(
𝑡 − 𝑑p𝑖

)
, (53a)

¤𝑤max

𝑖 =
(
𝑤𝑖 −𝑤max

𝑖

)
· 𝑥𝑖

(
𝑡 − 𝑑p𝑖

)
· 𝑝𝑖

(
𝑡 − 𝑑p𝑖

)
. (53b)

The intuition behind Eq. (53a) is that 𝑠𝑖 is increased by 1 in absence

of loss (𝑝𝜋𝑖 = 0) and reduced to 0 when a loss occurs. Equation (53b)

describes that𝑤max

𝑖
(𝑡) should be updated to𝑤𝑖 (𝑡) in presence of

loss. Knowing 𝑠𝑖 and𝑤
max

𝑖
, the congestion-window size𝑤 can be

determined by the CUBIC window-growth function [21],

𝑤𝑖 = 𝑐 · ©­«𝑠𝑖 − 3

√︄
𝑤max

𝑖
· 𝑏

𝑐

ª®¬
3

+𝑤max

𝑖 , (54)

where 𝑐 and 𝑏 are configurable parameters with standardized values

of 0.4 and 0.7, respectively [49]. Moreover, the CUBIC implemen-

tation in the Linux kernel uses a time unit of around 1 second

for 𝑠𝑖 (𝑡) [22].

B.3 Trace Validation of Models
Figs. 11 and 12 present a comparison of single-sender traces ob-

tained from running both model simulation and mininet experi-

ments. The fluid model correctly predicts that the rate growth of

Reno and CUBIC decouples from the congestion-window growth

as soon as the buffer fills up. In addition, the fluid models correctly

capture that Reno and CUBIC lead to considerably smaller loss

(barely visible) than BBRv1, which is insensitive to loss (cf. §4.2).

Finally, the fluid model correctly predicts that the sending rate

of loss-based CCAs never exceeds the bottleneck rate under RED,

while the congestion windows can temporarily exceed the network

BDP under a drop-tail queuing discipline. As a result, the smaller

buffer usage under RED is also reflected in the model, although

the difference between RED and drop-tail is more pronounced in

the model. This last difference is due to the idealization of the RED

algorithm in the model.

C AGGREGATE VALIDATION FOR SHORT RTT
Figures 13, 14, 15, 16, and 17 extend the validation, performed

in §4.3, of fluid models regarding the aggregate metrics Jain fairness,

loss rates, buffer occupancy, utilization and jitter, respectively. In

contrast to the validation in the body of the paper, the fluid-model

predictions are experimentally validated for a bottleneck-link delay

of 5 milliseconds and total RTTs between 10 and 20 milliseconds.

D ANALYSIS PROOFS
This appendix section contains the proofs of the theorems in §5.

D.1 Proof of Theorem 1
First, we consider the case for 𝑞ℓ∗ = 0. In that case, the only solution

to the conditions in Eq. (39) in terms of {Δ𝑖 }𝑖∈𝑈ℓ∗ is Δ𝑖 = 1 ∀𝑖 ∈ 𝑈ℓ∗ ,
which shows that the network is in equilibrium for 𝑞ℓ∗ = 0 and

𝑑𝑖 =
∑
ℓ∈𝜋𝑖 𝑞ℓ/𝐶ℓ ∀𝑖 ∈ 𝑈ℓ∗ .

For 𝑞ℓ∗ > 0, we note that the conditions in Eq. (39) can be

transformed into the following conditions for each 𝑥btl
𝑖

:

𝑥btl𝑖 = max(1, 1/Δ𝑖 ) · (𝐶ℓ∗ −
∑︁
𝑗≠𝑖

min(1, Δ 𝑗 ) · 𝑥btl𝑗 ) (55)

𝑥btl𝑖 = 𝐶ℓ∗ −max(4/5, 1/Δ𝑖 ) ·
∑︁
𝑗≠𝑖

min(1, Δ 𝑗 ) · 𝑥btl𝑗 (56)

Clearly, the previously found solution Δ𝑖 = 1 ∀𝑖 ∈ 𝑈ℓ∗ is also a

solution to the conditions in Eqs. (55) and (56). Hence, we have

proven that the network is in equilibrium if 𝑑𝑖 =
∑
ℓ∈𝜋𝑖 𝑞ℓ/𝐶ℓ ∀𝑖 ∈

𝑈ℓ∗ .

It remains to prove that the previously mentioned equilibria are

the only possible equilibria. To confirm the uniqueness of these

equilibria, we first assume an equilibrium where ∃𝑖 ∈ 𝑈ℓ∗ . Δ𝑖 > 1.

For that agent 𝑖 , the maximum term in Eq. (55) is exactly 1, and

the maximum term in Eq. (56) is smaller than 1, which makes the

conditions contradictory and rules out an equilibrium. Conversely,

if assuming an equilibrium where ∃𝑖 ∈ 𝑈ℓ∗ . Δ𝑖 < 1, the maximum

term in Eq. (55) is 1/Δ𝑖 > 1, and the maximum term in Eq. (56)

is also 1/Δ𝑖 , which again leads to contradictory equations. Hence,

no equilibria other than the equilibrium with ∀𝑖 ∈ 𝑈ℓ∗ . Δ𝑖 = 1 are

possible, which concludes the proof.

D.2 Proof of Theorem 3
GivenΔ𝑖 ≥ 5/4 for all 𝑖 ∈ 𝑈ℓ∗ , the equilibrium condition on {𝑥btl

𝑖
}𝑖∈𝑈ℓ∗

is:

∀𝑖 ∈ 𝑈ℓ∗ . 𝑥btl𝑖 =
5/4𝑥btl

𝑖
𝐶ℓ∗

5/4𝑥btl
𝑖

+∑
𝑗≠𝑖 𝑥

btl

𝑗

= 𝐶 − 4/5
∑︁
𝑗≠𝑖

𝑥btl𝑗 (57)

This equation system requires all {𝑥btl
𝑖

}𝑖∈𝑈ℓ∗ to be equal, which

allows a straightforward solution:

∀𝑖 ∈ 𝑈ℓ∗ . 𝑥btl𝑖 =
5/4𝑥btl

𝑖
𝐶ℓ∗

(𝑁 + 1/4)𝑥btl
𝑖

=
5𝐶ℓ∗

4𝑁 + 1

(58)

It remains to show that this equilibrium is asymptotically stable,

for which we employ the indirect Lyapunov method. We apply this

16



Performance, Fairness, and Stability of BBR IMC ’22, October 25–27, 2022, Nice, France

0 10 20 30
Time [s]

0

50

100

%

Model

0 10 20 30
Time [s]

Experiment

(a) Drop-tail

0 10 20 30
Time [s]

0

50

100

%

Model

0 10 20 30
Time [s]

Experiment

Rate

Queue

Loss

RTT

Cwnd

(b) RED
Figure 11: Reno trace validation
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Figure 12: CUBIC trace validation
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Figure 13: Fairness validation

1 2 3 4 5 6 7
Buffer size [BDP]

0

10

20

30

L
os

s
[%

]

Model

1 2 3 4 5 6 7
Buffer size [BDP]

Experiment

(a) Drop-tail

1 2 3 4 5 6 7
Buffer size [BDP]

0

10

20

30

L
os

s
[%

]

Model

1 2 3 4 5 6 7
Buffer size [BDP]

Experiment
BBRv1

BBRv1/BBRv2

BBRv1/CUBIC

BBRv1/RENO

BBRv2

BBRv2/CUBIC

BBRv2/RENO

(b) RED
Figure 14: Loss validation
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Figure 15: Queuing validation
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Figure 16: Utilization validation
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Figure 17: Jitter validation

method to a non-linear dynamic process with {𝑥btl
𝑖

}𝑖∈𝑈ℓ∗ as state

variables and { ¤𝑥btl
𝑖

}𝑖∈𝑈ℓ∗ as vector-valued evolution function 𝑓 . The

Jacobian matrix J𝑓 has the following entries, which we evaluate at

the equilibrium:

𝜕 ¤𝑥𝑖
𝜕𝑥𝑖

=

5/4𝐶∑
𝑗≠𝑖 𝑥

btl

𝑗

(5/4𝑥𝑖 +
∑
𝑗≠𝑖 𝑥 𝑗 )2

− 1

𝐸𝑞.
= − 5

4𝑁 + 1

=: 𝐽𝑖𝑖 (59)

𝜕 ¤𝑥𝑖
𝜕𝑥 𝑗

= −
5/4𝐶𝑥𝑖

(5/4𝑥𝑖 +
∑
𝑗≠𝑖 𝑥 𝑗 )2

𝐸𝑞.
= − 4

4𝑁 + 1

=: 𝐽𝑖 𝑗 (60)

(61)

The eigenpairs (𝜆, v) of J𝑓 at the equilibrium satisfy the following

conditions:

∀𝑖 ∈ 𝑈ℓ∗ . (𝐽𝑖𝑖 − 𝜆)𝑣𝑖 + 𝐽𝑖 𝑗
∑︁
𝑗≠𝑖

𝑣 𝑗 = 0 (62)

The first type of solution for this equation system is given by

𝜆 = 𝐽𝑖𝑖 − 𝐽𝑖 𝑗 < 0 and every v with ∥v∥1 = 0. The second type of

solution is found by assuming 𝜆 ≠ 𝐽𝑖𝑖 − 𝐽𝑖 𝑗 , which implies equal 𝑣𝑖
∀𝑖 ∈ 𝑈ℓ∗ and hence (together with 𝑣𝑖 ≠ 0) 𝜆 = 𝐽𝑖𝑖 + (𝑁 − 1) 𝐽𝑖 𝑗 < 0.

Since the eigenvalues of the Jacobian are thus consistently nega-

tive, the indirect Lyapunov method suggests that the dynamics are

asymptotically stable.

D.3 Proof of Theorem 4
The equilibrium conditions can be translated into the following

constraints given 𝑞ℓ∗ > 0:

𝑥btl𝑖 = max(1, 1/𝛿𝑖 ) · (𝐶ℓ∗ −
∑︁
𝑗≠𝑖

min(1, 𝛿 𝑗 ) · 𝑥btl𝑗 ) (63)

𝑥btl𝑖 = 𝐶ℓ∗ − 4/5 ·max(1, 1/𝛿𝑖 ) ·
∑︁
𝑗≠𝑖

min(1, 𝛿 𝑗 ) · 𝑥btl𝑗 (64)

While these constraints potentially admit multiple equilibria, the

equilibrium from Theorem 4 is a special equilibrium for which 𝛿𝑖

is equal across all 𝑖 ∈ 𝑈ℓ∗ , i.e., 𝛿𝑖 = 𝛿 . Substituting 𝛿 for all 𝛿𝑖 , and
equating Eq. (63) with Eq. (64), which first yields:

∀𝑖 ∈ 𝑈ℓ∗ .
∑︁
𝑗≠𝑖

𝑥btl𝑗 = 5 · (max(1, 1/𝛿) − 1) ·𝐶

=⇒ ∀𝑖 ∈ 𝑈ℓ∗ . 𝑥btl𝑖 = max(1, 1/𝛿) · 𝐶
𝑁
,

(65)

where the equation systems requires that all 𝑥btl
𝑖

∀𝑖 ∈ 𝑈ℓ∗ equal the
same value (hence perfect fairness), where this value can be found

using Eq. (63). By inserting 𝑥btl
𝑖

from Eq. (65) into Eq. (64), it can

be shown that 𝛿 ≤ 1 by producing a contradiction for 𝛿 > 1. In

contrast, solving that equation given 𝛿 ≤ 1 yields 𝛿 = 4𝑁+1
5𝑁

, which

is equivalent to the condition in Theorem 4. This insight concludes

the proof.

D.4 Proof of Theorem 5
In the scenario under consideration, the equilibrium requires that

the propagation delay 𝑑𝑖 is equal for all senders. Moreover, it holds

that 𝑞ℓ = 0 ∀ℓ ≠ ℓ∗. Hence, we can simplify: 𝛿𝑖 = 𝛿 (𝑞ℓ∗ ) := 𝑑/(𝑑 +
𝑞ℓ∗/𝐶ℓ∗ ), where𝑑 is the propagation delay experienced by all agents.
As a result, the equilibrium requires that 𝛿 (𝑞ℓ∗ ) = 4𝑁+1

5𝑁
⇐⇒

𝑞ℓ∗ =
𝑁−1
4𝑁+1𝑑𝐶ℓ∗ .

We translate the reduced model from §5.2.1 into a nonlinear

dynamic process with the sending rates {𝑥𝑖 }𝑖∈𝑈ℓ∗ and the queue

length 𝑞ℓ∗ as state variables. The evolution of these state variables

is given by vector-valued function 𝑓 with the following entries:

¤𝑥𝑖 = ¤𝛿 (𝑞ℓ∗ )𝑥btl𝑖 + 𝛿 (𝑞ℓ∗ ) ¤𝑥btl𝑖 (66)

=

(
𝐶ℓ∗ −

∑
𝑘∈𝑈ℓ∗ 𝑥𝑘

𝐶ℓ∗ (𝑑 + 𝑞ℓ∗/𝐶ℓ∗ )
+

5/4𝛿𝐶
5/4𝑥𝑖 +

∑
𝑗≠𝑖 𝑥 𝑗

− 1

)
· 𝑥𝑖

¤𝑞ℓ∗ =
∑︁
𝑖∈𝑈ℓ∗

𝑥𝑖 −𝐶ℓ∗ (67)
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The corresponding Jacobian matrix J𝑓 is composed of the fol-

lowing entries:

𝜕 ¤𝑥𝑖
𝜕𝑥𝑖

=
𝐶ℓ∗ − 2𝑥𝑖 −

∑
𝑗≠𝑖 𝑥 𝑗

𝐶ℓ∗ (𝑑 + 𝑞ℓ∗/𝐶ℓ∗ )
+

5/4𝛿𝐶∑
𝑗≠𝑖 𝑥

btl

𝑗

(5/4𝑥𝑖 +
∑
𝑗≠𝑖 𝑥 𝑗 )2

− 1 (68)

𝜕 ¤𝑥𝑖
𝜕𝑥 𝑗

= − 𝑥𝑖

𝐶ℓ∗ (𝑑 + 𝑞ℓ∗/𝐶ℓ∗ )
−

5/4𝛿𝐶𝑥𝑖
(5/4𝑥𝑖 +

∑
𝑗≠𝑖 𝑥 𝑗 )2

(69)

𝜕 ¤𝑥𝑖
𝜕𝑞

=
1

𝑑 + 𝑞ℓ∗
𝐶ℓ∗

©­­«
𝐶ℓ∗ −

∑
𝑘∈𝑈ℓ∗ 𝑥𝑘

𝐶2

ℓ∗

(
𝑑 + 𝑞ℓ

∗

𝐶ℓ∗

) −
5/4𝛿𝐶

5/4𝑥𝑖 +
∑
𝑗≠𝑖 𝑥 𝑗

ª®®¬𝑥𝑖 (70)

𝜕 ¤𝑞
𝜕𝑥𝑖

= 1

𝜕 ¤𝑞
𝜕𝑞

= 0 (71)

Evaluating the Jacobianmatrix at the equilibrium point from The-

orem 4 yields the following matrix J:
𝜕 ¤𝑥𝑖
𝜕𝑥𝑖

= −4𝑁 + 1

5𝑁 2𝑑
− 5

4𝑁 + 1

=: 𝐽𝑖𝑖
𝜕 ¤𝑞
𝜕𝑥𝑖

= 1 (72)

𝜕 ¤𝑥𝑖
𝜕𝑥𝑖

= −4𝑁 + 1

5𝑁 2𝑑
− 4

4𝑁 + 1

=: 𝐽𝑖 𝑗
𝜕 ¤𝑞
𝜕𝑞

= 0 (73)

𝜕 ¤𝑥𝑖
𝜕𝑞

= −4𝑁 + 1

5𝑁 2𝑑
=: 𝐽𝑖𝑞 (74)

By Lyapunov’s indirect method, the above Jacobian matrix must

have exclusively negative eigenvalues in order for the equilibrium

to be asymptotically stable, i.e., for every pair (𝜆, v) with Jv = 𝜆v,

the eigenvalue 𝜆 must be lower than 0. To verify this property J,
we concretize the eigenvalue condition:

∀𝑖 ∈ 𝑈ℓ∗ . 𝐽𝑖𝑖𝑣𝑖 + 𝐽𝑖 𝑗
∑︁
𝑗≠𝑖

𝑣 𝑗 + 𝐽𝑖𝑞𝑣𝑞 = 𝜆𝑣𝑖 (75)∑︁
𝑖∈𝑈ℓ∗

𝑣𝑖 = 𝜆𝑣𝑞 (76)

By solving these equations for 𝑣𝑞 and equating the resulting

terms, we obtain the following conditions:

∀𝑖 ∈ 𝑈ℓ∗ .
∑︁
𝑘∈𝑈ℓ∗

𝑣𝑘 =
𝜆

𝐽𝑖𝑞

©­«(𝜆 − 𝐽𝑖𝑖 )𝑣𝑖 − 𝐽𝑖 𝑗
∑︁
𝑗≠𝑖

𝑣 𝑗
ª®¬ (77)

This equation allows two types of solutions. First, for 𝜆 = 𝐽𝑖𝑖 − 𝐽𝑖 𝑗 ,
the set of valid eigenvectors v is only constrained by a condition

on

∑
𝑘∈𝑈ℓ∗ 𝑣𝑘 ; more importantly for the proof, 𝜆 is negative. Second,

for 𝜆 ≠ 𝐽𝑖𝑖 − 𝐽𝑖 𝑗 , the values 𝑣𝑖 ∀𝑖 ∈ 𝑈ℓ∗ must be equal such that

the equation system from Eq. (77) can be collapsed into a single

quadratic equation, which yields the maximum eigenvalue 𝜆+:

𝑁 · 𝑣𝑖 =
𝜆

𝐽𝑖𝑞

(
(𝜆 − 𝐽𝑖𝑖 )𝑣𝑖 − 𝐽𝑖 𝑗 (𝑁 − 1)𝑣𝑖

)
=⇒ 𝜆+ = −1 (78)

Since the maximum eigenvalue 𝜆+ is negative, all eigenvalues of J
are negative, which by the indirect Lyapunov method proves that

the dynamic process defined by 𝑓 is asymptotically stable.
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