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Abstract

Internet service providers (ISPs) have a variety of quality attributes that determine their attractiveness
for data transmission, ranging from quality-of-service metrics such as jitter to security properties such as the
presence of DDoS defense systems. ISPs should optimize these attributes in line with their profit objective,
i.e., maximize revenue from attracted traffic while minimizing attribute-related cost, all in the context of
alternative offers by competing ISPs. However, this attribute optimization is difficult not least because
many aspects of ISP competition are barely understood on a systematic level, e.g., the multi-dimensional
and cost-driving nature of path quality, and the distributed decision making of ISPs on the same path.

In this paper, we improve this understanding by analyzing how ISP competition affects path quality
and ISP profits. To that end, we develop a game-theoretic model in which ISPs (i) affect path quality
via multiple attributes that entail costs, (ii) are on paths together with other selfish ISPs, and (iii) are
in competition with alternative paths when attracting traffic. The model enables an extensive theoretical
analysis, surprisingly showing that competition can have both positive and negative effects on path quality
and ISP profits, depending on the network topology and the cost structure of ISPs. However, a large-scale
simulation, which draws on real-world data to instantiate the model, shows that the positive effects will
likely prevail in practice: If the number of selectable paths towards any destination increases from 1 to 5,
the prevalence of quality attributes increases by at least 50%, while 75% of ISPs improve their profit.

1. Introduction

In today’s Internet, the Border Gateway Protocol (BGP) supplies ISPs with potentially multiple paths
towards an IP prefix. When selecting among these paths, ISPs decide on the basis of price and quality of
the available paths. This path quality is determined by multiple quality attributes of potentially multiple
on-path ISPs. Such quality attributes may include conventional performance metrics (e.g., bandwidth,
latency, loss rate, jitter) or security features (e.g., presence of security middleboxes), but also properties
that traditionally receive less attention, e.g., environmental, social, and governmental (ESG) properties
such as carbon emission from data transmission [49] or geopolitical concerns regarding on-path ISPs [13].
Transit ISPs invest in their attributes, communicate them in path announcements, and thereby attract
traffic from selecting ISPs. However, improving these attributes comes at a cost, which may exceed the
additional revenue from attracted traffic, especially if ISPs on competing paths also raise their quality level.

Given this competitive setting, ISPs today face complex strategic questions when optimizing profit:
What quality attributes should be invested in, and to what extent? How should prices be determined? And
how are these decisions affected by ISPs on competing paths and ISPs elsewhere on the provided paths?

Well-informed strategic decisions thus require a fundamental understanding of ISP competition under
path selection, not only on an intuitive, but also on a rigorous analytical level. While such an understanding
has been furthered by previous academic research [25, 29, 36, 41, 47], many open questions of practical
relevance remain, e.g., regarding the multi-attribute nature of path quality, the dependence of fixed and
variable ISP cost on provided quality, the feasibility of cooperation among ISPs on the same path, and the
impact of differing degrees of competition intensity (cf. §6).

To address these questions, we present a new game-theoretic model, enabling a rigorous investigation of
quality competition among ISPs. We perform this investigation through theoretical analysis and simulation:



Theoretical analysis. We conduct an extensive theoretical analysis to systematically understand the effect of
ISP competition on path quality, and ISP profits (Path price constitutes a quality attribute in our model). In
particular, we identify closed-form solutions for the Nash equilibria of the competition dynamics, prove the
stability of these equilibria, and contrast them for varying degrees of path diversity and ISP heterogeneity.
On the one hand, this theoretical analysis confirms intuitive insights, namely that competition tends to
raise the prevalence of valuable attributes. On the other hand, our model reveals counter-intuitive insights,
namely that the cooperation between ISPs on the same path suffers from a prisoner’s dilemma, that ISP
profits can increase under intensified competition, and that additional paths may decrease the prevalence of
quality attributes if unchangeable path attributes are starkly different.

Simulation-based case study. To determine which competition effects are significant in practice, we leverage
our model for a simulation-based case study. In this case study, we investigate the competition dynamics
in the Internet core with respect to two attributes (internal bandwidth and the share of clean energy used
by an ISP). This simulation requires a numerical instantiation of the model, based on real-world data. For
this model instance, our simulations yield robust evidence that competition raises the prevalence of valuable
attributes, the quality of available paths, and the profits of most ISPs.

In summary, our work includes the following contributions:
• Game-theoretic competition model: Our new ISP-competition model (§2) departs from previous
competition models by representing both inter-path competition and intra-path cooperation, accom-
modating a multi-faceted notion of path quality, revealing the effect of path diversity, and reflecting
realistic ISP cost structures (§6).

• Theoretical analysis: We conduct a rigorous theoretical analysis by reasoning from basic competi-
tion scenarios that showcase the fundamental effects in ISP competition (§3). In particular, we contrast
monopolistic and competitive scenarios in ISP path selection, investigate networks with varying sim-
ilarity in ISP profit functions, and identify asymptotically stable equilibria and social optima of the
competition. Our analysis suggests that ISP competition has nuanced effects on ISP profits and path
quality, going beyond the predictions of basic economic theory.

• Large-scale simulation: We demonstrate how to instantiate our model based on real-world data,
with the goal of predicting competition effects in the Internet core (§4). These predictions are generated
with simulations, which rely on randomization to achieve robust results, represent the competition
behavior with better-response dynamics, and are executed for varying path diversity. The simulation
results suggest that competition, induced by path diversity, has positive effects for a majority of ISPs
on multiple tiers of the Internet, i.e., raises ISP profits and path quality (§5).

2. Model and First Insights

In the following, we present a game-theoretic model, which we employ to investigate the competition
dynamics under attribute-oriented path selection. While our model reflects common characterizations of
inter-domain network economics, it is more general than previous models (cf. §6).

Network and paths. We abstract the network as a set N of ISPs, which represent the players in the compe-
tition game. Each ISP n ∈ N is assumed to be fully rational. The ISPs form paths, where each path r ⊆ N
is a set of ISPs. All usable paths in a network are collected in the path set R, and all usable paths between
selecting ISP n1 and destination ISP n2 constitute the set R(n1, n2). Throughout this work, we study how
ISPs affect the quality of paths as given by path set R, not how ISPs strategically adapt the set R of usable
paths via interconnection agreements and announcements, which is a related but distinct problem [26, 35].

Attributes. We consider a network with a set K of ISP attributes, |K| ≥ 1, that are relevant in path
selection. Hence, each ISP n is associated with an attribute vector an ∈ RK≥0, where ank ∈ R≥0 denotes the
prevalence of attribute k ∈ K in ISP n. As a player in the competition game, each ISP n strives to choose
its attributes an in order to optimize its profit (see below). Since the lowest possible degree of attribute
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prevalence is attained if an ISP does not possess an attribute at all, we restrict the attribute values to non-
negative real numbers: ∀n ∈ N, ∀k ∈ K. ank ≥ 0. For convenience of notation, we also define an attribute

matrix A ∈ R|N |×|K|≥0 , with the n-th row being an.

Path valuations. The attributes of an ISP n determine the attractiveness of using paths including that
ISP. Hence, we define the attractiveness of available options on the level of paths, specifically by valuation
functions {vr}r∈R. The valuation vr for path r then depends on all attributes an of all on-path ISPs n ∈ r.
Since we consider desirable attributes in our model, every function that is monotonically increasing in all
attribute values is a suitable valuation function. Throughout this paper, we use affine functions:

vr(A) =
∑
n∈r

∑
k∈K

αrnkank + αr0, (1)

where each αrnk > 0 determines how strongly attribute k of ISP n affects the valuation of path r, and αr0 ≥ 0
is the base valuation of path r. This formulation captures several real-world aspects of path valuations, as the
variation in αrnk captures that the attributes and ISPs associated with a path may have varying importance
for path valuation, e.g., ISPs providing a large segment of the path might be more relevant for the valuation.
The linear formulation might be counter-intuitive given that the marginal utility of attribute prevalence is
likely decreasing; we rely on the formulation for path-selection probability below to capture that the volume
of attracted demand on a path is sub-linear in path attributes. Moreover, we show by simulation that the
model predictions do not strongly rely on the affine formulation (cf. §5.2.3).

Path-selection probability. Path valuations inform the path selection at the selecting ISP, and thus determine
the probability of each path being selected. More precisely, when a selecting ISP n1 selects a path towards
a prefix hosted by ISP n2, each path r among the available paths R(n1, n2) is selected for transit with
probability pr(A). Inspired by the popular logit-demand model [2], we consider the selection probability pr
to be proportional to the relative attractiveness of path r compared to alternative paths:

∀(n1, n2) ∈ N ×N, r ∈ R(n1, n2). pr(A) =
vr(A)

1 +
∑
r′∈R(n1,n2)

vr′(A)
. (2)

Crucially, the addition term 1 in the fraction denominator captures demand elasticity, i.e., selecting ISP n1
might not select any path in R(n1, n2) at all if the available paths are generally unattractive. Instead,
selecting ISP n1 might not offer its customers any path to n2, create a new path to n2 by concluding a
peering agreement, or obtain the desired content from another destination ISP than n2. Not least, this
demand elasticity also avoids a singularity in the model when all paths are worthless, i.e., vr = 0 ∀r.

Demand. The path-selection probabilities above determine the demand volume Dn that is obtained by any
ISP n, which we formalize by:

Dn(A) =
∑

r∈R. n∈r
δr(A) =

∑
r∈R. n∈r
r∈R(n1,n2)

pr(A) · d(n1,n2). (3)

Due to the elasticity of demand, actual total demand (i.e., δr(A) summed over all r ∈ R (n1, n2)) is strictly
below the demand limit d(n1,n2).

The practical interpretation of path demand δr in Eq. (3) depends on the transit behavior of the selecting
ISP n1. If n1 is a stub AS, then traffic originates within n1 and can be split across multiple paths towards
a given prefix. If n1 thus selects multiple paths, δr denotes the actual demand allocated to path r. In
contrast, if ISP n1 is a transit AS, the traffic transited by n1 must follow the single path announced by
ISP n1 to neighboring ISPs, as BGP transit loops might arise otherwise. If n1 thus selects only a single
path for transit, δr corresponds to the expected demand allocated on path r.
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Profit. Given the demand model, an ISP n can affect attracted demand Dn with an appropriate choice
of an. However, the profit πn depends not only on the volume of attracted demand, but also on the cost
for provision of the attributes. We thus consider the profit function πn of ISP n to have three components.
First, the ISP profit is increased by a revenue function Rn, which is a function of Dn. Second, the profit is
reduced by a demand-dependent cost function Φn, which as well depends on Dn, but also directly on an, as
the cost of transmitting a unit of demand depends on the chosen attributes. Third, the profit is reduced by
a demand-independent cost function Γn, which depends only directly on the chosen attributes an and thus
corresponds to the ‘fixed cost’ of possessing certain attributes.

While these component functions could in principle be any monotonically increasing function, we use
the following formulations for the component functions throughout this paper:

Rn(A) = ρn ·Dn(A) Φn(A) =

(∑
k∈K

ϕnkank + ϕn0

)
·Dn(A) Γn(an) =

∑
k∈K

γnkank + γn0 (4)

where the coefficient ρn > 0 is the maximum per-unit transit price of ISP n (actual transit prices are
additionally subsumed within quality attributes, as described below). Furthermore, the coefficients ϕnk ≥ 0
and γnk ≥ 0 determine the attribute-specific increase in demand-dependent and demand-independent cost,
respectively, and the intercepts ϕn0 ≥ 0 and γn0 ≥ 0 express the attribute-independent basic values for the
respective cost terms. Throughout the paper, we assume ρn ≥ ϕn0 for all ISPs n ∈ N , as a rational ISP
that loses money by attracting demand even with the most cost-saving strategy (i.e., an = 0) would in fact
go out of business. The affine formulations of Φn and Γn predict qualitatively similar competition effects as
quadratic functions, as we demonstrate by simulation in §5.2.3.

In summary, the profit function πn is of the following form in our investigations:

πn(A) = Rn(A)− Φn(A)− Γn(an) = Dn(A) ·

(
ρn −

∑
k∈K

ϕnkank − ϕn0

)
−
∑
k∈K

γnkank − γn0. (5)

Undesirable attributes. So far, our model formulation assumes desirable attributes, which increase path
attractiveness in high quantities and are costly to increase, e.g., bandwidth. However, many relevant ISP
attributes are undesirable in high quantities and are challenging to decrease, e.g., transit price or latency.
To accommodate undesirable attributes in the model, a naive approach would consist of allowing negative
coefficients αrnk, ϕnk, and γnk for any undesirable attribute k. However, such negativity would entail
nonsensical model predictions, such as potentially negative path-selection probabilities from Eq. (2), or
infinite profit given an undesirable attribute (n, k) with ank = ∞ and γnk < 0 (cf. Eq. (5)).

To avoid such nonsensical predictions and preserve model tractability, we suggest to convert undesirable
attributes into their desirable counterparts. For example, the actual transit-price attribute a′nk ∈ [0, ρn]
could be translated to a non-negative cheapness attribute ank = ρn − a′nk. The cheapness attribute ank
then formally contributes to the costs in Φn, while actually determining the traffic-unit revenue in the profit
function πn. For illustration, consider a monopolistic ISP n that charges a price a′nk for forwarding one unit
of traffic and provides a single path r connecting the ISPs n1 and n2. If the price a′nk is the only relevant
attribute for path valuation, the profit πn of ISP n is affected as follows by the price a′nk:

πn(a
′
nk) = Rn(a

′
nk)− Φn(a

′
nk)− Γn(a

′
nk)

=

(
αrnk(ρn − a′nk)

1 + αrnk(ρn − a′nk)
· d(n1,n2)

)
︸ ︷︷ ︸

decreases in price

· (ρn − (ρn − a′nk))︸ ︷︷ ︸
=a′nk (price)

increases in price

−γn0, (6)

which suggests some optimal price a′nk ̸= ∞. Note that the price ank affects the valuation of path r with
a certain weight αrnk, directly affects the profit per traffic unit (i.e., ϕnk = 1), and does not affect the
demand-independent cost (i.e., γnk = 0).
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Nash Equilibrium. The competition dynamics in attribute-oriented path selection can be characterized by
their Nash equilibria. In our setting, such a Nash equilibrium is a choice of attributes in which each ISP
has optimal attributes (w.r.t. its profit) given the attributes of all other ISPs:

Definition 1. A choice of attributes A+ form a Nash equilibrium if and only if

∀n ∈ N. a+n = a∗n(A
+
−n) = argmax

an∈R|K|
≥0

πn
(
an ⊕n A+

−n
)

(7)

where ⊕n combines the attribute choice an of ISP n with the equilibrium attribute choices A+
−n of the

remaining ISPs.

In this abstract form, the Nash equilibria offer little opportunity for analytical characterization. However,
if the attributes ank are restricted to [0, amax] rather than to R≥0 (e.g., if there is an upper bound amax on all
attribute values), the existence of Nash equilibria is guaranteed by Brouwer’s fixed-point theorem [5]. This
guarantee holds because the restriction of the attribute matrix A to a compact convex set necessitates that
at least one fixed point A+ is preserved by the iteration function A∗(A) = [a∗n1

(A−n1
), ...,a∗nN

(A−nN
)]⊤.

To gain a deeper understanding of Nash equilibria beyond that special case, we concretize equilibria in this
work, and investigate these equilibria with respect to existence, uniqueness, stability, and efficiency.

Social Optimum. To assess the efficiency of Nash equilibria, we compare these equilibria to social optima. In
our setting, such a social optimum optimizes a metric that aggregates the perspectives of all agents involved
in the competitive dynamics. Our model contains two types of agents, namely selecting ISPs and transit
ISPs, with non-aligned interests, which warrants two different formalizations of the social optimum.

First, selecting ISPs are interested in path quality. Hence, the social efficiency for selecting ISPs is simply
measured by the aggregate valuation V of all paths in the network, given a choice of attributes A:

V (A) =
∑
r∈R

vr(A). (8)

Since the valuation functions vr are assumed to be linear and therefore unbounded in this paper, a finite
social optimum for selecting ISPs only exists if all attributes are restricted to a finite domain.

Second, transit ISPs are interested in profit. To characterize the social optimum from the perspective
of transit ISPs, we rely on the conditions of the Nash bargaining solution (NBS), i.e., the conditions that a
global attribute choice A would have to fulfill if ISPs had to agree on it in cooperative bargaining [30]. The
two most important NBS conditions are Pareto-optimality, i.e., no ISP can increase its profit without any
other ISP experiencing a decrease in its profit, and symmetry, i.e., among Pareto-optimal profit distributions,
the fairest distribution is preferred. These conditions are achieved if the attribute choice A optimizes the
Nash bargaining product :

Definition 2. A choice of attributes A◦ forms a social optimum from the perspective of transit ISPs if
it corresponds to the Nash bargaining solution (NBS), i.e.,

A◦ = argmax
A∈R|N|×|K|

≥0

Πn∈N πn(A). (9)

3. Theoretical Analysis

In this section, we theoretically analyze the competition dynamics in path selection. For that purpose,
we focus on an individual market in isolation, i.e., the competition between transit ISPs for traffic between
a single source-destination pair (n1, n2). As a result, we write R = R(n1, n2) and d = d(n1,n2) throughout
this section.
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3.1. Optimal Attribute

To analyze the competition dynamics, we first investigate how any single ISP n should choose its at-
tribute k in response to the publicly observable attribute choices of all other ISPs. This optimal attribute
is given by the following closed-form solution:

Theorem 1. Best-Response Attribute. In an individual market with arbitrarily overlapping paths, the
optimal admissible attribute a∗nk of ISP n given the remaining attributes A−nk is

a∗nk(A−nk) =

{
â∗n(A−nk) if â∗n(A−nk) ∈ R and â∗n(A−nk) ≥ 0,

0 otherwise,
(10)

where â∗nk(A−nk) is the optimal unrestricted (i.e., potentially complex or negative) attribute:

â∗nk(A−nk) =
1

αnk

(√
d
(
1 + v−r(n)(A−nk)

)
dϕnk + γnk

(
ϕnk(1 + v−nk(A−nk)) + αnk(ρn − Φ−nk(A−nk))

)
−
(
1 + v−nk(A−n)

)) (11)

Eq. (11) uses the following abbreviations:

αnk =
∑
r∈R.
n∈r

αrnk v−r(n)(A) =
∑
r′∈R.
n/∈r′

vr′(A) (12)

v−nk(A) =
∑
r∈R

αr0 +
∑

(n′,k′)∈N×K.
(n′,k′ )̸=(n,k)

αn′k′an′k′ Φ−nk(A) =
∑

k′∈K\k

ϕnk′ank′ + ϕn0 (13)

The proof of Theorem 1 is provided in Appendix A. To provide intuition about the formula in Eq. (11),
we transform it to a simplified version:

v̂∗r(n) =
∑
r∈R.
n∈r

v̂∗r =

√√√√√√
( dϕnk(1 + v−nk)

dϕnk + γnk︸ ︷︷ ︸
1

+
dαnk(ρn − Φ−nk)

dϕnk + γnk︸ ︷︷ ︸
2

) (
1 + v−r(n)

)︸ ︷︷ ︸
3

−
(
1 + v−r(n)

)︸ ︷︷ ︸
3

(14)

where v̂∗r(n) contains the sum of unrestricted valuations of all paths containing ISP n that would be optimal

for n given A−nk. This v̂
∗
r(n) (and thus also ânk) correlates positively with term 1 , which relates to the share

of demand-dependent cost (∝ dϕnk) among total cost (∝ dϕnk + γnk) with respect to attribute (n, k). This
correlation suggests that ISPs should champion attributes with low demand-independent cost compared
to demand-dependent cost. Moreover, v̂∗r(n) correlates with term 2 , which relates to the revenue from

attribute (n, k) per unit of cost from the attribute, i.e., the ‘return’ on attribute (n, k). Term 3 , which
describes the attractiveness of paths avoiding n, can have a positive effect on v̂∗r(n) up to a point, as

competition incentivizes ISP n to raise its attribute values. However, from a certain point onwards, term 3
has a negative effect on v̂∗r(n), as detracting traffic from highly attractive alternatives becomes too costly
compared to the achievable revenue.

For an individual market, the equilibrium condition from Definition 2 can thus be concretized based
on Theorem 1: A choice of attributes A+ is a Nash equilibrium if and only if

∀n ∈ N, ∀k ∈ K. a+nk = a∗nk(A
+
−nk). (15)

For the general case, we find that deriving equilibria based on this condition is intractable. For example,
when considering a market with two disjoint paths, a single attribute, and a single ISP with arbitrary
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parameters on each path, the equilibrium must be found by solving a quartic equation, which impedes an
analysis even for that simple network. Fortunately, we identify two types of markets that allow deriving
closed-form equilibria and therefore analytic insights, while still capturing the fundamental characteristics of
ISP competition, i.e., inter-path competition, intra-path cooperation, and ISP heterogeneity. Concretely, we
separately analyze homogeneous markets (cf. §3.2) and heterogeneous markets with attribute-independent
traffic-unit cost (cf. §3.3), both with disjoint paths.

3.2. Homogeneous Markets

By homogeneous markets, we refer to topologies of Q := |R| > 0 disjoint paths in competition, each of
which accommodates the same number I = |N |/Q of ISPs. All ISPs are identical and all attributes are
identically valuable and costly, i.e., for all ISPs n ∈ N , it holds that ρn = ρ and ϕn0 = ϕ0, and ∀k ∈ K,
it holds that αnk = α1, ϕnk = ϕ1, and γnk = γ1. Moreover, the path-valuation functions for all paths
are identical as well, i.e., ∀r ∈ R. αr0 = α0. While artificial, such competition among completely equal
goods (here: paths) and firms (here: ISPs) is a virtually universal assumption in competition models, as
homogeneity allows isolating pure competition effects, i.e., effects that are not due to pre-existing differences
between competitors [12, 14].

In our case, the homogeneity also permits to identify the Nash equilibria of the competition dynam-
ics (§3.2.1), to investigate the convergence to these equilibria (§3.2.2), to compare these equilibria to social
optima (§3.2.3), and to evaluate the effect of competition intensity (§3.2.4).

3.2.1. Equilibria

The symmetry of the homogeneous markets allows finding a competition equilibrium, which is guaranteed
to exist, and can be efficiently computed for arbitrary topologies thanks to its closed-form representation:

Theorem 2. Nash Equilibrium in Homogeneous Markets. The Nash equilibrium of a homogeneous
market is given by an attribute sum a+ such that

∑
k a

+
nk = a+ ∀n ∈ N , where a+ = max(0, â+) with

â+ =

√
T 2
2 − 4T1T3 − T2

2T1
. (16)

Eq. (16) uses the following abbreviations:

T1 = Q2I2α2
1 −

d

dϕ1 + γ1
(QI − 1)(Q− 1)Iα2

1ϕ1, (17)

T2 = 2QIα1 (1 +Qα0)−
d

dϕ1 + γ1
· (18)(

α1ϕ1 (QI − 1)
(
1 + (Q− 1)α0

)
+ Iα1 (Q− 1)

(
ϕ1 (1 +Qα0) + α1 (ρ− ϕ0)

))
, and

T3 = (1 +Qα0)
2 − d

dϕ1 + γ1
(1 + (Q− 1)α0)

(
ϕ1(1 +Qα0) + α1(ρ− ϕ0)

)
. (19)

The proof of Theorem 2 is provided in Appendix B. Note that the equilibrium in Theorem 2 is only
unique with respect to the attribute sum a+ of any ISP and hence also with respect to path valuations, but
not necessarily with respect to individual attribute values ank.

3.2.2. Stability

The Nash equilibrium from Theorem 2 is an interesting fixed point of the competitive dynamics in
homogeneous markets. However, the equilibrium is only relevant if the distributed profit optimization by
the ISPs converges to it. Hence, the equilibrium must be additionally investigated with respect to its
stability, i.e., its attractive effect on the competition dynamics. To investigate this stability, we formally
describe the competition by the following system of ordinary differential equations (ODEs):

∀n ∈ N. ȧn(t) = a∗n
(
A−n(t)

)
− an(t) (20)
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(a) Competition-free network N1.

m11 m12n11 n12 n1I...

m21 m22n21 n22 n2I...

mQ1 mQ2nQ1 nQ2 nQI...

... ...... ... ... ...

(b) Competitive network N2.

Figure 1: Homogeneous markets with and without inter-path competition.

Intuitively, one ODE in this system describes the behavior of an ISP n which continuously adjusts its
attribute-sum value an towards the optimal choice a∗n given the contemporary attribute values of all other
ISPs. Given this dynamic process, we can show the following property:

Theorem 3. Stability of Homogeneous Equilibrium. The Nash equilibrium from Theorem 2 is an
asymptotically stable equilibrium of the competition dynamics in Eq. (20).

The proof of Theorem 3 is provided in Appendix C.

3.2.3. Intra-Path Dynamics

The equilibrium formalization from Theorem 2 also applies to the case where an ISP pair is only connected
by a single usable path. Such a single-path scenario represents a monopoly in economic terms. Crucially,
the ISPs on the same single path are supposed to cooperate rather than compete, as the decisions by each
ISP contribute to path attractiveness, which in turn benefits all ISPs. For that single-path case, we can
make the following interesting observation about the cooperation among on-path ISPs:

Theorem 4. Suboptimality of Homogeneous Equilibrium. On a single path with I identical ISPs, the
equilibrium attribute sum a+ is generally lower than the NBS attribute sum a◦, i.e., ∀I ∈ N, I ≥ 1. a+ ≤ a◦.

The proof of Theorem 4 is provided in Appendix D.
Intuitively, Theorem 4 states that the cooperation by on-path ISPs suffers from inefficiency caused by

individual selfishness, similar to a prisoner’s dilemma [33]. More precisely, the NBS attribute sum a◦, which
would optimize every ISP’s profit if chosen universally, is not a rational choice for an individual ISP. In
particular, if an ISP n chooses an = a◦, ISP n enables another ISP m to optimize its profit πm by choosing
a lower attribute sum am < a◦, and thus to free-ride on the path attractiveness created by ISP n. Because
of this selfish deviation from the global optimum, the on-path ISPs converge to the equilibrium attribute
prevalence a+, which is generally lower than the NBS attribute sum a◦, prevents the transit ISPs from
reaping optimal profit, and also reduces the path attractiveness for the path-selecting ISP.

3.2.4. Competition Effects

After investigating intra-path cooperation in the preceding section, we now investigate the effect of
inter-path competition on attribute prevalence. In particular, we are interested in the dependence of the
equilibrium attribute a+ on the number of available paths between an origin-destination pair.

To characterize this dependence, we compare the Nash equilibria in two homogeneous markets. First,
we consider the competition-free network N1 in Fig. 1a, which is partitioned between Q origin-destination
pairs {(mq1,mq2)}q=1,...,Q, each connected by a single path with I ISPs and obtaining the same demand
limit d′. Effectively, this network is a set of homogeneous markets, each with only one available path
and no competition. Second, we consider the competitive network N2 in Fig. 1b, where each of the Q
origin-destination pairs can use all Q available paths.

By identifying the equilibrium attribute value a+(N ) for each network N , we find that competition has
a consistently positive effect on attribute prevalence:
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Theorem 5. Attribute Improvement under Homogeneous Competition. The equilibrium attribute
prevalence is never lower in the competitive network N2 than in the competition-free network N1, i.e.,
a+(N2) ≥ a+(N1) for all Q ∈ N ≥ 1.

The proof of Theorem 5 is provided in Appendix E.
Surprisingly, the higher attribute values in the competitive equilibrium do not necessarily come at the

cost of lower ISP profits. Instead, the profit of the ISPs may even increase under competition, which is
important because the ISPs partially control whether they engage in competition at all, namely through path
announcements. For example, an increase in equilibrium profits through competition happens if competition
causes only a modest increase in attribute values:

Theorem 6. Profit Improvement under Homogeneous Competition. The equilibrium profit π+(N2)
in the competitive network preserves or exceeds the equilibrium profit π+(N1) of the uncompetitive network
if a+(N2) ∈ [a+(N1), a

◦(N1)], i.e., the equilibrium attribute sum a+(N2) from the competitive network is
between the equilibrium attribute sum a+(N1) of the uncompetitive network and the corresponding NBS
attribute sum a◦(N1).

The proof of Theorem 6 is provided in Appendix F. In summary, we conclude that inter-path competition
in homogeneous markets is always desirable from the perspective of path-selecting ISPs, and potentially
desirable from the perspective of transit ISPs.

3.3. Heterogeneous Markets

The homogeneous markets discussed in the previous section can reflect competition dynamics among
arbitrarily many paths. However, these market models cannot represent differences between paths that go
beyond attribute values. In reality, on-path ISPs may differ in their importance for the path valuation, in
their revenue per traffic unit, and in their attribute-specific costs. For example, consider a quality attribute k
corresponding to the internal bandwidth of an ISP, and consider an ISP n with a relatively wide-spread
internal network infrastructure. Thanks to its size, this ISP n likely provides relatively large segments of
paths, making its ability to avoid congestion and thus its internal bandwidth more valuable than the internal
bandwidth of smaller ISPs. However, ISP n also likely incurs a higher cost for bandwidth upgrades due to
its more widespread infrastructure. The profit optimization of ISP n can thus be better represented by the
model if ISP n is assigned a larger valuation weight αnk and a larger fixed-cost weight γnk than other ISPs.

In this section, we therefore study competition among heterogeneous ISPs, i.e., every ISP n has arbitrary
parameters αnk ∀k ∈ K, ρn, ϕn0, γnk ∀k ∈ K, and γn0. To achieve tractability despite this additional
complexity, we restrict our analysis to markets with at most two paths. Moreover, since traffic-unit cost
is commonly considered negligible for ISPs [43], we consider especially the attribute-dependent part of this
traffic-unit cost to be negligible, i.e., ϕnk = 0 ∀n ∈ N, k ∈ K.

3.3.1. Intra-Path Dynamics

To characterize the attribute-choice dynamics among ISPs in a heterogeneous market, we first consider
a single path in isolation, i.e., a monopoly scenario. As before, ISPs on a path collectively determine the
attractiveness of the path, but optimize only their individual profit. This selfishness may lead to a sub-
optimal global outcome, both regarding ISP profits and path valuations. To quantify this shortfall, we
first identify the Nash bargaining solution (NBS) for the attribute choices, i.e., the attribute values that
all on-path ISPs would agree on if they collectively negotiated and if they were bound by the result of the
negotiation. This Nash bargaining solution represents the global optimum with respect to the ISP profits.

Theorem 7. Profit Optimum on Heterogeneous Paths. On a path r with heterogeneous ISPs, the
attributes A◦ form a Nash bargaining solution if and only if these attributes optimize the product of all ISP
profits while

1. leading to the NBS path valuation v◦r ,
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2. containing non-zero attribute values only for attributes (n, k) with maximal ratio αnk

γnk
,

3. and containing zero attribute values for all other attributes.

More formally, the conditions on A◦ can be stated as follows:

A◦ = argmaxA∈R≥0
Πn∈rπn(A) (21)

subject to vr(A) = v◦r ∀(n, k) ∈ K◦r . ank ≥ 0 ∀(n, k) /∈ K◦r . ank = 0

where v◦r = max

αr0, max
(n′,k′)∈r×K

√
αn′k′

γn′k′

√
d
∑
n∈r

(ρn − ϕn0)− 1

 , and (22)

K◦r =

{
(n, k) | (n, k) = argmax(n′,k′)∈r×K

αn′k′

γn′k′

}
. (23)

The proof of Theorem 7 is provided in Appendix G. Notably, the social optimum A◦ can be computed
with low computational cost: Even if path r includes a high number of ISPs with numerous attributes, the
number |K◦r | of non-zero attributes is generally much lower, and typically even only 1. This low number of
relevant variables lowers the cost of the convex optimization problem in Eq. (21).

To optimize aggregate profit, the on-path ISPs should thus only upgrade the attribute(s) with maximal
‘return’ αnk/γnk while minimizing the prevalence of all other attributes. This return ratio αnk/γnk yields
the valuation for attribute k of ISP n, compared to the cost that ISP n incurs for adopting that attribute.
The return ratio also correlates with the optimal path valuation (cf. Eq. (22)).

However, aggregate profit is not the objective of selfish ISPs when determining attribute values. Instead,
selfish ISPs optimize their individual profit, and eventually arrive at the following equilibrium by their
non-aligned optimization behavior:

Theorem 8. Nash Equilibrium on Heterogeneous Paths. On a path r with heterogeneous ISPs, the
attributes A+ form a Nash equilibrium if and only if these attributes

1. lead to the equilibrium path valuation v+r ,

2. contain non-zero attribute values only for attributes (n, k) with maximal ratio αnk(ρn−ϕn0)
γnk

,

3. and contain zero attribute values for all other attributes.

More formally, the conditions on A+ can be stated as follows:

vr(A
+) = v+r ∀(n, k) ∈ K+

r . a
+
nk ≥ 0 ∀(n, k) /∈ K+

r . a
+
nk = 0 (24)

where v+r = max

(
αr0, max

(n′,k′)∈r×K

√
αn′k′

γn′k′

√
d(ρn′ − ϕn′0)− 1

)
, and (25)

K+
r =

{
(n, k) | (n, k) = argmax(n′,k′)∈r×K

αn′k′(ρn′ − ϕn′0)

γn′k′

}
. (26)

The proof of Theorem 8 is provided in Appendix H.
Interestingly, the equilibrium in Theorem 8 is similar to the Nash-bargaining solution in Theorem 7,

but contains one crucial difference: The return ratio associated with cultivated attributes includes the net
revenue per unit of traffic ρn − ϕn0 of ISP n (Eq. (23) vs. Eq. (26)). This inclusion reflects that each ISP n
optimizes its individual profit rather than the aggregate profit: When optimizing an attribute (n, k) for
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individual profit, an ISP n only considers its individual net revenue per traffic unit, not the aggregate net
revenue per traffic unit, which would be relevant for aggregate profit.

This difference, albeit subtle, generally leads to different attribute choices in equilibrium than postulated
by the Nash-bargaining solution, meaning that the transit ISPs generate sub-optimal profits. Unfortunately,
also the path-selecting ISP suffers from this selfishness, as the individual-profit optimization leads to less
valuable paths:

Theorem 9. Suboptimality of Heterogeneous Equilibrium. On a path r with heterogeneous ISPs, the
equilibrium path valuation vr(A

+) never exceeds the NBS path valuation vr(A
◦), i.e., vr(A

+) ≤ vr(A
◦).

The proof of Theorem 9 is provided in Appendix I.

3.3.2. Two-Path Equilibria

In the preceding section, the social optimum and the Nash equilibrium are characterized for a single-path
scenario, which is exclusively informed by (failing) intra-path cooperation among selfish ISPs. Since we are
also interested in the effect of inter-path competition, we now consider heterogeneous markets in which the
path-selecting ISP can select between two disjoint paths. For these networks, the single-path equilibrium
in Theorem 8 can be adjusted to the following equilibrium, which is guaranteed to exist and efficiently
computable for the reasons noted in §3.3.1:

Theorem 10. Nash Equilibrium in Heterogeneous Markets. In a two-path heterogeneous market,
the attribute values A+ form a Nash equilibrium if and only if the attribute values A+ satisfy the conditions
from Theorem 8, but with modified equilibrium path valuation v+r :

v+r = max
(
αr0, v̂

∗
r

(
max

(
αr0, v̂

+
r

)))
(27)

where r is the alternative path to r, v̂∗r (vr) = ψr
√
d
√
1 + vr − (1 + vr),

v̂+r =
ψ3
rψr

(ψ2
r + ψ2

r)
2

(√
d (ψ2

r + ψ2
r) +

1

4
ψ2
rψ

2
rd

2 +
d

2
ψrψr

)
− ψ2

r

ψ2
r + ψ2

r

, and (28)

ψr = max
n∈r
k∈K

√
αnk(ρn − ϕn0)

γnk
. (29)

The proof of Theorem 10 is provided in Appendix J. We note that ψr from Eq. (29) is the square root
of the maximum individual return ratio discussed in the previous section, albeit only among the attributes
of path r. In the following, we refer to ψr as the characteristic ratio of path r.

Similar to §3.2, we are again interested in the stability of the equilibrium w.r.t. the process:

∀n ∈ N, k ∈ K. ȧnk(t) = a∗nk(A−nk(t))− ank(t). (30)

However, stability analysis in the case of heterogeneous two-path networks is complicated by the fact that the
equilibrium from Theorem 10 is only unique in the path valuations {vr}r∈R, but not necessarily unique in the
attribute choices A by the ISPs. Therefore, if the equilibrium is not unique in A, no single equilibrium A+

is asymptotically stable in a narrow sense, as the process in Eq. (30) does not converge to A+ from A(t) in
case A(t) already represents a different equilibrium.

Therefore, we focus on the stability of unique equilibria:

Theorem 11. Stability of Heterogeneous Equilibrium. The Nash equilibrium A+ from Theorem 10 is
an asymptotically stable equilibrium of the competition dynamics in Eq. (30) if the equilibrium A+ is unique,
i.e., if there is only one attribute on every path which has potentially non-zero prevalence (|K+

r | = |K+
r | = 1).

The proof of Theorem 11 is provided in Appendix K.
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3.3.3. Competition Effects

Based on the equilibria for single-path and two-path markets, we now investigate the effect of inter-
path competition in heterogeneous markets. For this investigation, we use a similar approach as in §3.2.4:
We contrast a competition-free network N3, which consists of two paths r and r, each connecting one
origin-destination pair, with a competitive network N4, where both origin-destination pairs are connected
by both paths. The origin-destination pair connected by path r in the competition-free network N3 has
demand limit dr; hence, the total demand limit d = dr+dr is distributed over both paths in the competitive
network N4. The networks N3 and N4 thus differ in the same manner as the networks N1 and N2 from Fig. 1,
except that the different paths may have different length in ISPs, each ISP may have different parameters,
and each origin-destination pair may have a different demand limit. When contrasting these two networks,
we gain the following insight:

Theorem 12. Attribute Improvement under Heterogeneous Competition. For any competition-free
network N3 and the corresponding competitive network N4, a demand limit d exists such that the competitive
network N4 has a higher equilibrium valuation than the competition-free network N3 independent of the
demand distributions (dr, dr), i.e.,

∃d s.t. ∀dr, dr with dr + dr = d. V +(N4) ≥ V +(N3) (31)

The proof of Theorem 12 is provided in Appendix L.
In simplified terms, inter-path competition thus affects the attribute values and the path valuations

positively for high-enough demand, given the remaining network parameters. This condition on demand,
however, raises the question whether competition reduces the network valuation in some circumstances.
Indeed, we find that such a counter-intuitive effect can arise at every demand level if the remaining network
parameters are unfavorable:

Theorem 13. Attribute Decline under Heterogeneous Competition. For every demand distribu-
tion (dr, dr), there exist characteristic ratios (ψr, ψr) and path base valuations (αr0, αr0) such that the
competitive network N4 has a lower equilibrium valuation than the competition-free network N3, i.e.,

∀dr, dr. ∃ψr, ψr, αr0, αr0 s.t. V +(N4) < V +(N3). (32)

The proof of Theorem 13 is provided in Appendix M.
To understand this effect intuitively, we note that an ISP n optimizes its profit by balancing the marginal

revenue and the marginal cost with respect to attribute prevalence, i.e., adjusts attribute prevalence as long
as the adjustment generates more revenue than cost. In the competition-free scenario of N3, the marginal
revenue and cost of an ISP n with respect to attribute (n, k) are:

∂Rn

∂ank
=

drαnk

(1 + vr)
2 · ρn

∂

∂ank
(Φn + Γn) =

drαnk

(1 + vr)
2 · ϕn0 + γnk (33)

In contrast, the corresponding terms for the competitive scenario in network N4 are as follows:

∂Rn

∂ank
=
dαnk · (1 + vr)

(1 + vr + vr)
2 · ρn

∂

∂ank
(Φn + Γn) =

dαnk · (1 + vr)

(1 + vr + vr)
2 · ϕn0 + γnk (34)

On the one hand, competition has a positive effect on marginal revenue ∂Rn/∂ank by increasing the total
amount of attractable demand from dr to d > dr. On the other hand, the new competition embodied by
the alternative-path valuation vr has a negative effect on marginal revenue. The negative effect predomi-
nates if the alternative-path valuation vr is relatively large and unresponsive to competition, as the proof
of Theorem 13 demonstrates. If marginal revenue in fact decreases, marginal cost decreases less strongly
as ρn ≥ ϕn0. Given negative marginal profit, the profit of ISP n is thus optimized by a lower attribute
prevalence ank, which translates into decreasing path value.
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4. A Model Instance Based on Real-World Data

In this section, we demonstrate how to instantiate our competition model from §2 to investigate a large-
scale network containing multiple intertwined markets. To that end, we construct a topology approximating
the Internet core and a corresponding traffic matrix in §4.1. Furthermore, we consider two ISP attributes
in the competitive dynamics, namely internal bandwidth and clean-energy share, and estimate appropriate
model parameters in §4.2 and §4.3, respectively. Attribute-independent parameters are estimated in §4.4.

Importantly, we note that estimating highly realistic parameters for the model goes beyond the scope
of this paper, as the scarcity of publicly available data and the complexity of real-world business practices
considerably complicates this estimation. Therefore, the goal of the following parameter estimation is to
place the parameters in the right order of magnitude, especially in relation to each other, rather than to
determine each parameter highly realistically. Interestingly, our sensitivity analysis in §5 suggests that such
an approximate estimation might be sufficient to yield useful predictions.

4.1. Network Topology and Demand

To investigate the effects of competition in practically interesting, large-scale settings while keeping
the complexity of the simulation manageable, we extract a network topology that roughly approximates the
Internet core from a public dataset. In particular, we rely on a CAIDA dataset containing 12 300 autonomous
systems (ASes), their economic relationships, and the geolocation of their interconnections (i.e., inter-domain
interfaces) [7]. From this dataset, we extract the topology of the 2000 most interconnected ASes by iteratively
removing the lowest-degree ASes.

In this reduced topology, we aim at finding the 5 shortest paths between every origin-destination pair
of ASes. For scalability, we can only consider AS paths with at most 4 AS hops, which is not a strong
limitation: The paths in our topology only represent the core-traversing segments of whole Internet paths,
which have an average length of around 5 hops (and decreasing) [18]. Moreover, for both scalability and
practical relevance, we only consider paths that are Gao-Rexford-compliant [16], i.e., are compatible with the
economic self-interest of ASes regarding monetization of traffic. The restriction to Gao-Rexford-compliant
paths also ensures that the intermediate ASes in a discovered path are in fact transit providers rather than
content providers or eyeball ISPs. With these constraints, we can identify 5 paths for ∼ 52.4% of AS pairs
in the topology.

While only a subset of all AS pairs, these pairs of closely located ASes are disproportionately relevant
for the competition dynamics, as they account for a substantial share of traffic given the gravity-like nature
of Internet traffic [34]. Gravity models make the simplifying assumption that the traffic demand d(n1,n2)

between two ISPs n1 and n2 is proportional to the product of the ‘masses’ m1 ·m2 of the two ISPs divided
by the squared distance r212 between the ISPs:

d(n1,n2) ∝ G12 =
m1 ·m2

r212
. (35)

In order to synthesize a traffic matrix for our purpose, we concretize this gravity model as follows. First,
we calculate the mass mn of an AS n as the number of distinct IPs in all prefixes owned by AS n and by the
ASes in the customer cone of AS n. This information is available via the datasets ‘Routeviews Prefix-to-AS
Mapping’ [8] and ‘AS Relationships’ [9], both from CAIDA. Second, we determine the distance r12 for each
AS pair (n1, n2) as the average number of hops in the 5 paths connecting the AS pair. Third, we calculate
the gravity G12 according to Eq. (35) for every AS pair (n1, n2). Finally, we allocate the total Internet
traffic volume of 170 Tbps [27] to the AS pairs (n1, n2) according to the relative size of G12.

4.2. Attribute 1: Internal Bandwidth

To instantiate the model, we define the ISP attributes K that are affected by the competitive dynamics,
and the corresponding model parameters. As an intuitive example of desirable ISP attributes, we consider
the internal bandwidth of an ISP (in Gbps) the first such attribute (k = 1). If the ISPs along a path have
a large bandwidth capacity, these ISPs are likely able to absorb sudden traffic surges, tolerate equipment
failures, handle large traffic flows, and in general deliver a high quality of service; hence, the internal
bandwidth of on-path ISPs correlates with the attractiveness of the given path.

13



4.2.1. Valuation

This valuation by path-selecting ISPs is quantified by the valuation function vr1, quantifying the valuation
of a bit traversing path r given the internal bandwidth of on-path ISPs. This valuation function vr1 is
characterized by the parameters αrn1, giving the valuation of a bit traversing ISP n on path r for a unit
of the internal bandwidth of ISP n. For this quantification, we rely on two empirical findings. First, the
average US consumer transmits 536.3 GB of data per month [31], and is willing to pay 94 USD per month
for a 1Gbps connection [22]. Hence, we arrive at a monthly willingness-to-pay of around w = 0.17 USD
per GB at the quality of a 1Gbps connection. With this willingness-to-pay w, we determine the bandwidth
valuation parameters αrn1, namely by defining αrn1 = w/(|r| · mn), where |r| is the number of ASes on
path r (averaging the internal bandwidth across on-path ISPs) and mn is the number of IPs in the customer
cone of AS n (correcting for the number of end-points sharing the bandwidth). Multiplied with the internal
bandwidth an1, these valuation parameters thus approximate the valuation per bit traversing ISP n given
the internal bandwidth of ISP n. Notably, this choice of αrn1 assumes that the complete willingness-to-
pay w of end-hosts can be exploited by transit ISPs; in reality, a substantial share of this willingness-to-pay
is already captured by eyeball ISPs. However, our sensitivity analysis (cf. §5.1) indicates that our results
hold even under lower αrn1, i.e., for a lower willingness-to-pay relevant to transit providers.

Furthermore, the bandwidth valuation function vr1 is also characterized by the base valuation α′r0 of
path r. However, since a path only has value in terms of bandwidth if the on-path ASes have non-zero
internal bandwidth, we choose α′r0 = 0.

4.2.2. Cost

Apart from increasing valuation by path-selecting ISPs, providing bandwidth also has a cost. However,
it is difficult to quantify the cost of providing a Gbps of internal bandwidth, as this cost heavily depends on
the way of provision (leasing or physically installing new capacity), on the necessary installation procedures
(e.g., length of cables to be newly laid), on the location where capacity should be added, and on numerous
other aspects. Hence, we rely on the simple insight that the cost of providing a Gbps of connectivity is likely
lower than the corresponding willingness-to-pay by consumers (94 USD per Gbps per month [22]), as ISPs
would go out of business otherwise. Hence, we randomly vary the cost parameter γn1 between 0 and 94 USD
per Gbps per month in our simulations, for all n ∈ N . Importantly, the provision of bandwidth only affects
the demand-independent cost Γn of an ISP n, as providing a certain bandwidth capacity causes the same
cost independent of the actually experienced demand. Hence, we can also define the demand-dependent cost
parameter for the bandwidth attribute k = 1: ϕn1 = 0 for all n ∈ N .

4.2.3. Attribute Bounds.

Using internal bandwidth as one of multiple attributes leads to an implausible model prediction in the
case where all ASes on a path r have zero internal bandwidth (an1 = 0 ∀n ∈ r), but some non-zero values
for other attributes. In that case, the valuation function vr might still assign some non-zero valuation and
some demand to path r, although the zero-bandwidth path r is clearly worthless. To avoid this implausible
case of the model, we place a lower bound on the bandwidth attribute an1 ∀n ∈ N . This lower bound is
given by 10% of the demand experienced by AS n if the demand of every origin-destination pair was equally
distributed among the available 5 paths:

∀n ∈ N. an1 ≥ 0.1

5
·

∑
r∈R. n∈r
r∈R(n1,n2)

d(n1,n2) (36)

4.3. Attribute 2: Clean-Energy Share

Path-selection preferences are not exclusively related to transmission performance (such as internal band-
width of on-path ISPs), but may also reflect ESG considerations [11, 23]. For example, in carbon-intelligent
routing [39, 49], path selection takes into account the carbon emission that results from data transmission.
More precisely, the path-specific transmission carbon intensity, i.e., the volume of carbon emission per bit of
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transmitted data on a given path, affects path selection. To investigate the effect of competition on this car-
bon intensity, we choose the share of clean energy used by an ISP (in percent) as the second attribute (k = 2)
for our simulations, i.e., an2 ∈ [0, 1] ∀n ∈ N .

4.3.1. Transmission Carbon Intensity

The clean-energy share attributes of on-path ASes determine the carbon intensity of a path as follows.
First, any AS-level path r must be transformed into a router-level path sr, which is possible by means of
the CAIDA ITDK dataset [10]. For simplicity, we assume that the intra-AS router-level path srn in AS n
is the shortest router-level path between the two AS interconnections derived from the AS-level path r. For
any intra-AS path srn, we determine the energy intensity ern, i.e., the amount of consumed electricity per
bit transmitted on path srn. This energy intensity ern can be calculated from the number of routers and
the covered distance of path srn, given by the CAIDA ITDK dataset, and the energy-intensity values for
various devices, as reported by Heddeghem at al. [17]. Then, we calculate the maximum transmission carbon
intensity crn,max of any intra-AS path srn by multiplying the corresponding energy intensity ern with the
the energy carbon intensity cmax of the most carbon-intensive electricity, namely 875 gCO2/kWh for coal-
generated electricity [19]. This maximum transmission carbon intensity crn,max thus quantifies the carbon
emission associated with the transmission of a bit across path srn if AS n used maximally carbon-intensive
electricity. Finally, we derive the actual transmission carbon intensity crn of any intra-AS path srn as the
product of the maximum transmission carbon intensity crn,max and the dirty-energy share of ISP n, i.e.,
1 − an2. The carbon intensity cr of a path r is the sum of carbon-intensity values crn of the constituting
intra-AS paths srn ∀n ∈ r:

cr(A) =
∑
n∈r

crn(A) =
∑
n∈r

crn,max · (1− an2) =
∑
n∈r

ern · cmax · (1− an2). (37)

4.3.2. Valuation

This carbon-intensity calculation also informs the valuation vr2, which quantifies the valuation of path r
exclusively with respect to carbon emissions. In fact, we understand vr2 as an affine function of the negative
carbon intensity of path r:

vr2(A) =
∑
n∈r

αrn2an2+α
′′
r0 = −

∑
n∈r

pCO2crn(A)+qr =
∑
n∈r

(pCO2 · crn,max · an2 − pCO2 · crn,max)+qr. (38)

where pCO2 is the cost of emitted CO2, chosen as 90 USD per ton according to the EU emission-trading
scheme [15], and qr is a constant that ensures the non-negativity and comparability of the valuation (see
below). From Eq. (38), we can determine the valuation parameters αrn2, describing the valuation of ISP n’s
clean-energy share on path r, as pCO2

·crn,max. The base valuation α
′′
r0 is determined based on two consider-

ations. First, the valuation function vr2 must be consistently non-negative. Second, the valuation function
must allow a meaningful comparison between paths R(n1, n2) connecting the same AS pair (n1, n2): For
example, if all ISPs use zero clean energy, a path with higher energy intensity should still be valued less
than a path with lower energy intensity. Conversely, if all ISPs use perfectly clean energy, all paths should
be valued identically. To achieve these properties, we determine α′′r0 as follows:

α′′r0 = −
∑
n∈r

pCO2
· crn,max + qr = −

∑
n∈r

pCO2
· crn,max + max

r′∈R(n1,n2)
r∈R(n1,n2)

∑
n′∈r′

pCO2
· cr′n′,max. (39)

With such determined vr2, we can formalize the complete path-valuation vr as the sum of the attribute-
specific valuation functions vr1 and vr2. Since αrnkank yields a valuation per bit for both attributes k ∈
{1, 2}, the attribute-specific valuation functions are compatible.

4.3.3. Cost

To estimate the costs associated with the clean-energy share of an ISP n, we rely on the analysis of the
levelized cost of energy (LCOE) of different electricity-generation technologies, performed by Lazard [21].
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According to the Lazard analysis, electricity from low-carbon sources (solar, wind, nuclear) is on average
g = 3.375 USD per MWh more expensive than electricity from high-carbon sources (coal, gas). This cost
penalty, together with the average energy intensity of all intra-AS paths in AS n, yields the parameter ϕn2
relevant for demand-dependent cost:

ϕn2 = g · 1

|R(n)|
·
∑

r∈R(n)

ern, (40)

where R(n) = {r ∈ R | n ∈ R}. Multiplied with the clean-energy share attribute an2, the parameter ϕn2
yields the extra cost per transported bit that AS n incurs by using clean energy.

Regarding demand-independent cost, we note that the idle-power requirement of network devices plays
an important role, as this requirement generates electricity bills even in absence of demand. The idle-power
consumption un of a complete AS n can be estimated from the number of devices in AS n [10], the power
consumption of network devices [17], and an average idle-power requirement of 85% [20]. This idle-power
consumption un, together with the extra cost g for clean energy, determines the parameter γn2 relevant for
demand-independent cost: γn2 = g · un.

4.4. Attribute-Independent Parameters

In addition to the attribute-specific parameters in Sections 4.2 and 4.3, the attribute-independent pa-
rameters ρn, ϕn0 and γn0 also appear in our model.

The parameter ρn quantifies the revenue per transported bit of AS n. To estimate this parameter, we use
a top-down approach: We divide the global annual revenue of wholesale Internet backbone providers (45.2
billion USD in 2019 [45]) by the amount of global annual Internet traffic (433 exabyte in 2019 [27]), and
arrive at an average revenue of ρ = 0.104 USD per GB. For simplicity, we use this ρ as revenue parameter ρn
for every ISP n ∈ N .

The parameter ϕn0 describes the marginal cost of AS n per transported bit, excluding extra marginal
cost due to clean-energy usage (cf. §4.3). As this marginal cost is commonly understood to be ‘essentially
zero’ [43], we determine ϕn0 = 0 ∀n ∈ N .

Conversely, the attribute-independent fixed cost γn0 of AS n can be quite substantial. However, since
we are mainly interested in the attribute-optimization behavior of ASes under competition, and γn0 does
not affect this optimization behavior, we abstain from estimating γn0, i.e., use γn0 = 0 in our simulations.
As a result, the absolute value of the profit function πn is not meaningful, which we take into account for
the result discussion in §5.2.

5. Simulation

Section 3 theoretically illustrates the diverse results of quality competition among ISPs. These results
include both positive and negative effects of competition on attribute prevalence and profits, depending
on the concrete topologies of competing paths in the considered markets. In this section, we investigate
which types of effect are observable if competition is introduced in a large-scale topology where transit ASes
(ASes, corresponding to ISPs) simultaneously compete in multiple markets. To that end, we run simulation
experiments described in §5.1 for the instance of the competition model constructed in §4, and discuss the
results in §5.2.

5.1. Experiments

Since the parameters estimated in §4 are afflicted with considerable uncertainty, we conduct our experi-
ments without being overly reliant on the exact estimated parameter values. More precisely, we generate 20
different sets of model parameters by randomly modifying each model parameter y such that it lies between 0
and 2y in virtually all cases. We achieve this modification by randomly sampling each model parameter y′

from the following restricted normal distribution, based on the corresponding estimated parameter y:

y′ ∼ max

(
N
(
y,
y2

9

)
, 0

)
. (41)
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Figure 2: Under increasing competition, more ASes improve their attribute values or their profit compared to a single-path
monopoly, independent of their topology level.

For each random sample of parameters, we investigate the effect of increasing intensity of competition
on the attribute-value choice of transit ASes. In our experiments, the intensity of competition corresponds
to the number of usable paths between any AS pair. This number of usable paths is varied between 1 and
5 across experiments, where the case of 1 path corresponds to a monopoly scenario. In each simulation
experiment, we thus simulate the competitive dynamics given a set of randomly sampled model parameters
and given a certain intensity of competition.

Each simulation experiment amounts to computing round-robin better-response dynamics [6], where all
ASes consecutively adjust their attribute values in the direction which increases their profit. This discrete
process is an approximation of the continuous ODE process in Eq. (20). Moreover, the process can be
understood as reflecting bounded rationality [37], as we assume that ASes can only identify profit-improving
rather than profit-optimal attribute values. The simulation is terminated once the competitive dynamics
have converged upon an equilibrium, i.e., each round only causes negligible change in the attribute values A.
The attribute values A+ in the equilibrium then represent the results of the experiment.

5.2. Results

The results of the experiments described in §5.1 are visualized in Figs. 2–4. The error bar of any
data point in these figures illustrates the variance of the respective aggregate result across the 10 random
parameter samples. Interestingly, the variance of the aggregate results is quite limited, although the variance
in individual parameters is considerable. This observation indicates that our results are not highly sensitive
to the model parameters from §4, and suggests that an approximate estimation of model parameters might
be sufficient to yield useful predictions.

The central question in our analysis is: How does the intensity of competition affect the attribute values
and the ISP profits? Our theoretical investigation in §3 indicates that the competitive dynamics can both
increase and decrease these indicators compared to a monopoly scenario, depending on network properties.
Hence, we investigate which type of effect is predominant for the large-scale network from §4.

In this analysis, we distinguish three groups of ASes that differ in their topology rank, namely tier-1
ASes (ASes that have no provider), tier-2 ASes (ASes that have only tier-1 providers), and tier-3 ASes (ASes
that have only tier-1 and tier-2 providers). Since these AS groups differ in their market power, the effect on
competition on attributes and profits for these groups may be different.

5.2.1. Attribute Prevalence

Regarding competition effects on attribute prevalence, we gain the following insights:

Effects on transit ASes. Fig. 2 confirms that an increasing number of options for the path-selecting ASes
intensifies competition between transit ASes, which then improve their attribute values in response. In
particular, about half of ASes improve both their attribute values given 5 available paths, whereas only 20%
improve their attributes in a duopoly scenario (compared to a monopoly scenario). Note that some ASes
may decrease their attribute values under competition for the counter-intuitive reasons explained in §3.3.3.
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Figure 3: Competition tends to raise the mean attribute values across ASes (for all AS tier groups), compared to a monopoly
situation. However, attributes may be affected differently by competition due to differences in valuation and cost.

Moreover, the general level of attribute prevalence is raised by competition, which is implied by the
increasing global average of attribute values in Fig. 3. The internal-bandwidth attribute is more strongly
affected by this average gain than the clean-energy–share attribute, because (i) the bandwidth attribute is
not upper-bounded, and (ii) the bandwidth attribute has zero demand-dependent cost.

Effects on selecting ASes. The average improvement in attributes translates into a more attractive offer for
path-selecting ASes. More precisely, the most attractive path between each AS pair tends to become more
attractive as competition increases: Fig. 4 shows that 75% of AS pairs obtain access to a more valuable
path if two paths instead of a single path are available (increasing maximum valuation), irrespective of the
tier of the path-selecting AS. Notably, we would expect that around 50% of AS pairs obtain a second path
of higher quality in the absence of dynamic competition effects. Hence, the increasing maximum valuation
is a combined effect of multi-path availability and competition. Moreover, in absence of competition effects,
a second path can only decrease, but not raise the minimum valuation across available paths. However, we
observe that for 40% of AS pairs, both paths in a two-path scenario are more highly valued than the single
path in a monopoly scenario, which suggests that competition raises the value of the previously monopolistic
path. However, as the number of available paths increases, the tendency of additional paths to decrease
the minimum quality becomes more visible. Finally, these offer improvements materialize for all tiers of
path-selecting ASes.

Differences in market power. Intriguingly, the higher market power of tier-1 ASes is not visible in Fig. 2,
as tier-1 ASes are equally likely as lower-tier ASes to improve their attributes. However, the market power
of tier-1 ASes becomes apparent in Fig. 3, which indicates that tier-1 ASes in competition improve their
attributes to a lower extent than ASes on lower tiers.

5.2.2. Profits

Regarding competition effects on profits, we make the following observations:

Effects on transit ASes. Increasing path diversity and competition lead to increasing profits for a substantial
share of ASes (cf. Fig. 2). At 5 available paths per AS pair, 75% of ASes increase their profits. This insight
is surprising, given that competition is traditionally expected to increase consumer welfare and to reduce
producer profits. In an ISP market, however, profits may increase because competition is modulated by path
diversity. Such path diversity not only allows selecting ASes to select more different paths, but also allows
transit ASes to attract and monetize traffic from more selecting ASes, increasing profit. Importantly, such
an increase in attracted demand for an ISP does not necessarily reduce the attracted demand of another
ISP, as the volume of total demand is elastic in our model.

Differences in market power. Interestingly, the profit increase under competition among 5 paths is more
pronounced for tier-2 and tier-3 ASes than for tier-1 ASes. The reason is that the tier-1 ASes become more
likely to be circumvented as path-selecting ASes obtain additional path options, and lower-tier ASes can
thus attract more demand.

18



1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

S
h

a
re

o
f

A
S

p
ai

rs

w
it

h
im

p
ro

ve
m

en
t

All ASes

1 2 3 4 5

Tier-1 ASes

1 2 3 4 5
Number of available paths between AS pair

Tier-2 ASes

1 2 3 4 5

Tier-3 ASes

Maximum Path Valuation Minimum Path Valuation

Figure 4: On average, competition raises the the attractiveness of the most and the least attractive path that connect two
ASes, independent of the source-AS tier.
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Figure 5: Equilibrium results for competitive dynamics with non-affine functions for valuation and cost.

5.2.3. Sensitivity to Model Functions

In our model, we assume affine functions for both the path-valuation functions vr and the cost func-
tions Φn and Γn. To assess the impact of this assumption, we rerun the simulations by replacing linear
dependencies within these functions. In particular, we replace ank in vr by sub-linear

√
ank (cf. Eq. (1)),

and replace ank in Φn and Γn by super-linear a2nk (cf. Eq. (4)). The results are presented in Fig. 5.
Intriguingly, the results for the non-affine functions closely match the results for affine functions in a

qualitative sence, i.e., competition improves the attribute values, profits, and path options for a large share
of ASes. Quantitatively, the largest difference concerns the mean increase in attribute values (cf. Fig. 5b
vs. Fig. 3), which is considerably lower for the bandwidth attribute for the non-affine functions. However,
this effect is to be expected because the non-affine functions make attributes both less valuable and more
costly (if ank > 1, as for the bandwidth attribute), and thus less attractive to invest in.

6. Related Work

General competition models. Internet competition is frequently studied by means of the three fundamental
competition models from the economic literature. First, Cournot competition [12] describes multiple firms
that produce the same homogeneous good, individually determine the quantity to be produced, and thus
indirectly determine the market price. Cournot competition suggests that in comparison with a monopoly,
a duopoly increases the quantity of the good and reduces its price, indicating that competition benefits
consumers. In the second competition model, Bertrand competition [14], firms also produce a homogeneous
good, but directly set a price instead of a quantity. Moreover, the firm with the lowest price acquires the
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whole market. Hence, Bertrand competition is considered more suitable to analyze highly competitive mar-
kets. Lastly, Stackelberg competition [44] is similar to Cournot competition, but is suitable for hierarchical
markets in which follower firms determine their production quantity after observing the quantity produced
by a leader firm. All competition models have been adapted to networked markets, i.e., markets in which
each segment of consumers can only be served by a corresponding subset of firms [1, 3, 28].

Our competition model is more strongly inspired by the logit-demand model [2], which originates from
econometrics, can more directly represent competition between goods with different characteristics, and
has been used in research on Internet transit pricing [42]. Still, the market in our model is networked, as
determined by the network topology.

Internet competition models. To study Internet competition in particular, Shakkottai and Srikant [36] lever-
age Bertrand and Stackelberg competition to theoretically analyze the effect of competition in different
levels of the Internet, i.e., for tier-1, tier-2, and local ISPs. Their model shows that competition may exert
downwards pressure on prices, and an assimilating pressure on the quality-of-service (QoS) levels offered
by different ISPs. These insights are confirmed by a subsequent line of simulation-based research [25, 41].
These studies analyze the ISP competition induced by virtualized access networks and by the ChoiceNet
proposal [46], which describes a marketplace for transit services. Using both theoretical analysis and sim-
ulation, Nagurney and Wolf [29] expand on a study by Zhang et al. [47] to investigate the intertwined
competition dynamics among service providers (in Bertrand competition) and among network providers (in
Cournot competition). In this analysis, the offers of service providers and network providers differ in both
price and quality, and converge to an equilibrium describable by variational-inequality conditions.

In this paper, we extend the previous work in a number of aspects. First, our model acknowledges that
path quality may be determined collectively by multiple selfish on-path ISPs, and reveals the inefficient
cooperation within a path due to selfishness. In contrast, previous work assumed that network service
is bought from a single access/transit provider, and is thus effectively limited to one-hop paths. Second,
path quality in our model depends on multiple underlying attributes, whereas previous work abstracts path
quality in a single attribute. This fine-grained view of quality attributes is valuable, as it reveals how different
attributes are affected differently by competition (cf. §3.3). Third, our model represents the internal cost
structure of ISPs in a detailed manner, as it (i) distinguishes demand-dependent and demand-independent
cost, and (ii) formalize the cost dependence on quality attributes, unlike previous work. Fourth, we make
an effort to find realistic parameters for our large-scale simulations, whereas the parameters in previous
simulation-based works are arbitrary. Finally, we explicitly investigate the differences between differing
degrees of competition, and find network examples in which more intense competition lead to previously
undocumented effects, namely increasing profits and decreasing path quality.

ISP cooperation. The economic dynamics between between network entities that collectively provide con-
nectivity has been studied with the lens of cooperative game theory [4], i.e., assuming that agents within a
group choose rules which are enforced thereafter. Such considerations can inform financial settlement among
ISPs in a coalition, where settlement mechanisms based on the Shapley value [24] or ISP characteristics [48]
have been proposed. In our work, we discuss intra-path dynamics using non-cooperative game theory, as
setting up a binding contract among the ISPs on every path is difficult in practice. Moreover, our model
also reflects that multiple coalitions (paths) are in competition, which is missing from previous work.

Path-selection models. Our model does not only predict how ISPs adapt their quality attributes under
competition, but also how ISPs select among available paths. In that latter aspect, our work has a connection
to path-selection models such as hot-potato routing [38, 40]. The model of hot-potato routing is based on the
fundamental assumption that ISPs generally select the path with the geographically closest ISP egress, and
predicts actual path selection in the Internet with substantial accuracy [38]. While the hot-potato–routing
model is considerably simpler than our model, the higher complexity of our model allows to complement the
hot-potato model in two valuable respects. First, our model can accommodate the geographic proximity of
ISP interfaces as a quality attribute with high valuation weight; additional attributes may then help explain
why actual path selection sometimes deviates from hot-potato routing. Second, our model may additionally
explain how ISPs react to hot-potato routing, i.e., by strategically placing their ingresses to attract traffic.
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7. Conclusion

ISPs determine the quality attributes of their connectivity offer (e.g., performance metrics, security
features, sustainability properties) in line with their profit objective and alternative offers by other ISPs.
The presence of such alternative offers (i.e., competition) tends to improve path quality, as we demonstrate
in this paper. We provide evidence for this positive effect of ISP competition with an extensive theoretical
analysis, based on a new game-theoretic model, and a large-scale simulation, based on empirical data. Our
theoretical analysis suggests that an augmented path choice incentivizes transit ISPs to improve path quality,
especially if ISPs have similar cost structures (Theorems 5 and 12). Interestingly, this higher investment in
quality attributes does not necessarily reduce transit ISP profits, as entering competition (by connecting to
new customers) also allows transit ISPs to attract revenue-generating traffic from new customer segments
(Theorem 6). While these positive effects do not materialize in unfavorable circumstances (Theorem 13),
our simulation-based case study indicates largely positive effects of competition in practice.

Our analysis does not only reveal the macroscopic effects of competition, but also formalizes the rational
attribute choice for ISPs, which can inform ISP business strategies. In particular, we obtain three main
recommendations for quality investment from our analysis:

• Invest in attributes with low fixed cost: Theorem 1 suggests that the optimal extent of a quality
attribute correlates with the ratio of demand-dependent attribute-specific cost to total attribute-
specific cost. Hence, the lower the demand-independent (fixed) cost of an attribute, the higher the
optimal investment in the attribute. For example, renting internal bandwidth on-demand tends to
improve profit more than a fixed bandwidth installation.

• Invest exclusively in attributes with high return: Theorem 1 also shows a correlation between the
optimal attribute extent and the attribute return, i.e., the attribute-specific net revenue per traffic
unit, divided by the attribute-specific cost. Theorem 10 even suggests specialization in heterogeneous
markets with negligible demand-dependent cost, i.e., only the path attribute with the highest return
should be invested in, while all less attractive attributes should be abandoned.

• Engage in competition and on-path cooperation: Both our theoretical analysis (Theorem 6) and our
simulations (§5) show that engaging in competition by connecting to new customers tends to increase
transit ISP profit, as the revenue from newly attracted traffic generally outweighs the costs of competing
in the new markets. Furthermore, transit ISPs should also engage in cooperation with other on-
path ISPs by coordinating attribute investment. Such coordination leads to achievement of the Nash
bargaining solution, and therefore to higher profits and higher path quality, which also benefits path
users (Theorems 4 and 9). However, to achieve stable cooperation among selfish ISPs, additional work
based on mechanism design is needed.

Finally, we emphasize that our new competition model is not only applicable to ISP competition, but in
general to settings in which coalitions of selfish entities stand in competition. While ISPs and paths represent
the entities and coalitions in the ISP market, competition in other markets arises between firms that form
value chains. Our model allows investigating complex economic phenomena such as the interaction between
firms along a value chain, or the effect of overlapping value chains. Hence, we are intrigued to investigate
whether our findings for the ISP market translate to other economic sectors.
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Appendix A. Proof of Theorem 1

Appendix A.1. Unrestricted best response in Eq. (11)
For an individual source-destination pair (n1, n2), we can simplify Eq. (5) as follows:

πn =
dvr(n)

1 +
∑
r′∈R vr′

·

(
ρn −

∑
k∈K

ϕnkank − ϕn0

)
−
∑
k∈K

γnkank − γn0 (A.1)

where the argument A has been omitted and

vr(n) =
∑

r∈R. n∈r
vr. (A.2)

Differentiating Eq. (A.1) with respect to attribute ank of ISP n yields:

∂πn
∂ank

=
dαnk

(
1 + v−r(n)

)(
1 +

∑
r′∈R vr′

)2 ·

(
ρn −

∑
k∈K

ϕnkank − ϕn0

)
−

dϕnkvr(n)

1 +
∑
r′∈R vr′

− γnk (A.3)

where the abbreviations from Eq. (13) have been used. Setting Eq. (A.3) to 0 allows the following rewriting:

dαnk
(
1 + v−r(n)

)
·

(
ρn −

∑
k∈K

ϕnkank − ϕn0

)
−dϕnkvr(n) ·

(
1 +

∑
r′∈R

vr′

)
−γnk ·

(
1 +

∑
r′∈R

vr′

)2

= 0 (A.4)

In the LHS, we can substitute

vr(n) + v−r(n) =
∑
r′∈R

vr′ = αnkank + v−nk = αnkank + vr(n),−nk + v−r(n)∑
k′∈K

ϕnk′ank′ + ϕn0 = ϕnkank +Φ−nk
(A.5)

and obtain:

− dαnkϕnk
(
1 + v−r(n)

)
· ank + dαnk (ρn − Φ−nk)

(
1 + v−r(n)

)
(A.6)

− dϕnk
(
αnkank + vr(n),−nk

)
(αnkank + 1 + v−nk)

− γnk · (αnkank + 1 + v−nk)
2

⇐⇒ − dαnkϕnk
(
1 + v−r(n)

)
· ank + dαnk (ρn − Φ−nk)

(
1 + v−r(n)

)
(A.7)

− dϕnk · α2
nka

2
nk − dϕnk · αnk ·

(
vr(n),−nk + (1 + v−nk)

)
ank − dϕnk · vr(n),−nk (1 + v−nk)

− γnk ·
(
α2
nka

2
nk + 2αnk (1 + v−nk) ank + (1 + v−nk)

2
)

⇐⇒
(
−dϕnkα2

nk − γnkα
2
nk

)
· a2nk (A.8)

+
(
−dαnkϕnk

(
1 + v−r(n)

)
− dαnkϕnk

(
1 + vr(n),−nk + v−nk

))
· ank

+ (−2αnkγnk (1 + v−nk)) · ank
+ dαnk (ρn − Φ−nk)

(
1 + v−r(n)

)
− dϕnk · vr(n),−nk · (1 + v−nk)− γnk · (1 + v−nk)

2

⇐⇒ − α2
nk (dϕnk + γnk) · a2nk (A.9)

− 2dαnkϕnk (1 + v−nk) · ank − 2αnkγnk (1 + v−nk) · ank
+ dαnk (ρn − Φ−nk)− dϕnk · vr(n),−nk · (1 + v−nk)− γnk · (1 + v−nk)

2

⇐⇒ − α2
nk (dϕnk + γnk) · a2nk (A.10)

− 2αnk (dϕnk + γnk) (1 + v−nk) · ank
+ dαnk (ρn − Φ−nk)

(
1 + v−r(n)

)
− dϕnk · vr(n),−nk · (1 + v−nk)− γnk · (1 + v−nk)

2

⇐⇒ T1a
2
nk + T2ank + T3 = 0 (A.11)
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Hence, we obtain a quadratic equation in ank. This quadratic equation has the solutions:

ank =
−T2 ±

√
T 2
2 + 4T1T3

2T1
(A.12)

=− 2αnk (dϕnk + γnk) (1 + v−nk)

2α2
nk (dϕnk + γnk)

(A.13)

±

√
4α2

nk (dϕnk + γnk)
2
(1 + v−nk)

2
+ 4α2

nk(dϕnk + γnk) · T3
2α2

nk (dϕnk + γnk)
(A.14)

=− 1 + v−nk
αnk

±

√
(dϕnk + γnk) (1 + v−nk)

2
+ T3

αnk
√
dϕnk + γnk

, (A.15)

where we expand the term under the root as follows:

(dϕnk + γnk) (1 + v−nk)
2
+ T3 (A.16)

= dϕnk · (1 + v−nk)
2
+ γnk (1 + v−nk)

2
(A.17)

+ dαnk (ρn − Φ−nk)
(
1 + v−r(n)

)
− dϕnk · vr(n),−nk · (1 + v−nk)−γnk · (1 + v−nk)

2

= dϕnk · (1 + v−nk)
2 − dϕnk · vr(n),−nk · (1 + v−nk) (A.18)

+ dαnk (ρn − Φ−nk)
(
1 + v−r(n)

)
(A.20)
= dϕnk

(
1 + v−r(n)

)
(1 + v−nk) + dαnk (ρn − Φ−nk)

(
1 + v−r(n)

)
, (A.19)

where we have made use of the following equality in the last step:

(1 + v−nk)
2 − vr(n),−nk (1 + v−nk)

=
(
1 + vr(n),−nk + v−r(n)

)
(1 + v−nk)− vr(n),−nk (1 + v−nk)

=
(
1 + v−r(n)

)
(1 + v−nk)

(A.20)

By reinserting Eq. (A.19) in Eq. (A.15), we obtain:

ank =
1

αnk

±

√
d
(
1 + v−r(n)

)
dϕnk + γnk

(
ϕnk(1 + v−nk) + αnk(ρn − Φ−nk)

))
−
(
1 + v−nk

) , (A.21)

where only the upper solution (i.e., with the positive coefficient of the square-root term) is potentially valid
given the non-negativity of attributes. Hence, we arrive at â∗nk(A−nk) as in Eq. (11).

Appendix A.2. Confirmation of maximum
This solution is a maximum of πn if πn is concave in ank, which can be demonstrated by means of the

second derivative:

∂2πn
∂a2nk

=
−2dα2

kn

(
1 + v−r(n)

)(
1 +

∑
r′∈R vr′

)3 ·

(
ρn −

∑
k∈K

ϕnkank − ϕn0

)
−

2dαnϕnk
(
1 + v−r(n)

)(
1 +

∑
r′∈R vr′

)2 (A.22)

Clearly, πn may only be non-concave under the following condition:

∂2πn
∂a2nk

> 0 =⇒ ρn −
∑
k∈K

ϕnkank − ϕn0 < 0 (A.23)

However, if the condition in Eq. (A.23) is true for some an ∈ RK≥0, then the profit function has a negative
slope at that point (cf. Eq. (A.3)). Hence, the profit function has no extrema in the non-concave regions,
and thus any extremum, in particular â∗nk(A−nk), is guaranteed to be located in the concave regions and to
be a maximum.
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Appendix A.3. Restricted best response in Eq. (10)

Since attribute values must be non-negative, we now investigate how the unrestricted best-response â∗nk
informs the best-response a∗nk on the restricted domain R≥0. Clearly, if â∗nk ≥ 0, then a∗nk = â∗nk. Otherwise,
if â∗nk < 0, the boundary point ank = 0 constitutes a local maximum on the restricted domain R≥0. To
confirm this statement, we have to distinguish the cases ϕnk > 0 and ϕnk = 0.

If ϕnk > 0, we note that the profit function can only be non-concave for high enough ank:

ρn −
∑
k∈K

ϕnkank − ϕn0 < 0 ⇐⇒ ank >
ρn − Φ−nk

ϕnk
=: ank (A.24)

Hence, πn is guaranteed to be concave for all ank ≤ ank. Furthermore, as argued in the previous paragraph,
πn is strictly decreasing for all ank > ank. Hence, ank = 0 is the maximum on the restricted domain
independent of ank, given that â∗nk < 0: Either ank = 0 is in the concave region (if ank ≤ 0) or in the
decreasing region (if ank > 0).

If ϕnk = 0, πn can only be non-concave if ρn − Φ−nk < 0, independent of ank. Hence, πn is either
guaranteed to be consistently concave in ank (if ρn−Φ−nk ≥ 0), or guaranteed to be decreasing for all ank ≥ 0.
In both cases, the boundary point ank = 0 constitutes a local maximum.

Finally, we investigate the case where the unrestricted best response â∗nk is undefined on R, i.e., if the
term under the square root is negative. A necessary condition for this negativity is that ρn−Φ−nk is negative,
which according to Eq. (A.24) implies that ank < 0. Hence, in this case πn is decreasing for ank ≥ 0, which
again makes ank = 0 a local maximum on the restricted domain R≥0.

Appendix B. Proof of Theorem 2

Appendix B.1. Homogeneous profit function

In a homogeneous network, all attributes are equally valuable and costly, i.e., αnk, ϕnk and γnk are equal
across all attributes k ∈ K. This homogeneity allows to understand the profit function πn of a ISP n as a
function of the attribute sums an =

∑
k∈K ank:

πn(A) =
α1an + α1

∑
n′∈r(n)\{n} an′ + α0

1 + α1an + α1

∑
n′∈N\{n} an′ +Qα0

d(ρ− ϕ1an − ϕ0)− γ1an − γ0 (B.1)

In the following, we thus treat the attribute sum an like a single attribute of ISP n.

Appendix B.2. Unrestricted equilibrium in Eq. (16)

The equilibrium conditions in Eq. (15) suggest that the equilibrium for a homogeneous parallel-path
network satisfies the following equation for every n ∈ N :

a+n = max

0,

√
d
(
1+v−r(n)(A

+
−n)
)

dϕ1+γ1

(
ϕ1(1 + v−n(A

+
−n)) + α1(ρ− ϕ0)

))
−
(
1 + v−n(A

+
−n)
)

α

 (B.2)

where

v−r(n)(A
+
−n) = α1

∑
n′∈N\r(n)

a+n′ + (Q− 1)α0 (B.3)

v−n(A
+
−n) = v−r(n)(A

+
−n) + α1

∑
n′∈r(n)\{n}

a+n′ + α0 (B.4)

Note that we effectively consider a single attribute in the style of the attribute sum, which simplifies Φ−nk =
ϕ0 ≤ ρ. Hence, the undefined case from Theorem 1 does not arise because the term under the square root
in Eq. (B.2) is always non-negative.
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To solve the equation system Eq. (B.2) ∀n ∈ N , we first consider the unrestricted system (i.e., without
required non-negativity of solutions) in Â+:

∀n ∈ N. â+n =

√
d
(
1+v−r(n)(Â

+
−n)
)

dϕ1+γ1

(
ϕ1(1 + v−n(Â

+
−n)) + α1(ρ− ϕ0)

))
−
(
1 + v−n(Â

+
−n)
)

α
(B.5)

This equation system can be transformed such that the LHS is constant across all equations:

∀n ∈ N. 1 + α1

∑
r∈R

∑
n′∈r

â+n′ +Qα0 =

√
d
(
1 + v−r(n)(Â

+
−n)
)

dϕ1 + γ1

(
ϕ1(1 + v−n(Â

+
−n)) + α1(ρ− ϕ0)

))
(B.6)

which implies that all a+n ∀n ∈ N are equal to a value â+. This value â+ can be found by solving the
following single equation:

1 +QIα1â
+ +Qα0 =

√
d
(
1 + (Q− 1)(Iα1â+ + α0)

)
dϕ1 + γ1

(
ϕ1(1 + (QI − 1)α1â+ +Qα0) + α1(ρ− ϕ0)

))
(B.7)

This equation is solved by â+ as defined in Theorem 2.

Appendix B.3. Restricted equilibrium

It remains to show how the solution â+ of the unrestricted system can be used to derive the actual
solution a+ of the restricted system. If â+ ≥ 0, the unrestricted-system solution â+ is clearly also a solution
to the restricted system, i.e., a+ = â+. However, if â+ < 0, the attribute values as suggested by the
unrestricted system are negative, which is invalid for the restricted system. In this case, we can show that
a solution of the restricted system is given by a+ = 0, i.e., 0 = a∗n(0) (where a∗n is the optimal choice in
single-market networks according to Theorem 1). To show this property, we first observe that the condition
for â+ < 0 can be simplified to a condition on sub-term T3:

â+ < 0 =⇒
√
T 2
2 − 4T1T3 − T2

2T1
< 0 (B.8)

For T1 > 0: T 2
2 − 4T1T3 < T 2

2 =⇒ −4T1T3 < 0 =⇒ T3 > 0 (B.9)

For T1 < 0: T 2
2 − 4T1T3 > T 2

2 =⇒ −4T1T3 > 0 =⇒ T3 > 0 (B.10)

=⇒ T3 = (1 +Qα0)
2 − d(1 + (Q− 1)α0)

dϕ1 + γ1

(
ϕ1(1 +Qα0) + α1(ρ− ϕ0)

)
> 0 (B.11)

Furthermore, the inequality on T3 allows the following conclusion:

(1 +Qα0)
2 − d(1 + (Q− 1)α0)

dϕ1 + γ1

(
ϕ1(1 +Qα0) + α1(ρ− ϕ0)

)
> 0 (B.12)

⇐⇒ (1 +Qα0)−

√
d(1 + (Q− 1)α0)

dϕ1 + γ1

(
ϕ1(1 +Qα0) + α1(ρ− ϕ0)

)
> 0 (B.13)

due to the equivalence x2 − y > 0 ⇐⇒ x2 > y ⇐⇒ x >
√
y ⇐⇒ x−√

y > 0 (if x, y ≥ 0).
Eq. (B.13) has a striking similarity to â∗n(0) for a homogeneous parallel-path network:

â∗n(0) =

√
d
(
1+(Q−1)α0

)
dϕ1+γ1

(
ϕ1(1 +Qα0) + α1(ρ− ϕ0)

))
−
(
1 +Qα0

)
α

(B.14)

More precisely, Eq. (B.13) implies that â∗n(0) is always below 0 if â+ < 0, and that a∗n(0) thus always equals
0 for â+ < 0, i.e., an attribute choice of 0 is the best response to competitor attributes being 0, making
A+ = 0 an equilibrium in this case. This insight concludes the proof.
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Appendix C. Proof of Theorem 3

Appendix C.1. Linearization of dynamic system

In order to prove asymptotic stability of the given Nash equilibrium, we leverage the indirect Lyapunov
method [32]. This method requires that the equilibrium of an ODE system is asymptotically stable if the
Jacobian matrix of the ODE system, evaluated at the equilibrium point, has exclusively negative eigenvalues.
More formally, given the Jacobian matrix J(A+) ∈ R|N |×|N |, it must hold that ∀λ ∈ R that ∃x ∈ R|N |,x ̸=
0. J(A+)x = λx =⇒ λ < 0. This matrix J(A+) is defined as follows for the dynamic system from Eq. (20):

Jnn =
∂ȧn
∂an

(A+) = −1 (C.1)

n ̸= m, r(n) = r(m) : Jnm=
∂ȧn
∂am

(A+) =

{
T4

T5
− 1 if â+ ≥ 0

0 otherwise
(C.2)

n ̸= m, r(n) ̸= r(m) : Jnm=
∂ȧn
∂am

(A+) =

{
T4+T6

T5
− 1 if â+ ≥ 0

0 otherwise
(C.3)

where â+ is the unrestricted equilibrium attribute value according to Theorem 2, and

T4 = dϕ1
(
1 + v−r(n)(Â

+)
)
, (C.4)

T5 = 2(dϕ1 + γ1)

√
d
(
1 + v−r(n)(Â

+
−n)
)

dϕ1 + γ1

(
ϕ1(1 + v−n(Â

+
−n)) + α1(ρ− ϕ0)

)
, and (C.5)

T6 = d
(
ϕ1(1 + v−n(Â

+
−n)) + α1(ρ− ϕ0)

)
. (C.6)

Appendix C.2. Case 1: Non-negative unrestricted equilibrium (â+ ≥ 0)

We first consider the case of a non-negative unrestricted equilibrium value â+ such that A+ = Â+. In
that case, the eigenvalue condition induces the following system of equations:

∀n ∈ N. (−λ− 1)xn +

(
T4
T5

− 1

) ∑
n′∈r(n)\{n}

xn′ +

(
T4 + T6
T5

− 1

) ∑
n′∈N\r(n)

xn′ = 0 (C.7)

This system has a number of solutions (λ,x).

λ = −T4/T5. First, for λ1 = −T4/T5, the first two terms in Eq. (C.7) obtain the same coefficient, and the
equation system is reduced from |N | ISP-specific to |R| path-specific equations:

∀r ∈ R.

(
T4
T5

− 1

)
Xr +

(
T4 + T6
T5

− 1

) ∑
r′∈R\{r}

Xr′ = 0 where Xr =
∑
n′∈r

xn′ (C.8)

Equation systems of this form may have three types of solutions in x. For T6 = 0 and T4 = T5, any x
is a solution, as the coefficients of the variables Xr are 0. For T6 = 0 and T4 ̸= T5, any x with entries
summing up to 0 is a solution, as the sum of all Xr has a single non-zero coefficient. For T6 ̸= 0, any x
with Xr = 0 ∀r ∈ R is a solution. More importantly for the proof, λ1 = −T4/T5 is consistently negative
given the parameter ranges, except for the case where ϕ1 = 0 and hence λ1 = 0. The case of ϕ1 = 0 is
indeed an interesting special case for which the equilibrium is not unique, as we will show in §3.3; for this
special case, λ1 = 0 describes the fact that the dynamics do not converge to a specific equilibrium if they
have already converged onto another equilibrium.
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λ ̸= −T4/T5. After discovering the first eigenvalue λ1 = −T4/T5, we now consider the case where λ ̸=
−T4/T5. In this case, the symmetric structure of the equation system implies that all eigenvector entries xn
associated with the same path r are equal, and thus xn = Xr/I. Hence, a reduction of the equation system
to |R| equations is possible again:

∀r ∈ R.

(
−λ− 1

I
+
I − 1

I

(
T4
T5

− 1

))
Xr +

(
T4 + T6
T5

− 1

) ∑
r′∈R\{r}

Xr′ = 0 (C.9)

Again, this equation system admits different types of solutions.
The first type is obtainable by assuming Xr = −

∑
r′∈R\{r}Xr′ , and is associated with the following

eigenvalue:
−λ2 − 1

I
+
I − 1

I

(
T4
T5

− 1

)
=
T4 + T6
T5

− 1 =⇒ λ2 = −T4 + IT6
T5

(C.10)

Importantly in this case, λ2 is consistently negative.
The second type of solution for the equation system in Eq. (C.9) is obtainable by assuming equal Xr

across all paths r ∈ R, and isassociated with the following eigenvalue:

−λ3 − 1

I
+
I − 1

I

(
T4
T5

− 1

)
= −(Q− 1)

(
T4 + T6
T5

− 1

)
=⇒ λ3 = QI

(
T4 + T6
T5

− 1

)
− T4 + IT6

T5
(C.11)

By inspection of λ3, we confirm that the maximum λ3 is negative:

max
α1,α0,ϕ1,ϕ0,
γ1,ρ,d,Q,I

λ3 = max
ϕ1,Q

lim
α1,α0,ρ,d→∞

lim
ϕ0,γ1
→0

lim
I→1

λ3 < −1

2
(C.12)

Hence, all eigenvalues of J(A+) for â+ > 0 are negative, i.e., the equilibrium is asymptotically stable in this
case.

Appendix C.3. Case 2: Negative unrestricted equilibrium (â+ < 0)

It remains to show that the equilibrium A+ is also asymptotically stable for the case â+ < 0 such that
A+ = 0. This part of the proof is trivial: For â+ < 0, the Jacobian J(A+) corresponds to the negative
identity matrix, which only has the negative eigenvalue λ = −1. Hence, the proof is concluded.

Appendix D. Proof of Theorem 4

Appendix D.1. NBS attribute

To characterize the NBS attribute a◦, we first require an understanding of the aggregate profit of ISPs
on the path: ∑

n∈r
πn(A) = d

α1

∑
n∈r an + α0

1 + α1

∑
n∈r an + α0

(I(ρ− ϕ0)− ϕ1
∑
n∈r

an)− γ1
∑
n∈r

an − Iγ0 (D.1)

The aggregate profit can thus be considered a function of the sum ar of ISP attributes on path, i.e.,
ar :=

∑
n∈r an. By Theorem 1, the unrestricted optimal attribute sum a◦r is a◦r = max(0, â◦r), where:

â◦r =

√
d

dϕ1+γ1
(ϕ1(1 + α0) + Iα1(ρ− ϕ0))− (1 + α0)

α1
. (D.2)

Clearly, the Nash bargaining attributes {a◦n}n∈r must sum to a◦r in order to be optimal. Moreover, the
Nash bargaining solution is fair for the cooperating entities, requiring equal profit for all ISPs in our context.
As a result, the Nash bargaining solution stipulates a single attribute value a◦, which is adopted by all ISPs.
This NBS attribute a◦ is a◦ = max(0, â◦), where â◦ = â◦r/I.
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Appendix D.2. Equilibrium attribute

The equilibrium attribute a+ is defined as in Theorem 2, but can be considerably simplified for the
case Q = 1. In particular, the equilibrium attribute a+ for Q = 1 is a+ = max(0, â+), where:

â+ =

√
T 2
2 − 4T1T3 − T2

2T1
, (D.3)

T1 = I2α2
1, (D.4)

T2 = 2Iα1 (1 + α0)−
d

dϕ1 + γ1
α1ϕ1 (I − 1) , and

T3 = (1 + α0)
2 − d

dϕ1 + γ1

(
ϕ1(1 + α0) + α1(ρ− ϕ0)

)
. (D.5)

Appendix D.3. Comparison of attributes

We show that a+ ≤ a◦ by showing that â+ ≤ â◦. This inequality can be rewritten as√
T 2
2 − 4T1T3 − T2

2T1
≤ a◦ ⇐⇒ T2â

◦ ≥ −(T1a
◦2 + T3) (D.6)

The two sides of the second inequality in Eq. (D.6) expand to:

T2â
◦ = − 2 (1 + α0)

2
+ 2 (1 + α0)

√
d

dϕ1 + g1
(ϕ1 (1 + α0) + Iα1 (r − ϕ0)) (D.7)

− d

dϕ1 + g1
(I − 1)α1ϕ1â

◦

−(T1a
◦2 + T3) = − 2 (1 + α0)

2
+ 2 (1 + α0)

√
d

dϕ1 + g1
(ϕ1 (1 + α0) + Iα1 (r − ϕ0)) (D.8)

− d

dϕ1 + g1
(I − 1)α1(r − ϕ0)

Since these terms lend themselves to considerable simplification, Eq. (D.6) reduces to:

ρ− ϕ1â
◦ − ϕ0 ≥ 0 (D.9)

Interestingly, â◦ is guaranteed to satisfy this inequality. To see why, assume the opposite for the sake of
contradiction: ρ− ϕ1â

◦ − ϕ0 < 0. If ϕ1 = 0, this inequality conflicts with the model assumption ρ− ϕ0 ≥ 0.
If ϕ1 > 0, the same model assumption indicates that â◦ > (ρ − ϕ0)/ϕ1 ≥ 0. Hence, the profit function of
any ISP n is negative:

πn(Â
◦) = d

α1Iâ
◦ + α0

1 + α1Iâ◦ + α0︸ ︷︷ ︸
>0

(ρ− ϕ1â
◦ − ϕ0)︸ ︷︷ ︸

<0

−γ1â◦ − γ0︸ ︷︷ ︸
≤0

(D.10)

However, this negative profit could be strictly improved by choosing the lower attribute value a′ = (ρ −
ϕ0)/ϕ1 < â◦. This profit improvement is a contradiction to the character of â◦ as the profit-optimizing
attribute value. Hence, Eq. (D.9) holds, and therefore also the proposition â+ ≤ â◦ holds. This insight
concludes the proof.
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Appendix E. Proof of Theorem 5

Appendix E.1. Equilibrium for competitive network N2

We begin the proof by characterizing the equilibrium for the competitive network N2, in which every
ISP n optimizes the following profit function πn:

πn(an) = d′

(
Q∑
q=1

vr(mq1,mq2,n)

1 +
∑
r′∈R(mq1,mq2)

vr′

)
(ρ− ϕ1an − ϕ0)− γ1an − γ0 (E.1)

where r(mq1,mq2, n) denotes the unique path connecting (mq1,mq2) via ISP n. In the unrestricted equilib-

rium Â+, every ISP n has the optimal attribute value â+n given competitor attributes Â−n, which can be
found by setting ∂πn/∂an = 0:

d′

 Q∑
q=1

α1

(
1 + v−r(mq1,mq2,n)

)(
1 +

∑
r′∈R(mq1,mq2)

vr′
)2
 (ρ− ϕ1an − ϕ0)− d′ϕ1

(
Q∑
q=1

vr(mq1,mq2,n)

1 +
∑
r′∈R(mq1,mq2)

vr′

)
− γ1 = 0 (E.2)

Since this equation is equivalent for every ISP n, the equilibrium â+n is identical for all ISPs n, i.e., â+n = â+.
This simplification allows the following transformation of Eq. (E.3):

d′Q
α1(1 + (Q− 1)(Iα1â

+ + α0))

(1 +Q(Iα1â+ + α0))
2 (ρ− ϕ1an − ϕ0)− d′Qϕ1

Iα1â
+ + α0

1 +Q(Iα1â+ + α0)
− γ1 = 0 (E.3)

This equilibrium condition is identical to the equilibrium condition for a homogeneous parallel-path network
with a single origin-destination pair and demand limit d = d′Q. Hence, the unrestricted equilibrium value â+

from Theorem 2 (with d′Q substituted for d) also applies to the competitive network N2.

Appendix E.2. Equilibrium for competition-free network N1

Moreover, we note that a single sub-network (for one origin-destination pair) of the competition-free
network N1 is equivalent to the network N2 for Q = 1. Since the identical, isolated sub-networks of the
competition-free network N1 do not influence each other, the equilibrium attribute value â+ is thus equal
in that whole network.

Appendix E.3. Comparison of equilibria

Hence, if â+(Q) is considered the equilibrium attribute for the competitive network N2, we can prove
the proposition a+(N2) ≥ a+(N1) for Q ≥ 1 by showing â+(Q) ≥ â+(1) for Q ≥ 1. To show this property,
we solve the following inequality:

â+(Q)− â+(1) ≥ 0 (E.4)

⇐⇒
√
T2(Q)2 − 4T1(Q)T3(Q)− T2(Q)

2T1(Q)
− â+(1) ≥ 0 (E.5)

⇐⇒
√
T2(Q)2 − 4T1(Q)T3(Q) ≥ T2(Q) + 2T1(Q)â+(1) (E.6)

⇐⇒ T2(Q)2 − 4T1(Q)T3(Q) ≥
(
T2(Q) + 2T1(Q)â+(1)

)2
(E.7)

In Eq. (E.5), the equilibrium constituent terms T1, T2, and T3 from Theorem 2 are considered functions
of Q. In Eq. (E.6), the transformation is possible by the fact that T1(Q) > 0 for Q ≥ 1:

T1(Q) = Q2I2α2
1 −

Qd′

Qd′ϕ1 + γ1
(QI − 1) (Q− 1) Iα2

1ϕ1 > 0 ⇐⇒ Q >
d′ϕ1

(d′ϕ1(I + 1) + Iγ1)
(E.8)
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where the RHS in the last inequality is consistently below 1, and T1(Q) > 0 thus holds for all Q ≥ 1.
Using lengthy rewriting, the inequality in Eq. (E.7) can then be transformed into the following inequality
containing a quadratic equation of Q:

T7Q
2 + T8Q+ T9 ≤ 0 (E.9)

where

T7 = â+(1)2α2
1I (Iγ1 + dϕ1 (I + 1)) + â+(1)α1 (2Iα0γ1 + (2I + 1) dϕ1α0 − d (ρ− ϕ0) Iα1) (E.10)

+ α2
0 (dϕ1 + γ1)− dα0α1 (ρ− ϕ0) ,

T8 = − â+(1)2dIα2
1ϕ1 + â+(1)α1 (2Iγ1 + dϕ1(I + 1)− dϕ1α0 + d (ρ− ϕ0) Iα1) (E.11)

+ 2α0γ1 + (α0 − 1) dα1 (ρ− ϕ0) + dα0ϕ1, and

T9 = γ1. (E.12)

To solve Eq. (E.9), we make use of the following two properties.

• Q = 1 is a root of of â+(Q)− â+(1), which implies:

T7 + T8 + T9 = 0 ⇐⇒ T7 + T8 = −T9. (E.13)

• The inspection of T7 yields the following insight, which we derived by means of the symbolic algebra
system in Matlab:

T7 ≤ lim
d,α0
→0

T7 = γ1 = T9 (E.14)

Given the lower root Q and the higher root Q of the quadratic function in Eq. (E.9) (which are guaranteed
to exist at least at Q = 1 and are identical if T7 = 0), the inequality is solved by the following Q:

Q ∈



[Q, Q] 1 if T7 > 0

(−∞, Q] ∪ [Q, ∞) 2 if T7 < 0

(−∞, Q] 3 if T7 = 0 ∧ T8 > 0

[Q, ∞) 4 if T7 = 0 ∧ T8 < 0

(−∞, ∞) 5 if T7 = 0 ∧ T8 = 0 ∧ T9 ≤ 0

∅ 6 if T7 = 0 ∧ T8 = 0 ∧ T9 > 0

(E.15)

This area of Q (leading to non-positive values of the quadratic function in Eq. (E.9)) includes [1,∞) in
all cases:

1. T7 ̸= 0. (Eq. (E.15) 1 and 2 ): For T7 ̸= 0, the property in Eq. (E.13) facilitates finding the solu-
tions (Q, Q):

(Q, Q) =
−T8 ±

√
T 2
8 − 4T7T9

2T7
=

−T8 ±
√

(2T7 + T8)2

2T7
=

−T8 ± (2T7 + T8)

2T7
(E.16)

(a) T7 > 0 (Eq. (E.15) 1 ): For T7 > 0, we note that

2T7 + T8
Eq. (E.13)

= T7 − γ1
Eq. (E.14)

≤ 0. (E.17)

Hence, the solutions from Eq. (E.16) are:

Q =
−T8 + (2T7 + T8)

2T7
= 1 Q =

−T8 − (2T7 + T8)

2T7
=
γ1
T7

≥ 1 (E.18)

where the higher solution Q is spurious and has been introduced by the squaring operation
in Eq. (E.7).
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(b) T7 < 0: (Eq. (E.15) 2 ): For T7 < 0 (Eq. (E.15) 2 ), the solutions are as follows:

Q =
−T8 − (2T7 + T8)

2T7
=
γ1
T7

< 0 Q =
−T8 + (2T7 + T8)

2T7
= 1 (E.19)

2. T7 = 0 (Eq. (E.15) 3 – 6 ): For T7 = 0, it holds that T8 = −γ1 − T7 = −γ1 ≤ 0 and Q = −T9/T8 =
(−γ1)/(−γ1) = 1.

(a) T8 > 0 (Eq. (E.15) 3 ): The case T8 > 0 thus cannot arise.

(b) T8 < 0 (Eq. (E.15) 4 ): For T8 < 0, the proposition clearly holds.

(c) T8 = 0 (Eq. (E.15) 5 and 6 ): For T8 = 0, the equality T7+T8 = −T9 from Eq. (E.13) implies T9 =
0. Hence, the case in Eq. (E.15) 5 always arises if T7 = T8 = 0, whereas the case in Eq. (E.15) 6
never arises.

Since Eq. (E.4) thus always holds for Q ≥ 1, the proposition is proven.

Appendix F. Proof of Theorem 6

To start the proof, we note that both the equilibrium attribute sum a+(N1) and the NBS attribute
sum a◦(N1) for the competition-free network are found by analyzing a single path, since the isolated sub-
paths in the competition-free network do not influence each other. Hence, a+(N1) and a◦(N1) are as in
Theorem 4, which relates to the single-path context and thus states that a+(N1) ≤ a◦(N1). Therefore, the
interval [a+(N1), a

◦(N1)] is never empty.
From the proof of Theorem 5, we know that the proposition π+(N2) ≥ π+(N1) is equivalent to the

proposition ∆π = π(Q, a+(N2))− π(1, a+(N1)) ≥ 0, where π(Q, a) is defined as follows:

π(Q, a) = Qd′
Iα1a+ α0

1 +Q(Iα1a+ α0)
(ρ− ϕ1a− ϕ0)− γ1a− γ0. (F.1)

Clearly, π(Q, a◦(N1)) is optimal for Q = 1, i.e., the NBS attribute sum is optimal in the competition-
free network. Hence, it also holds that π(1, a+(N1)) ≤ π(1, a◦(N1)), i.e., the equilibrium profit in the
competition-free network is generally sub-optimal. Moreover, since π(Q, a) is consistently concave in a in
the relevant regions, the assumption a+(N2) ∈ [a+(N1), a

◦(N1)] implies

π(1, a+(N1)) ≤ π(1, a+(N2)). (F.2)

Given Eq. (F.2), we can lower bound the profit difference:

∆π = π(Q, a+(N2))− π(1, a+(N1)) ≥ π(Q, a+(N2))− π(1, a+(N2)) =: ∆π (F.3)

Hence, if ∆π ≥ 0 holds, the proof proposition ∆π ≥ 0 follows. At this point, we also note that a+(N2) ∈
[a+(N1), a

◦(N1)] is only a sufficient, but not a necessary condition for ∆π ≥ 0; hence, profit increases might
also happen if a+(N2) /∈ [a+(N1), a

◦(N1)].
We can reformulate the lower bound ∆π on the profit difference as follows:

∆π = π(Q, a+(N2))− π(1, a+(N2))

= d′
(

Q(Iα1a
+(N2) + α0)

1 +Q(Iα1a+(N2) + α0)
− Iα1a

+(N2) + α0

1 + Iα1a+(N2) + α0

)(
ρ− ϕ1a

+(N2)− ϕ0
)

= d′
(

(Q− 1) (Iα1a
+(N2) + α0)

(1 +Q(Iα1a+(N2) + α0))(1 + Iα1a+(N2) + α0)

)(
ρ− ϕ1a

+(N2)− ϕ0
) (F.4)

Given d′ > 0 and Q ≥ 1, the first and second factor of ∆π in Eq. (F.4) are non-negative. Hence, ∆π ≥ 0
is equivalent to ρ − ϕ1a

+(N2) − ϕ0 ≥ 0. This latter condition also always holds, which is demonstrable
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by contradiction. Let ρ − ϕ1a
+(N2) − ϕ0 < 0 ⇐⇒ a+(N2) > (ρ − ϕ0)/ϕ1, which makes the minuend

in π(1, a+(N2)) negative (cf. Eq. (F.1)). In that case, all a′ > a+(N2) would lead to lower profit π(1, a′).
This observation contradicts the optimality of the NBS attribute sum a◦(N1) regarding π(1, a

′), as a◦(N1) ≥
a+(N2).

Hence, since ∆π ≥ 0, it holds that ∆π ≥ 0 and the theorem proposition follows.

Appendix G. Proof of Theorem 7

In order to be a Nash bargaining solution, the attribute values A◦ should both optimize the aggregate
profit function π(A) =

∑
n∈r πn(A), and create a maximally equitable profit distribution across the ISPs n ∈

r. This maximum fairness is achieved by optimizing the Nash bargaining product, i.e.:

A◦ = argmaxA∈R≥0
Πn∈rπn(A) (G.1)

This optimization of the Nash bargaining product must be performed subject to the constraints in Theo-
rem 7 that are associated with optimal aggregate profit. In the following, we characterize this aggregate-profit
function, and show that the conditions stated in Theorem 7 are both sufficient and necessary in order for A◦

to satisfy aggregate-profit optimality.

Appendix G.1. Aggregate-profit function

The aggregate profit π(A) in our setting is:

π(A) =
∑
n∈r

πn(A) = d
vr(A)

1 + vr(A)

(∑
n∈r

ρn − ϕn0

)
−
∑
n∈r

(∑
k∈K

γnkank + γn0

)
(G.2)

This aggregate-profit function has the following first and second derivative in any ank:

∂

∂ank
π(A) = d

αnk

(1 + vr(A))
2

(∑
n∈r

ρn − ϕn0

)
− γnk (G.3)

∂2

∂a2nk
π(A) = − d

2α2
nk

(1 + vr(A))
3

(∑
n∈r

ρn − ϕn0

)
(G.4)

As the second derivative is non-positive for all A ∈ R≥0, the aggregate-profit function is consistently concave
in any ank on the valid domain R≥0. Therefore, if the first derivative ∂/∂ank π(A) is negative for any ank, all
reductions of ank increase aggregate profit, and all increases of ank reduce the aggregate profit (The reverse
holds for a positive first derivative). This condition on the first derivative is equivalent to the following
condition, which is central for the proof:

∀n ∈ r, k ∈ K.
∂

∂ank
π(A) < 0 ⇐⇒ vr(A) >

√
αnk
γnk

√
d
∑
n∈r

(ρn − ϕn0)− 1 (G.5)

Appendix G.2. Sufficiency of conditions

After this characterization of the aggregate-profit function, we now demonstrate that the conditions
in Theorem 7 are sufficient, i.e., any A◦ with the conditions optimizes the aggregate profit. Sufficiency can
be demonstrated by performing the following case distinction:

1. ∀(n, k) ∈ r ×K. αr0 >
√

αnk

γnk

√
d
∑
n∈r(ρn − ϕn0)− 1

According to Theorem 7, all optimal attribute values A◦ must be 0 in this case:

vr(A
◦) = v◦r

Eq. (22)
= αr0 ⇐⇒ A◦ = 0 (G.6)
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Moreover, the first derivative ∂/∂ank π(A
◦) for all n ∈ r, k ∈ K must be negative:

∀n ∈ r, k ∈ K. vr(A
◦) = αr0 >

√
αnk
γnk

√
d
∑
n∈r

(ρn − ϕn0)− 1
Eq. (G.5)⇐⇒ ∂

∂ank
π(A) < 0 (G.7)

Hence, the only way to further increase the aggregate profit π would be by reductions in any ank.
However, since every ank = 0, such reductions are not possible given the restricted domain R≥0.
Hence, A◦ = 0 is optimal.

2. ∃(n, k) ∈ r ×K. αr0 ≤
√

αnk

γnk

√
d
∑
n∈r(ρn − ϕn0)− 1

In this case, the attributes (n◦, k◦) ∈ r ×K with the maximal ratio αn◦k◦/γn◦k◦ play a special role
according to Theorem 7. We denote the set of these attributes by K◦r :

K◦r =

{
(n◦, k◦) | (n◦, k◦) = argmax(n,k)∈r×K

αnk
γnk

}
. (G.8)

This maximal ratio also determines the optimal path valuation vr(A
◦) according to Theorem 7:

∀(n◦, k◦) ∈ K◦r . vr(A
◦) =

√
αn◦k◦

γn◦k◦

√
d
∑
n∈r

(ρn − ϕn0)− 1 (G.9)

In contrast, for all attributes (n⊘, k⊘) /∈ K◦r , the following condition holds:

∀(n⊘, k⊘) /∈ K◦r . vr(A
◦) =

√
αn◦k◦

γn◦k◦

√
d
∑
n∈r

(ρn − ϕn0)− 1 >

√
αn⊘k⊘

γn⊘k⊘

√
d
∑
n∈r

(ρn − ϕn0)− 1

⇐⇒ ∂

∂an⊘k⊘

π(A) < 0

(G.10)

Hence, the only way to increase the aggregate profit π would be by reductions in any an⊘k⊘ for (n⊘, k⊘) /∈
K◦r . However, since an⊘k⊘ = 0 ∀(n⊘, k⊘) /∈ K◦r by Theorem 7, such reductions are not possible, and
hence A◦ is optimal.

Appendix G.3. Necessity of conditions

After demonstrating that the conditions in Theorem 7 are sufficient for optimal aggregate profit, we now
demonstrate that the conditions are also necessary, i.e., no choice of attribute values A◦ that violates these
conditions can be optimal. For the sake of contradiction, we assume that some attribute values A◦ are
optimal while satisfying the following conditions:

∃(n⊘, k⊘) /∈ K◦r . a
◦
n⊘k⊘ > 0. (G.11)

A contradiction can be produced in all cases of the following case distinction:

1. ∀(n, k) ∈ r ×K. αr0 >
√

αnk

γnk

√
d
∑
n∈r(ρn − ϕn0)− 1

Since a◦n⊘k⊘ > 0 for the fixed attribute (n⊘, k⊘), the optimal path valuation vr(A
◦) exceeds αr0, and

hence:

∀(n, k) ∈ r ×K. vr(A
◦) > αr0 >

√
αnk
γnk

√
d
∑
n∈r

(ρn − ϕn0)− 1 =⇒ ∂

∂an⊘k⊘

π(A) < 0 (G.12)

The aggregate profit can thus be increased by reducing a◦n⊘k⊘ , and such a reduction is also possible
since an⊘k⊘ > 0. Hence, the attribute values A◦ are not optimal, which causes a contradiction.
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2. ∃(n, k) ∈ r ×K. αr0 ≤
√

αnk

γnk

√
d
∑
n∈r(ρn − ϕn0)− 1

In that case, we perform a sub-case distinction on the value of vr(A
◦):

(a) vr(A
◦) ≤

√
αn⊘k⊘

γn⊘k⊘

√
d
∑
n∈r(ρn − ϕn0)− 1

Since an⊘k⊘/γn⊘k⊘ < an◦k◦/γn◦k◦ , it follows that:

vr(A
◦) <

√
αn◦k◦

γn◦k◦

√
d
∑
n∈r

(ρn − ϕn0)− 1 ⇐⇒ ∂

∂an◦k◦
π(A) > 0, (G.13)

which implies that the profit can be increased by increasing the value of an◦k◦ ∀(n, k) ∈ K◦r ,
which contradicts the assumption that A◦ is optimal.

(b) vr(A
◦) >

√
αn⊘k⊘

γn⊘k⊘

√
d
∑
n∈r(ρn − ϕn0)− 1

This condition implies:
∂

∂an⊘k⊘

π(A) < 0. (G.14)

Hence, the profit can be increased by reducing an⊘k⊘ , which is possible given an⊘k⊘ > 0. Therefore,
we again produce a contradiction to the optimality of A◦.

We have thus identified the conditions on A◦ that are sufficient and necessary for optimal aggregate
profit. Thereby, the theorem is proven.

Appendix H. Proof of Theorem 8

Since the equilibrium conditions in Theorem 8 are highly similar to the optimality conditions in The-
orem 7, the proof of Theorem 8 is analogous to the proof of Theorem 7. The proof is analogous because
the derivatives of the individual profit functions πn have equivalent properties to the derivatives of the
aggregate-profit function π from Eq. (G.2). In particular, every first derivative satisfies:

∀n ∈ r, k ∈ K.
∂πn(A)

∂ank
< 0 ⇐⇒ vr(A) >

√
αnk
γnk

√
d(ρn − ϕn0)− 1 (H.1)

Moreover, every individual profit function πn is consistently concave in any relevant attribute ank:

∀n ∈ r, k ∈ K.
∂2

∂a2nk
πn(A) = −d 2α2

nk

(1 + vr(A))
3 (ρn − ϕn0) (H.2)

Building on these properties, the equilibrium conditions can be shown to be sufficient and necessary
analogously to Theorem 7.

Appendix I. Proof of Theorem 9

In order to show that vr(A
+) ≤ vr(A

◦), it is enough to show that:√
αn+k+

γn+k+

√
d(ρn+ − ϕn+0)− 1 ≤

√
αn◦k◦

γn◦k◦

√
d
∑
n∈r

(ρn − ϕn0)− 1 (I.1)

where (n+, k+) ∈ K+
r and (n◦, k◦) ∈ K◦r . This inequality can be transformed into the following form:√

αn+k+

γn+k+

√
d(ρn+ − ϕn+0)

d
∑
n∈r(ρn − ϕn0)

≤
√
αn◦k◦

γn◦k◦
. (I.2)

36



Thanks to the following two insights, this inequality is always satisfied:√
d(ρn+ − ϕn+0)

d
∑
n∈r(ρn − ϕn0)

≤ 1
αn+k+

γn+k+
≤ αn◦k◦

γn◦k◦
= max

(n,k)∈r×K

αnk
γnk

(I.3)

Hence, the theorem holds.

Appendix J. Proof of Theorem 10

Appendix J.1. Analogy to Theorem 8
To start off, we once more characterize the derivatives of the individual-profit functions πn for any

attribute value ank:

∀n ∈ N, k ∈ K, r = r(n).
∂πn(A)

∂ank
= d

αnk (1 + vs(A))

(1 + vr(A) + vs(A))
2 (ρn − ϕn0)− γnk (J.1)

∂2πn(A)

∂a2nk
= −d 2α2

nk (1 + vs(A))

(1 + vr(A) + vs(A))
3 (ρn − ϕn0) (J.2)

For better readability, this proof denotes the alternative path r to path r by s.
Since the second derivative is never positive, every profit function πn is consistently concave in the

attribute values controlled by ISP n. Hence, a negative first derivative ∂π(A)/∂ank < 0 indicates that ank
must be reduced if the profit is to be increased. The case of a negative first derivative in ank can be expressed
as follows (for r = r(n)):

∂πn(A)

∂ank
< 0 ⇐⇒ vr(A) >

√
αnk
γnk

√
d (ρn − ϕn0)

√
1 + vs(A)− (1 + vs(A)) (J.3)

When thinking of Eq. (J.3) as an extension of Eq. (G.5) with vs as a fixed quantity, an analogous proof
to the proof of Theorem 7 can be performed. The extension by fixed vs does not change the finding that only
attributes (n◦, k◦) ∈ K◦r might have non-zero values in equilibrium. However, the extension by vs changes
the equilibrium path valuation v+r from Eq. (25) to:

v+r = max

(
αr0,

√
αn◦k◦

γn◦k◦

√
d (ρn◦ − ϕn◦0)

√
1 + vs − (1 + vs)

)
. (J.4)

Crucially, this condition simultaneously holds for both paths r and s in a two-path scenario, creating an
interdependence of the equilibrium path valuations:

∀r ∈ R. v+r = max

(
αr0,

√
αn◦k◦

γn◦k◦

√
d (ρn◦ − ϕn◦0)

√
1 + v+s −

(
1 + v+s

))
= max

(
αr0, ψr

√
d
√
1 + v+s −

(
1 + v+s

))
= max

(
αr0, v̂

∗
r

(
v+s
))
,

(J.5)

where v̂∗r (vs) is the unrestricted best-response valuation for path r given competing-path valuation vs. The
characteristic ratio ψr is reflected in Eq. (29).

The remainder of the proof illustrates how to derive the equilibrium path valuations v+r and v+s .

Appendix J.2. Unrestricted equilibrium v̂+r
Considering a relaxed setting in which the constraint A+ ∈ R|N |×|K|≥0 ⇐⇒ v+r ≥ αr0 is ignored, the

unrestricted equilibrium path valuations v̂+r satisfy the following system of equations:

∀r ∈ R. v̂+r = v̂∗r (v̂
+
s ). (J.6)

In this relaxed setting, this system of two equations can be conventionally solved for the unrestricted
equilibrium path valuations v̂+r , r ∈ R, resulting in the unique solution denoted in Eq. (28).

Moreover, we make the following important observation:

v̂∗r (v̂
∗
s (vr)) ≤ vr ⇐⇒ vr ≥ v̂+r . (J.7)
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Appendix J.3. Restricted equilibrium v+r
We now rely on the equilibrium gained by relaxation to characterize the equilibrium under the re-

introduced constraint v+r ≥ αr0 ∀r ∈ R. In particular, we want to show that the calculation provided
in Theorem 10 is correct:

∀r ∈ R. v+r = max
(
αr0, v̂

∗
r

(
max

(
αs0, v̂

+
s

)))
(J.8)

In other words, v+r as calculated by Eq. (J.8) should satisfy the equilibrium conditions on v+r in Eq. (J.5).
To satisfy these conditions, we consider all cases regarding v̂+r and v̂+s :

1. v̂+r ≥ αr0:

(a) v̂+s ≥ αs0: In that case, Eq. (J.8) suggests that

v+r
1.(a)
= max

(
αr0, v̂

∗
r

(
v̂+s
)) (J.6)

= max
(
αr0, v̂

+
r

) 1.
= v̂+r , and

v+s
1.
= max

(
αs0, v̂

∗
s

(
v̂+r
)) (J.6)

= max
(
αs0, v̂

+
s

) 1.(a)
= v̂+s .

(J.9)

These values satisfy the equilibrium conditions in Eq. (J.5):

v+r
(J.5)
= max

(
αr0, v̂

∗
r

(
v+s
)) (J.9)

= max
(
αr0, v̂

∗
r

(
v̂+s
)) (J.6)

= max
(
αr0, v̂

+
r

) 1.
= v̂+r , (J.10)

and symmetrically for v+s .

(b) v̂+s < αs0: In that case, Eq. (J.8) suggests that

v+r
1.(b)
= max (αr0, v̂

∗
r (αs0))

v+s
1.
= max

(
αs0, v̂

∗
s

(
v̂+r
)) (J.6)

= max
(
αs0, v̂

+
s

) 1.(b)
= αs0.

(J.11)

For that case, we perform another level of sub-case distinctions:

i. v̂∗r (αs0) ≥ αr0: In that case, Eq. (J.11) is simplified to

v+r
(J.11)
= max (αr0, v̂

∗
r (αs0))

1.(b).i
= v̂∗r (αs0)

v+s
(J.11)
= αs0

(J.12)

Using Eq. (J.7) and case condition 1.(b), we can also deduce:

v̂∗s (v̂
∗
r (αs0)) < αs0. (J.13)

Then, we can again verify that these values satisfy the equilibrium conditions from Eq. (J.5):

v+r
(J.5)
= max

(
αr0, v̂

∗
r

(
v+s
)) (J.12)

= max (αr0, v̂
∗
r (αs0))

1.b.i
= v̂∗r (αs0)

v+s
(J.5)
= max

(
αs0, v̂

∗
s

(
v+r
)) (J.12)

= max (αs0, v̂
∗
s (v̂
∗
r (αs0)))

(J.13)
= αs0.

(J.14)

ii. v̂∗r (αs0) < αr0: In that case, Eq. (J.11) is simplified to

v+r
(J.11)
= max (αr0, v̂

∗
r (αs0))

1.(b).ii
= αr0

v+s
(J.11)
= αs0

(J.15)

Moreover, as proven in Appendix J.3.1, the current case implies

v̂∗s (αr0) ≤ αs0. (J.16)

Based on these findings, the equilibrium conditions from Eq. (J.5) are satisfied:

v+r
(J.5)
= max

(
αr0, v̂

∗
r

(
v+s
)) (J.15)

= max (αr0, αr0) = αr0

v+s
(J.5)
= max

(
αs0, v̂

∗
s

(
v+r
)) (J.15)

= max (αs0, v̂
∗
s (αr0))

(J.16)
= αs0.

(J.17)
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2. v̂+r < αr0:

(a) v̂+s ≥ αs0: This case is symmetric to case 1.(b).

(b) v̂+s < αs0: In that case, Eq. (J.8) suggests that

v+r
2.(b)
= max (αr0, v̂

∗
r (αs0))

v+s
2.
= max (αs0, v̂

∗
s (αr0))

(J.18)

Hence, we again need to perform another level of sub-case distinctions:

i. v̂∗r (αs0) ≥ αr0: For that case, we show in Appendix J.3.2 that

v̂∗s (αr0) ≤ αs0. (J.19)

Hence, Eq. (J.18) simplifies to:

v+r
2.(b)
= max (αr0, v̂

∗
r (αs0))

2.(b).i
= v̂∗r (αs0)

v+s
2.
= max (αs0, v̂

∗
s (αr0))

(J.19)
= αs0

(J.20)

Moreover, using Eq. (J.7) and case condition 2.(b), we can again deduce:

v̂∗s (v̂
∗
s (αr0)) < αs0. (J.21)

Based on these findings, the equilibrium conditions from Eq. (J.5) are satisfied:

v+r
(J.5)
= max

(
αr0, v̂

∗
r

(
v+s
)) (J.20)

= max (αr0, v̂
∗
r (αs0))

2.(b).i
= v̂∗r (αs0)

v+s
(J.5)
= max

(
αs0, v̂

∗
s

(
v+r
)) (J.20)

= max (αs0, v̂
∗
s (v̂
∗
r (αs0)))

(J.21)
= αs0

(J.22)

ii. v̂∗r (αs0) < αr0: In that case, Eq. (J.18) simplifies to:

v+r
2.(b)
= max (αr0, v̂

∗
r (αs0))

2.(b).ii
= αr0

v+s
2.
= max (αs0, v̂

∗
s (αr0))

(J.23)

To further simplify Eq. (J.23), we perform another sub-case distinction:

A. v̂∗s (αr0) ≥ αs0: This case is symmetric to case 2.(b).i.

B. v̂∗s (αr0) < αs0: In that case, Eq. (J.23) directly simplifies to:

v+r
2.(b)
= max (αr0, v̂

∗
r (αs0))

2.(b).ii
= αr0

v+s
2.
= max (αs0, v̂

∗
s (αr0))

2.(b).ii.B
= αs0

(J.24)

Clearly, the equilibrium conditions from Eq. (J.5) are satisfied by these values:

v+r
(J.5)
= max

(
αr0, v̂

∗
r

(
v+s
)) (J.24)

= max (αr0, v̂
∗
r (αs0))

2.(b).ii
= αr0

v+s
(J.5)
= max

(
αs0, v̂

∗
s

(
v+r
)) (J.24)

= max (αs0, v̂
∗
s (αr0))

2.(b).ii.B
= αs0

(J.25)

Since the values calculated according to Eq. (J.8) always satisfy the restricted-equilibrium conditions
from Eq. (J.5), the theorem is proven.
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v̂∗r (αs0)
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v̂∗s (αr0)

ṽ+s

v̂↑s

v̂∗r (vs)

v̂∗s (vr)

vr

v s

Figure J.6: Visualization of non-unique equilib-
rium (v̂+r , v̂+s ) in Appendix J.3.1.

v̂∗r (αs0)
αr0v̂+r

v̂+s

αs0

ν→s
v̂∗s (αr0)

v̂∗s (αr0)

ν←s

v̂∗r (vs)

v̂∗s (vr)

vr

v s

Figure J.7: Visualization of non-unique equilib-
rium (v̂+r , v̂+s ) in Appendix J.3.2.

Appendix J.3.1. Upper bound on v̂∗s (αr0) for case 1.(b).ii

We can show that case 1.(b).ii implies
v̂∗s (αr0) ≤ αs0. (J.26)

In particular, let us assume the opposite for the sake of contradiction, i.e., we assume

v̂∗s (αr0) > αs0. (J.27)

For this proof, we first investigate the functions v̂∗r and v̂
∗
s more thoroughly, and then produce a contradiction

by showing the existence of a second unrestricted equilibrium (ṽ+r , ṽ
+
s ) ̸= (v̂+r , v̂

+
s ). The proof idea is

visualized in Fig. J.6.

v̂∗r . In case 1.(b).ii, we can more precisely characterize the function v̂∗r based on the case conditions.
In particular, we know that v̂∗r evolves from value v̂∗r (v̂

+
s ) = v̂+r ≥ αr0 (1.) at argument v̂+s down to

value v̂∗r (αs0) < αr0 (1.(b).ii) at argument αs0 > v̂+s (1.(b)). Hence, the intermediate-value theorem and the
concavity of v̂∗r stipulate that

∃νs ∈ [v̂+s , αs0). v̂∗r (νs) = αr0 and ∀vs > νs. v̂
∗
r (vs) < αr0. (J.28)

v̂∗s . The assumption in Eq. (J.27) suggests that v̂∗s reaches a value above αs0 at argument αr0. Hence, the
maximum of v̂∗s is also at least αs0:

v̂↑s = max
vr

v̂∗s (vr) ≥ αs0
(J.28)
> νs. (J.29)

Contradiction. Based on these properties of v̂∗r and v̂∗s , we now show that there exist ṽ+r < αr0 and ṽ+s > νs,
with the unrestricted-equilibrium properties ṽ+r = v̂∗r (ṽ

+
s ) and ṽ

+
s = v̂∗s (ṽ

+
r ). To verify the existence of these

valuations, note that the value ṽ+s satisfies the condition:

ṽ+s = v̂∗s (ṽ
+
r ) = v̂∗s (v̂

∗
r (ṽ

+
s )) ⇐⇒ v̂∗∗s (ṽ+s ) := ṽ+s − v̂∗s (v̂

∗
r (ṽ

+
s )) = 0. (J.30)

We now evaluate the ‘reflector’ function v̂∗∗s at two arguments vs, namely νs and v̂↑s . For vs = νs, it
holds that

v̂∗∗s (νs)
(J.30)
= νs − v̂∗s (v̂

∗
r (νs))

(J.28)
= νs − v̂∗s (αr0)

(J.27)
< νs − αs0

(J.28)
< 0 (J.31)
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For vs = v̂↑s > νs, it holds that

v̂∗∗s (v̂↑s )
(J.30)
= v̂↑s − v̂∗s (v̂

∗
r (v̂
↑
s ))

(J.29)
= 0. (J.32)

Since v̂∗∗s is continuous, the intermediate-value theorem stipulates that a ṽ+s ∈ (νs, v
↑
s ] exists that satis-

fies v̂∗∗s (ṽ+s ) = 0. Then, since ṽ+s > νs, it follows from Eq. (J.28) that

ṽ+r = v̂∗r (ṽ
+
s ) < αr0. (J.33)

Since the unrestricted equilibrium valuations (v̂+r , v̂
+
s ) are unique, it must hold that v̂+r = ṽ+r . However,

the case condition v̂+r ≥ αr0 conflicts with the derived condition ṽ+r < αr0 from Eq. (J.33). We thus arrive
at a contradiction, which invalidates Eq. (J.27) and confirms Eq. (J.26).

Appendix J.3.2. Upper bound on v̂∗s (αr0) for case 2.(b).i

The following proof is similar in structure and goal as the proof in Appendix J.3.1, namely to prove v̂∗s (αr0) ≤
αs0 by assuming

v̂∗s (αr0) > αs0. (J.34)

The arguments of the proof are visualized in Fig. J.7.

v̂∗r . In case 2.(b).i, the strict concavity of v̂∗r , together with the knowledge of v̂∗r (αs0) ≥ αr0 (2.(b).i), imply:

∃ ν←s , ν→s . αs0 ∈ [ν←s , ν
→
s ] and v̂∗r (ν

←
s ) = αr0 and v̂∗r (ν

→
s ) = αr0 and

∀vs ∈ [ν←s , ν
→
s ]. v̂∗r (vs) ≥ αr0 and ∀vs /∈ [ν←s , ν

→
s ]. v̂∗r (vs) < αr0.

(J.35)

v̂∗s . Given Eq. (J.34), we find the maximum of v̂∗s :

v̂↑s = max
vr

v̂∗s (vr) ≥ v̂∗s (αr0)
(J.34)
> αs0. (J.36)

Contradiction. Similar as in Appendix J.3.1, we show the existence of (ṽ+r , ṽ
+
s ) ̸= (v̂+r , v̂

+
s ), which satisfy

the unrestricted-equilibrium properties ṽ+r = v̂∗r (ṽ
+
s ) and ṽ

+
s = v̂∗s (ṽ

+
r ), and thus contradict the uniqueness

of the unrestricted equilibrium valuations (v̂+r , v̂
+
s ). To that end, we again introduce a reflector function v̂∗∗s

with
v̂∗∗s (ṽ+s ) = ṽ+s − v̂∗s (v̂

∗
r (ṽ

+
s )) = 0. (J.37)

However, unlike in Appendix J.3.1, we additionally have to consider the relative position of ν→s from Eq. (J.35)
and v̂∗s (αr0).

• v̂∗s (αr0) ≥ ν→s : For that case, we evaluate the reflector function v̂∗∗s at arguments ν→s from Eq. (J.35)
and v̂↑s ≥ ν→s :

v̂∗∗s (ν→s )
(J.37)
= ν→s − v̂∗s (v̂

∗
r (ν
→
s ))

(J.35)
= ν→s − v̂∗s (αr0) ≤ 0

v̂∗∗s (v̂↑s )
(J.37)
= v̂↑s − v̂∗s (v̂

∗
r (v̂
↑
s ))

(J.36)

≥ 0

(J.38)

By the intermediate value theorem, there must thus exist a ṽ+s ∈ [ν→s , v̂
↑
s ] with v̂

∗∗
s (ṽ+s ) = 0. Since ṽ+s ∈

[ν→s , v̂
↑
s ], Eq. (J.35) implies that ṽ+s ≥ ν→s ≥ αs0, which conflicts with v̂+s < αs0 from case condi-

tion 2.(b) and the uniqueness of the unrestricted equilibrium.

• v̂∗s (αr0) < ν→s : For that case, we evaluate the reflector function v̂∗∗s at arguments ν←s from Eq. (J.35)
and v̂↑s from Eq. (J.36):

v̂∗∗s (ν←s )
(J.37)
= ν←s − v̂∗s (v̂

∗
r (ν
←
s ))

(J.35)
= ν←s − v̂∗s (αr0)

(J.34)
< ν←s − αs0

(J.35)

≤ 0

v̂∗∗s (v̂↑s )
(J.37)
= v̂↑s − v̂∗s (v̂

∗
r (v̂
↑
s ))

(J.36)

≥ 0

(J.39)

By the intermediate value theorem, there must thus exist a ṽ+s ∈ [ν←s , v̂
↑
s ] with v̂

∗∗
s (ṽ+s ) = 0. Since ṽ+s ∈

[ν←s , v̂
↑
s ] ⊂ [ν←s , ν

→
s ], Eq. (J.35) implies that ṽ+r = v̂+r (ṽ

+
s ) ≥ αr0, which conflicts with v̂+r < αr0 from

case condition 2 and the uniqueness of the unrestricted equilibrium.
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Appendix K. Proof of Theorem 11

Appendix K.1. Proof idea

To confirm the asymptotic stability of an equilibriumA+, we demonstrate that the Jacobian matrix J(A)
of the process in Eq. (30) is negative definite when evaluated at the equilibrium A+. On a high level, the
Jacobian matrix J(A) is defined as follows:

∀(n, k), (n′, k′) ∈ N ×K. JI(n,k),I(n′,k′)(A) =
∂

∂an′k′
(a∗nk(A−nk)− ank) (K.1)

where I(n, k) is an index corresponding to attribute (n, k). The derivatives of the restricted best-response a∗nk
in any attribute prevalence an′k′ are as follows:

∂

∂an′k′
a∗nk(A) =

∂

∂an′k′
max(0, â∗nk(A)) =

{
∂

∂an′k′
â∗nk(A) if â∗nk(A) ≥ 0,

0 otherwise.
(K.2)

To show this negative definiteness of J+ = J(A+), we demonstrate that every eigenvalue λ of J+ has a
negative real part Re(λ). To find the eigenvalues λ of J+, we solve the equation system J+x = λx for λ ∈ C,
λ ̸= 0, and x ∈ C|N ||K|, x ̸= 0. This equation system can be represented in the following form:

∀(n, k) ∈ N ×K.
(
J+
I(n,k),I(n,k) − λ

)
xI(n,k) +

∑
(n′,k′)∈N×K.
(n′,k′ )̸=(n,k)

J+
I(n,k),I(n′,k′)xI(n′,k′) = 0 (K.3)

Appendix K.2. Simplification of Eq. (K.3)

To concretize Eq. (K.3), we instantiate the Jacobian matrix J+. As a∗nk is independent of ank, the
diagonal entries of J+ are:

∀(n, k) ∈ N ×K. J+
I(n,k),I(n,k)

(K.1)
=

∂

∂an′k′
(a∗nk(A−nk)− ank) = −1, (K.4)

Now, we consider the entries not on the diagonal of J+, i.e., J+
I(n,k),I(n′,k′) for all (n, k) ̸= (n′, k′). First,

we specifically consider the rows of J+ associated with attributes (n, k) ∈ L+, where L+ is the set of
attributes which must have zero prevalence a+nk = 0 in equilibrium:

L+ = N ×K \ (K+
r ∪K+

r ). (K.5)

The following inequality holds on the equilibrium path valuation v+r for each path r (cf. Theorems 8 and
10):

∀(n, k) ∈ L+. v+r(n) ≥ ψr
√
d
√
1 + v+r(n) − (1 + v+r(n)) >

√
αnk
γnk

d(ρn − ϕn0)
√

1 + v+r(n) − (1 + v+r(n)) (K.6)

Then, remember the following equivalence from Theorem 8 for any attribute (n, k):

v+r(n) >

√
αnk
γnk

d(ρn − ϕn0)
√
1 + v+r(n) − (1 + v+r(n)) ⇐⇒ ∂πn(A

+)

∂ank
< 0. (K.7)

Together with the concavity of πn, we thus note that the attribute value ank needs to be decreased to
optimize the profit πn in ank. Given a+nk = 0, we note that the unrestricted best-response attribute â∗nk
for (n, k) ∈ L+ is thus negative in the equilibrium:

∀(n, k) ∈ L+. â∗(A+
−nk) < 0 (K.8)
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Given the definition of the Jacobian entries in Eq. (K.1) and the derivative of the restricted best response a∗nk
in Eq. (K.2), we note that:

∀(n, k) ∈ L+. ∀(n′, k′) ̸= (n, k). J+
I(n,k),I(n′,k′) = 0. (K.9)

The eigenvalue equation system in Eq. (K.3) can thus be written as:

∀(n, k) ∈ K+
r ∪K+

r . − (λ+ 1)xI(n,k) +
∑

(n′,k′)∈N×K.
(n′,k′ )̸=(n,k)

J+
I(n,k),I(n′,k′)xI(n′,k′) = 0 (K.10)

∀(n, k) ∈ L+. − (λ+ 1)xI(n,k) = 0 (K.11)

Interestingly, the equation system in Eqs. (K.10) and (K.11) can be considerably simplified in our proof,
which can be shown by a case distinction on L+ = (N × K) \ (K+

r ∪ K+
r ), i.e., the set of attributes that

certainly have zero prevalence in the equilibrium.

• L+ = ∅ : In this case, the equation system can be simplified in two respects. First, we note that L+ = ∅
implies that no equations in the form of Eq. (K.11) exist in the equation system. Second, we note
that we only investigate networks with a unique equilibrium, i.e., non-zero equilibrium prevalence is
possible for only one attribute on each path (|K+

r | = |K+
r | = 1). Hence, if L+ = ∅, we know that

K+
r ∪K+

r covers both of the two attributes of the network, one on each path:

K+
r ∪K+

r = N ×K = {(n(r), k(r)), (n(r), k(r))} (K.12)

where (n(r), k(r)) is the single attribute with possibly non-zero equilibrium prevalence on path r.
These insights allow to reduce the equation system in Eq. (K.10) to only two equations (No equations
like Eq. (K.11) exist):

−(λ+ 1)xr + J+
r xr = 0 − (λ+ 1)xr + J+

r xr = 0 (K.13)

where we have abbreviated:

J+
r = J+

I(n(r),k(r)),I(n(r),k(r)) xr = xI(n(r),k(r)) (K.14)

Since the eigenvector x in the current case only has the two entries xr and xr, we require x =
(xr, xr)

⊤ ̸= 0. We find that λ = −1 is an eigenvalue of the system in Eq. (K.13) if and only if J+
r = 0

or J+
r = 0, i.e., at least one of the two relevant Jacobian entries is zero. Since λ = −1 would preserve

negative definiteness of J+, we do not need to consider this case further.

• L+ ̸= ∅ : If L+ ̸= ∅, the equation system contains equations in the form of Eq. (K.11). Then, λ = −1
may be an eigenvalue of J+, which would preserve negative definiteness of J+; hence, this case is
not further considered. Conversely, if λ = −1 is not a solution of the system, the equations in the
form of Eq. (K.11) imply that xI(n,k) = 0 for all (n, k) ∈ L+. This insight then again allows the
simplification to the equation system in Eq. (K.13). Crucially, since xI(n,k) = 0 for all (n, k) ∈ L+, it

must hold that (xr, xr)
⊤ ̸= 0 such that x ̸= 0, i.e., such that x is a valid eigenvector.

Appendix K.3. Solution of Eq. (K.13)

In summary, we only need to consider the equation system in Eq. (K.13) and the case λ ̸= −1. Further-
more, we require (xr, xr)

⊤ ̸= 0. Without loss of generality, let r be the path with xr ̸= 0. Then, we can
perform the following transformation:

−(λ+ 1)xr + J+
r xr = 0 =⇒ λ+ 1 = Jr

xr
xr

(K.15)

−(λ+ 1)xr + J+
r xr = 0 =⇒ xr =

Jr
λ+ 1

xr (K.16)
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Inserting Eq. (K.16) into Eq. (K.15) yields a quadratic equation in λ:

(λ+ 1)2 − J+
r J

+
r = 0 =⇒ λ1,2 = −1±

√
J+
r J

+
r (K.17)

If J+
r J

+
r = 0, then λ1,2 = −1 produces a contradiction to the assumption λ ̸= −1, which implies that no

eigenvalue λ ̸= −1 exists.
If J+

r J
+
r ̸= 0, then we know that

Re(λ1,2) < 0 ⇐⇒ Re

(√
J+
r J

+
r

)
< 1 ⇐⇒ J+

r J
+
r < 1. (K.18)

Appendix K.4. Bounding of λ1,2
To verify that the condition in Eq. (K.18) always holds, we first find J+

r for any path r:

J+
r =


αn(r)k(r)

αn(r)k(r)

(
ψr

√
d

2
√

1+v+r
− 1

)
if â∗n(r)k(r)

(
A+
−n(r)k(r)

)
≥ 0,

0 otherwise.
(K.19)

Given J+
r J

+
r ̸= 0, stability requires:

J+
r J

+
r

(K.19)
=

 ψr
√
d

2
√
1 + v+r

− 1

( ψr
√
d

2
√

1 + v+r
− 1

)
(K.18)
< 1 (K.20)

⇐⇒ ψrψrd− 2
√
d

(
ψr

√
1 + v+r + ψr

√
1 + v+r

)
< 0 (K.21)

Moreover, J+
r J

+
r ̸= 0 implies that the restricted equilibrium valuation v+r for each path r corresponds to the

unrestricted equilibrium valuation v̂+r from Theorem 10:

∀r ∈ R. J+
r J

+
r ̸= 0 =⇒ ∀r ∈ R. â∗n(r)k(r)(A

+
−n(r)k(r)) ≥ 0

=⇒ ∀r ∈ R. v̂+r ≥ αr0 =⇒ ∀r ∈ R. v+r = v̂+r .
(K.22)

Hence, we can expand (symmetrically for ψr

√
1 + v+r ):

ψr
√
1 + v+r

(K.22)
= ψr

√
1 + v̂+r

Th10
= ψr

√√√√ ψ3
rψr

(ψ2
r + ψ2

r)
2

(√
d (ψ2

r + ψ2
r) +

1

4
ψ2
rψ

2
rd

2 +
d

2
ψrψr

)
+

ψ2
r

ψ2
r + ψ2

r

= ψ2
r

√√√√ ψrψr
(ψ2
r + ψ2

r)
2

(√
d (ψ2

r + ψ2
r) +

1

4
ψ2
rψ

2
rd

2 +
d

2
ψrψr

)
+

1

ψ2
r + ψ2

r

(K.23)

We use this equality to rewrite the inequality in Eq. (K.21):

ψrψrd− 2
√
d

(
ψr

√
1 + v+r + ψr

√
1 + v+r

)
(K.23)
= ψrψrd− 2

√
d
(
ψ2
r + ψ2

r
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(K.24)
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The last upper bound holds because we can exclude ψr = 0 for any path r in the current case v+r = v̂+r ,
as ψr = 0 produces the contradiction v+r < v+r :

v+r
(K.22)
= v̂+r

(J.6)
= ψr

√
d
√

1 + v̂+r − (1 + v̂+r )
ψr=0
= −(1 + v̂+r )

(K.22)
= −(1 + v+r )

Th10
≤ − (1 + αr0)

αr0≥0
< 0

αr0≥0
≤ αr0

Th10
≤ v+r .

(K.25)

In summary, we now have shown that J+
r J

+
r < 1, which ensures a negative real part Re(λ1,2) < 0

(Eq. (K.18)) of the eigenvalues λ1,2 from Eq. (K.17), and thus confirms that J+ is negative definite. Since J+

is negative definite, the equilibrium A+ from Theorem 10 is asymptotically stable with respect to the process
in Eq. (30), which concludes the proof.

Appendix L. Proof of Theorem 12

For the competitive network N4, the unrestricted equilibrium network valuation V̂ + is

V̂ +(N4) = v̂+r + v̂+r =
ψrψr

ψ2
r + ψ2

r

(√
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ψ2
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2
rd
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d

2
ψrψr

)
− 1, (L.1)

where v̂+r and v̂+r are as in Theorem 10. The restricted equilibrium network valuation V +(N4) is equal

to V̂ +(N4) if v̂+r ≥ αr0 and v̂+r ≥ αr0. These unrestricted equilibrium path valuations are monotonically
increasing in the demand limit d (cf. Theorem 10). Hence, if d is high enough, it holds that V +(N4) =
V̂ +(N4).

For the competition-free network N3, the unrestricted equilibrium network valuation V̂ + is

V̂ +(N3) = ψr
√
dr − 1 + ψr

√
dr − 1. (L.2)

Among all demand distributions (dr, dr) with dr+dr = d, the demand distribution maximizing V̂ +(N3) can
be found as follows:
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)
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d, (L.3)

where the maximum character of this value is ensured by a consistently non-positive second derivative
of V̂ +(N3) in dr. In the following, we thus consider only the maximum unrestricted equilibrium network
valuation V̂ +(N3):
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Again, for V +(N3) = V̂ +(N3), d must be high enough such that
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If d is high enough, the difference of the equilibrium network valuations is thus:

∆V + = V +(N4)− V +(N3) =
ψrψr
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Clearly, this difference is eventually positive when increasing the demand limit d, meaning that V +(N4)
exceeds V +(N3) for high enough d:

lim
d→∞

∆V + = ∞. (L.7)

This last insight proves the theorem.
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Appendix M. Proof of Theorem 13

The following proof is constructive, i.e., we demonstrate how to choose (ψr, ψr) and (αr0, αr0) such
that V +(N4) < V +(N3) holds given demand distribution (dr, dr). In this construction, the goal is to create
a scenario where the competitive network N4 will be at minimum valuation αr0 +αr0, but the competition-
free network has a path r with an equilibrium valuation v+r exceeding the minimum path valuation αr0.

Regarding the path-characteristic ratios (ψr, ψr), our first step consists of choosing the ratios such that
the competitive network is at minimum valuation, i.e., such that v+r = αr0 and v+r = αr0. To do so, we first
determine ψr such that v̂+r ≤ αr0 for all ψr, which is achieved by ψr = 0:

lim
ψr→0

v̂+r
Th10
= −1

αr0≥0
< αr0. (M.1)

Having selected ψr such that v̂+r ≤ αr0, it holds that v+r = αr0 by Theorem 10. As a result, the
equilibrium path valuation for path r in the competitive network N4 is:

v+r (N4)
Th10
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(
αr0, ψr

√
d
√
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)
. (M.2)

To ensure that v+r is minimal (i.e., equals αr0), the following condition must hold:
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√
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√
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d
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(M.3)

If ψr is chosen according to Eq. (M.3), the equilibrium network valuation in the competition-free network
is minimal, i.e., V +(N4) = αr0 + αr0.

To let V +(N3) of the competition-free network exceed V +(N4) of the competitive network, we further
need to choose ψr such that v̂+r (N3) > αr0. This condition can be transformed in the following fashion:
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To allow a selection of ψr that achieves v+r (N4) = αr0 but v+r (N3) > αr0, it must thus hold that
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This condition always holds when choosing αr0 = 0 and αr0 > dr/dr:
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(M.6)

Hence, (ψr, ψr) and (αr0, αr0) can be chosen such that V +(N3) > V +(N4), which concludes the proof.
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