
ALBUS: a Probabilistic Monitoring Algorithm
to Counter Burst-Flood Attacks

Simon Scherrer1, Jo Vliegen2, Arish Sateesan2, Hsu-Chun Hsiao3, Nele Mentens3,4, and Adrian Perrig1

1ETH Zurich 2KU Leuven 3National Taiwan University 4Leiden University

Abstract—Modern DDoS defense systems rely on probabilistic
monitoring algorithms to identify flows that exceed a volume
threshold and should thus be penalized. Commonly, classic sketch
algorithms are considered sufficiently accurate for usage in DDoS
defense. However, as we show in this paper, these algorithms
achieve poor detection accuracy under burst-flood attacks, i.e.,
volumetric DDoS attacks composed of a swarm of medium-rate
sub-second traffic bursts. Under this challenging attack pattern,
traditional sketch algorithms can only detect a high share of the
attack bursts by incurring a large number of false positives.

In this paper, we present ALBUS, a probabilistic monitoring
algorithm that overcomes the inherent limitations of previous
schemes: ALBUS is highly effective at detecting large bursts while
reporting no legitimate flows, and therefore improves on prior
work regarding both recall and precision. Besides improving ac-
curacy, ALBUS scales to high traffic rates, which we demonstrate
with an FPGA implementation, and is suitable for programmable
switches, which we showcase with a P4 implementation.

I. INTRODUCTION

As distributed denial-of-service (DDoS) attacks continue
to plague today’s Internet infrastructure, recent research has
produced a range of powerful DDoS defense systems. The
most prominent examples of such systems include Posei-
don [1], Ripple [2], Jaqen [3], COLIBRI [4], and ACC-
Turbo [5]. Such DDoS defense systems provide data-plane
functionality for detection of attack traffic and mitigation of
the attack, where the defense specifics are configurable by the
network operator. In the detection component, probabilistic
monitoring algorithms (mostly the CountMin-Sketch [6] and
the CountSketch [7]) monitor flows within limited memory,
derive approximate flow-size estimates, and report flows that
violate a volume threshold set by the network operator. In the
mitigation component, the suspicious flows are then blocked,
rate-limited, or deprioritized.

To provide effective defense, state-of-the-art DDoS defense
systems rely on the accuracy of the built-in monitoring al-
gorithms. This accuracy is essential to construct mitigations
that are both comprehensive (restrict all attack traffic) and
targeted (minimize the impact on benign traffic). However,
we identify a class of attack patterns that disrupt the accuracy
of the monitoring algorithms currently used in DDoS defense.
In particular, we introduce burst-flood attacks, i.e., volumetric
DDoS attacks composed of numerous simultaneous bursts,
where each burst is sent in a different flow, lasts a few hundred
milliseconds, and is only marginally larger than the natural
bursts of benign flows (cf. Fig. 1). We demonstrate that these
attacks lead to an ugly trade-off when configuring a threshold
for common monitoring algorithms: Detecting a large share of

1 2 3

Time [s]

A
rr

iv
al

R
at

e

Capacity of
attacked link

Fig. 1: Burst-flood attack: Multiple attacker flows (in red) send
simultaneous bursts. The legitimate flows (in blue) experience
packet loss and reduce their sending rate.

attacker bursts comes at the cost of reporting flows that do not
actually violate the allowance. In fact, the false reporting of
flows can only be eliminated if almost no bursts are reported
at all. This poor performance is linked to the regular resets
which the sketch algorithms have to perform, as these resets
conflict with the arbitrary timing and duration of bursts.

Based on these insights, we develop ALBUS (Adaptive
Leaky-Bucket Undulation Sensor), a probabilistic monitoring
algorithm that substantially improves detection accuracy under
burst-flood attacks. Similar to previous algorithms, ALBUS
monitors all flows in shared counters to limit memory con-
sumption. Crucially, however, ALBUS does not directly derive
flow-volume estimates from these counters (as sketch algo-
rithms do), but only leverages these counters to continuously
select the flows that are individually monitored by exact
counters. As a result, ALBUS never reports flows that do not
violate the configured volume allowance. At the same time,
ALBUS consistently detects a high share of excessive bursts
by avoiding resets and applying filtering techniques.

Thanks to its design, ALBUS is well-suited for integration
into DDoS defense systems, which only allocate limited
memory to their monitoring primitives and avoid expensive
per-packet processing. We demonstrate ALBUS’s suitability
in three respects. First, we conduct an extensive accuracy
evaluation to demonstrate that ALBUS generally outperforms
previous monitoring algorithms in the scenario of interest,
given limited memory. Second, we also confirm the processing
efficiency of ALBUS with an implementation for a Xilinx
FPGA, with a processing capacity of 200 million packets
per second. Third, since many DDoS defense systems are
implemented in P4 and run on programmable switches [1],
[2], [3], [5], we also provide a P4 implementation to support
the integration of ALBUS into existing systems.

1

In summary, this paper makes the following contributions:
Problem description. We characterize burst-flood attacks,

demonstrate that commonly used monitoring algorithms pro-
vide insufficient defense against such attacks, and elicit re-
quirements that a more effective algorithm must fulfill.

Algorithm design and evaluation. We design the ALBUS
algorithm in line with the requirements of burst detection, and
analyze the algorithm w.r.t. accuracy, security, and complexity.
Our experiments confirm the detection accuracy, the attack
robustness, and the processing efficiency.

Implementation. We implement ALBUS on a Xilinx
FPGA, thereby demonstrating that the algorithm is suitable for
high-speed packet processing, and in P4, thereby confirming
the straightforward implementation of ALBUS on modern
programmable switches.

II. PROBLEM STATEMENT

A. Background

Burst-flood attacks. Volumetric DDoS attacks attempt to
exhaust network resources (e.g., links or servers) through the
sheer number of requests from multiple attacker nodes, thereby
denying service to users of the targeted resource. The exact
structure of attacks can vary in three main ways. First, attacks
differ in the network protocol leveraged for the attack, i.e.,
attack packets take the form various network protocols, e.g.,
NTP, DNS, ICMP, or bare UDP [8]. Second, attacks differ in
the timing of aggregate attack traffic, e.g., pulse-wave DDoS
attacks concentrate the attack traffic in bursts lasting a few
seconds [9], [10], [5]. Third, attacks differ in the distribution
of attack traffic across flows, i.e., in how the individual attacker
nodes are scheduling and addressing their requests to create
the desired aggregate attack traffic.

In this paper, we focus on the third aspect. More precisely,
we remain agnostic regarding the content of the attack packets
and the shape of the aggregate attack traffic. Instead, we
are interested in how attackers can allot the attack traffic
to flows in order to evade modern DDoS defense systems.
Clearly, attacks using a low number of high-rate long-lived
flows may likely be detected rapidly. Therefore, most DDoS
attacks today rely on a large number of medium-rate short-
lived flows, frequently created by reflection techniques [11],
[12], [13]. For brevity, we refer to attacks with such a flow-size
distribution as burst-flood attacks in this paper.

DDoS defense systems. Recent years have seen a se-
ries of proposals for DDoS defense systems, i.e., data-plane
applications that try to maintain connectivity for legitimate
traffic under DDoS attacks. Since such applications require
high forwarding capacity (to process arriving traffic at line
rate) and flexibility (to target the defense at the ongoing
attack), modern programmable switches (e.g., Tofino [14])
have been a key enabler for most DDoS defense systems.
In particular, Poseidon [1], Ripple [2], Jaqen [3] and ACC-
Turbo [5] run on programmable switches to both detect and
mitigate DDoS attacks. In the detection component, these
DDoS defense systems try to identify the flows that are
responsible for the excessive load, namely by subjecting flows

(or other meaningful aggregates) to monitoring algorithms. In
the mitigation component, the forwarding is adapted in order to
block, rate-limit, or deprioritize the suspicious flows. Another
approach is followed by COLIBRI [4], which is based on
source authentication and flow-based reservations. Whenever
a flow overuses its reservation, the flow is blocked.

Despite their differences, all these schemes refrain from
deterministic per-flow monitoring algorithms (such as Net-
Flow [15]) to respect fast-memory limits. Instead, all schemes
rely on probabilistic monitoring algorithms, i.e., algorithms
that use limited memory, but only provide a rough estimate
of the traffic volume associated with a flow. In particular, the
classic CountMin-Sketch [6] and CountSketch [7] are widely
used. In this paper, we investigate the effectiveness of these
monitoring algorithms under burst-flood attacks, and find that
these algorithms are vulnerable to such attacks (cf. Section III).

B. Problem Definition

Threat model. Fundamentally, we consider an adversary
that tries to exhaust the capacity of a network resource with
high-rate network traffic. We formalize traffic to be composed
of packets, where each packet p arrives at a certain time tp,
has a certain size sp, and can be assigned to a flow fp based
on properties from the packet header. As a result, the traffic
volume sent by flow f in a time window [t1, t2] is:

σ(f, t1, t2) =
∑

p s.t. fp=f ∧ tp∈[t1,t2]
sp. (1)

In our scenario, the packets of each attack flow are concen-
trated in time, i.e., form a burst.

To formalize bursts, we note that a burst is commonly
understood as a temporary increase of the sending rate com-
pared to a base rate γ. Hence, if a flow f sends traffic
volume σ(f, t1, t2) > γ(t2−t1) during a time window [t1, t2],
then we consider b = σ(f, t1, t2) − γ(t2 − t1) the burst size.
A threshold on the burst size b is thus always given in the
form of a flow specification γt + β, where β ≥ 0 is the
burstiness allowance. Concretely, if a flow sends more traffic
than γ(t2−t1)+β during a time window [t1, t2], we consider it
excessively bursty. This formalization is the classic burstiness
definition in networking, reflects queuing dynamics, and is
independent of fixed time windows (unlike other burstiness
definitions [16]). Moreover, it allows to distinguish excessive
burstiness from moderate burstiness; the latter is a feature of
almost all Internet traffic.

We extend this definition for our purpose: A burst of
width w and overuse ratio ℓ is a packet sequence of a single
flow f , spanning a time window of length w and containing
traffic volume γw + ℓβ, i.e., σ(f, t, t + w) = γw + ℓβ. The
adversary can create bursts of arbitrary size and duration.

Objective. Our goal is to design a monitoring algorithm
that reports a set Br of bursts, which ideally should match the
set B of all excessive bursts:

B = {(f, t1, t2) | σ(f, t1, t2) > γ(t2 − t1) + β} . (2)

Hence, our algorithm can be used by DDoS defense systems,
which configure monitoring primitives with a threshold.

2

Metrics. We measure reporting accuracy with two conven-
tional metrics. First, recall is the share of allowance-violating
bursts that are reported, i.e., recall = |Br ∩B|/|B|. If a burst
exceeds the allowance, but is not reported, it constitutes a
false negative in our setting (B \Br). Second, precision is the
share of allowance-violating bursts among all reported bursts,
i.e., precision = |Br ∩ B|/|Br|. If a burst does not exceed
the allowance, but is reported, it constitutes a false positive
in our context (Br \ B). Precision and recall can also be
combined into the F1 score, which is 1 only if B = Br,
i.e., F1 = 2|Br ∩B|/(|Br|+ |B|).

C. Targeted Deployment Setting

We design an algorithm to be included as a monitoring
primitive in existing DDoS defense systems. These DDoS
defense systems provide the following relevant functionality:

Flow definition. The exact definition of a flow is at the
discretion of the DDoS defense system using our monitor-
ing algorithm, and may depend on the ongoing attack. For
example, the DDoS defense system might consider packets
belonging to the same flow if they share the destination IP
prefix (e.g., in UDP carpet bombing) or the full fivetuple (e.g.,
in UDP flood) [5]. The monitoring algorithm simply accepts
the flow identifier that the incoming packets are tagged with.

Threshold definition. The monitoring algorithm is config-
ured to report flows that exceed a volume threshold. This
threshold should be defined such that the algorithm reports
the exact set of excessively bursty flows. ALBUS accepts
thresholds of the form (γ, β) directly matching the allowance,
whereas threshold definition for previous algorithms is more
involved (cf. §III). Hence, the notion of accuracy in this
paper is based on volume, i.e., accuracy means reporting the
allowance-violating flows. Accuracy in terms of intention, i.e.,
reporting malicious flows, is thus achieved with an appropriate
threshold if malicious flows are identifiable by volume. DDoS
defense systems may find such a threshold in various ways:

Signatures. Many DDoS defense systems [1], [2], [3] are
based on descriptions of known attacks (signatures), and
compare them to current observations. The threshold may be
chosen such that the attack flows in the signature violate it.

Calibration with queries. Jaqen [3] allows the network
operator to submit queries, and reports all flows in the current
traffic that match the query, e.g., exceed a volume threshold.
For ALBUS, a network operator may perform the following
query-based calibration (when not under attack) to find suit-
able (γ, β): The operator can choose a base rate γ, submit
a series of queries with increasing burstiness allowance β,
and observe the decreasing share of reported flows. Then, the
threshold (γ, β) is appropriate when the number of benign
flows violating it has been reduced to an acceptable amount.

Reservations. COLIBRI [4] maintains bandwidth reserva-
tions for a guaranteed data rate for individual flows. This data
rate then constitutes the allowed base rate γ. The burstiness
allowance β is β = (u−1)γw if flows with excessive rate uγ,
u > 1, are tolerated for at most w seconds.

D. Algorithm Requirements

Given the objective and intended usage of our algorithm as
well as the shortcomings of previous algorithms, we identify
the following algorithm requirements.

Processing efficiency. A DDoS attacker can maximize the
attack damage by targeting network resources of systemic
relevance, most importantly routers in the Internet core. Since
such routers process billions of packets per second and handle
millions of flows concurrently [17], any monitoring algorithm
on these routers must conform to narrow constraints on the ad-
ditional processing complexity. Since the required processing
efficiency does not allow main-memory look-ups, processing
efficiency also limits admissible memory consumption to the
capacity of fast cache or SRAM memory. Hence, individ-
ual monitoring of every flow by dedicated counters (as in
NetFlow [15]), or approaches that keep time-series data for
each flow [18], [19], [20], [21] are impractical in the network
core. Hence, DDoS defense systems use probabilistic flow-
monitoring algorithms with acceptable memory consumption
and low operational overhead per packet.

Accuracy. Despite limited memory, the monitoring algo-
rithm should accurately identify bursts that violate the con-
figured flow specification. In particular, the algorithm should
achieve high recall and high precision simultaneously (cf. Sec-
tion II-B). A high score in both metrics allows the DDoS
defense system to identify and eradicate attack traffic, while
limiting punitive actions to flows that actually violate the
flow specification. For burst-flood attacks, high accuracy is
especially challenging to achieve, because the aggregate attack
traffic might be composed of bursts which only marginally
exceed the burstiness allowance.

Time-window flexibility. From the experiment in Sec-
tion III, we deduce that the reliance on discrete time windows
constitutes a major impediment to detection accuracy. Attack
bursts can be arbitrarily timed and arbitrarily wide, which
poses an issue for the numerous monitoring algorithms that
operate with a landmark-window model [22], [23], [24], [16],
[25], [26], [6], [27], [7]. In the landmark-window model,
algorithms split time into disjoint intervals and compare traffic
measurements to the expectations for the interval. This interval
duration is subject to an undesirable trade-off: If the intervals
are too long, even a high-volume burst might not exceed
the traffic volume allowed for the whole interval if followed
by a sending pause; if the measurement intervals are too
short, accuracy suffers as statistical noise grows stronger.
Furthermore, bursts could be timed to arrive at the transition
between two intervals, where measurements are reset. Hence,
we aim to design an algorithm without regular resets.

III. WHY ANOTHER MONITORING ALGORITHM?
In this section, we evaluate the monitoring algorithms

present in current DDoS defense systems under burst-flood
attacks. In particular, we conduct a simulation-based experi-
ment to evaluate CountMin-Sketch [6], which is a component
of Poseidon [1] and Ripple [2], and CountSketch [7], which
is a component of Jaqen [3] (through UnivMon [28]).

3

0.1 0.8 1.5

Reset Period R [s]

0.0

0.5

1.0
R

ec
al

l

0.1 0.8 1.5

Reset Period R [s]

0.0

0.5

1.0

P
re

ci
si

on
(a) CountSketch.

0.1 0.8 1.5

Reset Period R [s]

0.0

0.5

1.0

R
ec

al
l

0.1 0.8 1.5

Reset Period R [s]

0.0

0.5

1.0

P
re

ci
si

on

Threshold Factor k,
Reset Enforcement

0.5, Static

1.0, Random

1.0, Static

1.5, Static

ALBUS

(b) CountMin-Sketch.
Fig. 2: Detection performance under burst-flood attack (200ms bursts).

0.1 0.8 1.5

Reset Period R [s]

0.0

0.5

1.0

R
ec

al
l

0.1 0.8 1.5

Reset Period R [s]

0.0

0.5

1.0

P
re

ci
si

on

(a) CountSketch.

0.1 0.8 1.5

Reset Period R [s]

0.0

0.5

1.0

R
ec

al
l

0.1 0.8 1.5

Reset Period R [s]

0.0

0.5

1.0

P
re

ci
si

on

0.1 0.8 1.5

Reset Period R [s]

0.0

0.5

1.0

F
1

S
co

re

(b) CountMin-Sketch.
Fig. 3: Detection performance under burst-flood attack (500ms bursts).

Experiment. We replay 5 seconds of a CAIDA trace and
augment it with a burst flood amouting to 5 Gbps at any point
in time. The attack bursts last w = 200 ms or w = 500 ms,
and have an overuse ratio of ℓ = 1.2 (Experiment details
in Section VII-A). The goal of the algorithms (each obtaining
300 KB of memory) is to find all bursts that violate the
flow specification of γ = 1 Mbps and β = 50 KB, both in
the background traffic and the synthesized attack traffic. We
measure both recall (share of detected bursts) and precision
(share of correctly detected bursts among all reported bursts).

CountMin-Sketch. The CountMin-Sketch relies on a datas-
tructure containing D counter arrays, where each array ci
is associated with a distinct hash function hi. Upon arrival
of a packet of flow f , the counter hi(f) is increased by
the packet size in every counter array ci. The estimate for
a flow volume is then vf = mini∈{1,...,D} ci[hi(f)]. If vf
exceeds a configured threshold T , the flow is reported. In the
following experiment, we apply the CountMin-Sketch using
reset periods, i.e., time intervals after which the data structure
is reset. These reset periods are needed to regularly discard old
information about past bursts. Given a reset period R, we con-
sider static reset enforcement (used in current DDoS defense
systems), where the time R′ between resets always equals R,
and randomized reset enforcement, where the time R′ between
resets is sampled uniformly at random from (0, R] after every
reset. We try to achieve the detection goal by varying the
threshold T based on the current reset timer R′ and a threshold
factor k: T = k·(γ ·R′ + β). Intuitively, the CountMin-Sketch
would identify the attack bursts for R′ = w ms and k = 1
if the bursts were perfectly aligned with the reset periods; the
threshold factor is used to account for temporal misalignment.

CountSketch. The CountSketch is an extension of the

CountMin-Sketch. Specifically, the CountSketch contains a
second hash function si for each counter array ci, where si
maps the flow ID f to −1 or +1. The counter hi(f) in array ci
is then increased or decreased by the packet size depending
on the value of si. The estimate for the volume of flow f
is vf = mediani∈{1,...,D} si(f)·ci[hi(f)]. The threshold of the
CountSketch is varied analogously to the CountMin-Sketch.

Results. Figures 2 and 3 show the experiment results for
200 ms and 500 ms bursts, respectively. From these figures,
we make a number of observations. First, threshold factors that
lead to good performance on recall lead to poor performance
on precision, and vice versa. For example, a low threshold
factor achieves high recall, but low precision. This trade-off
suggests that the sketches, based on discrete time windows,
fail to identify excessively bursty flows in a targeted manner.
Second, precision and recall are unpredictably related to the
reset period. Moreover, the optimal reset period in terms
of a given metric varies between burst widths. Given that
burst-flood attacks contain bursts of unknown and varying
size, choosing an appropriate threshold is daunting. Third, the
limitations of the sketches cannot be overcome by simply ran-
domizing the duration between resets, as such randomization
does not yield a clear improvement. Fourth, we have added
the performance of our algorithm, ALBUS (ALBUS does not
have reset periods). This addition demonstrates that alternative
designs to sketches are promising; a detailed comparative
evaluation of ALBUS is presented in Section VII.

IV. DESIGN

In this section, we present ALBUS (Adaptive Leaky-Bucket
Undulation Sensor), which is our approach to detect exces-
sively bursty flows under the requirements from Section II-D.

4

Algorithm 1 Leaky-bucket algorithm

function UPDATE(Bucket λ, packet size s, timestamp t)
d← γ · (t− λ.t)
λ.c← max(λ.c− d, 0) + s λ.t← t
if λ.c > β then return True
else return False

As ALBUS is partially based on the leaky-bucket algorithm,
we describe this algorithm in Section IV-A. In Section IV-B,
we discuss the high-level ideas of ALBUS, and provide a
detailed description of the algorithm in Section IV-C.

A. Background: Leaky Buckets

The leaky-bucket (LB) algorithm is a classic approach to
rate control in networks, with a history of usage reaching
back to ATM networks [29]. We revisit this algorithm for
its properties which are perfectly in line with the special
requirements of burst detection. In particular, the LB algorithm
detects any violation of a flow specification of the from γt+β
(cf. Section II-B), i.e., reports a flow if and only if the flow
sends more traffic than γw+ β during any time window with
duration w. Hence, the LB algorithm by design fulfills all of
the requirements from Section II-D, as it is perfectly accurate
and flexible with respect to time windows.

Each LB λ contains a count λ.c and a timestamp λ.t. The
LB algorithm is akin to a physical leaky bucket, which is filled
at a varying rate, leaks at a constant rate (unless it is empty),
and overflows if the filling rate exceeds the draining rate for
too long (cf. Algorithm 1). Note that the draining volume d
is of special importance to ALBUS.

B. Design Idea of ALBUS

On a high level, ALBUS applies the LB algorithm to find
excessive bursts. Given unlimited memory, each individual
flow could be monitored with a dedicated LB. To respect
memory constraints, however, we choose to monitor only a
subset of flows at any point in time. The challenge thus
becomes how to dynamically select the subset of flows in-
dividually monitored by dedicated LBs. We observe that this
subset selection can be performed on a salient property of
bursty flows, namely their consistent burstiness: As bursty
flows send a large flow volume in a short time, all of their
consecutive packets are sent in a bursty manner, i.e., with a
rate above allowed rate γ. In contrast, the moderate burstiness
of legitimate flows rules out that the allowed rate is persistently
exceeded. Instead, moderate bursts are followed by under-
utilization of the allowance γ after only a few packets.

This observation inspires the central criterion used for
adapting the subset of LB-monitored flows (cf. Fig. 4). Given
a set Λ of LBs, a flow is deterministically mapped to an LB λ
by a hash on the flow ID f . If this LB λ is not assigned to
any other flow, it can operate as a dedicated LB for flow f .
Once assigned to an LB, flow f is monitored as long as the
net inflow (packet size minus draining volume) to the LB is

Pkt Memory Decision logic

f1

Leaky buckets Λ

f1

Background counters Π

f2

Net inflow
positive? Update LBYes

Evict f1 and
pull from BC

No

Fig. 4: Basic mechanism of ALBUS.

positive. As soon as the net inflow is negative, flow f is evicted
from the LB, which can then monitor another flow.

If reduced to this central mechanism, ALBUS would suffer
from an issue in terms of both security and accuracy. In
particular, even an extremely bursty flow would never be
detected in case another flow already occupies the LB to
which the bursty flow is mapped. An attacker could exploit this
shortcoming with a masking attack: If an attacker can generate
two flows that are mapped to the same LB, the attacker could
start by sending a moderately bursty flow, thereby occupy the
LB, and initiate the excessively bursty flow right afterwards.
To mask the excessively bursty flow, the masking flow either
has to be bursty within the allowance or not send any packets
after it has been assigned to the LB. Regarding accuracy, the
assignment of a bursty flow to a free LB is fairly unlikely, as
the assignment probability roughly corresponds to the share
of the pulsating flow among all packets mapped to a given
LB. For a large number of flows or low overuse ratios, this
probability may not suffice for swift detection.

To resolve this issue, ALBUS employs a set Π of back-
ground counters (BCs). Each BC π ∈ Π is assigned to an
LB λ ∈ Λ and is tasked with finding the dominant flow among
the flows that are mapped to, but not currently monitored by
LB λ. This dominant flow is identified with a probabilistic-
decay technique [27], [16]. When an LB is cleared, the flow
from the corresponding BC is assigned to the LB directly, and
is evicted from the BC. The background counters mitigate
the masking attack with regular checks of the BC value. If
this value exceeds a push threshold, the BC flow immediately
replaces the corresponding LB flow. Regarding accuracy, this
background counting increases the probability that a bursty
flow is assigned to an LB, where it can then be identified as
excessively bursty. In fact, background counting significantly
boosts the probability of assigning the dominant flow to an
LB, and thus the recall of ALBUS (cf. Appendix B).

Finally, ALBUS requires an additional safeguard to evict
flows that finish sending while being monitored by an LB. To
eventually evict these flows, the timestamp in LBs is regularly
checked against a time-out.

C. Description of ALBUS

In the following, we present a more detailed account of
the ALBUS algorithm based on Fig. 5. ALBUS operates with
both an indexed set Λ of leaky buckets (LBs) and an indexed
set Π of background counters (BCs), where the associated
LB λ and BC π are at the same index i of the respective sets,

5

t

t1

f1 s1

t2

f2 s2

t3

f3 s3

t4

f4 s4

t5

f5 s5

t6

f6 s6

t7

f7 s7

t8

f8 s8

Index i 0 1 2 3 4 5 6 7

Leaky
buckets Λ

(⊥, ⊥, 0)

(f2, t2, s2)

(f3, t′3, c′3)

(f10, −∞, 0)

c3 > β

(f1, t′1, c′1)

(f1, t1, c1)

s1 > d1

(f5, t′5, c′5)

(f9, −∞, 0)

s5 ≤ d5 (f13, · , ·) (f11, · , ·) (f12, · , ·)

(f15, · , ·)

(f8, t8, s8)

Background
counters Π

... ...

(f10, c10)

(⊥, ⊥)

(f9, c9)

(⊥, ⊥)

(⊥, 0)

(f4, s4)

(f7, c′7)

(f7, c′7 + s7)

(f14, c′14)

(f6, s6)

c′14 − s6 < 0

(f8, c′8)

(f15, c15)

c′8 + s8 > T

0
Empty LB:
Assign flow

to LB

1
Flow in LB,
violation of

allowance β:
Report, pull

2
Flow in LB,
net inflow
positive:

Keep in LB

3
Flow in LB,
net inflow

not positive:
Evict, pull

4
Occupied LB,

empty BC:
Assign flow

to BC

5
Occupied LB,
flow in BC:

Increase
BC count

6
Occupied LB,
occupied BC:
Decrease BC,
replace if < 0

7
Flow in BC,
T exceeded:

Swap LB
and BC flow

Fig. 5: Detailed overview of case distinctions in ALBUS (Discussion in Section IV-C).

i.e., λ = Λ[i] and π = Π[i]. For any packet with flow ID f ,
size s and timestamp t, the index i is determined by a keyed
hash function based on the flow ID f . After identifying the
pair (λ, π), ALBUS performs the following case distinction.

If LB λ is still empty, flow f is assigned to λ by inserting
its flow ID f into λ and setting the LB timestamp λ.t to
the packet timestamp t and the LB count λ.c to the packet
size s (cf. Fig. 5 0). If LB λ already monitors flow f ,
then the leaky-bucket calculation is performed to obtain the
drain volume d and the new LB count λ.c. If λ.c exceeds
the burstiness allowance β, flow f is reported and replaced
by the flow occupying BC π (cf. Fig. 5 1). If the burstiness
allowance is not exceeded, flow λ.f is left in LB λ (with
updated timestamp λ.t) if the packet size s is larger than
the drain volume d (Fig. 5 2) or replaced by the flow
from π otherwise (3). When pulling flow π.f into LB λ,
the LB timestamp λ.t must be set to −∞, as the timing of
the last packet of π.f is unknown and the flow must not be
overestimated. BC π is cleared after replacement.

So far, we have only considered cases where an update of
LB λ is directly possible. However, if another flow occupies
LB λ, BC π must be accessed. If BC π is empty, flow f is
assigned to π by setting π.f to f and π.c to packet size s (cf.
Fig. 5 4). If flow f already occupies BC π, the BC count π.c
is increased by packet size s (cf. Fig. 5 5). If π is already
occupied by another flow, ALBUS employs a probabilistic-
decay technique: With a configurable probability 0.1r, the BC
count π.c is decremented by the current packet size s. If π.c
is reduced below 0, the current flow f replaces flow π.f in
BC π (Fig. 5 6). A high r slows BC decrements and BC

flow replacements; hence, the parameter r corresponds to the
rigidity of the background counters.

Finally, the algorithm contains two safeguards, namely
safeguards against masking attacks and inactive flows. To
counter masking attacks. the BC count π.c is checked when
increasing π.c. If this BC count exceeds a configurable thresh-
old T , the current flow π.f is swapped with the flow from
the corresponding LB (cf. Fig. 5 7). While LB counts and
BC counts are not strictly comparable, ALBUS adopts the LB
count as the BC count in order not to lose information (A
swap in reverse direction might cause false positives). The
safeguard against inactive flows corresponds to an occasional
check of the LB timestamp λ.t, which is performed even if the
flow ID f of the current packet is not currently assigned to λ.
The safeguard procedure checks whether the LB timestamp
predates the current time by more than a time-out, and if yes,
replaces the flow λ.f with the flow π.f from the BC. This
time-out is chosen such that the LB has certainly been fully
drained since the last packet mapped to the LB was sent, i.e.,
the time-out duration is β/γ.

V. ANALYSIS

A. Security Analysis

ALBUS detects excessively bursty flows which are assigned
to an LB for a sufficiently long duration before the bursts ends.
To evade detection. the sender of an excessively bursty flow
must thus avoid or delay the LB assignment.

Single-flow masking. To completely avoid LB assignment,
an adversary could launch a masking attack, i.e., occupy an
LB with a flow and then send a large traffic burst in another

6

flow that is mapped to the same LB, speculating that the more
damaging flow will not be inserted into the already occupied
LB. Masking flows can be flows that either are bursty within
acceptable limits (i.e., λ.c < β, but s > d consistently) or
do not send any packets while they occupy an LB (so the
eviction condition is never evaluated). ALBUS counters such
attacks in a two-fold manner. First, ALBUS provides the push-
based transfer, i.e., overrides the LB flow with a flow that
exceeds threshold T in the BC; hence, an excessively bursty
flow might be monitored even if the masking flow is also
bursty. Second, the time-out check prevents silent masking
flows, as these flows would be quickly evicted.

Multi-flow masking. These safeguards might be circum-
vented if an attacker creates a high number of flows that map
to the same BC as a bursty flow. Then, the probabilistic-
decay mechanism might keep the BC count of the bursty
flow low (i.e., no LB insertion by threshold violation) or even
keep the flow out of the BC (i.e., no LB insertion on time-
out). However, our experimental investigation in Section VII
confirms that an appropriately configured BC maintains high
recall even under a high number of simultaneous bursts.

Outside-LB flooding. Since the adversary is thus unable to
keep the excessively bursty flows out of an LB indefinitely,
most damage can be caused by sending excess traffic while
the bursty flow is not yet assigned to an LB, i.e., if the flow is
assigned to a BC or no counter at all. However, this attacker
strategy is limited by the lower bounds on the probability of
BC assignment and push transfers (Appendix A). Moreover,
an attacker cannot observe when the malicious flow enters or
exits a BC, and does not know whether the flow is already
monitored by an LB. Hence, the attacker bursts must be sized
conservatively to avoid detection. Even if the adversary knew
the exact time at which the flow is transferred from the BC to
the LB, this time is brought forward as the attacker burst gets
larger and background filtering is sped up.

Reset exploitation. A further weakness of previous algo-
rithms is their reliance on regular resets. These resets allow an
attacker to send a burst around the reset time. With this timing,
the burst volume is split across two intervals such that the
threshold is not exceeded in either interval. Since ALBUS does
not rely on fixed time windows or resets, it is not susceptible
to this evasion strategy.

Small-burst attack. If the adversary creates an enormous
number of flows, each containing small bursts which are also
expected from benign flows, it is fundamentally impossible
for a volume-based algorithm to identify these attacker flows
without also reporting benign flows. This fundamental impos-
sibility applies to previous monitoring algorithms (Count- and
CountMin-Sketch) as well as to ALBUS.

To counter such small-burst attacks, functionality provided
by the DDoS defense system is required. Depending on the
attack, the attacker flows might share some packet attributes
which allow to combine the flows into a meaningful, large-
volume aggregate. In that case, the DDoS defense system
might apply the monitoring algorithm to measure aggregates
instead of fivetuple-based flows. In the longer term, small-

burst attacks might be effectively countered by DDoS defense
systems that restrict flow creation. For example, COLIBRI [4]
relies on source authentication and paid per-flow reservations,
which limits the number of flows over which attack traffic can
be distributed. Given this restriction, the adversary must create
medium-sized bursts in each flow, which are again detectable.

B. Complexity Analysis

The following complexity analysis discusses memory con-
sumption and processing overhead of ALBUS.

Memory consumption. The memory consumption of AL-
BUS is linear in the number |Λ| = |Π| of LB-BC pairs, where
each LB contains three fields (flow ID, timestamp, and count)
and each BC contains two fields (flow ID and count). For a
realistic traffic profile, each LB-BC pair can be represented by
16 bytes, which is justified in Appendix C.

This low memory consumption ensures high memory effi-
ciency: Section VII-B suggests that a memory consumption
of 300KB (on the order of usual L1/L2 cache sizes) allows
ALBUS to outperform previous algorithms (when considering
both recall and precision) on a 10 Gbps link [17].

Processing overhead. Unlike its competitor schemes, the
processing overhead per packet in ALBUS is independent of
detector memory. This independence stems from ALBUS’s
avoidance of list iterations, which are used in some monitoring
algorithms such as BurstSketch (when populating or analyzing
the Snapshot component [16]) and EARDet (when looking
for an empty counter for flow insertion [30]). Moreover,
unlike BurstSketch and EARDet, ALBUS does not require
associative arrays (i.e., hashmaps), which are challenging to
implement in a lightweight manner in hardware. Moreover,
ALBUS requires exactly 1 hash operation, whereas other
schemes like Count-Min Sketch [6], CountSketch [7], or
BurstSketch [16] use multiple hash operations. Furthermore,
the most complex arithmetic computation, namely the LB
update, is only performed in the rare case where the flow
is monitored by the LB. The lightweight update procedure
thus allows high-speed processing, which we confirm with an
FPGA implementation using 5 ns per packet (cf. Section VI).

VI. IMPLEMENTATION

First, we implemented ALBUS for an FPGA to demon-
strate its suitability for high-speed packet processing (cf. Sec-
tion VI-A). Second, we implemented ALBUS in P4, showing
its suitability for programmable switches (cf. Section VI-B).

A. FPGA Implementation

To demonstrate that ALBUS allows efficient packet process-
ing, we implemented ALBUS for a Xilinx FPGA.

Design. Figure 6 illustrates the design of our ALBUS
FPGA implementation. The implementation starts by hashing
the flow ID of an incoming packet (e.g., flow fivetuple)
with the Xoodoo-NC hash function [31], which is a non-
cryptographic hash function based on consecutive Xoodoo
permutations [32]. From the 96-bit Xoodoo-NC digest, the
implementation decodes the 10 least significant bits into a

7

f1
Xoodoo-
NC hash

X
oo

do
o-

N
C

96 bits

10 bits

One-hot
vector

D
ec

od
e

1024 bits λ0

λ1

λC

π0

π1

πC

...

Cell 0

1024
cells

AND

Fig. 6: FPGA implementation design (C = 1024− 1).

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Fig. 7: A single cell, consisting of ripple-carry adders (green),
a carry-save adder (red), and the decision-making logic (blue).

one-hot vector of 1024 bits. In contrast to a decoding design, a
single memory was used. Every binary-encoded address stores
a corresponding one-hot encoded value. The single positive bit
in this vector then triggers the activation of the corresponding
cell, i.e., an LB-BC pair (cf. Figure 7).

Resource evaluation. We evaluate our implementation
on a Xilinx Virtex UltraScale+ FPGA VCU118 [33] with a
dual 112Gbps network interface. On this board, our imple-
mentation achieves a clock period of 5.0 nanoseconds, which
corresponds to a packet-processing rate of 200 million packets
per second for packets of 64 bytes. With these minimum-
sized IP packets, this packet rate corresponds to a processing
capacity of 102Gbps, which is compatible with the network
interface of the FPGA. For a realistic traffic mix, such as
the IMIX traffic distribution with an average packet size of
350 bytes [34], the packet rate would allow to process a
traffic stream of 560 Gbps, but the network interface then
constitutes the bottleneck. Given such a traffic profile, the
forwarding switch could asynchronously provide the ALBUS
FPGA with pure packet metadata, which amounts to maximum
39 bytes per packet or 62.4 Gbps of inbound traffic at the
FPGA network interface.

The resource utilization of the implementation on the Xilinx
FPGA amounts to 40% of available look-up tables (LUT), 20%
of flip-flops (FF), and 2% of BRAM.

B. P4 Implementation

We created an additional implementation in P4 [35], a
programming language for programmable switches [14]. Our
P4 code is available online [36] and can be tested using
the virtual V1Model switch [37]. Appendix D presents a
conceptual overview of the implementation design.

VII. EVALUATION

To compare ALBUS to its competitor algorithms CountMin-
Sketch, CountSketch, and BurstSketch under a variety of
parameters, we perform a sensitivity analysis of all algorithms
in Section VII-B. We also investigate the effectiveness of
background filtering in terms of accuracy (Appendix B).

A. Evaluation Set-Up

For our evaluation, we use a simulation framework im-
plemented in Go. This framework replays a CAIDA trace
from a 10Gbps link [17] as background traffic. This trace
is augmented with a simulated burst-flood attack such that
the total rate exceeds the link capacity. These burst-flood
attacks vary in the overuse ratio of bursts, the burst duration,
and the number of bursts during the observation interval (5
seconds). We measure the detection accuracy of the monitoring
algorithms by means of recall and precision (cf. Section II-B).

Every experiment in this section is run 6 times. However,
since most results are highly stable and standard deviations
are small, the error bars are barely visible.

B. Comparative Sensitivity Analysis

In this section, we investigate the detection accuracy of AL-
BUS in different scenarios, and simultaneously compare it to
the monitoring algorithms used in DDoS defense systems, i.e.,
CountMin-Sketch [6] (used by Poseidon [1] and Ripple [2]),
and the CountSketch [7] (used by Jaqen [3]). Since these
algorithms are subject to a recall-precision trade-off due to
their landmark-window model, they are evaluated for multiple
threshold factors (cf. Section III). To distinguish versions of
the algorithm with different threshold factors, we write a(k)
for algorithm a with threshold factor k. In addition, we also
evaluate BurstSketch [16], which is a specialized monitoring
algorithm for burst detection.

In the comparative analysis, all detectors are equipped with
the same amount of memory. The competitor schemes have
been optimally according to the respective papers. ALBUS has
been configured with an optimal rigidity of r = 0 and T =
10KB (cf. Appendix B).

Base configuration. The starting point of our sensitivity
analysis is a base configuration of experiment parameters.
In the base configuration, every algorithm obtains a memory
allocation of 300KB, which is on the order of modern L1/L2
cache sizes. All algorithms try to enforce a flow specification
with rate γ = 1 Mbps and burstiness allowance β = 50 KB,
allowing a flow to send at 1 + 0.4/w Mbps over w seconds.
Only ∼ 1% of background flows from the CAIDA trace violate
this specification. The attack in the base configuration contains
bursts with an overuse ratio of ℓ = 1.2 and a burst width
of 200 ms, i.e., bursts of rate 3.4 Mbps during 200 ms.
To create an aggregate attack rate of around 5 Gbps over
5 seconds, 38,000 bursts are distributed across the observation
interval uniformly at random. In the following, we discuss how
changes in a single parameter affect the detection accuracy of
all monitoring algorithms.

8

100 550 1000

Memory [KB]

0.0

0.5

1.0
R

ec
al

l

(a) Recall.

100 550 1000

Memory [KB]

0.0

0.5

1.0

P
re

ci
si

on

(b) Precision.

Fig. 8:
Memory.

10 50 90

β [KB]

0.0

0.5

1.0

R
ec

al
l

(a) Recall.

10 50 90

β [KB]

0.0

0.5

1.0
P

re
ci

si
on

(b) Precision.

Fig. 9:
Allowance β.

1.1 1.3 1.5
Overuse Ratio `

0.0

0.5

1.0

R
ec

al
l

(a) Recall.

1.1 1.3 1.5
Overuse Ratio `

0.0

0.5

1.0

P
re

ci
si

on
(b) Precision.

Fig. 10:
Overuse ratio.

0.10 0.55 1.00

Burst Duration w [s]

0.0

0.5

1.0

R
ec

al
l

(a) Recall.

0.10 0.55 1.00

Burst Duration w [s]

0.0

0.5

1.0

P
re

ci
si

on

(b) Precision.

Fig. 11:
Burst duration.

10 35 60

Number of Bursts [K]

0.0

0.5

1.0

R
ec

al
l

(a) Recall.

10 35 60

Number of Bursts [K]

0.0

0.5

1.0

P
re

ci
si

on

(b) Precision.

Fig. 12:
Number of bursts.

10 35 60

Number of Bursts [K]

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Algorithm, Threshold Factor k

ALBUS BurstSketch CountMin, 0.5 CountMin, 1.0 CountSketch, 0.5 CountSketch, 1.0

Memory. Fig. 8 illustrates how recall and precision are
affected as the memory allocation of the monitoring algo-
rithms grows from 100 KB to 1 MB. While CountSketch
and CountMin-Sketch can utilize the additional memory to
increase precision, their recall surprisingly decreases with
additional memory. We observe this effect because additional
memory is added in the form of additional counters, and
thus the number of flows sharing a counter decreases with
increasing memory. A low number of flows per counter makes
threshold violation less likely, decreasing recall and increasing
precision. For BurstSketch, both recall and precision are
consistently low, pointing to a mismatch between the detection
capabilities of BurstSketch and the objective in the experiment.
Finally, ALBUS benefits from additional memory in terms of
recall, whereas it achieves perfect precision by design. From
a memory allocation of 300KB, ALBUS is superior to all
other algorithms regarding both recall and precision. Other
algorithms can beat ALBUS in one metric only at the cost
of bad performance in the other metric, e.g., at 100 KB,
CountMin-Sketch(0.5) outperforms ALBUS regarding recall
by 0.2, but only with a precision that is 5 times lower.

Flow specification. In Fig. 9, the burstiness allowance β
of the flow specification is varied. Hence, this experiment
shows how monitoring algorithms behave when the allowed
burst volume β grows compared to the allowed base rate γ.
Recall increases with β for all monitoring algorithms, mostly
because the bursts in the simulated attack are dimensioned
relative to β, and thus become larger and easier to detect.
Precision, however, generally decreases with β for Count-
Sketch and CountMin-Sketch, because the number of false

positives stays roughly constant whereas the number of true
positives decreases (i.e., fewer specification-violating flows in
the background traffic). In general, ALBUS is uniquely effec-
tive at enforcing tight flow specifications, i.e., a low burstiness
allowance. Moreover, ALBUS benefits from loosening the
specification, whereas the performance of competitor schemes
under varying flow specifications is hard to predict.

Overuse ratio. Fig. 10 visualizes the detection performance
of the algorithms under varying overuse ratios. Unsurprisingly,
higher overuse ratios generally lead to higher recall because
larger bursts are easier to detect. Since the number of correctly
detected bursts grows compared to the number of incorrectly
reported bursts, precision also rises together with the overuse
ratio. ALBUS is on par with CountMin-Sketch(0.5) regarding
recall, but is consistently more precise.

Burst width. The variation of burst width in Fig. 11 under-
lines that sketches are inflexible with respect to burst width,
i.e., they have a distinct peak in recall around a certain burst
width. In contrast, the decreasing recall of ALBUS for growing
burst width is due to the constant overuse ratio: As the burst
width grows, a constant excess burst volume is distributed over
a longer time, lowering the burst rate to which ALBUS is
sensitive. Nonetheless, the precision of ALBUS is stable for
varying burst width, whereas precision starkly decreases for
the sketch algorithms. The reason for this decrease is subtle:
As bursts get longer, they more often share counters with other
flows, increasing false positives.

Number of bursts. In Fig. 12, the number of bursts
in the observation period is grown from 10,000 to 60,000,
corresponding to a variation in aggregate attack rate from

9

1.0 5.5 10.0

β [KB]

0

5

10

N
u

m
b

er
of

B
u

rs
ts

[K
]

(a) Excessive bursts.

1.0 5.5 10.0

β [KB]

0.0

0.5

1.0

F
1

S
co

re

(b) F1 score.

Fig. 13: CIC-DDoS2019 trace.

1.36 Gbps to 8.16 Gbps. The recall for all detectors is mostly
stable across the investigated range. Only BurstSketch achieves
a higher recall for higher burst numbers; an inspection of the
algorithm suggests that a higher number of flows increases
the contention in the first-stage component of BurstSketch,
which intensifies filtering such that the second-stage compo-
nent is less congested and contains more truly large flows.
Regarding precision, we again observe that the CountSketch
and the CountMin-Sketch perform worse under high load,
again because more intense counter sharing leads to more false
positives. CountMin-Sketch(0.5), which is on par with ALBUS
in terms of recall, is at least 20% less precise.

Attack type. Finally, we consider a completely different
type of attack traffic by using the CIC-DDoS2019 dataset [8].
Specifically, we replay the excerpt containing a UDP flood,
and instruct all algorithms to detect excessively large bursts
for a range of flow specifications. Since the aggregate rate
in the CIC-DDoS dataset is far lower than in the CAIDA
dataset, we investigate flow specifications for γ = 0.1 Mbps
and β ∈ [1 KB, 10 KB]. The CIC-DDoS attack traffic is no-
tably different from the burst-flood attacks considered before,
as it contains only a few thousand bursts over 24 minutes
(Fig. 13a). Nonetheless, ALBUS consistently outperforms
remaining algorithms in F1 score (Fig. 13b), demonstrating
that ALBUS is effective beyond burst-flood attacks.

Overall performance. In summary, ALBUS outperforms
its competitor algorithms over a wide range of scenarios,
considering detector configurations, attack properties, and
background traffic (cf. Appendix E). The improvement by AL-
BUS is especially strong for short bursts and tight flow
specifications (i.e., low β compared to γ). While the sketch
algorithms can be configured such that they are competitive
with ALBUS in one metric, such a configuration leads to
poor performance in the other metric. For example, CountMin-
Sketch(0.5) is frequently competitive with ALBUS in terms of
recall, but is consistently less precise. Conversely, CountMin-
Sketch(1.0) achieves competitive precision, but inferior recall.

VIII. RELATED WORK

In this section, we discuss previous probabilistic monitoring
algorithms and evaluate their suitability for burst detection.

Since keeping track of each individual flow is impracti-
cal, numerous probabilistic flow-monitoring algorithms have

been proposed, most prominently CountMin-Sketch [6] and
Count-Sketch [7]. However, as we have shown in Section III,
these algorithms suffer from poor accuracy in the evaluated
attacks because they rely on discrete time windows. While
the inaccuracy can be partly remedied by retrospective sketch-
analysis techniques such as SeqSketch [25], PR-Sketch [26], or
LOFT [24], the issues of discrete time windows and false pos-
itives remain. Similar issues plague other sketches [38], [39],
[16], and top-k detection schemes [23], [27]. EARDet [30]
does not rely on resets and yields no false positives, but
performs expensive list iterations for every packet. The moni-
toring algorithm in ACC-Turbo [5] is based on the assumption
that attack flows can be correlated based on header informa-
tion; we make no such assumption.

IX. CONCLUSION

In this work, we demonstrate that the sketch algorithms
used in modern DDoS defense system provide poor detection
accuracy under burst-flood attacks, as they fail to report the
set of excessively bursty flows without false inclusions. For
example, given a flood of bursts that last 500 ms and exceed
the allowed burst volume by 20%, the CountMin-Sketch [6]
detects either 75% of allowance-violating flows with a false-
positive rate of 50%, or 1% of allowance-violating flows with
a false-positive rate of 1%, depending on the configuration.
The source of this problem is that sketch algorithms need
to regularly reset their data structure, which conflicts with
arbitrary timing and duration of bursts.

Our algorithm, ALBUS, considerably improves upon previ-
ous algorithms by continuously selecting the subset of flows
that are precisely monitored within limited memory. Thanks
to its reliance on the leaky-bucket algorithm, its avoidance of
hard resets, and its leverage of filtering techniques, ALBUS
does not falsely report any allowance-conforming flows, but
maintains high recall. In our experiments, ALBUS frequently
outperforms the other investigated algorithms in both precision
and recall, and consistently outperforms them in one of these
metrics. Regarding processing efficiency, ALBUS consistently
avoids design primitives that prevent efficient hardware imple-
mentation, and thus enables an FPGA implementation which
can process 200 million packets per second. Thanks to its
frugality, ALBUS can also be readily implemented in P4, in
turn enabling simple integration with programmable switches.

In summary, ALBUS represents an important complement
to the monitoring algorithms in current DDoS defense systems,
as ALBUS compensates the weaknesses of these algorithms
under pessimal workloads. In future work, we will identify op-
timal combinations of these traditional monitoring algorithms
with ALBUS to achieve comprehensive DDoS mitigation.

ACKNOWLEGEMENTS

We gratefully acknowledge support from ETH Zurich, and
from SNSF (200021L 182005) and FWO (G0E0719N) for
project ESCALATE. Moreover, we thank Piet De Vaere, Marc
Wyss, Jonghoon Kwon, and the anonymous reviewers for their
helpful feedback.

10

REFERENCES

[1] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric DDoS attacks with
programmable switches,” in the 27th Network and Distributed System
Security Symposium (NDSS 2020), 2020.

[2] J. Xing, W. Wu, and A. Chen, “Ripple: A Programmable, Decentralized
Link-Flooding Defense Against Adaptive Adversaries,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 3865–3881.

[3] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jaqen: A High-Performance Switch-Native
approach for detecting and mitigating volumetric DDoS attacks with
programmable switches,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 3829–3846.

[4] G. Giuliari, D. Roos, M. Wyss, J. A. Garcia-Pardo, M. Legner,
and A. Perrig, “Colibri: A Cooperative Lightweight Inter-domain
Bandwidth-Reservation Infrastructure,” Proceedings of ACM CoNEXT,
2021.

[5] A. G. Alcoz, M. Strohmeier, V. Lenders, and L. Vanbever, “Aggregate-
based congestion control for pulse-wave DDoS defense,” in Proceedings
of the ACM SIGCOMM 2022 Conference, 2022, pp. 693–706.

[6] G. Cormode and S. Muthukrishnan, “An Improved Data Stream
Summary: The Count-Min Sketch and its Applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58–75, 2005. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0196677403001913

[7] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in International Colloquium on Automata, Languages,
and Programming, 2002.

[8] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Devel-
oping realistic distributed denial of service (ddos) attack dataset and
taxonomy,” in 2019 International Carnahan Conference on Security
Technology (ICCST). IEEE, 2019, pp. 1–8.

[9] DDoS-GUARD, “Hidden threat of Pulse Wave DDoS attacks,”
https://ddos-guard.net/en/info/blog-detail/hidden-threat-of-pulse-wave-
ddos-attacks, 2019.

[10] I. Zeifman, “Attackers Use DDoS Pulses to Pin Down Multiple Targets,”
https://www.imperva.com/blog/pulse-wave-ddos-pins-down-multiple-
targets/, 2017.

[11] R. Rasti, M. Murthy, N. Weaver, and V. Paxson, “Temporal lensing
and its application in pulsing denial-of-service attacks,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 187–198.

[12] C. Rossow, “Amplification hell: Revisiting network protocols for DDoS
abuse.” in NDSS, 2014.

[13] H. Griffioen, K. Oosthoek, P. van der Knaap, and C. Doerr, “Scan,
test, execute: Adversarial tactics in amplification DDoS attacks,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 940–954.

[14] A. Agrawal and C. Kim, “Intel Tofino2-A 12.9 Tbps P4-Programmable
Ethernet Switch.” in Hot Chips Symposium, 2020, pp. 1–32.

[15] B. Claise, “Cisco Systems NetFlow Services Export Version
9,” RFC 3954 (Informational), Oct. 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3954.txt

[16] Z. Zhong, S. Yan, Z. Li, D. Tan, T. Yang, and B. Cui, “Burstsketch:
Finding bursts in data streams,” in Proceedings of the 2021 International
Conference on Management of Data, 2021, pp. 2375–2383.

[17] CAIDA, “The CAIDA UCSD Anonymized Inter-
net Traces - Oct. 18th.” 2018. [Online]. Available:
http://www.caida.org/data/passive/passive dataset.xml

[18] Y. Chen and K. Hwang, “Collaborative detection and filtering of
shrew DDoS attacks using spectral analysis,” Journal of Parallel and
Distributed Computing, vol. 66, no. 9, pp. 1137–1151, 2006.

[19] C. Fu, Q. Li, M. Shen, and K. Xu, “Realtime robust malicious traffic
detection via frequency domain analysis,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
2021, pp. 3431–3446.

[20] X. Luo, R. K. Chang et al., “On a new class of pulsing denial-of-service
attacks and the defense.” in NDSS, 2005.

[21] C.-W. Chang, S. Lee, B. Lin, and J. Wang, “The taming of the shrew:
Mitigating low-rate tcp-targeted attack,” IEEE Transactions on Network
and Service Management, vol. 7, no. 1, pp. 1–13, 2010.

[22] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,” ACM
Transactions on Computer Systems, vol. 21, no. 3, pp. 270–313, 2003.

[23] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research. ACM, 2017, pp.
164–176.

[24] S. Scherrer, C.-Y. Wu, Y.-H. Chiang, B. Rothenberger, D. E. Asoni,
A. Sateesan, J. Vliegen, N. Mentens, H.-C. Hsiao, and A. Perrig, “Low-
Rate Overuse Flow Tracer (LOFT): An Efficient and Scalable Algorithm
for Detecting Overuse Flows,” in Proceedings of the Symposium on
Reliable Distributed Systems (SRDS), 2021.

[25] Q. Huang, S. Sheng, X. Chen, Y. Bao, R. Zhang, Y. Xu, and G. Zhang,
“Toward nearly-zero-error sketching via compressive sensing,” in 18th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21), 2021, pp. 1027–1044.

[26] S. Sheng, Q. Huang, S. Wang, and Y. Bao, “PR-Sketch: monitoring
per-key aggregation of streaming data with nearly full accuracy,” Pro-
ceedings of the VLDB Endowment, vol. 14, no. 10, pp. 1783–1796, 2021.

[27] T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li,
“HeavyKeeper: An Accurate Algorithm for Finding Top-k Elephant
Flows,” IEEE/ACM Transactions on Networking, vol. 27, no. 5, pp.
1845–1858, 2019.

[28] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proceedings of the 2016 ACM SIGCOMM Conference,
2016, pp. 101–114.

[29] G. Niestegge, “The ‘leaky bucket’policing method in the atm (asyn-
chronous transfer mode) network,” International Journal of Digital &
Analog Communication Systems, vol. 3, no. 2, pp. 187–197, 1990.

[30] H. Wu, H.-C. Hsiao, and Y.-C. Hu, “Efficient large flow detection
over arbitrary windows: An algorithm exact outside an ambiguity
region,” in Proceedings of the 2014 Conference on Internet Measurement
Conference (IMC). ACM, 2014, pp. 209–222.

[31] A. Sateesan, J. Vliegen, J. Daemen, and N. Mentens, “Novel Bloom
filter algorithms and architectures for ultra-high-speed network security
applications,” in 2020 23rd Euromicro Conference on Digital System
Design (DSD). IEEE, 2020, pp. 262–269.

[32] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer, “Xoodoo
cookbook.” IACR Cryptol. ePrint Arch., vol. 2018, p. 767, 2018.

[33] Xilinx, “Xilinx Virtex UltraScale+ FPGA VCU118 Evaluation Kit,”
https://www.xilinx.com/products/boards-and-kits/vcu118.html, 2021.

[34] C. P. Popoviciu, E. Levy-Abegnoli, and P. Grossetete, “Net-
work Performance Considerations: Coexistence of IPv4 and IPv6,”
https://bit.ly/3BHWIIc, 2007.

[35] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[36] S. Scherrer, “ALBUS P4 Code,” 2023. [Online]. Available:
https://github.com/simonschdev/srds23-albus-p4

[37] Barefoot Networks Inc., “V1Model Switch,” 2021. [Online]. Available:
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4

[38] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
Sketch to Rule Them All: Rethinking Network Flow Monitoring with
UnivMon,” in ACM SIGCOMM, 2016.

[39] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. ACM, 2018, pp. 561–
575.

[40] R. S. Boyer and J. S. Moore, “Mjrty—a fast majority vote algorithm,”
in Automated Reasoning. Springer, 1991, pp. 105–117.

[41] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and W. Dabbous,
“Network characteristics of video streaming traffic,” in Proceedings
of the seventh conference on emerging networking experiments and
technologies, 2011, pp. 1–12.

11

APPENDIX

A. Accuracy Analysis

The detection accuracy of ALBUS is measured by its ability
to avoid false positives and false negatives. Since the LB
algorithm is perfectly accurate in that sense, all inaccuracy
stems from the dynamic selection of the LB-monitored flows.

False positives. ALBUS preserves the zero false positives
of the LB algorithm. By definition from Section II-B, a flow
violates a flow specification γt+ β if there exists a time win-
dow with length w in which the flow volume exceeds γw+β.
If ALBUS reports a flow, this flow was monitored during
a time window with length w′ and had a volume of more
than γw′ + β. Hence, since ALBUS reports a flow only if it
encountered a time window in which the volume allowance is
exceeded, ALBUS never reports flows which do not violate
the flow specification, i.e., ALBUS has zero false positives.

False negatives. To formally characterize the occurrence
of false negatives in ALBUS, we consider a burst of a flow f
with width w, overuse ratio ℓ, and shape vf (t), a fluid approx-
imation of the volume sent until time t ∈ [0, w] after the burst
start. Hence, it holds that vf (0) = 0 and vf (w) = γw + ℓβ.
Moreover, we consider bursts with v′f (t) := d/dt vf (t) ≥
γ ∀t ∈ [0, w], as any burst can be decomposed into shorter
bursts for which this property holds. As a result, it holds
that v(t) ≥ γt for all t ∈ [0, w]. If such a burst is assigned
to an LB in ALBUS at time t′, ALBUS observes the burst
volume vf (w) − vf (t

′), and reports the flow if the observed
volume exceeds γ(w − t′) + β. Hence, ALBUS detects the
excessively bursty flow if the flow is assigned to an LB at
time t′, where

vf (t
′) < γt′ + (ℓ− 1)β. (3)

Since v′f (t) > γ for all t, there exists a unique time t∗ ∈
(0, w) such that for all t′ ∈ [0, t∗), the detection condition
in Eq. (3) holds. Hence, t∗ denotes the time from which
detection is not achieved anymore. ALBUS provides two
options how a flow might be assigned to an LB before time t∗.

The first possibility for assigning the excessively bursty
flow f to LB λ is push-based: If a time t′ exists such that f
is assigned to the BF π and the push threshold is exceeded
by the BC count π.c(t′) > T , flow f is inserted into LB λ.
With the rigidity r = 0 used in our experiments, flow f can
only reach such a high BC count if it outweighs the aggregate
traffic volume of all other flows g ∈ Fπ , g ̸= f , mapped to π.
Let vg(t

′) be the volume sent by flow g between the burst
start of flow f (i.e., t = 0) and time t′. Importantly, the BC
count π.c(0) of the flow g′ := π.f(0) is subsumed into vg′ .
In formal terms, the detection probability p(f) of flow f is 1
(i.e., detection is guaranteed) under the following condition:

p(f) = 1 ⇐⇒ ∃t′ ∈ [0, t∗). vf (t
′) > T +

∑
g∈Fπ.
g ̸=f

vg(t
′)

=: Ppush(f)

(4)

Second, even if a push is not possible, detection may still
be possible via the pull-based approach, i.e., if the LB λ is

1.0 10.5 20.0

Push threshold T [KB]

0.0

0.5

1.0

R
ec

al
l

(a) 200ms bursts.

1.0 10.5 20.0

Push threshold T [KB]

0.0

0.5

1.0

R
ec

al
l

Background filtering, Rigidity r

BF, 0.0

BF, 0.5

BF, 1.0

No BF

(b) 400ms bursts.

1.0 10.5 20.0

Push threshold T [KB]

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Background filtering, Rigidity r

BF, 0.0 BF, 0.5 BF, 1.0 No BF

Fig. 14: Background-filtering evaluation.

cleared at a time t′ ∈ [0, t∗) and flow f occupies BC π at
that time, i.e., π.f(t′) = f . To characterize the probability
of π.f(t′) = f , we need to consider all flows g ∈ Fπ mapped
to BC π. Given such flow volumes {vg(t)}g∈Fπ

for any t,
we note that the probabilistic-decay technique is equivalent to
the Majority algorithm [40] for rigidity r = 0, which we use
in our experiments. This algorithm is guaranteed to find the
majority item in arbitrary streams, if such an element exists.
If no majority item exists, the algorithm outputs item f with a
probability that corresponds to the volume of item f compared
to the volume of all other items in the stream. Applied to our
setting, the probability that the bursty flow f occupies BC π
at time t′ is given as follows:

P [π.f(t′) = f] = pM (vf (t
′), t′), (5)

where pM (v, t′) = min

(
1,

v∑
g∈Fπ. g ̸=f vg(t

′)

)
. (6)

Notably, multiple LB-clearing moments may provide opportu-
nity for a pull, i.e., the occupancy probability above is relevant
at all moments {t′i}i∈N,i≤τ , t′i ∈ [0, t∗), τ ≥ 0. The cumulative
probability of LB pulls with subsequent detection is thus:

ppull(f) =
∑
i∈N
i≤τ

pM (vf (t
′
i), t

′
i)
∏
j∈N
j<i

(1− pM (vf (t
′
j), t

′
j)) (7)

In summary, the detection probability p(f) is given by:

p(f) =

{
1 if Ppush(f),

ppull(f) otherwise,
(8)

which is only zero if ¬Ppush(f) and τ = 0 (i.e., the LB λ
is never cleared). Therefore, even if the adversary manages to
prevent LB clearings with a masking attack, the attack damage
in this scenario is bounded because Ppush becomes true for
high enough attack rates.

B. Evaluation of Background Filtering

In this section, we test the background filter on its effects
on detector accuracy. Apart from its safeguard function, the
background filter also aims at singling out bursty flows that
are worth monitoring for the leaky buckets. To test whether

12

the background filter lives up to this expectation, we repeat
the base-configuration experiment from Section VII-B, but
vary the background0filtering configuration. In particular, we
evaluate ALBUS with and without background filtering, with
varying rigidity r and with varying push threshold T . For the
version without background filtering, the memory formerly
allocated to background counters is instead allocated to addi-
tional leaky buckets to hold the total memory allocation con-
stant. The recall results of the evaluation are shown in Fig. 14
(Perfect precision is consistently achieved by design).

Background filtering in general. We observe that back-
ground filtering boosts recall considerably. All investi-
gated background-filtering configurations achieve substantially
higher recall than ALBUS without background filtering.
Hence, the background filter is a vital part of ALBUS.

Push threshold. The results confirm the expected trade-
off: If the push threshold is too high, recall decreases because
bursty flows fail to evict the current LB-monitored flow.
Conversely, if the push threshold is too low, flows evict each
other from the LB before any bursty flow is detected, also
harming recall. Moreover, both the optimal T and the recall
considerably depend on the rigidity r, where we have found
the minimum rigidity r = 0 to be optimal. Given the varying
burst width in Figs. 14a and 14b, we observe that the push
threshold should be set low if short bursts are to be detected,
e.g., not above 12 KB if bursts of duration 200 ms should be
detected. However, we also observe that a low push threshold
does not strongly compromise the ability of ALBUS to detect
longer bursts. For example, if the push threshold is set to
10 KB to optimize recall of 200 ms bursts, the recall of 400 ms
bursts is still near-optimal.

C. Memory Analysis

The following analysis justifies the claim of 16 bytes per
LB-BC pair in Section V-B.

LB/BC flow ID. Empirical data suggests a concurrency
of around 10 million flows for 1 Tbps of forwarding capac-
ity [17], which implies that a field size of 3 bytes is sufficient
to distinguish the expected number of flows.

LB timestamp. 4 bytes are sufficient to accommodate
nanosecond timestamps with a timestamp-reset period of
around 4.3 seconds. Given two timestamps in known order,
the correct difference between the two timestamps can be cal-
culated if these timestamps differ by less than the timestamp-
reset period, even if an overflow takes place between the two
timestamps. In a realistic environment, flows that send no
packet for more than 4.3 seconds are not considered bursty
and are evicted by the time-out safeguard before this maximum
difference is exceeded.

LB count. The LB count field must be able to record
the maximum burstiness volume β. If operating with a rate
allowance of γ = 1 Mbps and tolerating flows that send at
most 5 times rate γ during 100 milliseconds, the burstiness
allowance β corresponds to 50 kilobytes, which can in turn
be counted by fields of 2 bytes.

Control
plane
Data

plane

f1 Switch

Tables blacklist check block

Actions drop albus update block

Controller

" $ "

$

digestinstall

Fig. 15: P4 implementation design.

BC count. The BC count field must be able to record prob-
abilistically decaying flow volume up to the push threshold T .
This threshold is maximal in the (artificial) case r = ∞,
where the BC count is never decremented. The threshold T in
this maximum case limits the acceptable flow volume during
the time w′ in which another flow is in the LB. Assuming
again that the algorithm targets flows sending at more than
5 times the allowed rate for w = 100 milliseconds, and that
flows occupy a LB for at most 100ms (w′ = w), a reasonable
choice for the threshold T in the maximum case r = ∞ is
5γw = 62.5 kilobytes, which can also be counted with a 2-
byte field.

In summary, 14 bytes are needed for an LB-BC combi-
nation, which we increase to 16 bytes for alignment. This
low memory consumption ensures high memory efficiency:
Section VII-B suggests that a memory consumption of 300KB
(on the order of usual L1/L2 cache sizes) allows ALBUS to
outperform previous algorithms (when considering both recall
and precision) on a 10 Gbps link [17].

D. P4 Implementation Details

We created an additional implementation in P4 [35], which
allows to embed complex functionality in programmable
switches [14]. Our P4 code is available online [36] and can
be tested using the virtual V1Model switch [37].

While ALBUS is meant to be used as a monitoring primi-
tive within sophisticated DDoS defense systems (mostly also
implemented in P4), we have created a stand-alone imple-
mentation of the algorithm for testing (cf. Fig. 15). First, an
incoming packet is matched against the blacklist, which is
embodied in a match-action table. If the blacklist matches the
flow attributes in the packet, the packet is dropped; otherwise,
the ALBUS algorithm is applied with an action containing the
ALBUS control flow. If the packet flow is excessively bursty,
the ALBUS update sets a metadata flag in the packet. If a
subsequent match-action table matches this flag, blacklisting
is triggered by sending the flow attributes to the controller via a
digest operation (Digestion is not possible within the ALBUS
update action). The controller then installs a rule including the
malicious-flow attributes into the blacklist match-action table.

E. Evaluation on Synthetic Trace

In the CAIDA trace used in Section VII, most background
flows are short and small, i.e., only consist of a few pack-
ets within one second. To evaluate a different scenario, we

13

1.1 1.3 1.5
Overuse Ratio `

0.0

0.5

1.0

R
ec

al
l

(a) Recall.

1.1 1.3 1.5
Overuse Ratio `

0.0

0.5

1.0

P
re

ci
si

on

(b) Precision.

1.1 1.3 1.5
Overuse Ratio `

0.0

0.5

1.0

F
1

S
co

re

(c) F1 score.
Fig. 16: Evaluation on synthetic background traffic.

10 35 60

Number of Bursts [K]

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Algorithm, Threshold Factor k

ALBUS BurstSketch CountMin, 0.5 CountMin, 1.0 CountSketch, 0.5 CountSketch, 1.0

synthesize background traffic with relatively large and long-
lived background flows, i.e., each flow in the background
traffic sends exactly at the allowed rate γ = 1 Mbps during
the whole experiment. Such traffic can be present on links
delivering a high amount of streamed video [41]. Using this
background traffic, we again vary the overuse ratio of the
bursts in the attack, leading to the results in Fig. 16. While the
recall results are largely similar to Fig. 10a (same experiment
with CAIDA traffic), BurstSketch has perfect recall on high
overuse ratios, again because the long-lived background flows
increase contention in the first stage of BurstSketch. ALBUS
achieves a slightly lower recall than CountMin-Sketch(0.5) on
high overuse ratios, but substantially outperforms it in both
precision and F1 score, an aggregation of recall and precision
(Fig. 16c).

14

