
Speed Records in Network Flow Measurement
on FPGA

Arish Sateesan∗, Jo Vliegen∗, Simon Scherrer†, Hsu-Chun Hsiao‡, Adrian Perrig†, and Nele Mentens∗§
∗imec-COSIC/ES&S, ESAT, KU Leuven, Belgium; Email: {arish.sateesan,jo.vliegen,nele.mentens}@kuleuven.be
†Department of Computer Science, ETH Zurich, Switzerland; Email: {simon.scherrer,adrian.perrig}@inf.ethz.ch

‡National Taiwan University, Taiwan; Email: {hchsiao}@csie.ntu.edu.tw
§LIACS, Leiden University, The Netherlands

Abstract—Network traffic measurement keeps track of the
amount of traffic sent by each flow in the network. It is a
core functionality in applications such as traffic engineering
and network intrusion detection. In high-speed networks, it
is impossible to keep exact count of the flow traffic, due to
limitations with respect to memory and computational speed.
Therefore, probabilistic data structures, such as sketches, are
used. This paper proposes Approximate Count-Min sketch or A-
CM sketch, a novel variant of the Count-Min sketch algorithm
that uses less memory and has a higher throughput compared
to other FPGA-based sketch implementations. A-CM sketch
relies on optimizations at two levels: (1) it uses approximate
counters and the newly proposed Hardware-oriented Simple
Active Counter algorithm to efficiently implement these counters;
(2) it uses a distribution of the embedded memory, optimized
towards maximum operating frequency. To the best of our
knowledge, A-CM sketch outperforms all other FPGA-based
sketch implementations.

I. INTRODUCTION

In many network applications, measuring the amount of
traffic sent by each flow in the network is essential. A network
flow consists of all network packets that have the same flow
identifier (ID). The flow ID can be extracted from the packet
header and consists, e.g., of the source and destination IP
addresses and ports. The size can be measured in terms of
the number of packets in a flow or the byte volume. In this
paper, we define flow size as the number of packets and
flow bytes as the byte volume. Network flow measurement
counts the total size of all packets in each flow. Examples
of applications that use network flow measurement are traffic
engineering, Distributed Denial of Service (DDoS) prevention,
frequent items detection and heavy hitter detection.

Network flow measurement is turning out to be a research
challenge in the advent of high-speed networks and devices.
The main challenges are to deal with the high throughput re-
quirements of Terabit Ethernet networks, which are defined as
networks with speeds above 100 Gbps (Gigabits per second),
and to minimize the memory resources of the counters that
store the measurement results. Even though Dynamic RAM
(DRAM) can fulfill the memory requirements [1], [2], moving
from faster memories like Static RAM (SRAM) to slower off-
chip DRAM cannot scale up to the bandwidth requirements of
Terabit Ethernet networks. In fact, in high-speed networks, the
high throughput and memory requirements make it impossible
to keep the exact traffic count of each network flow.

Turning away from the conventional exact counting ap-
proaches, various probabilistic measurement approaches are

available such as sampling [3]–[5], and sketches [6], [7].
Sampling-based measurement approaches [3]–[5] are com-
monly used and are helpful in reducing the memory re-
quirements, but at the cost of lower accuracy and processing
speed, especially when it comes to byte counting [8], [9].
Sketches are recently the most popular architectures for flow
measurement, showing the best trade-off between accuracy,
speed, and memory utilization. Many of the recently proposed
sketch implementations [9]–[13] have shown success in flow
measurement, but either at high computational/memory cost
or at low throughput, causing a mismatch in throughput
between the line speed and the measurement module. The high
processing overhead of sketches is caused by multiple factors,
including independent per-packet hash calculations, multiple
memory accesses and arithmetic operations.

To reach the throughput requirements of Terabit Ethernet
networks, we replace exact counters by approximate counters
in the sketch, and we use FPGAs as the implementation
platform. Recent advances in FPGA technology offer large
memory bandwidth and logic density, which make FPGAs
suitable platforms for high-speed network processing [14].
However, implementing sketches on FPGAs in a Terabit Eth-
ernet network is challenging. An example of an authenticated
encryption unit [15] shows that a network packet is processed
per clock cycle at a frequency of 200 MHz to achieve a
bandwidth of 200 Gbps on a Netcope FPGA platform [16].

We focus on the following challenges: (1) minimize the
memory and arithmetic overhead of the sketch architecture to
fit all storage and computation constraints in a single FPGA,
and (2) maximize the throughput to operate in Terabit Ethernet
networks. Therefore, we introduce the following contributions:
• A modified and hardware-friendly version of the Simple Ac-

tive Counter (SAC) algorithm [17], which we call Hardware-
oriented Simple Active Counter (HSAC), and a counter array
based on HSAC.

• A novel sketch architecture, termed Approximate-CM
sketch or A-CM sketch, inspired by the Count-Min sketch
(or CM sketch) algorithm [7]. A-CM sketch uses approx-
imate counters based on the HSAC algorithm and is op-
timized for high throughput by applying efficient memory
organization and utilizing hardware-friendly hash computa-
tions, resulting in a high-speed flow measurement architec-
ture on FPGA.

• A demonstrator on an FPGA in which the sketch hardware
architecture has a direct Ethernet connection.

II. BACKGROUND AND RELATED WORK

A. Approximate Counters

Counters are an indispensable part of any statistical mea-
surement. Approximate or probabilistic counting [18], [19] is
one of the solutions to reduce the counting overhead at the
expense of a small error in accuracy. This error is negligible
when considering large amounts of data. Robert Morris, in
1978 [18], proposed a probabilistic counting technique to
reduce the memory requirements of counters. The basic idea
behind this algorithm is that the counter only stores an
“order of magnitude approximation” of the actual count. Fol-
lowing this approach, many improved probabilistic counting
techniques [5], [8], [17], [20]–[23] have been put forward.
The main focus of most research was the improvement in
accuracy. Algorithms such as CASE [21], DISCO [8], ICE
Buckets [20], additive error counters [23] and SAC [17] show
very high accuracy. However, these algorithms are not suitable
for efficient hardware implementation. In our work, we present
HSAC, a hardware-friendly version of the SAC algorithm.

B. Sketches

Sketches [6], [7], [11]–[13] have been shown to be a
powerful solution for counting the number of times different
events occur, with a good trade-off between computational
resources and accuracy. Although, when the frequency of
events becomes too large, the memory capacity of sketches
gets affected. One way to eliminate this problem is by reducing
the memory overhead by replacing the exact counters in the
sketch with approximate counters, such as those discussed in
Sect. II-A. Yang et al. [22] present a sketch design using
approximate counter arrays which shows significant reduction
in memory compared to sketches using exact counter arrays.
However, the self-adapting counter approach by Yang et al. is
a slower and more complex version of the SAC [17] algorithm,
which is not suitable for hardware implementations in high-
speed networks. In our work, we propose A-CM sketch, which
is based on CM sketch [7] in combination with approximate
counters. We perform further throughput optimization of the
sketch architecture by manually exploring memory lay-out
options, resulting in a minimal routing delay.

C. Network flow measurement on FPGA

Multiple performance metrics are important in the design
of a hardware architecture. For network flow measurements,
we consider three metrics: utilization of memory and log-
ical resources, throughput, and accuracy. A few papers on
hardware-based flow measurement architectures are available.
Cache-based hybrid SRAM-DRAM architectures, proposed by
Zadnik et al. [24], are suitable for passive flow measure-
ments, where querying is done offline, and real-time flow
measurement at line rate is not possible. Other related work on
hardware concentrates specifically on sketch acceleration [25]–
[28]. The throughput of the work of Lai [26] and Wellem [27]
is bound to 10 Gbps on the NetFPGA platform. Saavedra et
al. [28] propose the use of on-chip block RAMs (BRAM)

along with DDR3 RAM and efficient pipelined hash com-
putations on an FPGA. However, the use of external DDR3
RAM is not compliant with the throughput requirements of
high-speed networks. Tong et al. [25] propose CM sketch
and K-ary sketch based implementations for heavy hitter and
heavy change detection, which achieves a throughput over 150
Gbps. However, the high memory utilization may prevent the
design from increasing the width of the sketch over a certain
limit. Similarly, Scotch [29] also achieves a higher throughput
on FPGA, but at the cost of higher resource and memory
consumption. A simple CM sketch implementation having a
counter size of 32-bits would deplete the BRAMs in Virtex
Ultrascale+ FPGAs when the width of the sketch exceeds
≈320,000. Prioritizing throughput alone at the cost of high
memory consumption could be an impractical approach when
it comes to resource-constrained devices like FPGAs. Our
work is the first to achieve a throughput of 200 Gbps for 96-bit
flow IDs (96-bit flow ID allows to distinguish individual flows,
e.g. characterized by source and destination IP and source and
destination port), while the aforementioned architectures are
restricted to 32-bit flow IDs and do not reach 200 Gbps.

III. ALGORITHMS

Our novel sketch architecture, Approximate CM sketch or
A-CM sketch, is based on the Count-Min (CM) sketch data
structure [7] and on the Hardware-oriented Simple Active
Counter (HSAC) approximate counting algorithm. We explain
both the existing CM sketch and our new HSAC algorithm.

A. Count-Min Sketch

Sketches are data structures consisting of multiple counter
arrays. Count-Min (CM) sketch [7] is suitable for FPGA-based
flow measurement architectures because of its relatively high
throughput and small memory usage of O(logN), where N is
the number of different flows. A CM sketch is represented by
a 2-dimensional array of counters with width w and depth d.
The size of each counter is q bits.

When a network packet arrives, with size ci and identified
by flow ID flowi, a total of d independent hash functions are
computed on flowi. Each hash value hj , j = {1, ..., d} is used
as an index to determine which counter should be updated in
the corresponding counter array row j. Each of these counters
is then updated as: counter[j, hj] ← counter[j, hj] + ci.
When querying the sketch, the estimated count can be deter-
mined as min(counter[j, hj]). CM sketch may overestimate
the count, but the fact that underestimation will not happen is
an advantage for large flow detection, which aims at detecting
when a flow occupies more than its allowed bandwidth.

As explained in [7], the width and depth are determined
by two parameters, namely the error factor (ε) and the error
probability (δ), which are defined as follows: the additive error
in answering a query is ε×ai with a bound probability 1− δ,
where ai is the actual count value. Given the parameters ε and
δ, the dimensions of w and d can be calculated as w = d eε e
(with e representing Euler’s number) and d = dln 1

δ e. The
accuracy of the algorithm is thus determined by ε and δ.

B. Hardware-oriented Simple Active Counter (HSAC)
We introduce a hardware-friendly approximate counting

algorithm - HSAC, which is a modified version of the Simple
Active Counter (SAC) algorithm [17]. SAC divides the counter
memory of q bits into exponent and estimation parts, namely
exp and count of sizes l bits and k bits respectively. The
counter is updated with a random probability v and counter
is incremented when v < (inc

2scale×exp − b inc
2scale×exp c), where

inc is the flow size. Re-normalization with a global scaling
parameter scale is applied when the counter overflows. The
estimated value can be computed as count × 2scale×exp.
Although SAC can record large measurements with limited
memory consumption, the presence of floating point divisions
and multiplications, and the use of a single scaling factor for
all the counters in an array make it less favourable for a high-
throughput hardware implementation.

In HSAC, a fixed number of bits q is allocated in memory
for each counter, similar to SAC. The difference with SAC
is that the scaling parameter scale is also included in q and
is specific for each counter. As such, q is partitioned into an
exponent part exp, an estimation part count, and a scaling part
scale of sizes l bits, k bits, and m bits, respectively. This way,
HSAC avoids the unnecessary re-normalization of all counters
when a single counter overflows, resulting in a better accuracy
and lower computational overhead, in exchange for a slightly
higher memory usage. Nevertheless, we show, in the remainder
of this paper, that this slightly higher memory usage does not
exceed the on-chip memory in the FPGA that we target.

The SAC algorithm possesses certain flaws for smaller
values of l, i.e. the number of bits in the exponent part exp.
For example, consider l = 2 and let the current exponent
value be exp = 3. Also assume that scale = 4. At the
next increment, the exponent becomes exp = 2l, so re-
normalization is required and the new value of exp is changed
to dexp × (scale

scale+1)e, which in fact is again 4 and the
algorithm collapses. HSAC eliminates these flaws. Unlike in
SAC, the values of scale in HSAC are powers of 2. This
eliminates the complexity of the re-normalization process in
the algorithm. The multiplication and division operations are
then replaced with shift operations which come for free in
hardware. The pseudocode of HSAC for a single counter is
shown in Algorithm 1. The number of bits required to store
scale is also reduced in HSAC by modifying the equation for
estimation as V = count× 2(2

scale×exp).
HSAC supports both flow size and flow byte counting. For

flow byte counting, it is necessary to keep the size of count
greater than the incoming packet size. Considering standard
frame sizes of 1500 bytes, the size of count is kept as 11 bits,
whereas no such size restrictions apply for flow size counting.
Anyway, it is better to keep the size of count relatively large
to avoid loss in accuracy. In SAC, re-normalization is required
for all counters each time the value of scale is updated. This
could suspend the update process and cause loss of packets.
In HSAC, in order to eliminate this issue and to reduce the
processing overhead, scale is unique for each counter. The use
of separate scaling factors is similar to ICE Buckets [30], but in

Algorithm 1: Pseudocode of HSAC for a single counter
Parameters: size of the pseudo-random number - Sp, size of
scale (bits) - m, size of exp (bits) - k, size of count (bits) - l

Initialize(): scale = 0, exp = 0, count = 0
UpdateCounter(inc):
F1 = exp � (1 � (scale− 1)); count = count+ inc � F1

p = (inc & ((1 � F1) − 1)) � (Sp − F1); v = rand()
if v > p
count = count+ 1

if count > (1 � k) − 1
exp = exp+ 1; F2 = (1 � (1 � scale)) − 1
p = count & F2 � (Sp − scale); v = rand()
count = count � (1 � scale)
if v > p
count = count+ 1

if exp == 1 � l
exp = exp � 1; scale = scale+ 1 /*renomarlise counter*/

HSAC, each counter is considered a bucket, while ICE Buckets
uses buckets of multiple counters with the same scaling factor
for the whole bucket. Keeping scale unique for each counter
helps in maintaining the accuracy, and keeps the relative error
in the measurement to a minimum. In the case where scale is
common for all the counters in an array as in SAC, a single
flow with a large volume causes a large relative error to all
other counters consisting of small flows.

Fig. 1. Data structure of the Approximate-CM sketch (A-CM sketch)

IV. HARDWARE IMPLEMENTATION

A high-level view of the A-CM sketch data structure that
we propose is shown in Fig. 1. The counter array is a 2-
dimensional array of size w × d. Each element in the array
is a counter of fixed size q. When a network packet enters
the architecture, the extracted flow ID is hashed using the
Xoodoo-NC algorithm [31], which has a low logical depth
and calculates a hash output in one clock cycle. The output of
Xoodoo-NC is split into d hash values of size log2w to index
the counters. The indexed counters are then updated. Instead
of storing the exact value of each counter, HSAC is used.

To quantify our efforts, an implementation is made on a
Xilinx Virtex Ultrascale+ FPGA (XCVU7P-FLVC2104-1-E).
The memory array for the counters uses only on-chip dual
port block RAM (BRAM), which is sufficient to satisfy the
memory requirements of our architecture. Nevertheless, the
number of BRAM blocks we need is large. This reflects in an
increased placement and routing complexity when the memory
and logic resources are spread over multiple clock regions,
which, without proper consideration, leads to a decrease in the
operating frequency. We employ efficient design approaches to
mitigate this issue as described in the following paragraphs.

To tackle the routing delays, the counter array is organized
in smaller memory units. Since the BRAM slots in FPGAs are
fixed, building up larger memories in an automated way with

Fig. 2. (a) Maximum possible estimation error for HSAC vs. SAC; (b) Mean estimation error for HSAC vs. SAC (c) Maximum and mean estimation error
for HSAC with a varying number of count bits (k)

the design tools, minimizes the number of BRAM blocks used,
but significantly increases the routing delay. Hence, instead
of using one single large memory block for representing a
counter, we employ separate memory units for each scale,
exp, and count value. During operation, these memories are
read first before updating. All memory accesses are performed
in parallel, which limits the total memory access delay to only
two cycles for every update, one for the memory read and one
for the memory write operation. Every scale, exp, and count
calculation has its own dedicated physical counter Cs, Ce, and
Cc, respectively, i.e., the total number of counters used in the
whole implementation is equal to d.Cs + d.Ce + d.Cc. These
counters are reused in every update cycle.

Update process: When a flow x with a volume c arrives,
one of the counters Cdw in each of the d arrays are updated
by c. Which counters are updated is determined by the hash
value hj , where 1 ≤ j ≤ d. The memory location of the
counter value to be updated is indexed by the hash value. After
adding the packet volume c, the updated value is written back
to the memory. All the memory read and write operations are
performed in parallel so that the latency is only one clock cycle
for each read and write operation. To minimize the routing
delay, a buffer stage is added in between the memory read and
addition stage, which takes one clock cycle for registering the
intermediate values. The latency in terms of number of clock
cycles for each update operation is five. All the stages are
pipelined, so that the sketch unit can accept and process a
96-bit flow ID in every clock cycle at line rate.

Query process: Each counter value consists of a fixed
number of bits, i.e., the concatenation of scale, exp, and
count. The most significant m =1 or 2 bits are used for scale,
the next l bits are used for exp, and the least significant k bits
are used for count. Similar to the update process, the hash
computation and memory read operations are performed and
the values of scale, exp, and count are read from the memory.
These values are concatenated to obtain the count values for
each of the d counters Cdw. The minimum of d count values
is computed and taken as the output. The estimated value is
computed from the minimum of all the d values. The querying
process has a latency of 3 clock cycles.

HSAC implementation: The core component of the sketch is
the approximate counter HSAC. The HSAC block consists of
an update, a re-normalization, and a Linear Feedback Shift
Register (LFSR) module. The update and re-normalization

processes are discussed in Sect. III-B. A Sp-bit LFSR with
XOR feedback is used as the pseudo-random number genera-
tor. The output size of the LFSR is equal to 2m.(2l − 1) bits
(Sp = 2m.(2l − 1)) to avoid any loss in accuracy, where m
and l are the number of bits for scale and exp, respectively.

V. EVALUATION AND RESULTS

We present the results of three experiments. The first
experiment analyzes the estimation error and the performance
of HSAC compared to SAC. In the second experiment, the
functionality of the A-CM sketch is tested on a lab setup
with network traffic applied to an FPGA board that hosts
the sketch. In the third experiment, the performance and
resource utilization of the architecture are evaluated using
FPGA design tools. We chose the error factor and probability
similar to related work, in order to make a fair comparison.
The parameters d and w are chosen accordingly. Each HSAC
counter has a width of 16 bits, where l = 4, k = 11, and
m = 1, and can count up to 2.197x1012.

A. Analysis of HSAC

We examine the error rate of HSAC in comparison with
SAC, resulting in the maximum possible estimation error
and mean estimation error for a single counter shown in
Fig. 2(a,b). For a counter array, the error will be higher for
SAC because the re-normalization will be applied to all the
counters irrespective of the counter values, whereas the error
remains constant for HSAC as only the overflown counter
will be re-normalized. For a 16-bit counter (l=4, k=11, m=1)
with a latency of one clock cycle, HSAC occupies 139 LUTs
and 38 FFs at 625 MHz, compared to 171 LUTs and 46
FFs at 303 MHz for SAC. The maximum estimation error is
reduced remarkably with increasing count bits (k) as shown
in Fig. 2(c). The measurement error of HSAC is quite small
and thus does not introduce the danger of false negatives for
A-CM sketch. For a count of 1× 107, when k increases from
11 to 14 bits, the worst case estimation error reduces from
6.4% to <1% with the mean error being very close to zero.

B. Functional test of A-CM sketch

The functionality of the proposed A-CM sketch implemen-
tation is tested on a lab setup. This setup consists of a Xilinx
VC707 board (with a Virtex-7 FPGA), which is attached to
a Gigabit network switch. Traffic to and from the FPGA is
generated through a Python program. In the System-on-Chip,

Fig. 3. System on chip for functional test
Fig. 4. Accuracy variation of A-CM sketch
compared to CM sketch

Fig. 5. BRAM utilization and frequency as a function
of the sketch width

shown in Fig. 3, the CM sketch has direct connections for
receiving and sending frames in the network. It is connected
through AXI4S with the Ethernet core. After filtering out UDP
and TCP frames, network packets are processed in the sketch
at line rate. In order to test the functionality, a MicroBlaze
softcore processor queries a specific flow by sending the flow
ID to the sketch, which then returns the estimated count.
This communication happens over an AXI4 bus, which is
also connected to a Timer and a UART. The UART is used
for debugging. The functionality test is not performed at
maximum throughput, but on a 1 Gbps lab setup.

C. Implementation results of A-CM sketch
In order to evaluate the performance of the sketch, we use

Vivado 2017.4 to generate implementation results for a Xilinx
Virtex Ultrascale+ FPGA (XCVU7P-FLVB2104-2-i).

Resource utilization and performance: By replacing exact
counters with approximate counters, the memory footprint of
the CM sketch significantly decreases. For A-CM sketch with
d = 4 and w = 216, using 16-bit approximate counters, the
total memory requirement is 512 KB, whereas with exact
counting, 41 bits are required to represent the same counter
value and the memory requirement is 1312 KB (on a similar
hardware architecture of the sketch, with the only change being
the counters). Also the frequency of operation is significantly
improved, as shown in Table I. The exact counter based
implementation utilizes 2.47× more BRAM while having a
latency that is 2.2× higher than the approximate counter
based implementation. The difference in accuracy is very much
negligible when compared to the corresponding CM sketch
implementation. The mean and maximum accuracy variation
of A-CM sketch versus a 24-bit CM sketch implementation
almost touches zero when the number of counter field bits k
is greater than or equal to 10, as shown in Fig. 4.

To analyze the efficacy of the memory optimization tech-
niques introduced in Sect. IV, the A-CM sketch is compared
with a naive A-CM sketch implementation (no memory opti-
mization) and an exact counter based CM sketch. The results
in Fig. 5, show the improvement in operating frequency of the
optimized A-CM sketch compared to the naive A-CM sketch.
Table I shows that the naive A-CM sketch consumes less logic
resources.

Throughput: The optimized A-CM sketch implementation
having w=216 achieves a maximum theoretical throughput of
≈200 Million packets per second (Mpps) on a single port
of the NFB-200G2QL [16] platform, and a total of ≈400
Mpps with each port having its own instance, assuming the

TABLE I
COMPARISON OF A-CM SKETCH WITH EXACT (FULL-PRECISION)

COUNTER BASED CM SKETCH

w LUT FF BRAM Operating Update
(d=4) Frequency Latency

CM sketch 65536 1841 438 296 188.6 MHz 26.50 ns
32768 1301 414 148 232.5 MHz 21.50 ns

A-CM sketch 65536 1830 784 120 414.9 MHz 12.05 ns
Optimized 32768 1512 740 60 454.5 MHz 11.00 ns
A-CM sketch 65536 1408 391 120 250.0 MHz 20.00 ns
Naive 32768 1211 375 60 260.4 MHz 19.20 ns

TABLE II
THROUGHPUT COMPARISON OF FPGA BASED SKETCH IMPLEMENTATIONS

Platform Sketch Flow-ID d, w Through- ε 1− δ
Size put(Gbps)

Virtex-5 [27] K-ary 32-bit 1, 216 53 - -
Virtex Ultrascale [25] K-ary 32-bit 5, 216 159 - -
Virtex Ultrascale [28] CM 32-bit 4, 214 128 0.0001 0.98
Virtex Ultrascale [25] CM 32-bit 5, 216 155 0.00004 0.99
Ours,Virtex Ultrascale+ CM 96-bit 4, 215 233 0.00008 0.98
Ours,Virtex Ultrascale+ CM 96-bit 4, 216 212 0.00004 0.98
Ours,Virtex Ultrascale+ CM 96-bit 5, 216 196 0.00004 0.99

worst case scenario where one packet is received in every
cycle. It can process a 96-bit flow ID per clock cycle irre-
spective of the packet size. Assuming a minimal packet size
of 64 bytes, a single instance of A-CM sketch can deliver
a minimum throughput of ≈233 Gbps (454Mpps) and ≈212
Gbps (414Mpps) respectively for w=215 and w=216, and d=4,
with the only bottleneck in limiting the throughput being the
network interface. Table II shows that our implementation
outperforms state-of-the-art sketches on FPGA.

VI. CONCLUSION

In this paper, we present A-CM sketch (Approximate Count-
Min sketch), an ultra-high-speed FPGA implementation of the
CM sketch algorithm using approximate counters. Thanks to
our architectural optimization efforts in the CM sketch data
structure and our algorithmic optimization efforts, resulting
in the HSAC (Hardware-oriented Simple Active Counter)
algorithm, we manage to obtain an FPGA implementation
that outperforms, to our knowledge, all existing sketch-based
data structures on FPGA. Moreover, our implementation is
compliant to a 200 Gbps network interface, making it suitable
for network flow measurement at line rate in Terabit Ethernet
networks.

VII. ACKNOWLEDGEMENT

This work is supported by the ESCALATE project, funded
by FWO and SNSF (G0E0719N), and by CyberSecurity
Initiative Flanders (VR20192203).

REFERENCES

[1] Sriram Ramabhadran and George Varghese. Efficient implementation of
a statistics counter architecture. In in Proc. ACM SIGMETRICS, 2003.

[2] Q. Zhao, J. Xu, and Z. Liu. Design of a novel statistics counter
architecture with optimal space and time efficiency. In Proc. of ACM
SIGMETRICS ’06, France, 2006.

[3] CISCO. CISCO IOS NetFlow Version 9. http://www.cisco.com/c/en/us/
products/ios-nx-os-software/netflow-version-9/index.html, 2015.

[4] sFlow. Traffic Monitoring using sFlow. http://www.sflow.org/
sFlowOverview.pdf, 2003.

[5] C. Hu, S. Wang, J. Tian, B. Liu, Y. Cheng, and Y. Chen. Accurate and
efficient traffic monitoring using adaptive non-linear sampling method.
In IEEE INFOCOM, pages 26–30, 2008.

[6] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in
data streams. In Automata, Languages and Programming, pages 693–
703. Springer Berlin Heidelberg, 2002.

[7] G. Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. J. Algorithms, 55(1):58–75,
2005.

[8] C. Hu, B. Liu, H. Zhao, K. Chen, Y. Chen, C. Wu, and Y. Cheng. Disco:
Memory efficient and accurate flow statistics for network measurement.
In 2010 IEEE 30th International Conference on Distributed Computing
Systems, pages 665–674, 2010.

[9] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One
sketch to rule them all: Rethinking network flow monitoring with Univ-
Mon. Proc. ACM Special Interest Group Data Commun. (SIGCOMM),
pages 101–114, 2016.

[10] Q. Huang et al. SketchVisor: Robust network measurement for software
packet processing. Proc. ACM Special Interest Group Data Commun.
(SIGCOMM), pages 113–126, 2017.

[11] T. Yang et al. Elastic sketch: Adaptive and fast network-wide measure-
ments. Proc. ACM Special Interest Group Data Commun. (SIGCOMM),
pages 561–575, 2018.

[12] Z. Liu et al. Nitrosketch: Robust and general sketch-based monitoring
in software switches. Proc. ACM SIGCOMM, pages 334–350, 2019.

[13] Simon Scherrer, Che-Yu Wu, Yu-Hsi Chiang, Benjamin Rothenberger,
Daniele E Asoni, Arish Sateesan, Jo Vliegen, Nele Mentens, Hsu-Chun
Hsiao, and Adrian Perrig. Low-rate overuse flow tracer (loft): An effi-
cient and scalable algorithm for detecting overuse flows. In Proceedings
of the 40th International Symposium on Reliable Distributed Systems
(SRDS) (to appear), 2021.

[14] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A Better NetFlow
for Data Centers. In 13th USENIX Symposium on Networked Systems
Design and Implementation, pages 311–324, 2016.

[24] M. Zadnik, M. Canini, A. W. Moore, D. J. Miller, and W. Li. Tracking
elephant flows in internet backbone traffic with an FPGA-based cache.
In FPL, pages 640–644, 2009.

[15] Z. Martinasek, J. Hajny, D. Smekal, L. Malina, D. Matousek, M. Kekely,
and N. Mentens. 200 Gbps hardware accelerated encryption system for
FPGA network cards. In ASHES, page 11–17. ACM, 2018.

[16] Netcope. NFB-200G2QL FPGA-based Hardware . www.netcope.
com/getattachment/bb2b8efa-9925-438d-b895-897d7c1e4745/
NFB-200G2QL-product-brief.aspx.

[17] R. Stanojevic. Small active counters. In IEEE INFOCOM, pages 2153–
2161, 2007.

[18] Robert Morris. Counting large numbers of events in small registers.
Commun. ACM, pages 840–842, 1978.

[19] P. Flajolet and G. Nigel Martin. Probabilistic counting algorithms for
data base applications. Journal of Computer and System Sciences,
31(2):182–209, 1985.

[20] G. Einziger, B. Fellman, and Y. Kassner. Independent counter estimation
buckets. In IEEE INFOCOM, pages 2560–2568, 2015.

[21] Y. Li, H. Wu, T. Pan, H. Dai, J. Lu, and B. Liu. CASE: Cache-assisted
stretchable estimator for high speed per-flow measurement. In IEEE
INFOCOM, pages 1–9, 2016.

[22] T. Yang, J. Xu, X. Liu, P. Liu, L. Wang, J. Bi, and X. Li. A generic
technique for sketches to adapt to different counting ranges. In IEEE
INFOCOM, pages 2017–2025, 2019.

[23] R.B. Basat, G. Einziger, M. Mitzenmacher, and S. Vargaftik. Faster
and more accurate measurement through additive-error counters. In
arXiv:2004.10332 [cs.DS], 2020.

[25] D. Tong and V. K. Prasanna. Sketch acceleration on fpga and its
applications in network anomaly detection. IEEE Transactions on
Parallel and Distributed Systems, 29(4):929–942, 2018.

[26] Y.-K. Lai, N.-C. Wang, T.-Y. Chou, C.-C. Lee, T. Wellem, and H. T.
Nugroho. Implementing on-line sketch-based change detection on a
NetFPGA platform. In 1st Asia NetFPGA Developers Workshop, 2010.

[27] T. Wellem, Y. Lai, C. Huang, and W. Chung. A hardware-accelerated
infrastructure for flexible sketch-based network traffic monitoring. In
IEEE HPSR, pages 162–167, 2016.

[28] A. Saavedra, C. Hernández, and M. Figueroa. Heavy-hitter detection
using a hardware sketch with the Countmin-CU algorithm. In Euromicro
DSD, pages 38–45, 2018.

[29] Martin Kiefer, Ilias Poulakis, Sebastian Breß, and Volker Markl. Scotch:
Generating fpga-accelerators for sketching at line rate. Proceedings of
the VLDB Endowment, 14(3):281–293, 2020.

[30] G. Einziger, B. Fellman, and Y. Kassner. Independent counter estimation
buckets. In IEEE INFOCOM, pages 2560–2568, 2015.

[31] Arish Sateesan, Jo Vliegen, Joan Daemen, and Nele Mentens. Novel
bloom filter algorithms and architectures for ultra-high-speed network
security applications. In 2020 23rd Euromicro Conference on Digital
System Design (DSD), pages 262–269. IEEE, 2020.

