
Control-plane Isolation and Recovery
for a Secure SDN Architecture

Takayuki Sasaki
NEC Corporation

Email: t-sasaki@fb.jp.nec.com

Daniele E. Asoni
ETH Zürich

Email: daniele.asoni@inf.ethz.ch

Adrian Perrig
ETH Zürich

Email: adrian.perrig@inf.ethz.ch

Abstract—Software Defined Networking (SDN) allows scalable
and flexible network management without requiring costly hard-
ware changes. However, this technology is relatively new, and
creates new security risks. More specifically, in current SDN
designs (1) a compromised component can affect the whole SDN
network due to its centralized architecture, and (2) existing
designs do not allow recovery of compromised components. To
solve these problems, we propose a secure SDN architecture
which (1) limits damage due to a compromised controller and
switch processes by using strong software isolation mechanisms,
and (2) allows recovery of compromised controller and switch
processes by regularly and automatically rolling them back to
a pristine state. We show detailed designs of these mechanisms.
We discuss the main aspects of our system’s design and show
preliminary evaluation results of a prototype implementation.

I. INTRODUCTION

Software Defined Networking (SDN) is a paradigm that
has recently gained tremendous importance. It allows cost-
effective and dynamic network management by separating
the control plane which manages the network components,
from the data plane which handles end-user communication.
Using this architecture, SDN can dynamically modify network
configurations for handling topology changes, congestion con-
trol, and security events. SDN is an infrastructure providing
fundamental functions for data centers and ISP networks, thus
its robustness is directly linked to security, availability, and
performance of data centers and ISPs.

SDN is often used today to establish mutually isolated
virtual networks to achieve better security (protection against
eavesdropping and data exfiltration, limitation of malware
spread through compartmentalization, etc.), thanks to the data
plane isolation it provides. However, the architecture of exist-
ing SDN itself actually presents certain security deficiencies
in its design [10]. In particular, we consider the following two
challenges which both constitute single points of failure that
could be exploited by an attacker.

1) Both on the controller and on the switches, tasks related
to different virtual networks or different applications
are all handled by the same software component. This
means that if such a component is compromised it can
potentially harm the entire network.

2) These processes on the controller and switches typically
run for a long time without interruption or reset: the
consequence is that an adversary has a long time window

to perform attacks and privilege escalation, and once the
adversary succeeds, the target component will remain
compromised for an extended period of time.

From these two challenges it follows that an adversary can
spread across an entire network and persistently control it.
Furthermore, SDN is a logically centralized architecture, so if
the controller is compromised the adversary immediately gains
full control over the network. Some mechanisms to mitigate
these problems have been proposed, but unfortunately they do
not fully address the problems. FlowVisor [11] separates flows-
pace and allows multiple controllers. However, it is insufficient
because switches are not isolated, so a compromised switch
can spread the contamination throughout the network. An
integrity measurement mechanism of SDN controllers and/or
switches [4] helps to identify malicious code. It only ensures
boot-time integrity, however, whereas we want to achieve run-
time integrity.

To solve these problems, we propose a secure SDN archi-
tecture that includes two key features. The first is a mechanism
to separate and isolate tasks in the control plane (existing SDN
only performs isolation at the data plane), while the second is
a recovery mechanism that allows network components to be
rolled back to a pristine state at regular intervals.

II. PROBLEM DESCRIPTION

The goal of this paper is to provide a robust and secure
SDN architecture that works correctly even if some network
components are compromised. Here we define a threat model
and attack scenarios that must be prevented.

A. Threat model

We assume a generic SDN architecture comprising an SDN
controller, SDN switches, end hosts, and SDN applications.
SDN applications communicate with the SDN controller via
the northbound API provided by the controller. The SDN
controller and the switches communicate with each other over
secure channels (offering integrity and confidentiality), and the
controller manages the switches in a centralized manner.

We assume that the adversary can compromise end hosts
(this also models the case of malicious tenants and the case
of a malicious insider in a company). We also assume that the
adversary controls a number of SDN applications running on
the SDN controller, reflecting the fact that SDN applications
are typically provided by third parties. The SDN controller978-1-4673-9486-4/16/$31.00 c© 2016 IEEE



and the switches are assumed to be initially benign, but we
assume the adversary can compromise certain parts of them
(see Section III).

B. Attack scenarios

Here, we assume two attack scenarios. The first is a data-
plane attack (conducted by an end host) and another is an
attack from the northbound API that is provided for SDN
applications. In both cases, we assume information leakage
by a compromised switch or a compromised controller to be
the goal of the adversary.

Attack scenario 1: attack from a host. In this scenario, we
assume that a switch has vulnerabilities/bugs, and an adversary
may be able to compromise the switch by exploiting the
vulnerabilities. A compromised switch can be forced by the
adversary to tamper with the victim’s traffic, or to redirect
the traffic in a way that violates its confidentiality. Although
we are not aware of any such attack having been successfully
carried out against deployed SDN infrastructures, we consider
it likely that such attacks may be launched in the future,
given that analogous vulnerabilities have been found in routing
equipment [16], [3].

Attack scenario 2: attack from northbound API. In this case
we assume that the northbound API presents vulnerabilities.
By sending malformed requests via the northbound API, the
adversary can compromise the controller. Then the controller
can be forced to issue invalid commands (flow entries) to a
switch for redirecting a victim’s traffic.

III. ARCHITECTURE

A. Core ideas

In this paper we focus on protecting against compromised
SDN network components. For this purpose we base our new
architecture on two fundamental ideas that aim to reduce
the impact of component compromise. The first idea is the
partitioning of the control plane into isolated components to
confine the damage of compromise. Consequently, a com-
promised component can only inflict damage on flows or
tenants handled withing the same component – effectively
only allowing an adversary to attack itself. The second idea
is compromised component recovery through rollback to an
initial, safe state. Done frequently, this further limits the
duration of compromise.

Control plane partitioning. Our architecture aims at parti-
tioning the control plane both on the controller and on the
switches: this partitioning is done for instance according to
network tenants, e.g., in the case of a data center or a carrier
network.1 We call these isolated partitions on the controller
and on the switch Isolated Virtual Controllers (IVC) and
Isolated Virtual Switches (IVS), respectively.

An IVC works as a traditional controller, but it is only re-
sponsible for handling the configuration of the virtual network

1Although tenant isolation is the main scenario we consider, we expect
that the isolation our scheme can provide will also be applicable to segregate
applications instead of tenants.

corresponding to a tenant, as well as the tenant’s applications.
Similarly, an IVS on a physical switch handles only the traffic
flows of the virtual network of the corresponding tenant.

Both on the controller and on the switch we isolate these
components through the use of virtual environments. In our
current prototype (see Section IV) we use a lightweight virtual
machine (LXC of the Linux Containers project [1]), but
our ultimate goal is to switch to isolated environments with
stronger guarantees, based on trustworthy computing [7], [8].

In addition, we also limit the access of the IVC/IVSes
to outside the isolated environment to just a set of TLS
connections. Specifically, by controlling TLS key/certificate
distribution, the IVC/IVSes can communicate with each other
only when they belong to the same tenant.

The IVSes also need access to the data plane: they are given
access to virtual network interfaces, and to a component called
Dispatcher, which mediates between these virtual interfaces
and the physical NICs.
Recovery through rollback. The second idea is recovery
using a rollback mechanism. In existing SDN, a process
(switch process or controller process) runs persistently, and
once it is compromised, the damage remains over time. To
avoid this situation, our architecture periodically reverts the
process to its pristine state. For example, an OpenFlow switch
process is rolled-back after handling a flow. In this case, even
if a switch process is compromised by an attacker’s flow, the
next flow is handled by fresh process, thus the attacker’s flow
cannot affect other user’s flows.

The main limitation of the rollback mechanism is that it
does not prevent an adversary from repeating a successfully
executed attack after the rollback has been carried out. Even
with this limitation, however, this mechanism can still prevent
or mitigate the threat. For instance, if the attack takes time,
e.g., if it requires brute forcing, or if the attacker has to operate
blindly (meaning that he does not know when his attack
succeeds), the rollback can at least mitigate a compromise.
Moreover, attacks that have to be repeated regularly become
more detectable.

For our rollback mechanism there is a clear trade-off be-
tween security and availability. On the safest end there is the
possibility to rollback the entire IVC or IVS, including all their
state (stack, heap, and other writable memory, configuration
files, etc.), as well as the corresponding entries in the flow
table. However, such a solution leads to high overhead, as that
entire state needs to be built again on the new IVC or IVS.
Alternatives with less overhead can be obtained by restricting
the rollback to only certain parts of the IVC or IVS, but this
reduces the security guarantees of the rollback.

B. Isolation and rollback granularity

Isolation/rollback granularity is a security parameter of
our architecture. Figure 1 shows a configuration example of
the isolation and rollback granularities. The granularity can
be identified as a box of flowspace (y-axis in the figure)
and rollback interval (x-axis). Damage of a compromised
component is confined to a box, hence smaller boxes offer



Fig. 1. Isolation/Rollback granularity.

better security. However, fine-grained isolation and rollback
mechanisms impose a high performance overhead.

As for the isolation granularity, we can configure: all flows,
per-tenant, per-host, per-SDN application, and per-flow. All
flows means a component handles all flows, thus it is equiva-
lent to the existing SDN. Per-flow is an extreme configuration
where an IVC/IVS only handles a single flow, hence this
configuration ensures that a malicious flow cannot harm any
other flow. However, it causes performance overhead due to
the frequent creation and deletion of the per-flow IVC/IVS. In
this paper, we adopt a per-tenant granularity, striking a balance
between security and performance.

As for the rollback granularity, we can choose among un-
limited (no rollback), specific interval, and per-flow. Unlimited
means no rollback, as in the existing SDN. We adopt the
intermediate option to limit performance overhead: a rollback
interval is determined by the network administrators, and after
every such interval a rollback is performed.

The granularities of both axes do not need to be uniform,
so for instance certain applications may be grouped together,
while some security-sensitive flows are isolated individually;
another example is a case where different tenants are assigned
different rollback time intervals.

C. Components

Our design realizes more concretely the two outlined prin-
ciples, and its high-level structure is depicted in Figure 2.
The main devices, the controller and the switches, contain
multiple IVCs and IVSes, respectively, running in isolated
environments provided by a hypervisor. The controller and
the switches each also contain a Management Component,
which handles the virtual components by calling management
interfaces of the hypervisor. Additionally, a component we
name Dispatcher runs only on switches, while the manage-
ment component on the controller is accessible for the network
administrator. We now describe all these components and their
interactions in more detail.

Isolated Virtual Controller. An IVC can be seen as a
controller which has functions to manage a part of the network
(for example, a single tenant network). An IVC can receive
instructions and run applications relative to its function, and
controls those IVSes (running on switches) that are associated
to that specific IVC.

Fig. 2. Structure of a controller and a switch.

Isolated Virtual Switch. An IVS is a component that includes
parts of the functionalities of traditional switches, and that is
responsible for handling a specific set of flows (e.g., the flows
of a particular tenant). An IVS comprises a communication
function to handle an OpenFlow channel to an associated
IVC, and a flow table management function to add/remove
flow entries. On hardware switches it is not possible to
include the packet forwarding engine into the IVS, since the
packet forwarding engine is implemented in hardware. On
software switches the packet forwarding engine is a software
component, so it could be included in the IVS in order to allow
a higher level of isolation. In this paper, however, we do not
consider this option further, preferring to adopt a design that
applies to both hardware and software switches. This means
that in this design only the first packet of a flow is handled by
the IVS, while subsequent packets are processed by a common
packet forwarding engine according to the rule database (e.g.,
in the case of the hardware switch this could be a TCAM).
This also means that in our design it is only the first packet
of a flow that is impacted by a performance penalties due to
the isolation mechanism.
Hypervisor. A hypervisor creates isolated environments and
invokes IVCs/IVSes according to commands from the man-
agement component.
Channels. There are two types of communication channels
between the controller and switches. A management channel is
a communication channel between a management component
of a controller and a management component of a switch. This
channel is used for management of IVSes. (For example, to
start/stop a switch process.) An OpenFlow channel is a control
channel between an IVS and an IVC. Using this OpenFlow
channel between them, the IVC and the IVS exchange Open-
Flow control messages.
Management component. Each controller and switch has
a management component to instruct the hypervisor to start
and stop the IVCs/IVSes. The management components of



Fig. 3. Prototype implementation.

switches are controlled by the management component of
the controller in a centralized manner via management chan-
nels. In addition, the management components distribute TLS
keys/certificates so that only an IVC and IVSes of the same
tenant can communicate with each other via OpenFlow chan-
nels.
Dispatcher. A dispatcher assigns a packet (or a packet in mes-
sage) to an IVS according to dispatch rules that specify associ-
ations between packets and an IVS. Specifically, the dispatcher
is deployed between IVSes and the hardware part of the
physical switch (e.g., NIC or network processor), and mediates
packets (or packet in messages). A dispatch rule specifies
a physical port and source/destination of Ether/IP/TCP/UDP
header of a packet as a match condition, and it also specifies
an IVS to handle the packet. Alternatively, the network could
enforce a strict separation on the data plane based on VLAN
tags, which would simplify the dispatch rules.

IV. IMPLEMENTATION AND
EVALUATION

A. Prototype implementation

To evaluate the feasibility of the proposed architecture,
we implement it using Pox [2], which provides a simple
implementation of both a controller and a switch, and we use
Linux Containers (LXC) [1] as a hypervisor. We use the code
of the Pox pcap switch (a Python-based OpenFlow switch
included in the Pox package) as an IVS, and programmed
a small dispatcher that would deliver packet_in messages
to the IVSes, as well as forward the packet_out and
flow_mod messages from the IVS to the data-plane part.
The Pox controller and switch do not support TLS for the
OpenFlow channel, hence TLS is disabled in our current
prototype.

Figure 3 shows the configuration of the prototype. We
consider two tenants, A and B, and for each we run an IVC
(IVCAand IVCB) and an IVS (IVSAand IVSB) in isolated LXC
containers. On the IVCs we run learning switch applications.
Moreover, we deploy two hosts of tenant A. Each switch
and controller process is isolated using LXC. To dispatch
packets to tenant A, we specify simple dispatch rules to map
both physical NICs to IVSA. We confirm that packet_in
messages are dispatched to IVSA. Moreover, the IVCs can
perform the learning switch function, and hosts of tenant A
can communicate with each other.

Pox baseline Pox with isolation
Delay (ms) 45 (σ = 22) 69 (σ = 30)

TABLE I
AVERAGE FLOW SETUP DELAY WITH AND WITHOUT ISOLATION (NOT

CONSIDERING NETWORK DELAY) COMPUTED OVER 20 MEASUREMENTS.

As for the rollback mechanism, we implement rollback of
files and memory of a switch process. For rollback of files
in the container, we leverage the LXC snapshot functionality
with which a clean image of the processes can be saved and
then restored during the rollback. This process reverts all files
in the container to the version at snapshot timing. To roll back
process memory, we restart the Pox process.

B. Evaluation

For evaluating performance, we use a machine with an Intel
Core i5-4430S (2.70 GHz) and an 8GB memory. Moreover, we
run the Pox pcap switch and controller on the same machine
to rule out network latency in our measurements.
Flow setup delay. Next, we measure the flow setup delay
caused by the dispatcher and the isolation mechanisms. We
measure the flow setup time, i.e., the time between the arrival
of the first packet of a new flow at a Pox switch and the
insertion of a corresponding rule in the flow table of the
switch on instructions of the Pox controller. We perform this
measurement both with and without the isolation mechanism.
Table I shows the average values of the flow-setup delay (20
measurements) and the standard deviations (σ ). Pox baseline
is flow setup time using a Pox controller and Pox software
switch, and Pox with isolation shows the flow setup time of our
implementation. The setup time increases by 53%, however the
overhead is only for the flow setup, and packet forwarding can
be performed without any penalties. This is the result of an
initial prototype, and we expect that the results with a more
optimized implementation would reduce this gap.
Recovery time. We also measure disconnection times of the
OpenFlow channel due to the rollback of an IVS using three
rollback methods. All values are averaged over 19 measure-
ments. The first method is a naive approach and consists of the
following actions performed sequentially: stopping the LXC
container, reverting all files in the container to a snapshot
version (using LXC’s snapshot functionality), and restarting
the LXC container and the IVS. Performed in this way, the
rollback takes 19.26 seconds (σ = 5.42), and storage rollback
and container creation account for most of the delay. The
second method is to start a new container in advance, then stop
the IVS in the old container and start a new IVS in the new
container. This takes approximately 0.38 seconds (σ = 0.04),
much faster than the previous method. The last method is
to only restart the IVS within the same LXC container: this
option also takes 0.38 seconds (σ = 0.03), but is the least
secure one, as it does not allow recovery of an IVS that has
been permanently compromised. Ideally we would aim to have
an almost immediate hand-over, which would require the fresh
instance to be launched alongside the old IVS. It might even



be necessary to allow the new instance to start processing
new incoming packets as well as new messages from the
controller, while the old IVS is still completing previous tasks.
Such a mechanism is more complex because it needs to avoid
inconsistencies, as we discuss in VI-D.

V. SECURITY ANALYSIS

Here we discuss how our architecture can prevent the attack
scenarios described in Section II-B: the first one assumes a
compromised IVS, the second one a compromised IVC.

First, we assume an attack scenario where a compromised
switch breaks tenant isolation (Scenario 1 in Section II-B).
In our architecture, a switch is partitioned into a number
of IVSes, and each IVS can only handle the traffic of the
associated tenant network (even if it is compromised), because
of the restrictions put in place by the dispatcher. Thus, the
attacker has no control over other tenants’ traffic. In addition,
the compromised IVS cannot harm other tenant’s components.
Specifically, the compromised IVS cannot access other IVSes
on the same switch hardware thanks to the isolation by the
hypervisor. Furthermore, the IVS cannot access other tenant
IVCs, because the IVS does not have the corresponding TLS
key. Moreover, any malicious code injected by the attacker is
removed by the rollback mechanism after the specified time.

Next, we consider an attack scenario where a controller is
compromised (Scenario 2 in Section II-B). The compromised
IVC can control only traffic of the associated tenant because
the IVC can only control IVSes allocated to that tenant. Thus,
even if invalid rules (flow entries) are issued by the IVC,
the IVSes cannot handle traffic belonging to other tenants. In
addition to the isolation mechanism, the rollback mechanism
removes compromised IVCs. Hence, the attacker cannot stay
in control across a rollback/recovery boundary.

VI. DISCUSSION

A. Vulnerabilities of dispatcher and hypervisor

In our architecture, the dispatcher is a single point of
failure of the controller and the switches. Therefore, in case
that the dispatcher is compromised, the IVS/IVC processes
would be taken over. However, the dispatcher is thin and has
a small attack surface, thus we can assume that it has no
vulnerabilities.

We also assume that the hypervisor has no vulnerabilities.
Should a hypervisor be vulnerable to attack, it could be
possible for an adversary to break the isolation and harm
the entire network. For further robustness, we plan to use a
security hypervisor such as TrustVisor [7] whose implemen-
tation was proven secure [14]. Additionally, we can use Intel
SGX to create an isolated execution environment (called an
enclave) supported by hardware. These isolation mechanisms
are more robust because they isolate a process at a lower
layer (memory page-level isolation) than LXC (name space
isolation). Moreover, these security-purpose hypervisors can
significantly reduce the size of the trusted computing base
(TCB).

B. Flow identification

Next, we discuss an additional idea that aims to achieve
a more robust network. The idea is to identify a tenant of
a flow on the basis of message authentication codes (MAC)
rather than VLAN tags, IP addresses, and/or port numbers that
can be spoofed by end hosts.

As seen in Section III-C, the dispatcher identifies the tenant
corresponding to a packet using these VLAN tags, IP addresses
and/or port numbers. However, in case that a host or an IVS
spoofs the information, that host or IVS can inject packets to
other tenant networks.2

To bind a packet to a tenant, the packet can contain a tenant
ID and a MAC computed over that tenant ID and the packet. To
compute the MAC, per-tenant symmetric keys are generated by
the controller and distributed to the dispatchers and the end
hosts. Each dispatcher has all tenant keys, while each host
receives only a key of its tenant. Then, each host embeds its
tenant ID and the MAC into the packets so that the dispatcher
can assign them to the correct tenant on the basis of the tenant
ID with the authenticity guaranteed by the MAC.

C. Network unavailability during rollback

An IVS is connected with an IVC using an OpenFlow
channel, and the rollback mechanism temporarily disconnects
this channel. Thus, the IVS cannot handle a new flow for
which it has no rule while being disconnected from the IVC.

To avoid stopping forwarding, first a clean process is
created from a saved image (and a new OpenFlow channel is
established). Then, the controller changes from the old process
to the new process. The switching time between processes
is shorter than the time of process creation and connecting
the OpenFlow channel. Thus, its downtime is short when
compared with a rollback method that directly rolls back a
process. Another solution is that the management components
(both on switches and controller) would manage the channels
for IVSes/IVCs, keeping them alive during rollbacks. Stated
differently, the rollback mechanism would not roll back the
part of traditional switch and of controller processes that
handle TLS connections. In this solution, no packets would
risk being dropped, but it would require some modification of
the switch code. Another drawback is that less code would
be in the IVS (or IVC), and would be moved into the trusted
code base of the management components.

D. State Inconsistency

Here we discuss potential state inconsistencies caused by
rollback. Solutions for resolving the inconsistencies are an
open issue and remark for future work.

Inconsistency due to IVC/IVS takeover. In Ravana [5], Katta
et al. discuss the different types of state inconsistency that
can occur in case of controller failure in a scenario with a
distributed controller architecture. These inconsistencies can
be avoided by ensuring that all events are processed exactly

2Note, however, that spoofing of the packet header only allows packet
injection, while it cannot be used information leakage.



once (no event is lost nor duplicated), that all controller
replicas process the events in the same order, and that each
command issued to the switches is processed exactly once.

In our system, similar inconsistencies could be caused by
the rollback of an IVC, considering the rollback as the equiva-
lent of a controller failure in Ravana, and the new IVC instance
as the equivalent of a controller replica. Similar mechanisms
as those used in Ravana may therefore be applicable to our
scenario, in particular the use of buffers to store events and
serialized event logs to keep track of event ordering.
Inconsistency due to network state rollback. When perform-
ing a rollback of an IVC or IVS, one option is to only roll back
the executable part of the memory (and possibly erase certain
caches and other volatile parts of memory), while keeping
all state unchanged. While this prevents inconsistencies, it
also means that corrupted configurations will persist across
rollback. A more secure alternative is to roll back also part
of the state, for instance in the case of an IVS the rollback
could include the part of the flow table assigned to that
IVS. However, such a modification to the state may cause
inconsistencies with the state on the IVC, which assumes the
flow table on that IVS contains all the entries that the IVC
previously sent, and there could also be inconsistencies with
the other IVSes that are handling the same flows.

To solve some of these problems our system could use
a state management mechanism like NetRevert [17]. NetRe-
vert manages version numbers of flow tables stored on the
switches, and during rollback the IVC could ensure that all
the IVSes are reset to a consistent state.

VII. RELATED WORK

Several mechanisms to protect SDN have been proposed.
These mechanisms are complementary to our architecture, and
it is desirable that our architecture be used in conjunction with
these mechanisms.

Using certificates of SDN applications, Fortnox [9] and
Fresco [12] authenticate SDN applications which use the
Northbound API of a controller. These mechanisms also solve
conflicts of rules by checking priorities of the SDN appli-
cation. Specifically, each application has priority (Security,
Admin, Other) and rules of a higher priority application are
used in case of the conflict. The authentication mechanism is
out of scope of our architecture, and it should be introduced
for mitigating risks of malicious applications or malicious
administrators. To solve the problem of malicious administra-
tors, Fleet [6] leverages a voting mechanism using threshold
signatures. Specifically, an instruction is accepted only when
the number of administrators who agree on the instruction
reaches a predefined threshold.

Rosemary [13] and PermOF [15] isolate SDN applica-
tions and control capabilities of the applications. Specifically,
PermOF categorizes OpenFlow instructions into 18 permis-
sions, and assigns the permissions to applications. Isolation
of our architecture is for controllers/switches, while their
isolation is for applications, thus we can use both isolation

mechanisms simultaneously. However, we need to investigate
a combined architecture for avoiding the overhead of isolation
mechanisms.

FlowVisor [11] separates flowspace and allows deployment
of multiple OpenFlow controllers by OpenFlow protocol prox-
ies among OpenFlow controllers and switches. An advantage
of our approach is that we partition the IVSes in addition
to the IVCs. Moreover, our architecture also has a recovery
mechanism to roll back IVCs/IVSes to a pristine state.

VIII. CONCLUSION

The absence of a damage confinement mechanism and a
recovery mechanism is a problem of today’s SDN infrastruc-
ture. As a solution, we propose an architecture which relies on
strong isolation to confine compromised network components.
We also propose a recovery mechanism that rolls back compo-
nents to a pristine state. Our preliminary evaluation shows that
the proposed architecture is technically feasible. We also show
implementation challenges on network state consistency and
temporal unavailability due to rollback, and suggest possible
solution approaches to be explored further in future work.

REFERENCES

[1] Linux Containers - LXC. https://linuxcontainers.org/lxc/.
[2] Pox. http://www.noxrepo.org/pox/about-pox/.
[3] D. Chasaki and T. Wolf. Attacks and defenses in the data plane of

networks. IEEE Trans. Dependable Secur. Comput., 9(6):798–810, Nov.
[4] L. Jacquin, A. Shaw, and C. Dalton. Towards trusted software-defined

networks using a hardware-based integrity measurement architecture. In
IEEE Conference on Network Softwarization (NetSoft), 2015.

[5] N. Katta, H. Zhang, M. Freedman, and J. Rexford. Ravana: Controller
fault-tolerance in software-defined networking. SOSR ’15.

[6] S. Matsumoto, S. Hitz, and A. Perrig. Fleet: Defending SDNs from
malicious administrators. HotSDN ’14.

[7] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig.
TrustVisor: Efficient TCB reduction and attestation. In Proceedings of
the 2010 IEEE Symposium on Security and Privacy.

[8] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An execution infrastructure for TCB minimization. In EuroSys,
2008.

[9] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A
security enforcement kernel for openflow networks. HotSDN ’12.

[10] S. Scott-Hayward, S. Natarajan, and S. Sezer. A survey of security in
software defined networks. IEEE Communications Surveys & Tutorials,
2015.

[11] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. Mck-
eown, and G. Parulkar. FlowVisor: A network virtualization layer.
Technical report, OpenFlow Switch Consortium, 2009.

[12] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and
M. Tyson. Fresco: Modular composable security services for software-
defined networks. In NDSS, 2013.

[13] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang. Rosemary: A robust, secure, and high-
performance network operating system. CCS, 2014.

[14] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta.
Design, implementation and verification of an extensible and modular
hypervisor framework. In Proceedings of the 2013 IEEE Symposium on
Security and Privacy.

[15] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang. Towards a secure
controller platform for Openflow applications. HotSDN ’13.

[16] Z. Yin, M. Caesar, and Y. Zhou. Towards understanding bugs in open
source router software. ACM CCR, 40(3):34–40.

[17] Y. Zhang, N. Beheshti, and R. Manghirmalani. NetRevert: Rollback
recovery in SDN. HotSDN ’14.


