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ABSTRACT
Designing access control policies is often expensive and tedious due
to the heterogeneous systems, services, and diverse user demands.
Although ABAC policy and decision engine creation methods based
on machine learning have been proposed, they cannot make good
access decisions for applications and situations not envisioned by
the decision-makers who provide training examples. It results in
over- and under-permissiveness. In this paper, we propose a frame-
work that refines pre-developed policies. It creates a decision engine
that makes better decisions than those policies. Inspired by multiple
criteria decision theory, our method uses the policy manager’s qual-
itative intentions behind their judgments to guide access decisions
so that more benefits are expected. In the evaluation, we prepare a
coarse and relatively elaborate policy. We refine the coarse policy
to obtain a decision engine that is compared for the similarity in
access decisions with the elaborate policy using AUC as a measure.
The results show that our method improves the coarse policy by
a difference of 12–26% in AUC and outperforms the conventional
machine learning methods by a difference of 3–11% in AUC.

CCS CONCEPTS
• Security and privacy → Authorization; Access control; •
Computing methodologies→ Planning under uncertainty.

KEYWORDS
ABAC policy, Machine learning, Decision theory, Actionable AI

ACM Reference Format:
Shohei Mitani, Jonghoon Kwon, Nakul Ghate, Taniya Singh, Hirofumi Ueda,
and Adrian Perrig. 2023. Qualitative Intention-aware Attribute-based Access
Control Policy Refinement. In Proceedings of the 28th ACM Symposium on
Access Control Models and Technologies (SACMAT ’23), June 7–9, 2023, Trento,
Italy. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3589608.
3593841

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SACMAT ’23, June 7–9, 2023, Trento, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0173-3/23/06. . . $15.00
https://doi.org/10.1145/3589608.3593841

1 INTRODUCTION
The fundamental idea of creating effective access control policies
for information systems relies on the principle of least privilege.
The principle requires allowing entities only a minimum amount
of access privileges necessary to perform the designated tasks. The
principle’s underlying thought is balancing security risk and op-
erational need [17]. For instance, access rights to read a customer
list may be limited to a small number of employees who highly
need it to reduce the risk of impact from misuse and information
leakage. In this paper, the term “effective” describes the adequacy
of access control policies. The term implies that making allow/deny
decisions in the policy is expected to yield more business benefits
and less loss associated with security incidents. The effective access
control policy allows access if the operational need exceeds the
risk, and vice versa [8]. Policy managers must thoughtfully eval-
uate the trade-offs between the security risk and the operational
need for all possible accesses. Balancing these two competing goals
with fine granularity minimizes over- and under-permissiveness
in the policy. However, given the complicated modern information
systems, evaluating the trade-offs and developing effective access
control policies have become expensive, tedious, and error-prone.

In order to reduce the cost, state-of-the-art approaches employ
Attribute-Based Access Control (ABAC) policy creation methods
with Machine Learning (ML) techniques. Some of these approaches
are policy extraction by rule mining. The ABAC policy is typically
a set of access permission rules expressed with various attributes,
e.g., document owner, read/write, user’s department, and location.
Each access is accompanied by a set of those attribute values, i.e.,
attribute vector. The ABAC policy generation approaches use pairs
of attribute vectors and the corresponding “allow” or “deny” access
control actions, i.e., decision examples. Xu and Stoller had proposed
anABACpolicymining fromAccess Control List (ACL) policies [22].
Each ABAC policy (e.g., “A user can read notifications from his/her
department.”) represents the purpose of access control, while the
original ACL policy (e.g., “User Alice can read the resource B.”) does
not. Karimi et al. proposed an ABAC policy mining approach from
access logs [13]. The access logs reflect initially deployed access
control policies in the system (i.e., original policies). Another ML-
based approach had been proposed to train a classifier (e.g., decision
tree) to create an ABAC decision engine from access logs [4]. The
decision engine uses the classifier to classify attribute vectors into
allow/deny. The classifier works as ABAC policies but does not have
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Figure 1: QI-ABAC policy refinement overview.

to be in the form of rules. In some of these log-based approaches,
under the assumption that infrequent accesses are unnecessary, the
ABAC policy is improved to prohibit low-need access.

Nonetheless, these log-based approaches share the following
drawbacks: First, infrequent accesses are often ignored even if they
are essential such as maintenance access. Second, there are many
ignored criteria other than frequency for estimating the access need
and risk. With these existing methods, appropriate decisions can
only be made for the access purposes envisioned by the original
policy designer. For example, if an ABAC policy is extracted from a
policy intended only for development tasks, appropriate decisions
regarding sales work cannot be made. These limitations are be-
cause the conventional methods learn decision patterns without
consideration of balancing profit and loss.

Therefore, we propose Qualitative Intention-aware ABAC (QI-
ABAC) policy refinement framework. In a nutshell, the proposed
method systematically refines a given original policy (in the shapes
of ACL policy, access logs, and even ABAC policy) to create an
ABAC decision engine that makes more effective access decisions
than the original policy. Our framework utilizes/infers the under-
lying qualitative intentions of the policy managers and designers.
In our framework, the qualitative intentions systematically guide
the direction of decisions, in addition to learning the decisions
in original policies. We leverage ML models with monotonic con-
straints for this purpose. Inspired by Multiple Criteria Decision
Making (MCDM) theory [7], QI-ABAC represents the process of
evaluating the trade-offs between multiple criteria (i.e., the quali-
tative intentions) related to security and needs. Then the decision
engine selects appropriate actions through the estimated values of
granting accesses.

There can be various criteria. For instance, a quantitative cri-
terion can be “allowing the resource owner’s access contributes
to a business benefit of $100.” Obtaining such information would
be difficult without in-depth investigation. Instead, QI-ABAC uses
a qualitative criterion such as “the owner’s access contributes
more to the business benefit than access that is not.” The quali-
tative criterion describes the order of good and bad from a given
perspective (i.e., the owner’s access is better than others). QI-ABAC
utilizes policy designers’ “qualitative intention,” which has not been
systematically handled due to its qualitative and ambiguous nature.

Fig. 1 provides an overview of how the proposed framework
will work. The described system can have multiple goals: ensuring
security and developing products. A security administrator designs
an ABAC policy enforcing data access from the office only, whereas
a development manager aims to permit developers access from their

homes. They contradict each other. A cause of the contradiction
is that the policy designers are shortsighted, i.e., the security ad-
ministrator ignores the details of development tasks. Likewise, the
development manager ignores insecure cases (i.e., limited scope
in decisions). In common practice, they are aligned through “deny
(or allow) override” [21], i.e., a policy aggregation rule that access
denied (or allowed) by at least one of the policies is shortly denied
(or allowed). Compared with the common practice, our framework
utilizes the security administrator’s qualitative intention to reduce
sensitive data access from the insecure system. Another qualita-
tive intention of the development manager is to let developers
complete their tasks from as many locations as possible. QI-ABAC
balances the risks and the needs, e.g., credential leakage, untrusted
location, and development need. As a result, for instance, the secu-
rity operator’s qualitative intention is reflected in the Multi-Factor
Authentication (MFA) requirement as Fig. 1.

We present three applications: to create an ABAC decision en-
gine from access logs for reference (QI-ABAC0), from pre-developed
ABAC policies (QI-ABACI), and through interactions with the oper-
ators (QI-ABACII). In all the cases, the ABAC policy is represented
as a classifier[4] instead of a set of rules. To show the performance,
we use a real access log data set [9] and synthetic ABAC policies
(sets of rules) in an academic paper [22]. In evaluating the QI-ABACI
and QI-ABACII, the synthetic policy is necessary. For the evaluation,
we assume that a policy consisting of many rules is more effective
because they have been designed in detail at a cost. Therefore, we
pick a small number of rules from each synthetic ABAC policy as
a poor baseline policy, ignoring other rules. We create a decision
engine refining the small baseline policy. It is compared with the
synthetic ABAC policy consisting of all the rules for reference. We
interpret the higher the similarity of access decisions between the
decision engine and the reference policy, the more effective the
refinement. This paper makes the following contributions:

• Formulate a new problem of systematically refining policies
and creating a decision engine so that adequate decisions can
be made for tasks and situations that were not envisioned.
• Introduce three applications; 1) ACL policy/access logs to
ABAC decision engine, 2) ABAC policy to ABAC decision
engine, and 3) that with interacting with the operator.
• Propose the framework to achieve them with the concept of
qualitative intentions. We propose an ML-based algorithm
that represents an MCDM, and prove its efficacy.

2 RELATEDWORK
This section overviews ML-based access control policy genera-
tion methods. Attribute-Based Access Control (ABAC) model de-
fines permissions based on all available attributes of subject, object,
operation, and environment [11]. Risk-Adaptive Access Control
(RAdAC) explicitly estimates the risk. In attribute-based RAdAC
models [12], the low-risk level is required to get permission (i.e.,
multilevel security). Some studies evaluate the trustworthiness
(trust score) of entities [16] that can be an attribute. Several stud-
ies generate executable ABAC policies (e.g., XACML [21]) from
those written in natural language [1]. Other approaches translate
a high-level policy(e.g., service requirement) into lower-level en-
forceable policies (e.g., firewall rules) using the system models [2].
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Table 1: Comparison of rule mining (e.g., Karimi), training a
classifier (e.g., Cappelletti), and our approach (QI-ABAC).

Approach From logs From ABAC Sparse sample Fine-granular Rational
Karimi [13] ✓ × ✓ × ×
Cappelletti [4] ✓ × × ✓ ×
QI-ABAC ✓ ✓ ✓ ✓ ✓

In these methods, an equivalent policy with the generated policy is
necessary; in the shape of a document or high-level policy.

To overcome the issue, access log-based ABAC rule mining meth-
ods have been proposed. In [6, 20], the rules aim to grant the priv-
ileged operations exercised during a specified period, otherwise
deny. Karimi [13] divides access logs (attribute and action pairs)
into clusters to extract rules. These rule-mining methods rely on
metrics to prevent the mined rule from being complex. Although
the simplification helps to obtain adequate policies with few deci-
sion examples (i.e., sparse data), it may lead the policy to coarse
granularity. Nobi [19] and Cappelletti [4] create classification mod-
els instead of rule sets. Those classifiers work as ABAC policies.
The classifiers can perform complicated and fine-grained access de-
cisions. Hence, we follow this classifier-based approach. Compared
with these approaches, we aim to achieve rational decisions that
choose actions to obtain large benefits. Tab. 1 shows the comparison
with the rule mining [13] and with the classifier-based method [4].

3 PROBLEM DEFINITION
In this section, we explain the fundamental issues of the ABAC
policy design/generation. Later, we identify the challenges.

3.1 ABAC Policy Creation Problem
We first formulate a general ABAC policy creation process. Let
𝐴 be a set of all attributes. For each attribute, 𝑎𝑛 ∈ 𝐴, the value
𝑥𝑛 of the attribute varies in a set 𝑉𝑛 . The set of all possible “at-
tribute:value” combinations b is written with the cartesian product,
b = 𝑉1 × 𝑉2 × · · ·𝑉𝑁 , where 𝑁 is the number of all attributes.
x = (𝑥1, 𝑥2, · · · , 𝑥𝑁 ) ∈ b describes a particular attribute vector. Not
all the combinations are valid, e.g., if the value of an attribute “User
position” is not “student”, another attribute “Courses the student
takes” may be empty. The valid privilege universe b ′ ⊂ b is the set
of attribute vectors that can appear [20]. ABAC policy divides the
valid privilege universe into permission and prohibition. Hence,
the ABAC policy is defined as a map 𝑓 : b ′ → 𝑌 where 𝑌 is the set
of action, i.e., 𝑌 = {“allow”, “deny”}. The policy designer evaluates
risk and needs for attribute vectors in b ′, deciding desirable actions.

3.2 Formulation of Decision Scope
We explain the cause of poor policy creation. We define the ideal
ABAC policy as a hypothetical function 𝑓 ∗ : b ′ → 𝑌 . Assume an
ideal decision maker who can accurately predict gains and losses
from granting/denying attribute vectors. We assume that a real
policy approximates the ideal policy in a limited scope: a subset
of the privilege universe. We formulate the practical policy P as a
function 𝑓 P : b ′ → 𝑌 and a subset (scope of the policy) 𝑆P ⊂ b ′

on which attribute vectors are well-evaluated to decide the optimal
actions. Therefore, the policy P = (𝑓 P , 𝑆P ) satisfies the following.

x ∈ 𝑆P =⇒ 𝑓 P (x) = 𝑓 ∗ (x) (1)
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Figure 2: Conceptual diagram of “Scope” (a, b, c) and of policy
design by humans and by ML-based methods (d, e, f).

Therefore, we assume the volume of each scope indicates the
decision-making cost of the ABAC policy design. The scopes rep-
resent expertise areas of multiple policy designers. Here, we focus
primarily on the up-front cost of evaluating benefits to allow ac-
cesses (i.e., decision-making cost) rather than describing policies
(i.e., the complexity of rules). Fig. 2 shows the relationship between
(a) Three scopes and action maps in three original policies, (b) the
schematic of an ideal action map, and (c) example actions following
the ideal ABAC policy (decision examples). This figure describes
sparse sample (“an additional decision example”) and biased sample
(“decision examples in a scope”) problems. The sparse sample de-
scribes a case where the desired action is known for few attribute
vectors. The biased sample is a case where no desirable action in a
task (e.g., development task) is known. The original policy might be
designed for sales tasks. The following figures show action maps of
various ABAC policy generation; (d) a naive rule aggregation, (e) QI-
ABAC decisions guided by the qualitative intentions (blue arrows),
and (f) general ML-based decisions. The last one has fine granular-
ity but often outputs irrational decisions. QI-ABAC (e) approaches
the ideal policy by allowing fine granularity and rationality.

3.3 Challenges
To obtain a more effective ABAC policy, we consider rationally
extending the scope of the policy as the main challenge. The term
“scope” describes attribute vectors within which adequate actions
are defined to maximize expected business profit. As explored ear-
lier, many attribute vectors remain out of scope due to sparse and
biased samples. Themost effective ideal policy can be achieved if the
scope is extended to all the privilege universe. However, extending
the scope without requiring extra decision examples is challenging.
The sparse sample is interpolation problem from the similarity of
access, while the biased sample is the nontrivial problem of extrap-
olation toward unforseen business scenes. To our best knowledge,
this paper is the first work that deals with both problems.

4 OVERVIEW
This section provides an overview of the QI-ABAC policy refine-
ment framework. We present an applications overview. Then, we
describe our approach with prominent ideas.
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Figure 3: Comparison of existing approaches and our pro-
posed QI-ABAC applications.

4.1 Applications overview
We first show QI-ABAC applications in Fig. 3. The upper side rep-
resents the applications to generate ABAC policies or decision
engines from access logs or ACL policies. Two existing approaches
are shown; rule mining (e.g., [13]) and classification (e.g., [4]). QI-
ABAC0 generates a classifier. Our framework provides an interface
to reflect the policy managers’ qualitative intentions as guidance
information. The lower side in Fig. 3 shows our novel applications.
QI-ABACI (on the left) samples decision examples from the given
original ABAC policies, extracting qualitative intentions. Then, a
classifier is trained to improve the decisions. In QI-ABACII (on the
right), policy managers are asked to give a desirable action for an
attribute vector (i.e., “Query and Response”). Their decisions are ad-
ditionally learned. To clarify our focus, this paper does not discuss
optimizing the choice of queries (i.e., active learning such as [10]).

4.2 Proposed Approach
QI-ABAC refines access decisions utilizing the qualitative inten-
tions. Qualitative intentions are “the preference to grant access”
regarding certain aspects of access regarding risk or need (e.g., As-
pect 1: whether the resource is relevant to the user’s organizational
work and, Aspect 2: the user’s job position). In order to reflect them
in access control, we impose the following constraint as the mini-
mum constraint representing a rational decision. “Access that is
preferable to grant in all aspects is, overall, more valuable to
grant.” The monotonicity is the mathematical representation of
this relationship between the preferences and the value to allow.

We represent the preferences as a feature vector (i.e., intention
vector). For example, Aspect 1-based preference is computed at the
following five levels: L1) resources of the user’s project, L2) team
resources, L3) departmental resources, L4) organizational resources,
and L5) other resources. We assign each level with a preference
value: {1, 0.5, 0, -0.5, and -1} to represent the order of preference (L1 is
preferable to L2, L2 is preferable to L3,...). In this case, two attributes
“the user’s department” and “the resource owner’s department”

Figure 4: Effects of the qualitative intention-awareness (a, c)
compared to using general attributes for decisions (b, d).

relate to the preference. We call the two attributes “associated
attributes” with this qualitative intention. Similarly, we assign four
levels of preference value: {1, 0.333, -0.333, and -1}, depending on
whether the user’s position (Aspect 2) is L1) managerial, L2) regular,
L3) cooperative, or L4) other. Suppose the access user is a member of
the same team as the resource owner and is a cooperative employee.
The intention vector based on these two aspects, 1 and 2, is (𝑧1, 𝑧2) =
(0.5,−0.333). We then train a function that computes the total
permissive value from the feature vector. Pairs of an attribute vector
and an action (allow/deny) must be given (i.e., decision examples).

Fig. 4 shows; (a) an action map for intention vectors (𝑧1, 𝑧2)
following two qualitative intentions above; the department’s own-
ership (Aspect 1) and the user’s responsibility (Aspect 2). The bound-
ary between “allow” and “deny” is determined through the training.
The following advantages of our proposal stem from the mono-
tonicity: the total permissive value increases from the lower left to
the upper right and never decreases.
(i) Correction of irrational actions from allow (✓) to deny (×) and

vice versa. For example, where users with greater responsibil-
ity access more work-relevant resources, permissions should
be broader (if other conditions are the same).

(ii) Proposals of alternative requirements. For instance, if a user
has an insufficient responsible position, they can instead access
other resources that aremorework-relevant, i.e., with a greater
ownerships. As another example, if a user does not have an
MFA device required, security questions are used instead.

(c) shows the advantage from the viewpoint of ML. “✓” (“allow”)
and “×” (“deny”) are decision examples. Since the total permissive
value increases monotonically towards the top right, a few decision
examples determines the decision boundary. It indicates that the
decision scopes are rationally extended to any attribute vectors. (b)
and (d) show there is no merit without the monotonicity, resulting
in unexpected decisions, such as allowing access irrelevant to the
department’s business from a non-responsible position.

Original policies are imperfect. Therefore, our decision engine
does not thoroughly learn policies but only in-scope attribute vec-
tors. In addition, we define strict control of decisions. Our method
estimates the value (between 0 and 1) to allow access. Access is
allowed if the value exceeds a threshold (e.g., 0.5). The threshold is
adjusted to control the strictness depending on the applied system.
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Figure 5: QI-ABAC policy refinement framework.

Examples of qualitative intention. A qualitative intention is
defined as the preference order. Three examples follow. “⪰” is an
ordering operator. Note that intentions A and B are compatible.

Intention A :
{User ID == Resource owner} ⪰ {NOT User ID == Resource owner}
Intention B :
{(NOT User ID == Resource owner) ∧ (Work flow : “Review”)}
⪰ {(User ID == Resource owner) ∧ (Work flow : “Review”)}
Intention C : {Trust score : 𝑡} ⪰ {Trust score : 𝑡 ′} for 𝑡 ≥ 𝑡 ′ (2)

Foundations as a decision-making problem. In MCDM [7],
rationality is the choice of action to yield more benefits based on
multiple criteria. Our methodology follows this basis. Assume that
a designer created a policy to maximize benefits. The objective of
our ML is to back-estimate and gather various operators’ value
functions. Our method should have the capability to express arbi-
trary policies. For instance, decision boundaries in Fig. 4 can vary,
conditioned by services or applications. Such variables (e.g., service
type) are not subject to monotonic constraints. Therefore, we use
“partial” monotonic functions as the value function (Equation. 4, 5).

5 METHODOLOGY
We present our QI-ABAC framework. First, we overview the frame-
work. Consequently, we disclose three options to define qualitative
intentions. Lastly, ML-based value estimation model are shown.

5.1 Framework Overview
Fig. 5 shows our framework and the workflow. It outputs a classifier.
In a typical case, Policy Decision Point (PDP) stores and utilizes
the classifier. The workflow is as follows: (1) Define original ABAC
policies designed by, e.g., security administrators, project managers,
resource owners, or existing ABAC policy mining methods. It is a
standard rule set, not unique to our proposal. (2) Define the scope(s)
of those policies. For instance, a security operator may assume a
general worker as the default assumption of the user. It is expressed
in a scope. Operators should define and confirm the scope. (3) Define
or extract the qualitative intentions. See also §4.2. (4) The system
makes querying attribute vectors randomly to its operator, and (5)
receives desirable actions as the response. Finally, (6) the training
is run. A classifier is created as an ABAC decision engine according

ValueAttribute
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Intention
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Figure 6: Machine learning-based value estimation model.

to the strictness. In QI-ABACI, steps (4) and (5) are skipped. In QI-
ABAC0, steps (1), (2), (4), and (5) are skipped, and decision examples
converted into attribute vectors are used for the training.

5.2 Extraction of qualitative intention
Our framework has three strategies to define qualitative intentions:
1. Manual definition, 2. extraction from ABAC policy syntax, and 3.
extraction during the training, i.e., unknown qualitative intention.

Manual definition. Qualitative intentions are defined based
on the organization’s high-level security policy, generic security
guidelines, or expert intuition. For example, even if guidelines state
that “multi-factor authentication should be required to access sen-
sitive information,” this alone does not lead to an access control
policy. The policy depends on which resources are considered sen-
sitive. Nonetheless, the guideline indicates a qualitative intention,
{Auth. method: “MFA”} ⪰ {Auth. method: “password”}. This ex-
ample shows that defining qualitative intentions is effortless.

Extraction from ABAC policy syntax. Our fundamental in-
sight is that each conditional statement represents the policy de-
signer’s intention. For instance, the original policies may have a
condition “IF (User ID == Resource owner ID), and..., then allow the
access.” The situation that the user is the resource owner may con-
tribute to the permit decision. Generally, we use the following two
criteria: 1) statements that only or frequently appear with “allow”
decision is qualitatively intended, and vice versa, e.g., Intention A in
§ 4.2, 2) a conflicting statement with the above is also qualitatively
intended under other specific conditions, e.g., Intention B in § 4.2.

Unknown qualitative intention. This option extracts the qual-
itative intentions during the training. Assume several attributes
(e.g., the user’s project team and resource owner’s department). A
policy manager may know those attributes contributes to access
decisions but does not know the concrete relationships between
project teams and departments. One of our models (QI-ABAC-DNN
in § 5.3) extracts the relationship by inferring the preference order.
A policy manager should only identify the associated attributes.

5.3 ML-based value estimation model
As described in Fig. 6, the ML model estimates value (0–1) to permit
a given attribute vector. It is optimized with the given decision
examples sampled in scopes and the additional decision examples.
We disclose the model, the preprocessing, and two implementations.
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Architecture. Our proposed model has two major parts: mul-
tiple ordering and partial monotonic models. In the first part, the
model converts the attribute vector to an intention vector. It com-
putes a preference between -1 and 1 according to ordered conditions
that represent a qualitative intention. See §4.2. The preference value
for 𝑖𝑡ℎ qualitative intention (𝑧𝑖 ) with its associated attributes (e.g.,
x𝑖 = (𝑥3, 𝑥7)) is calculated as below, when the attributes x matches
𝑑𝑡ℎ
𝑖

condition in 𝐷𝑖 number of ordered conditions.

𝑧𝑖 ← 𝑔𝑖 (x𝑖 ) = 1 − 2(𝑑𝑖 − 1)
𝐷𝑖 − 1

(3)

They are input of the second part; partial monotonic function ℎ

along with conditional attributes (𝑥𝑐1 , 𝑥𝑐2 , · · · ), e.g., service type.
𝑣 = ℎ(𝑧1, 𝑧2, · · · , 𝑧𝑟 , 𝑥𝑐1 , 𝑥𝑐2 , · · · ) (4)

𝑟 is the number of all the qualitative intentions. The partial mono-
tonic constraint of ML model ℎ is defined with Equation (5) [14, 23].

ℎ(𝑧1, · · · , 𝑧𝑖 · · · , 𝑧𝑟 , 𝑥𝑐1 , · · · ) ≥ ℎ(𝑧1, · · · , 𝑧′𝑖 , · · · , 𝑧𝑟 , 𝑥𝑐1 , · · · )
if 𝑧𝑖 ≥ 𝑧′𝑖 for 1 ≤ 𝑖 ≤ 𝑟 (5)

𝑣 is discretized into an action. To extract unknown qualitative in-
tentions, we replace the unknown 𝑔𝑖 with an ML model [18].

Preprocessing. In QI-ABAC0, IDs are converted into attributes,
e.g., User ID “a001p54” is converted into the user’s position (“worker”)
and department (“R&D”) by referring ID management system (con-
text data storage in Fig. 5). In QI-ABACI and QI-ABACII, our pro-
posed system randomly samples attribute vectors in a scope, and
obtains the corresponding action following the original policy.
They are a part of the decision examples. In order to deal with
the conditional variables and to use the “unknown qualitative in-
tention” extraction, the system transforms the attribute vectors
into computable vectors. We use one-hot vector encoding, e.g.,
𝑥3 → (0, 0, 1, 0, 0, 0), 𝑥7 → (0, 1, 0, 0). Continuous variables (e.g.,
trust score) are individually normalized from -1 to 1. These encoded
variables are inputs of “NN(a)” and “NN(b)” as described below.

Implementation. Weapply amonotonic deep neural network [14]
for feasibility (i.e., QI-ABAC-DNN) as our main proposal. Besides,
we also use monotonic XGBoost [5] as another choice (i.e., QI-
ABAC-XGB). Therefore, we can combine three applications and
these two ML models, e.g., QI-ABAC0-XGB, QI-ABACII-DNN.

QI-ABAC-DNN The model consists of three types of fully con-
nected neural networks (“NN(a)”, “NN(b)”, “NN(c)” enclosed by
dotted blue rectangles in Fig. 6). NN(a) is the extractor(s) of the
unknown qualitative intention(s). It substitutes for the function 𝑔𝑖
of Equation 3. This neural network has three hidden layers, each
50 wide with Rectified Linear Unit (ReLU). It outputs a single value
with Tanh function. Second, NN(b) is a conditional variables’ en-
coder. It receives encoded conditional variables 𝑥𝑐1 , 𝑥𝑐2 , · · · . The
hidden layers have the same structure as NN(a). Lastly, NN(c) out-
puts a value to allow access. It is a fully monotonic neural network
with all the weights set above zero. There are two hidden layers
with 20 widths with LeakyReLU. It outputs a single value with a
Sigmoid function. We use cross entropy as the loss function.

QI-ABAC-XGB The XGBoost-based model is an ensemble de-
cision tree. We train the model with monotonic constraints. The
parameters are set to the default values of the python package [5].

6 EVALUATION
This section evaluates the performance of our three applications
(QI-ABAC0, QI-ABAC𝐼 , QI-ABAC𝐼 𝐼 ).

6.1 Experimental Setup
Algorithms. We use two existing rule mining methods, two

classifiers, and a naive rule aggregation method (“allow” override of
rules) as a practical baseline. We do not use [6] and other methods
that focus on the access frequency, which is not our focus.
• Compared methods Rule mining: Karimi [13], Regression
Tree [3]. Classifier [4]: XGBoost [5], Deep neural network
(DNN). Base-line: Aggregation [21].
• Our methods QI-ABAC-DNN: based on Multi-layer percep-
tron, QI-ABAC-XGB: based on XGBoost.

Dataset. We use three synthetic sample policies [22] and one
realistic access log data [9].
• University ABAC policy with 10 number of rules [22].
• Health care The number of rules is 9 [22].
• Project management The number of rules is 11 [22].
• AmazonABAC Access permissions and history [9] for refer-
ence evaluation. The evaluation is limited due to its anonymity.

We define qualitative intentions for the university, health care, and
project management sample policies as follows: 1) If the subject
and object department are the same (i.e., owned by the department),
they have higher order, and 2) the user with a higher position (e.g.,
chair) is ordered higher than other users (e.g., student). Follow-
ing these two ways, we define six to seven qualitative effects for
each sample policy. We select the first two out of 10, 9, and 11
rules in three sample policies. The selected rules are considered
original policies, and decisions following the policies are used for
the training. The selection of the “two rules” corresponds to a spe-
cific resource type (e.g., grade book). The small policy represents
the assumption of disregard for other resource types. We evaluate
how well our method can refine the policy and make it applica-
ble to other resource types (e.g., application for admission). We
define the scope of each rule based on the attributes used. These
synthetic policies are defined with 11–14 attributes and have over
200,000 valid attribute vectors. In contrast, the evaluation using the
Amazon dataset is performed the same way as the conventional
methods, split into training and testing data. The Amazon dataset
is anonymized. We need to extract unknown qualitative intentions.

6.2 Evaluation Methodology
We define two evaluation tasks as follows. First, we evaluate the
scope extension performance (QI-ABACI). We input decision exam-
ples following a few rules (two rules). In addition, we also evaluate
the classification performance using access logs of Amazon (QI-
ABAC0). Second, we feed additional decision examples and evaluate
the number of them to obtain effective policies (QI-ABACII). The
additional decision examples follow the full-size sample policies,
i.e., all rules are enabled. For QI-ABACI and QI-ABACII, we eval-
uate the similarity between the classifier’s decision and that of
the full-size policy. The QI-ABACI evaluation aims to test biased
sample problems. We evaluate QI-ABACII that solves sparse sample
problems. QI-ABAC0 has the same setup as existing methods.
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Figure 7: The similarity between the ideal policy [22] (com-
posed by 10 rules) and the created decision engine’s decisions
(a, b, c). Log-based decision engine’s performance (d)[9].

We measure the performance with Area Under the Curve of Re-
ceiver Operating Characteristic (AUC of ROC curve). We randomly
sample 10,000 valid attribute vectors (both for training and testing).
We use AUC as a measure since our decision engine and other
methods have controllable strictness. AUC represents the average
True Positive Rate (TPR) for strictness. It equals the average True
Negative Rate (TNR). For instance, the university sample policy has
over 125,000 valid attribute vectors that should be denied. Hence,
an increase of AUC by 1 % insists that 1250 additional unexpectedly
privileged access requests can be prevented.

In the Amazon dataset, the “aggregation” method is excluded due
to the lack of rules. Likewise, QI-ABACI-XGB is excluded because
it can not extract unknown qualitative intentions. Also, we do not
evaluate the second task as it is the same as the first task.

6.3 Evaluation Result
Our proposed method outperforms the existing methods. Fig. 7a, 7b,
7c presents the scope extending task. QI-ABACI-DNN performs the
best. The advantage over the second-best method is at least 3 %, 10 %,
and 11 % in each sample policy. Compared to the standard policy
aggregation [21] (base-line), QI-ABACI-DNN performs better with
12 %, 26 %, and 15 % differences in AUC. In contrast, QI-ABACI-XGB
performs poorly. The result for the Amazon access sample is shown
in Fig. 7d. Even though the data set does not include any structured
rules, QI-ABAC0-DNN outperforms the compared methods with
10 % difference of AUC. Fig. 8a, 8b, 8c describes AUCwith additional
decision examples. In most cases, QI-ABACII-DNN and QI-ABACII-
XGB perform better than other methods, rapidly approximating the
ideal policies. The points at which the number of additional decision
example is 0 is the same cases as those of Fig. 7a, 7b, 7c. In Fig. 8a,
QI-ABACII-DNN achieves AUC > 0.9 at 40 number of additional
samples. QI-ABACII-XGB also reaches the same line. Plain XGBoost

achieves AUC > 0.9 at 120 additional examples, which indicates
that our proposed method (QI-ABACII-DNN and QI-ABACII-XGB)
requires 65 % fewer decision examples to approximate the ideal
policy than the compared method. Although the proposed methods
perform well, QI-ABACII-DNN has a similar performance with a
compared method (XGBoost) in Fig. 8c as the number of additional
examples increases. We proved three advantages as below.
• Sparse sample As shown in Fig. 8a, 8b, 8c, our proposed
methods approached the ideal policy with a small number
of additional decision examples.
• Fine-granularity Our proposed methods reached higher
AUCs than the base-line (“Aggregation”) in Fig. 7a, 7b, and 7c,
and approximate the fine-grained policy with high AUC
(> 0.9) as shown in Fig. 8a, 8b, 8c.
• Rationality The highest AUCs in Fig. 7a, 7b, and 7c are the
result of rational extensions of scopes of the original policies.

7 DISCUSSION
In this section, we first interpret the evaluation results. Next, we
discuss towards the validation of the decision engine.

7.1 Discussion on Performance
In the first task to extend scopes of policies (Fig. 7a, 7b, 7c), QI-
ABACI-DNN performs the best, while QI-ABACI-XGB does not. To
explain this observation, we assume the value to allow access, the
output of our model, is additive. For example, consider the case
where an access user has greater business needs as a manager than
a collaborator. Similarly, assume that the business needs are large if
the user and the resource owner belong to the same department. If
both conditions are met, the business benefit would be greater than
if only one were met. The monotonic DNN-based classifier is non-
linearly additive due to its smoothness, which makes it suitable for
inferring the additive benefits, i.e., extrapolation task. In contrast,
XGBoost is not. In case the number of additional examples is small,
the QI-ABACI-XGB performs worse than a naive XGBoost. It may
suffer the reduced representation ability due to the constraints. The
second task in Fig. 8a, 8b, 8c directly benefit from monotonic con-
straints, which improve the robustness. As decision examples are
added, QI-ABACII-XGB performs the best, followed by QI-ABACII-
DNN. It is because of the interpolation task between sparse samples
that are distributed throughout the privilege universe.

Our ultimate goal is to obtain a fine-grained effective decision
engine for complex organizations. However, the synthetic policies
we use in this paper are small. It is because we aim to prove a basic
concept. Evaluation with large realistic policies is the future work.

7.2 Towards validation of decision engine
Since our method aims to refine given decisions, it is essential to
ensure the validity of decisions. For example, it is crucial to identify
accesses that should never be mistakenly allowed or denied to avoid
fatal damage. However, it takes time and effort to identify all. In-
stead, the interpretability of access decisions will help. For instance,
the value to allow can be interpreted as confidence in decisions.
A value close to the threshold (e.g., 0.5) indicates unconfidence.
Another approach is to convert the classifier into an interpretable
one. In [19], the authors discuss converting into a decision tree.



SACMAT ’23, June 7–9, 2023, Trento, Italy Shohei Mitani et al.

0 20 40 60 80 100 120 140

0.7

0.8

AU
C-

RO
C

The number of additional decision examples

QI-ABAC-DNN

DNN

0.6

XGBoost
Regression TreeKarimi
Aggregation

QI-ABAC-XGB

0.5

0.9

1.0 QI-ABAC-DNN

QI-ABAC-XGB

II II

II

II

(a) University policy

0 20 40 60 80 100 120 140

0.7

0.8

AU
C-

RO
C

The number of additional decision examples

DNN

0.6

XGBoost
Regression TreeKarimi
Aggregation

0.5

0.9

1.0

QI-ABAC-DNN

QI-ABAC-XGB

QI-ABAC-DNN QI-ABAC-XGB
II II

II

II

(b) Health care policy

0 20 40 60 80 100 120 140

0.7

0.8

AU
C-

RO
C

The number of additional decision examples

DNN

0.6

XGBoost
Regression TreeKarimi
Aggregation

0.5

0.9

1.0

QI-ABAC-DNN

QI-ABAC-XGB

QI-ABAC-DNN QI-ABAC-XGB
II II

II

II

(c) Project management policy

Figure 8: The ideal policy reconstruction performance of QI-ABACII with varying the number of additional decision examples.

Our proposed method is interpretable. The intention vector
shows which perspectives given access are desirable or undesir-
able. Furthermore, beyond interpretability, our constrained decision
model ensures that access that is desirable in all respects compared
to permitted access is permitted. Likewise, access that is less desir-
able in all aspects than prohibited access is prohibited. As previously
discussed, it is the basis for extending decisions to not envisioned
situations. Actionable AI (Artificial Intelligence) [15] concept had
been proposed for systems that take actions through ML-based
decisions. There, the system needs to take appropriate actions even
for purposes and situations that were not envisioned. The MCDM
is beneficial to acquire the actionability [15]. An underlying goal
of our study is to achieve actionability, which we have obtained.

8 CONCLUSION
In this paper, we proposed a framework to refine access control
policies (ACL policy, access logs, and ABAC policies) to an improved
ABAC decision engine to balance security and needs better. In
order to realize that, we formulated qualitative intentions behind
human judgments, which have yet to be systematically handled, to
refine the policy. It can guide the access decision to the appropriate
one, even in situations involving access purposes or threats that
the policy managers did not envision. We evaluated the proposed
method and showed its efficacy using real access logs and synthetic
ABAC policies. As we understand it, this study is the first to propose
the concept of Actionable AI aiming to refine ABAC policies.
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