
A First Step towards the Automatic Generation of Security
Protocols�

Adrian Perrig
perrig@cs.berkeley.edu

Dawn Song
dawnsong@cs.berkeley.edu

Computer Science Department
Carnegie Mellon University and University of California, Berkeley

Abstract

This paper describes automatic protocol genera-
tion (APG for short), a novel mechanism to gen-
erate security protocols automatically. With APG,
the protocol designer inputs the specification of the
desired security properties and the system require-
ments. The system requirements include a metric
function which specifies the cost or overhead of
protocol primitives, which defines an ordering over
protocols with respect to the metric function. Based
on this ordering, APG explores the protocol space
and outputs the correct protocol which has minimal
cost with respect to the metric function, as well as
satisfies the security properties and system require-
ments.

The APG approach has several advantages over
the current protocol design process. It is fully auto-
matic, and hence, more efficient than a manual pro-
cess. The protocols generated by APG offer higher
confidence, because they are verified by a powerful
protocol analyzer. Another significant advantage
is that, because APG search through the protocol
space in the order of increasing cost with respect to
the metric function, APG generates correct proto-
cols with minimal cost which ideally suit the system

�This research was done while the authors were at Carnegie
Mellon University. This publication was supported in part by
Contract Number 102590-98-C-3513 from the United States
Postal Service. The contents of this publication are solely the
responsibility of the author and do not necessarily reflect the
official views of the United States Postal Service.

requirements. Furthermore, APG is flexible in the
sense that it can handle different security properties
and different system requirements.

To gain experience with APG, we conduct a
case study on the automatic generation of two-
party, mutual authentication protocols. In one
experiment, APG generates authentication proto-
cols that are simpler than the standard protocols
documented in the literature (i.e., ISO standards
[Int93]). In another experiment, the automatic
protocol generation generates different protocols
with minimal cost for varying requirements, hence
demonstrating its capability to produce high qual-
ity protocols.

1 Introduction

The exponential growth of the Internet and elec-
tronic commerce brings not only prosperity, but
also vulnerability. Numerous attacks pose a real
challenge to different aspects of security mecha-
nisms. Among these security mechanisms, secu-
rity protocols play an essential role. They use cryp-
tographic primitives as building blocks to achieve
security goals such as authentication, confidential-
ity, and integrity. New applications and systems
eagerly demand security protocols suitable to their
system requirements. Unfortunately, designing se-
curity protocols is a delicate task and experience
shows that security protocols are notoriously hard
to get right [BAN89, Low96]. This naturally raises



the question whether the current security protocol
design process is satisfactory. If the answer is no,
how can we improve it?

The current process of finding a solution is usu-
ally ad-hoc and involves little formalism, and al-
most no mechanical assistance. Such a design pro-
cess is not satisfactory for the following reasons:

� Error-prone. Security protocols are intricate
and attackers are powerful.

– If the designer has limited experience,
it is likely that the security protocol is
flawed. Evidence shows that even when
security protocols are designed with care
and examined intensely (even over time
of years), they can still be fundamentally
flawed.

– Due to the lack of formalism and me-
chanical assistance, manually designed
protocols often suffer from the fact
that they contain undocumented assump-
tions. Since the implementation might
not respect these assumptions the result-
ing protocols might be insecure/flawed.

– Without proofs, these protocols cannot
give any guarantee on satisfying the de-
sired security properties, and hence de-
grade the level of confidence.

� Non-optimal. Such designed protocols may
contain unnecessary operations. Simply be-
cause the designer cannot search a large num-
ber of candidates, she may not find the optimal
protocol for the given system requirements.
Moreover, conservative designers might put
unnecessary operations just to play safe.

� Inefficient and Expensive. The current design
process is often slow. It can be a serious bot-
tleneck of the project and severely delay prod-
uct development. If the protocol is flawed,
high costs might incur, due to forced redesign,
update plans, or liability claims.

In this paper, we present automatic protocol gen-
eration, APG for short, a mechanism which ad-

dresses these shortcomings. With automatic proto-
col generation, the protocol designer specifies the
desired security properties, such as authentication
and secrecy, and system requirements, i.e., sym-
metric or asymmetric encryption/decryption, low
bandwidth. A protocol generator then generates
candidate security protocols which satisfy the sys-
tem requirements. In the final step, a protocol
screener analyzes the candidate protocols, discards
the flawed protocols, and outputs the correct proto-
cols that satisfy the desired security properties.

Our approach provides several advantages:

� Automatic. The protocol designer specifies
the security properties and the system require-
ments. The remaining process is fully auto-
matic.

� High Confidence. Since the input specifica-
tions are written in a well-defined specifica-
tion language and the automatic protocol gen-
eration is fully mechanical, there are no hid-
den assumptions, in contrast to the manual de-
sign process. The protocol screener has a pow-
erful engine which can automatically generate
a proof if a protocol is correct, or a counterex-
ample otherwise.

� High Quality. The user-defined system re-
quirements includes a metric function which
specifies the cost or overhead of a protocol.
APG tries to generate correct protocols with
minimal cost with respect to the metric func-
tion hence suits the system requirements the
best.

� Flexible. The approach works for different se-
curity properties, system requirements, and at-
tacker models.

The remainder of this paper is organized as fol-
lows. We begin with an overview of the general
framework and requirements of APG. Next, we
present a case study of automatic generation of au-
thentication protocols. In our case study, we show
how we deal with the arising difficulties to make
APG feasible. Following the case study, we dis-
cuss some of the limitations of APG, as well as the



insights and results of the case study and the inter-
esting directions for further research. Finally, we
summarize the contributions of this paper.

2 General Framework and Re-
quirements for APG

In this section, we first give an overview of the
general framework of APG. Then, we state the re-
quirements of each component and give more de-
tails about our design and implementation of these
components.

2.1 Overview

At a high level, APG is, as Figure 1 shows, a
pipeline composed of an automatic protocol gener-
ator and an automatic protocol screener. In general,
the process of APG has four stages. First, the pro-
tocol designer specifies the desired security prop-
erties and system requirements as input. Second,
the protocol generator searches through the pro-
tocol space and generates candidate protocols that
satisfy the system requirements. Third, the protocol
screener analyzes the candidate protocols. Finally,
the flawed protocols are discarded and the correct
ones that satisfy the desired security properties are
output.

Protocol
Generator

Protocol
Screener

Candidate
Protocols

Figure 1: APG overview

Automatic
Protocol

Generation
(APG)

Metric
Function

Initial
Setup

Security Properties

Correct
Protocols

System Requirements

Figure 2: APG data flow

2.2 Input Specification

Our specification language defines the security
properties, including authentication, secrecy and
other properties related to electronic commerce.
The system requirements are specified as a metric
function and a specification of the initial setup. The
initial system configuration defines which crypto-
graphic primitives are available to the principals
and what keys each principal possesses. For ex-
ample, in a PKI environment, all protocol parties
know their own private key and the public keys of
the other principals, whereas in a symmetric-key
environment the principals have shared secret keys.
Hybrid systems are also possible.

The metric function corresponds to the cost or
overhead of the protocol. An example for metric
design is to make the metric correspond to the time
overhead of the protocol. In a system such as a
smart-card, encryption can be fast while the band-
width between the card and the card reader may be
low, in which case the metric function specifies a
low cost for encryption, whereas the cost of send-
ing and receiving messages is high.

The metric function is required to be monoton-
ically increasing as the protocol complexity is in-
creasing. This requirement is necessary during the
protocol generation phase, where all the protocols
up to a maximum cost threshold are generated.

The metric function defines an ordering among
the protocols generated. The screener analyzes the
protocols in the order of increasing cost,1 hence
the first correct protocol has a minimal cost-value
with respect to the metric function. Given a spec-
ification of security properties and system require-
ments, we say that a protocol is optimal if it has the
lowest cost-value with respect to the metric func-
tion among protocols that satisfy the security prop-
erties and the system requirements.

2.3 Notation

We use the following notation to describe protocols
in this paper.

1All protocols are sorted after the generation step, since the
generation might not generate them in strictly increasing order



A;B are the principals

NA is a nonce generated by A

KA denotes A’s public key

K�1

A
denotes A’s private key

KAB denotes the secret (symmetric) key
which is shared between A and B

fMgKB is the encryption of message M with
B’s public key

2.4 Protocol Representation

A protocol defines a sequence of actions of the par-
ticipating parties. The actions include sending and
receiving messages. Messages are defined by the
following grammar. The grammar can be easily ex-
tended if needed.

Message ::= Atomic j Encrypted

j Concatenated

Atomic ::= Principalname j Nonce jKey

Encrypted ::= (Message;Key)

Key ::= PublicKey j PrivateKey

j SymmetricKey

Concatenated ::=Message List

Message List ::=Message

jMessage; Message List

Each message can be represented as a tree with
the atomic messages as leaves and operations as
intermediate nodes. Figure 3 shows an example
for the message: A;B; fA;BgKB . We define the
depth of a message as the depth of the tree repre-
senting that message. For example, in Figure 3 the
depth of the message tree is 4.

2.5 The Protocol Generator

The purpose of the protocol generator is to generate
candidate protocols that satisfy the specified sys-
tem requirements. Intuitively, the protocol space is
infinite. Hence, we need a way to limit the number

Concat

A B Encr

Concat Kb

A B

Figure 3: Example of a message tree for the mes-
sage: A;B; fA;BgKB

of candidate protocols generated while not omitting
any potential optimal protocols.

Our primary method to solve this problem is
to use iterative deepening, a standard search tech-
nique [RN95]. In each iteration, we set a cost
threshold of protocols. We then search through the
protocol space to generate all the protocols below
the given cost threshold. After sorting the proto-
cols, the protocol screener tests them in the order of
increasing cost. If one protocol satisfies the desired
properties, it is minimal with respect to the cost
metric and the generation process can stop. Oth-
erwise, we increase the cost threshold and generate
more protocols.

It is intuitive and our experiments confirmed that
the number of protocols generated is exponential in
the value of the cost threshold. Hence, the proto-
col generator can easily generate millions of pro-
tocols. Since elaborate protocol verification takes
on the order of 1 second per protocol, it would
be impractical for the protocol screener to analyze
all of these protocols. To make APG practical we
use efficient reduction techniques and heuristics to
prune invalid candidate protocols early to reduce
the number of candidate protocols passed to the
protocol screener. Most of the generated protocols
contain severe security flaws which can be detected
with a simple and more efficient verification algo-
rithm. Each security property that is supported by
the system is therefore accompanied by a pruning



algorithm (which efficiently discards most severely
flawed protocols) and a verification condition for
the screener. We give more detail about the prun-
ing algorithms in the case study in Section 3.

2.6 The Protocol Screener

The automatic protocol screener needs to be sound
and efficient. Given a candidate protocol, the proto-
col screener has to be able to examine the protocol
and tell whether it is correct or not. The protocol
screener is sound if when it claims that a protocol
satisfies certain security properties, it is true that the
protocol really does satisfy these properties. Since
the protocol generator generates thousands of can-
didate protocols, the protocol screener needs to be
highly efficient to find the optimal protocol in a rea-
sonable amount of time.

There are several existing tools for semi-
automatic and automatic protocol analysis, such
as the NRL Analyzer [Mea94], the Interrogator
Model [Mil95], FDR [Low96], Mur' [MMS97],
and Brutus [CJM98]. Athena is a recently
introduced checker for security protocol analy-
sis [Son99]. Comparing to other existing automatic
tools, Athena has the following two main advan-
tages:

� Athena has the ability to analyze protocol exe-
cutions with any arbitrary configuration. Most
of other existing automatic tools can only rea-
son about finite state space, which implies
that they can only analyze protocol executions
with certain configurations, such as two ini-
tiators and two responders. In contrast, when
Athena terminates, it provides a proof that a
protocol satisfies its specified property under
any arbitrary protocol configuration, or it gen-
erates a counterexample if the property does
not hold.

� Athena exploits many state space reduction
techniques which result in a highly reduced
state space.

For these reasons, we choose to use Athena as
the protocol screener. During this project, Athena

has verified tens of thousands of protocols and has
established itself as a highly efficient and robust
tool for automatic protocol analysis.

The following is a brief overview of how Athena
works. Athena uses an extension of the recently
proposed Strand Space Model [THG98] to repre-
sent protocol execution. Athena incorporates a new
logic that can express security properties includ-
ing authentication, secrecy and properties related
to electronic commerce. An automatic procedure
enables Athena to evaluate well-formed formulae
in this logic. For a well-formed formula, if the
evaluation procedure terminates, it will generate a
counterexample if the formula is false, or provide
a proof if the formula is true. Even when the pro-
cedure does not terminate when we allow any arbi-
trary configurations of the protocol execution, (for
example, any number of initiators and responders),
termination could be forced by bounding the num-
ber of concurrent protocol runs and the length of
messages, as is done in most existing automatic
tools.

Athena also exploits several state space reduc-
tion techniques. Powered with techniques such
as backward search and symbolic representation,
Athena naturally avoids the state space explosion
problem commonly caused by asynchronous com-
position and symmetry redundancy. Athena also
has the advantage that it can easily incorporate re-
sults from theorem proving through unreachability
theorems. By using the unreachability theorems, it
can prune the state space at an early stage, hence,
further reduce the state space explored and increase
the likely-hood of termination. These techniques
dramatically reduce the state space that needs to be
explored.

3 Case Study: Automatic Genera-
tion of Authentication Protocols

In order to gain preliminary experience with APG,
we perform a case study with automatic gener-
ation of two-party mutual authentication proto-
cols. Authentication protocols are among the most
widely used and intensely studied security proto-



cols. Their complexity is suitable for an initial case
study, and they are known to be notoriously diffi-
cult to design correctly and hence a good challenge
[BAN89, Low96].

We use the agreement properties proposed
by Gavin Lowe for authentication protocols as
the formal definition of the authentication prop-
erty [Low97]. A protocol guarantees a participant
B agreement for a certain binding ~x if each time
a principal B completes a run of the protocol as a
responder using ~x, supposedly with A, then there is
a unique run of the protocol with the principal A as
initiator using ~x, supposedly with B.

In this section, we first discuss the assumptions
we make in the case study. Then, we explain the
difficulties we encountered in the case study and
describe our enhancement techniques to overcome
the difficulties. Finally, we summarize the experi-
ment results and our findings.

3.1 Assumptions

We initially analyzed how many first messages
the initiator A can send, with a given depth
of the message tree. Subsequently, we refer
to the two protocol principals as the initiator
A and the responder B. Initially the initiator
knows the following atomic message components:
A;B;KA;K

�1

A
;KB ; NA. With a message depth

of 4 the initiator can generate about one thousand
messages; and with a depth of 6, it can generate
about 8 million messages. If a two-party mutual au-
thentication protocol uses three rounds, considering
1000 possible messages in each round would leave
us with 10

9 protocols. A protocol screener which
analyzes 20 protocols per second, would take over
1 year.

After the initial estimate, we decide to make cer-
tain assumptions to keep the protocol space small.
We do not intend to prove that these assumptions do
not eliminate the potential optimal protocol. But
we believe these assumptions are intuitively rea-
sonable. We list all the assumptions we make in
the case study as the following:

� Message components are typed. This allows
any participant to distinguish a nonce from a

principal name, for example.

� In any concatenated message, there are no re-
dundant message components, i.e., NA; NA.

� No initial keys are sent in a message, since it
does not make sense to send a private key, and
we assume every principal knows all the pub-
lic keys. Session keys generated during the
protocol run do not fall into this category of
authentication protocols.

� We assume that the initiator’s name needs to
be in the first message in a understandable
format to the responder, so that the respon-
der knows who to reply to. (This assumption
might not be necessary when the initiator and
the responder have a link between them that
is only used to communicate between the two
parties, although this case is not very general
so we do not consider it here.)

� We do not consider permutations of the mes-
sage components of a concatenated message.

The last point reduces the protocol space tremen-
dously. Unfortunately, this optimization might re-
sult in missing a correct protocol. This case can
occur if the generated protocol is vulnerable to a
specific replay attack, where a message of round
i can be replayed for another message of round j

(i 6= j). In our current implementation of APG,
the protocol is rejected and no permutation of the
message components is considered. In the future,
however, we could detect this case and try to repair
the protocol through a message reordering.

3.2 Adding the Pruning Algorithm to the
Protocol Generator

As we mentioned before, a naı̈ve approach gener-
ates a large number of uninteresting candidate pro-
tocols. In Table 1 we show that the naı̈ve approach
generates tens of thousands of candidate protocols
in the real experiments. Generating a large number
of flawed candidate protocols risks to render APG
impractical, since the running time of the protocol
screener would be prohibitive. To deal with this



problem, we define a pruning algorithm for each
security property, which efficiently prunes the ma-
jority of the flawed protocols. This pruning algo-
rithm can either operate on the message level or
on the protocol level. A secrecy property, for in-
stance, can be verified on the message level, since
the secret value cannot be disclosed publically in
any message. In the case of the authentication
property, however, the pruning algorithm works on
the protocol level, since it is difficult to define a
message-level pruning algorithm which does not
violate completeness (i.e. preserves correct proto-
cols). To quickly discard flawed authentication pro-
tocols, we use an intruder module which checks for
impersonation and simple replay attacks. As Ta-
ble 1 shows, these two mechanisms reduce 98 per-
cent of the candidate protocols in real experiments.

Impersonation attempt

We use two intruders to attack each protocol. The
intruder II tries to impersonate the initiator A, and
the other intruder IR attempts to impersonate the
responder B. Both intruders have the public keys of
all the principals in their initial information. If sym-
metric encryption is used, the intruders certainly do
not obtain any of the secret keys. Then, II tries to
start a session with B impersonating as A. If II can
get B to finish his session believing it is talking to
A, then the protocol is simply broken. Similarly we
can check whether IR can impersonate as B to fin-
ish a session with A. The purpose for this attack is
simply to check whether correct and necessary en-
cryptions are used. It does not involve any replay
attack and multiple protocol run and hence is very
efficient.

Preventing simple replay attacks

Now we look at a simple replay attack. After a pro-
tocol session of an initiator A and a responder B,
an intruder I stores all the messages sent in the ses-
sion. Then, I tries to re-send the packets to B to
impersonate as A. If I can trick B to finish its ses-
sion believing it is talking to A, then the protocol
is flawed and is discarded. Similarly, I can launch

the simple replay attack to A as well. The purpose
for this attack is just to check whether nonces are
used in a correct way. The intruder does not try to
encrypt or decrypt messages or alter the received
messages and hence is very efficient.

3.3 Testing and Improving the Protocol
Screener

There are two main challenges for the protocol
screener. First, the protocol screener needs to be
sound. If the protocol screener outputs a flawed
protocol, the automatic protocol generation is not
trustworthy. Second, the protocol screener has to be
efficient because potentially the protocol generator
could generate thousands of candidate protocols.

Hence, one point worth mentioning is that this
research also serves a second purpose: a real test
for Athena. As far as shown in previous litera-
ture, most of the automatic tools for protocol anal-
ysis have only been tested with a handful testing
protocols and the testing protocols are mainly ex-
isting human-designed protocols. The candidate
protocols generated by the protocol generator are
purely machine-generated from a large protocol
space, and hence, could potentially contain more
misbehavior and difficult errors. Therefore, this is a
good test for the soundness of both design and im-
plementation of Athena. During the experiments,
the protocol generator generates thousands of can-
didate protocols. Therefore, this is also a good
test for the performance of Athena. As a sanity
check, we also manually analyzed the protocols
which Athena proved correct. We were not able to
find errors in these protocols. On average, Athena
verifies around 5 protocols per second, based on a
400 MHz Pentium II Linux workstation.

3.4 Summary of the Experiment Results

Effectiveness of the Reduction Techniques

In this experiment, we use a simple, linear met-
ric function. Each operation has a unit-cost.
The cost value of a protocol is the sum of the
costs of all the protocol operations and compo-
nents. We choose UNIT ELEMENT COST= 1



(cost to send a nonce or a principal name),
and NEW NONCE COST = 1 (cost to
generate a new nonce). For symmetric-key
protocols SYM ENCRYPTION COST = 3

(cost to encrypt a message with a symmet-
ric key), and for asymmetric-key protocols
ASYM ENCRYPTION COST = 3 (cost to
encrypt a message with an asymmetric key).

Table 1 shows the statistics for the protocol gen-
eration. The cost threshold is 10 for symmetric-key
authentication protocols and 14 for asymmetric-key
protocols. The column labeled “Generated” shows
how many protocols were initially generated with
the corresponding cost threshold without applying
the intruder reduction. The table depicts the ef-
fectiveness of the impersonator and replay attacks.
The column marked “I.A.” shows the number of
protocols that are eliminated by the impersonation
attack. Similarly, the “R.A.” column depicts the
number of protocols that are vulnerable to the re-
play attack. The combination of the two attacks
is quite efficient (shown in the “Combined” col-
umn) and leaves about 2% of candidate protocols
for the symmetric case and 0.2% for the asymmet-
ric case (shown in the “Candidate” column). The
running time for the protocol generation is on the
order of 1 second for every 2000 protocols gen-
erated which includes the pruning algorithm (this
number is based on our Java implementation, exe-
cuted by the JVM of the Sun JDK 1.1.7, running on
a 400 MHz Pentium II Linux workstation).

Our Findings of the Protocols

Continuing the experiment from the previous sub-
section, Athena analyzed the remaining candidate
protocols and output 2 correct symmetric-key pro-
tocols, which have the minimum cost 10. Among
the 110 asymmetric-key protocols, only 1 is correct
and has the minimal cost 14. The three protocols
are listed below:

� Symmetric-key mutual authentication proto-

cols.

Protocol : A! B : NA; A

B ! A : fNA; NB ; AgKAB

A! B : NB

Protocol : A ! B : NA; A

B ! A : fNA; NB ; BgKAB

A ! B : NB

The standard symmetric key mutual authen-
tication protocol using random numbers is
documented in ISO/IEC 9798 [Int93] as ISO
Symmetric-Key Three-Pass Mutual Authenti-
cation Protocol:

Protocol : A ! B : NA; A

B ! A : fNA; NB ; BgKAB

A ! B : fNA; NBgKAB

Our automatically-generated protocols are
clearly simpler than the one listed as ISO stan-
dard with respect of serving the same purpose
as mutual authentication protocol.

� Asymmetric-key mutual authentication proto-
cols.

Protocol : A ! B : fNA; AgKB

B ! A : fNA; NB ; BgKA

A ! B : NB

This protocol happens to be the same as the
fixed version of Needham-Schroeder proto-
col [Low96], except for that the last message
is not encrypted. This is because we do not
have the secrecy requirement in the security
property specification.

Although intuitive, another interesting result from
the statistics is that the number of correct proto-
cols comparing to the protocols that have the same
cost is very low. For example, in this case study,
the ratio of generated protocols to correct protocols
is around 10

�4. This ratio decreases when we in-
crease the cost threshold.



Type Max Cost Generated I.A. R.A. Combined Candidates Correct

Symmetric 10 19856 12098 18770 19449 407 2
Asymmetric 14 46518 46378 40687 46408 110 1

Table 1: Experiment Statistics for protocol generation. I.A. stands for impersonation attack and R.A. for
replay attack

Optimal Protocols

In this experiment, we experiment with two ex-
treme cases of the metric function to see how we
can benefit from the automatic protocol generation
to generate optimal protocols.

In the first case, we consider a smart-card,
which has a built-in cryptographic accelerator and
hence, can perform fast encryption/decryption op-
erations. But the smart-card has a slow link to
the card reader. In this case, we set the cost of
encryption much lower than the bandwidth cost
(UNIT ELEMENT COST in the specification).
With this metric function, we find one symmetric-
key authentication protocol with minimum cost:

Protocol : A! B : fNA; AgKAB

B ! A : fNA; NBgKAB

A! B : NB

In the second case, we consider a slow machine
with a fast link, where the cryptographic operations
are the bottleneck. In this case, we set the band-
width cost much lower than the encryption cost in
the metric function. Hence, we get the following
two optimal symmetric-key protocols.

Protocol : A! B : NA; A

B ! A : fNA; NB ; AgKAB

A! B : NB

Protocol : A! B : NA; A

B ! A : fNA; NB ; BgKAB

A! B : NB

It is interesting to notice that the two protocols in
the first case use one more encryption than the two
protocols in the second case, while the messages

are shorter. We can see a clear benefit from auto-
matic protocol generation, since the protocols gen-
erated suit the system requirements ideally.

For the asymmetric-key protocol, in both cases,
the automatic protocol generation finds the same
protocol as the optimal protocol. The resulting pro-
tocol is the same as the asymmetric-key protocol
listed in the previous subsection.

4 Discussion and Future Work

The approach of automatic protocol generation
sounds attractive, but it is initially unclear whether
it is feasible to generate meaningful and correct
protocols automatically. One goal of this research
is to try to answer this question. During the
case study, we were able to generate correct au-
thentication protocols automatically and some of
them were documented before and are currently in
use. The automatic protocol generation process for
authentication protocols is efficient, usually only
takes matter of seconds of running time. This illus-
trates that the approach of automatic protocol gen-
eration is feasible.

The case study is a proof of concept and shows
that automatic protocol generation can accomplish
simple tasks, but it says little about whether this
approach will scale up to more complicated pro-
tocols. Since the protocol space grows exponen-
tially with the number of parties and the number
of messages, we expect that the number of candi-
date protocols, generated by the protocol generator
in more complicated cases, can be orders of magni-
tudes larger than the numbers that appeared in the
experiments. It is an interesting research direction
to explore more powerful reduction techniques to
make this approach scale.

The case study mainly covers the authentication



security property. There are many other interesting
security properties including properties related to
electronic commerce, such as atomicity. We need
to extend our system to handle these properties. For
example, new reduction techniques are needed for
the protocol generator. Athena terminated and suc-
cessfully analyzed all the candidate protocols gen-
erated in the case study for authentication proto-
cols. But for protocols requiring other properties,
we might need to add new unreachability theorems
to enhance Athena.

Currently, in the protocol analysis, we assume
perfect encryption. The perfect-encryption as-
sumption states that a ciphertext can only be de-
crypted if the decryption key is present, and simi-
larly, a ciphertext can only be produced if the en-
cryption key is present. Researchers have been
exploring protocols which are resistant against
stronger attacks, such as dictionary attacks. It is
also interesting to try to strengthen the attacker
model in the current approach to produce stronger
protocols.

5 Conclusion

The main points of the paper are the following:

� We present the novel approach of automatic
generation of security protocols. With a
user-defined specification of security proper-
ties and the system requirements, including a
system metric function, APG generates min-
imal protocols that satisfy the specified secu-
rity properties and system requirements, min-
imal with respect to the metric function. This
approach is a significant improvement over the
current protocol design process, because it is
more reliable, efficient, and produces proto-
cols that suit the given system requirements
ideally.

� We perform a case study on the automatic
generation of two-party mutual authentica-
tion protocols for proof of concept and to
gain experience with APG. During the case
study, APG automatically generates protocols

that are simpler than the documented standard
ones. In two examples from the real world,
APG is also able to generate different optimal
protocols with respect to varying metric func-
tions, and hence, demonstrate its benefit.

6 Acknowledgments

We would like to thank Doug Tygar for his valu-
able help and support during this project. We also
thank George Necula and Sean Smith for their use-
ful suggestions and discussions. We are also great-
ful to the anonymous reviewers for their feedback
and suggestions.

References

[BAN89] M. Burrows, M. Abadi, and R. Need-
ham. A logic of authentication. Techni-
cal Report 39, DEC Systems Research
Center, February 1989.

[CGP99] Edmund Clarke, Orna Grumberg, and
Doron Peled. Model Checking. MIT
Press, 1999.

[CJM98] E.M. Clarke, S. Jha, and W. Marrero.
Using state space exploration and a nat-
ural deduction style message derivation
engine to verify security protocols. In In
Proceedings of the IFIP Working Con-
ference on Programming Concepts and
Methods (PROCOMET), 1998.

[DY89] D. Dolev and A. Yao. On the se-
curity of public key protocols. IEEE
Transactions on Information Theory,
29(2):198–208, March 1989.

[HT96] N. Heintze and J. Tygar. A model for se-
cure protocols and their compositions.
IEEE Transactions on Software Engi-
neering, 22(1):16–30, January 1996.

[Int93] International Standards Organization.
Information Technology - Security tech-
niques — Entity Authentication Mech-



anisms Part 3: Entity authentica-
tion using symmetric techniques, 1993.
ISO/IEC 9798.

[Low96] G. Lowe. Breaking and fixing the
Needham-Schroeder public-key proto-
col using FDR. In Tools and Algo-
rithms for the Construction and Analy-
sis of Systems, volume 1055 of Lecture
Notes in Computer Science, pages 147–
166. Springer-Verlag, 1996.

[Low97] G. Lowe. A hierarchy of authentica-
tion specifications. In Proceedings of
the 1997 IEEE Computer Society Sym-
posium on Research in Security and Pri-
vacy, pages 31–43, 1997.

[Mea94] C. Meadows. A model of computation
for the NRL protocol analyzer. In Pro-
ceedings of the 1994 Computer Secu-
rity Foundations Workshop. IEEE Com-
puter Society Press, June 1994.

[Mea95] C. Meadows. Formal verification of
cryptographic protocols: A survey. In
Advances in Cryptology - Asiacrypt
’94, volume 917 of Lecture Notes
in Computer Science, pages 133–150.
Springer-Verlag, 1995.

[Mil95] J. Millen. The Interrogator model.
In Proceedings of the 1995 IEEE
Symposium on Security and Privacy,
pages 251–260. IEEE Computer Soci-
ety Press, 1995.

[MMS97] J. C. Mitchell, M. Mitchell, and
U. Stern. Automated analysis of crypto-
graphic protocols using mur'. In Pro-
ceedings of the 1997 IEEE Symposium
on Security and Privacy. IEEE Com-
puter Society Press, 1997.

[RN95] Stuart Russell and Peter Norvig. Artifi-
cial Intelligence: A Modern Approach.
Prentice Hall Series in Artificial Intelli-
gence, 1995.

[Son99] Dawn Song. Athena: An automatic
checker for security protocol analysis.
In Proceedings of the 12th Computer
Science Foundation Workshop, 1999.

[THG98] F.Javier Thayer, Jonathan C. Herzog,
and Joshua D. Guttman. Strand spaces:
Why is a security protocol correct? In
Proceedings of 1998 IEEE Symposium
on Security and Privacy, 1998.

[WL93] T. Y. C. Woo and S. S. Lam. A semantic
model for authentication protocols. In
Proceedings of the IEEE Symposium on
Research in Security and Privacy, 1993.


