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Summary. We propose a primitive, called Pioneer, as a first step towards verifiable code exe-

cution on untrusted legacy hosts. Pioneer does not require any hardware support such as secure

co-processors or CPU-architecture extensions. We implement Pioneer on an Intel Pentium IV

Xeon processor. Pioneer can be used as a basic building block to build security systems. We

demonstrate this by building a kernel rootkit detector.
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1 Introduction

Obtaining a guarantee that a given code has executed untampered on an untrusted

legacy computing platform has been an open research challenge. We refer to this as

the problem of . An untrusted computing platform can tamper with code execution

in at least three ways: 1) by modifying the code before invoking it; 2) executing

alternate code; or 3) modifying execution state such as memory or registers when the

code is running.
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In this chapter, we propose a software-based primitive called Pioneer6 as a first

step towards addressing the problem of verifiable code execution on legacy comput-

ing platform without relying on secure co-processors or CPU architecture extensions

such as secure virtualization support. Pioneer is based on a challenge-response pro-

tocol between an external trusted entity, called the dispatcher, and an untrusted com-

puting platform, called the untrusted platform. The dispatcher communicates with

the untrusted platform over a communication link, such as a network connection.

After a successful invocation of Pioneer, the dispatcher obtains assurance that: 1) an

arbitrary piece of code, called the executable, on the untrusted platform is unmodi-

fied; 2) the unmodified executable is invoked for execution on the untrusted platform;

and 3) the executable is executed untampered, despite the presence of malicious soft-

ware on the untrusted platform.

To provide these properties, we assume that the dispatcher knows the hardware

configuration of the untrusted platform, and that the untrusted platform cannot col-

lude with other devices during verification. We also assume that the communication

channel between the dispatcher and the untrusted platform provides the property of

message-origin authentication, i.e., the communication channel is configured so that

the dispatcher obtains the guarantee that the Pioneer packets it receives originate

from the untrusted platform. Furthermore, to provide the guarantee of untampered

code execution, we assume that the executable is self-contained, not needing to in-

voke any other software on the untrusted platform, and that it can execute at the

highest processor privilege level with interrupts turned off.

The dispatcher uses Pioneer to dynamically establish a trusted computing base

on the untrusted platform, called the . All code contained in the dynamic root of

trust is guaranteed to be unmodified and is guaranteed to execute in an untampered

execution environment. Once established, the dynamic root of trust measures the in-

tegrity of the executable and invokes the executable. The executable is guaranteed

to execute in the untampered execution environment of the dynamic root of trust. In

Pioneer, the dynamic root of trust is instantiated through the verification function,

a that computes a checksum over its own instructions. The checksum computation

slows down noticeably if the adversary tampers with the computation. Thus, if the

dispatcher receives the correct checksum from the untrusted platform within the ex-

pected amount of time, it obtains the guarantee that the verification function code on

the execution platform is unmodified.

Pioneer can be used as a basic primitive for developing security applications.

We illustrate this by designing a . Our rootkit detector uses a software-based kernel

integrity monitor. Instead of using rootkit signatures or low level filesystem scans to

find files hidden by a rootkit, our kernel integrity monitor computes periodic hashes

of the kernel code segment and static data structures to detect unauthorized kernel

changes. The trusted computer uses Pioneer to obtain a guarantee that the kernel

integrity monitor is unmodified and runs untampered. When implemented on version

6 We call our primitive Pioneer because it can be used to instantiate a trusted base on an

untrusted platform.
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2.6 of the Linux kernel, our rootkit detector was able to detect all publically-known

rootkits for this series of the Linux kernel.

An important property of Pioneer is that it enables [21]. Code attestation allows

a trusted entity, known as the verifier, to verify the software stack running on another

entity, known as the attestation platform. The verifier and the attestation platform

are usually different physical computing devices. A measurement agent on the at-

testation platform takes integrity measurements of the platform’s software stack and

sends them to the verifier. The verifier uses the integrity measurements obtained from

the attestation platform to detect modifications in the attestation platform’s software

stack.

The Trusted Computing Group (TCG) has released standards for secure comput-

ing platforms, based on a tamper-resistant chip called the Trusted Platform Module

(TPM) [24]. All code is measured before it is loaded and the measurements are stored

inside the TPM. In response to an attestation request, the attestation platform sends

the load-time measurements to the verifier. The verifier can the load-time measure-

ments to obtain the guarantee of load-time attestation, whereby the verifier obtains a

guarantee of what code was loaded into the system memory initially.

The load-time attestation mechanism proposed by the TCG standards has two

disadvantages: 1) it requires hardware extensions to the attestation platform in the

form of a TPM chip and is hence not suitable for legacy systems, and 2) the mech-

anism is not field upgradable using software means. It is not possible to update the

software running on the TPM using software methods. The only way to update the

TPM software is to physically replace the TPM. TPMs are designed this way to

prevent an adversary from loading malicious software into the TPM via the update

mechanism. However, this also means that whenever the cryptographic primitives

used by the TPM are compromised or any vulnerabilities are found in the TPM soft-

ware, the only way to re-secure already deployed systems is to physically replace

their hardware.

The software-based code attestation provided by Pioneer does not require any

hardware extensions to the attestation platform. The verifier depends on Pioneer to

guarantee the verifiably correct execution of the measurement agent. Pioneer-based

code attestation has three main advantages: 1) it can be updated using software meth-

ods if the underlying primitives are compromised, 2) it works on legacy systems that

lack secure co-processors or other hardware enhancements to protect the measure-

ment agent from a malicious attestation platform, and 3) it provides the property of

run-time attestation, i.e., the verifier can verify the integrity of software running on

the attestation platform at the present time. Run-time attestation provides a stronger

guarantee than the TCG-based load-time attestation, since software can be compro-

mised by dynamic attacks, such as buffer overflows, after software is loaded into

memory.

The chapter is organized as follows. Section 2 describes the problem we address,

our assumptions, and attacker model. In Section 3, we give an overview of Pioneer.

We then describe the design of the verification function and its implementation on

the Intel Pentium IV Xeon processor in Sections 4 and 5, respectively. Section 6 de-



4 Seshadri et al.

scribes our kernel rootkit detector. We discuss related work in Section 7 and conclude

in Section 8.

2 Problem Definition, Assumptions & Attacker Model

In this section, we describe the problem we address, discuss the assumptions we

make, and describe our attacker model.

2.1 Problem Definition

We define the problem of , in which the dispatcher wants a guarantee that some

arbitrary code has executed untampered on an untrusted external platform, even in

the presence of malicious software on the untrusted platform.

The untrusted platform has a self-checking function, called the verification func-

tion. The dispatcher invokes the verification function by sending a challenge to the

untrusted platform. The verification function returns a checksum to the dispatcher.

The dispatcher has a copy of the verification function and can independently verify

the checksum. If the checksum returned by the untrusted platform is correct and is

returned within the expected time, the dispatcher obtains the guarantee that a dy-

namic root of trust exists on the untrusted platform. The code in the dynamic root

of trust measures the executable, sends the measurement to the dispatcher, and in-

vokes the executable. The executable runs in an untampered execution environment,

which was set up as part of instantiating the dynamic root of trust. The dispatcher

can verify the measurement since it has a copy of the executable. Taken together, the

correctness of the checksum and correctness of the executable measurement provide

the guarantee of verifiable code execution to the dispatcher.

Even if malicious software runs on the untrusted platform, it cannot tamper with

the execution of the executable. The adversary can perform an active DoS attack

and thwart Pioneer from being run at all. However, the adversary cannot cheat by

introducing a false negative, where the correct checksum value has been reported

within the expected time to the dispatcher, without the correct code executing on the

untrusted platform.

2.2 Assumptions

We assume that the dispatcher knows the exact hardware configuration of the un-

trusted platform, including the CPU model, the CPU clock speed, and the memory

latency. We also assume that the CPU of the untrusted platform is not overclocked.

In addition, the untrusted platform has a single CPU, that does not have support for

Symmetric Multi-Threading (SMT). For the x86 architecture, we also assume that

the adversary does not generate a System Management Interrupt (SMI) on the un-

trusted platform during the execution of Pioneer.

We assume the communication channel between the dispatcher and the untrusted

platform provides message-origin authentication i.e., the dispatcher is guaranteed
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that all Pioneer packets it receives originate at the untrusted platform. Also, we as-

sume that the untrusted platform can only communicate with the dispatcher during

the time Pioneer runs. Equivalently, the dispatcher can detect the untrusted platform

attempting to contact other computing platforms. We make this assumption to elim-

inate the proxy attack, where the untrusted platform asks a faster computing device

(proxy), to compute the checksum on its behalf.

Assuming that the untrusted platform has only one wired communication inter-

face, we can provide message-origin authentication and eliminate the proxy attack

by physically connecting the untrusted platform to dispatcher with a cable. Also, if

the untrusted platform can only communicate over a Local Area Network (LAN),

the network administrators can configure the network switches such that any packets

sent by the untrusted platform will reach only the dispatcher.

2.3 Attacker Model

We assume an adversary who has complete control over the software of the untrusted

platform. In other words, the adversary has administrative privileges and can tamper

with all software on the untrusted platform including the OS. However, we assume

that the adversary does not modify the hardware on the untrusted platform. For exam-

ple, the adversary does not load malicious firmware onto peripheral devices such as

network cards or disk controllers, or replace the CPU with a faster one. In addition,

the adversary does not perform DMA-based attacks like scheduling a DMA-write

causing a benign peripheral device to overwrite the executable between the time of

measurement and time of invocation.

3 Pioneer Overview

In this section, we give an overview of the verification function and describe the

challenge-response protocol used to set up a dynamic root of trust on the execution

platform and to obtain the guarantee of verifiable code execution.

3.1 The Verification Function

The verification function is the central component of the Pioneer system. It is re-

sponsible for performing an integrity measurement on the executable, setting up an

execution environment for the executable that ensures untampered execution, and in-

voking the executable. As Figure 1 shows, the verification function has three parts: a

checksum code, a hash function and a send function.

Checksum code. The checksum code computes a checksum over the entire verifica-

tion function, and sets up an execution environment in which the send function, the

hash function and the executable are guaranteed to run untampered by any malicious

software on the untrusted platform. The checksum code computes a fingerprint of

the verification function, i.e., if even a single byte of the verification function code
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Fig. 1. Overview of Pioneer. The numbers represent the temporal ordering of events.

is different, the checksum will be different with a high probability. Thus, a correct

checksum provides a guarantee to the dispatcher that the verification function code

is unmodified. However, an adversary could attempt to manipulate the checksum

computation to forge the correct checksum value in spite of having modified the ver-

ification function. For example, the adversary could detect when the checksum code

reads the altered memory locations and redirect the read to other memory locations

where the adversary has stored the correct values. To detect such manipulations,

we construct the verification function such that if an adversary tries to manipulate

the checksum computation, the computation time will noticeably increase. Thus, a

correct checksum obtained within the expected amount of time is a guarantee to the

dispatcher that the verification function code on the untrusted platform is unmodified

and that there is an environment for untampered execution on the untrusted platform.

In other words, the dispatcher obtains the guarantee that there is a dynamic root of

trust on the untrusted platform.

Hash function. We use SHA-1 as the hash function to perform the integrity mea-

surement of the executable. Although the collision resistance property of SHA-1 has

been compromised, we rely on the second-preimage collision resistance property for

which SHA-1 is still considered secure [25]. To achieve this property, we design the

hash function so that it computes the hash of the executable as a function of a nonce

that is sent by the dispatcher. Thus, the adversary cannot take advantage of the com-

promised collision resistance property of SHA-1 to create to two different copies of

the executable both of which have the same hash value. After the measurement, the

hash function invokes the executable.

Send function. The send function returns the checksum and integrity measurement

to the dispatcher over the communication link.
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3.2 The Pioneer Protocol

The dispatcher uses a challenge-response protocol to obtain the guarantee of veri-

fiable code execution on the untrusted platform. The protocol has two steps. First,

the dispatcher obtains an assurance that there is a dynamic root of trust on the un-

trusted platform. Second, the dispatcher uses the dynamic root of trust to obtain the

guarantee of verifiable code execution.

1. D : t1← current time,nonce
R
←{0,1}n

D→ P : 〈nonce〉
2. P : c← Checksum(nonce,P)
3. P→ D : 〈c〉

D : t2← current time

if (t2− t1 > ∆t) then exit with failure

else verify checksum c

4. P : h← Hash(nonce,E)
5. P→ D : 〈h〉

D : verify measurement result h

6. P : transfer control to E

7. E→ D : 〈result (optional)〉

Fig. 2. The Pioneer protocol. The numbering of events is the same as in Figure 1. D is the

dispatcher, P the verification function, and E is the executable.

We describe the challenge-response protocol in Figure 2. The dispatcher first

sends a challenge containing a random nonce to the untrusted platform, initiating the

checksum computation of the verification function. The untrusted platform uses the

checksum code that is part of the verification function to compute the checksum. The

checksum code also sets up an execution environment to ensure that the send func-

tion, the hash function and the executable can execute untampered. After computing

the checksum, the checksum code invokes the send function to return the checksum

to the dispatcher. The dispatcher has a copy of the verification function and can inde-

pendently verify the checksum. Also, since the dispatcher knows the exact hardware

configuration of the untrusted platform, the dispatcher knows the expected time du-

ration of the checksum computation. After the send function returns the checksum

to the dispatcher, it invokes the hash function. The hash function measures the ex-

ecutable by computing a hash over it as a function of the dispatcher’s nonce and

returns the hash of the executable to the dispatcher using the send function. The

dispatcher also has a copy of the executable and can independently verify the hash

value. The hash function then invokes the executable, which optionally returns the

execution result to the dispatcher.
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4 Design of the Checksum Code

In this section, we discuss the design of the checksum code that is part of the verifi-

cation function. The design is presented in a CPU-architecture-independent manner.

First, we discuss the properties of the checksum code, and explain how we achieve

these properties and what attacks these properties can prevent or help detect. Then,

we explain how we set up an execution environment in which the hash function, the

send function and the executable execute untampered. In Section 5, we shall describe

how to implement the checksum code on an Intel Pentium IV Xeon processor.

4.1 Required Properties of the Checksum Code

The checksum code has to be constructed such that adversarial tampering results in

either a wrong checksum or a noticeable time delay. We now describe the required

properties of the checksum code and explain how these properties achieve the goals

mentioned above.

Time-optimal implementation. Our checksum code needs to be the checksum code

sequence with the fastest running time; otherwise the adversary could use a faster

implementation of the checksum code and use the time saved to forge the checksum.

Unfortunately, it is an open problem to devise a proof of optimality for our checksum

function. Promising research directions to achieve a proof of optimality are tools

such as Denali [15] or superopt [10] that automatically generate the most optimal

code sequence for basic code blocks in a program. However, Denali currently only

optimizes simple code that can be represented by assignments, and superopt would

not scale to the code size of our checksum function.

To achieve a time-optimal implementation, we use simple instructions such as

add and xor that are challenging to implement faster or with fewer operations.

Moreover, the checksum code is structured as code blocks such that operations in

one code block are dependent on the result of operations in the previous code block.

This prevents operation reordering optimizations across code blocks.

Instruction sequencing to eliminate empty issue slots. Most modern CPUs are

superscalar, i.e., they issue multiple instructions in every clock cycle. If our check-

sum code does not have a sufficient number of issuable instructions every clock cy-

cle, then one or more instruction issue slots will remain empty. An adversary could

exploit an empty issue slot to execute additional instructions without overhead. To

prevent such an attack, we need to arrange the instruction sequence of the checksum

code so that the processor issue logic always has a sufficient number of issuable in-

structions for every clock cycle. Note that we cannot depend solely on the processor

out-of-order issue logic for this since it is not guaranteed that the out-of-order issue

logic will always be able to find a sufficient number of issuable instructions.

CPU state inputs. The checksum code is self-checksumming, i.e., it computes a

checksum over its own instruction sequence. The adversary can modify the checksum

code so that instead of checksumming its own instructions, the adversary’s check-

sum code computes a checksum over a correct copy of the instructions that is stored
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elsewhere in memory. We call this attack a memory copy attack. This attack is also

mentioned by Wurster et al. in connection with their attack on software tamperproof-

ing [28]. The adversary can perform the memory copy attack in three different ways:

1) as shown in Figure 3(b), the adversary executes an altered checksum function from

the correct location in memory, but computes the checksum over a correct copy of

the checksum function elsewhere in memory; 2) as shown in Figure 3(c), the adver-

sary does not move the correct checksum code, but executes its modified checksum

code from other locations in memory; or 3) the adversary places both the correct

checksum code and its modified checksum code in memory locations that are differ-

ent from the memory locations where the correct checksum code originally resided,

as shown in Figure 3(d).

It is obvious from the above description that when the adversary performs a

memory copy attack, either the adversary’s Program Counter (PC) value or the data

pointer value or both will differ from the correct execution. We cause the adversary

to suffer an execution time overhead for the memory copy attack by incorporating

both the PC and the data pointer value into the checksum. In a memory copy attack,

the adversary will be forced to forge one or both of these values in order to generate

the correct checksum, leading to an increase in execution time.

Both the PC and the data pointer hold virtual addresses. The verification func-

tion is assumed to execute from a range of virtual addresses that is known to the

dispatcher. As a result, the dispatcher knows the excepted value of the PC and the

data pointer and can compute the checksum independently.

Iterative checksum code. As Figure 4 shows, the checksum code consists of three

parts; the initialization code, the checksum loop and the epilog code. The most im-

portant part is the checksum loop. Each checksum loop reads one memory location

of the verification function and updates the running value of the checksum with the

memory value read, a pseudo-random value and some CPU state information. If the

adversary alters the checksum function but wants to forge a correct checksum output,

it has to manipulate the values of one or more of the inputs in every iteration of the

checksum code, causing a constant time overhead per iteration.

Strongly-ordered checksum function. A strongly-ordered function is a function

whose output differs with high probability if the operations are evaluated in a dif-

ferent order. A strongly-ordered function requires an adversary to perform the same

operations on the same data in the same sequence as the original function to obtain

the correct result. For example, if a1,a2,a3,a4 and a5 are random inputs, the func-

tion a1⊕ a2 + a3⊕ a4 + a5 is strongly-ordered. We use a strongly ordered function

consisting of alternate add and xor operations for two reasons. First, this prevents

parallelization, as at any step of the computation the current value is needed to com-

pute the succeeding values. For example, the correct order of evaluating the function

a1⊕ a2 + a3⊕ a4 is (((a1⊕ a2)+ a3)⊕ a4). If the adversary tries to parallelize the

computation by computing the function in the order ((a1⊕a2)+(a3⊕a4)), the out-

put will be different with high probability. Second, the adversary cannot change the

order of operations in the checksum code to try to speed up the checksum com-
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Fig. 3. Memory copy attacks. PC refers to the program counter, DP refers to the data pointer,

V.func refers to the verification function, and Mal. func refers to the malicious verification

function.

putation. For example, if the adversary evaluates a1 ⊕ a2 + a3 ⊕ a4 in the order

(a1⊕ (a2 +(a3⊕a4))), the output will be different with high probability.

In addition to using a strongly ordered checksum function, we also rotate the

checksum. Thus, the bits of the checksum change their positions from one iteration

of the checksum loop to the next, which makes our checksum function immune to

the attack against the Genuinity function that we point out in our paper [21].

Small code size. The size of the checksum loop needs to be small for two main rea-

sons. First, the code needs to fit into the processor cache to achieve a fast and deter-

ministic execution time. Second, since the adversary usually has a constant overhead

per iteration, the relative overhead increases with a smaller checksum loop.

Low variance of execution time. Code execution time on modern CPUs is non-

deterministic for a number of reasons. We want a low variance for the execution time

of the checksum code so that the dispatcher can easily find a threshold value for

the correct execution time. We leverage three mechanisms to reduce the execution

time variance of the checksum code. One, the checksum code executes at the highest

privilege CPU privilege level with all maskable interrupts turned off, thus ensuring

that no other code can run when the checksum code executes. Two, the checksum

code is small enough to fit completely inside the CPU’s L1 instruction cache. Also,

the memory region containing the verification function is small enough to fit inside

the CPU’s L1 data cache. Thus, once the CPU caches are warmed up, no more cache
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Fig. 4. Functional structure of the verification function. The checksum code consists of an

initialization code, the checksum loop which computes the checksum, and the epilog code

that runs after the checksum loop but before the send function.

misses occur. The time taken to warm up the CPU caches is a small fraction of the to-

tal execution time. As a result, the variance in execution time caused by cache misses

during the cache warm-up period is small. Three, we sequence the instructions of the

checksum code such that a sufficient number of issuable instructions are available at

each clock cycle. This eliminates the non-determinism due to out-of-order execution.

As we show in our results in Section 5.3, the combination of the above three factors

leads to a checksum code with very low execution time variance.

Keyed-checksum. To prevent the adversary from pre-computing the checksum be-

fore making changes to the verification function, and to prevent the replaying of old

checksum values, the checksum needs to depend on a unpredictable challenge sent

by the dispatcher. We achieve this in two ways. First, the checksum code uses the

challenge to seed a Pseudo-Random Number Generator (PRNG) that generates in-

puts for computing the checksum. Second, the challenge is also used to initialize the

checksum variable to a deterministic yet unpredictable value.

We use a T-function as the PRNG [18]. A T-function is a function from n-bit

words to n-bit words that has a single cycle length of 2n. That is, starting from any

n-bit value, the T-function is guaranteed to produce all the other 2n− 1 n-bit values

before starting to repeat the values. The T-function we use is x← x+(x2∨5)mod2n,

where ∨ is the bitwise-or operator. Since every iteration of the checksum code uses

one random number to avoid repetition of values from the T-function, we have to

ensure that the number of iterations of the checksum code is less than 2n when we

use an n-bit T-function. We use n = 64 in our implementation to avoid repetition.

It would appear that we could use a Message Authentication Code (MAC) func-

tion instead of the simple checksum function we use. MAC functions derive their

output as a function of their input and a secret key. We do not use a MAC function

for two reasons. First, the code of current cryptographic MAC functions is typically

large, which is against our goal of a small code size. Also, MAC functions have

much stronger properties than what we require. MAC functions are constructed to

be resilient to MAC-forgery attacks. In a MAC-forgery attack, the adversary knows



12 Seshadri et al.

a finite number of (data, MAC(data)) tuples, where each MAC value is generated

using the same secret key. The task of the adversary is to generate a MAC for a new

data item that will be valid under the unknown key. It is clear that we do not require

resilience to the MAC forgery attack, as the nonce sent by the Pioneer dispatcher is

not a secret but is sent in the clear. We only require that the adversary be unable to

pre-compute the checksum or replay old checksum values.

Pseudo-random memory traversal. The adversary can keep a correct copy of any

memory locations in the verification function it modifies. Then, at the time the check-

sum code tries to read one of the modified memory locations, the adversary can redi-

rect the read to the location where the adversary has stored the correct copy. Thus, the

adversary’s final checksum will be correct. We call this attack the data substitution

attack. To maximize the adversary’s time overhead for the data substitution attack,

the checksum code reads the memory region containing the verification function in

a pseudo-random pattern. A pseudo-random access pattern prevents the adversary

from predicting which memory read(s) will read the modified memory location(s).

Thus, the adversary is forced to monitor every memory read by the checksum code.

This approach is similar to our earlier work in SWATT [21].

We use the result of the Coupon Collector’s Problem to guarantee that the check-

sum code will read every memory location of the verification function with high

probability, despite the pseudo-random memory access pattern. If the size of the ver-

ification function is n words, the result of the Coupon Collector’s Problem states: if

X is the number of memory reads required to read each of the n words at least once,

then Pr[X > cn lnn] ≤ n−c+1. Thus, after O(n lnn) memory reads, each memory lo-

cation is accessed at least once with high probability.

4.2 Execution Environment for Untampered Code Execution

We now explain how the checksum code sets up an untampered environment for the

hash function, the send function, and the executable.

Execution at highest privilege level with maskable interrupts turned off. All

CPUs have an instruction to disable maskable interrupts. Executing this instruction

changes the state of the interrupt enable/disable bit in the CPU con-

dition codes (flags) register. The disable-maskable-interrupt instruction

can only be executed by code executing at the highest privilege level. The initial-

ization code, which runs before the checksum loop (see Figure 4), executes the

disable-maskable-interrupt instruction. If the checksum code is execut-

ing at the highest privilege level, the instruction execution proceeds normally and the

interrupt enable/disable flag in the flags register is set to the disable

state. If the checksum code is executing at lower privilege levels one of two things

can happen: 1) the disablemaskable-interrupts instruction fails and the

status of the interrupt enable/disable flag is not set to disable, or 2)

the disable-maskable-interrupt instruction traps into software that runs at

the highest privilege level. Case 2 occurs when the checksum code is running inside

a virtual machine (VM). Since we assume a legacy computer system where the CPU

does not have support for virtualization, the VM must be created using a software-

based virtual machine monitor (VMM) such as VMware [2]. The VMM internally
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maintains a copy of the flags register for each VM. When the VMM gains control as

a result of the checksum code executing the disable-maskable-interrupt

instructions, the VMM changes the state of the interrupt enable/disable

flag in the copy of the flags register it maintains for the VM and returns control to

the VM. This way, the actual CPU flags register remains unmodified.

We incorporate the flags register into the checksum in each iteration of the check-

sum loop. Note that the adversary cannot replace the flags register with an immediate

since the flags register contains status flags, such as the carry and zero flag, whose

state changes as a result of arithmetic and logical operations. If the adversary directly

tries to run the checksum code at privilege levels lower than the highest privilege

level, the final checksum will be wrong since the interrupt enable/disable

flag will not be set to the disable state. On the other hand, if the adversary tries to

cheat by using a software VMM, then each read of the flags register will trap into the

VMM or execute dynamically generated code, thereby increasing the adversary’s

checksum computation time. In this way, when the dispatcher receives the correct

checksum within the expected time, it has the guarantee that the checksum code ex-

ecuted at the highest CPU privilege level with all maskable interrupts turned off.

Since the checksum code transfers control to the hash function and the hash function

in turn invokes the executable, the dispatcher also obtains the guarantee that both

the hash function and executable will run at the highest CPU privilege level with all

maskable interrupts turned off.

Replacing exception handlers and non-maskable interrupt handlers. Unlike

maskable interrupts, exceptions and non-maskable interrupts cannot be temporar-

ily turned off. To ensure that the hash function and executable will run untampered,

we have to guarantee that the exception handlers and the handlers for non-maskable

interrupts are non-malicious. We achieve this guarantee by replacing the existing ex-

ception handlers and the handlers for non-maskable interrupts with our own handlers

in the checksum code. Since both the hash function and the executable operate at the

highest privilege level, they should not cause any exceptions. Also, non-maskable in-

terrupts normally indicate catastrophic conditions, such as hardware failures, which

are low probability events. Hence, during normal execution of the hash function and

the executable, neither non-maskable interrupts nor exceptions should occur. There-

fore, we replace the existing exception handlers and handlers for non-maskable in-

terrupts with code that consists only of an interrupt return instruction (e.g., iret on

x86). Thus, our handler immediately returns control to whatever code was running

before the interrupt or exception occurred.

An intriguing problem concerns where in the checksum code we should replace

the exception and non-maskable interrupt handlers. We cannot do this in the check-

sum loop since the instructions that replace the exception and non-maskable interrupt

handlers do not affect the value of the checksum. Thus, the adversary can remove

these instructions and still compute the correct checksum within the expected time.

Also, we cannot place the instructions to replace the exception and non-maskable

interrupt handlers in the initialization code, since the adversary can skip these in-

structions and jump directly into the checksum loop.
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Fig. 5. The stack trick. A part of the checksum (6 words long in the figure) is on the stack. The

stack pointer is randomly moved to one of the locations between the markers by each iteration

of the checksum code. Note that the stack pointer never points to either end of the checksum.

We therefore place the instructions that replace the handlers for exceptions and

non-maskable interrupts in the epilog code. The epilog code (see Figure 4) is exe-

cuted after the checksum loop is finished. If the checksum is correct and is computed

within the expected time, the dispatcher is guaranteed that the epilog code is un-

modified, since the checksum is computed over the entire verification function. The

adversary can, however, generate a non-maskable interrupt or exception when the

epilog code tries to run, thereby gaining control. For example, the adversary can set

an execution break-point in the epilog code. The processor will then generate a de-

bug exception when it tries to execute the epilog code. The existing debug exception

handler could be controlled by the adversary. This attack can be prevented by making

use of the stack to store a part of the checksum. The key insight here is that all CPUs

automatically save some state on the stack when an interrupt or exception occurs. If

the stack pointer is pointing to the checksum that is on the stack, any interrupt or ex-

ception will cause the processor to overwrite the checksum. We ensure that the stack

pointer always points to the middle of the checksum on the stack (see Figure 5) so

that part of the checksum will always be overwritten regardless of whether the stack

grows up or down in memory.

Each iteration of the checksum loop randomly picks a word of the stack-based

checksum for updating. It does this by moving the stack pointer to a random location

within the checksum on the stack, taking care to ensure that the stack pointer is never

at either end of the checksum (see Figure 5). The new value of the stack pointer is

generated using the current value of the checksum and the current value of the stack

pointer, thereby preventing the adversary from predicting its value in advance.

The epilog code runs before the send function, which sends the checksum back

to the dispatcher. Thereby, a valid piece of checksum is still on the stack when the

epilog code executes. Thus, the adversary cannot use a non-maskable interrupt or

exception to prevent the epilog code from running without destroying a part of the

checksum. Once the epilog code finishes running, all the exception handlers and the

handlers for non-maskable interrupts will have been replaced. In this manner, the

dispatcher obtains the guarantee that any code that runs as a result of an exception or

a non-maskable interrupt will be non-malicious.
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Fig. 6. The Intel Netburst Microarchitecture. The execution units are LU: Load Unit; SU: Store

Unit; AGU: Address Generation Unit; 2xALU: Double-speed Integer ALUs that execute two

µops each per cycle; ALU: Complex Integer ALU; FP: Floating Point, MMX, and SSE unit.

5 Checksum Code Implementation on the Netburst

Microarchitecture

In this section we describe our implementation of the checksum code on an Intel

Pentium IV Xeon processor with EM64T extensions. First, we briefly describe the

Netburst microarchitecture, which is implemented by all Intel Pentium IV proces-

sors, and the EM64T extensions. Next, we describe how we implement the checksum

code on the Intel x86 architecture. Section 5.3 shows the results of our experiments

measuring the time overhead of the different attacks. Finally, in Section 5.4 we dis-

cuss some points related to the practical deployment of Pioneer and extensions to the

current implementation of Pioneer.

5.1 The Netburst Microarchitecture and EM64T Extensions

In this section, we present a simplified overview of the Intel Netburst microarchitec-

ture that is implemented in the Pentium IV family of CPUs. We also describe the

EM64T extensions that add support for 64-bit addresses and data to the 32-bit x86

architecture.

Figure 6 shows a simplified view of the front-end and execution units in the

Netburst architecture. The figure and our subsequent description are based on a de-

scription of the Netburst microarchitecture by Boggs et al. [7].

The instruction decoder in Pentium IV CPUs can only decode one instruction

every clock cycle. To prevent the instruction decoder from creating a performance

bottleneck, the Netburst microarchitecture uses a trace cache instead of a regular L1

instructions cache. The trace cache holds decoded x86 instructions in the form of
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µops. µops are RISC-style instructions that are generated by the instruction decoder

when it decodes the x86 instructions. Every x86 instruction breaks down into one or

more dependent µops. The trace cache can hold up to 12000 µops and can issue up to

three µops to the execution core per clock cycle. Thus, the Netburst microarchitecture

is a 3-way issue superscalar microarchitecture.

The Netburst microarchitecture employs seven execution units. The load and

store units have dedicated Arithmetic Logic Units (ALU) called Address Generation

Units (AGU) to generate addresses for memory access. Two double-speed integer

ALUs execute two µops every clock cycle. The double speed ALUs handle simple

arithmetic operations like add, subtract and logical operations.

The L1-data cache is 16KB in size, 8-way set associative and has a 64 byte line

size. The L2 cache is unified (holds both instructions and data). Its size varies de-

pending on the processor family. The L2 cache is 8 way set associative and has a 64

byte line size.

The EM64T extensions add support for a 64-bit address space and 64-bit operands

to the 32-bit x86 architecture. The general purpose registers are all extended to 64

bits and eight new general purpose registers are added by the EM64T extensions. In

addition, a feature called segmentation7 allows a process to divide up its data seg-

ment into multiple logical address spaces called segments. Two special CPU registers

(fs and gs) hold pointers to segment descriptors that provide the base address and

the size of a segment as well as segment access rights. To refer to data in a particular

segment, the process annotates the pointer to the data with the segment register that

contains the pointer to the descriptor of the segment. The processor adds the base ad-

dress of the segment to the pointer to generate the full address of the reference. Thus,

fs:0000 would refer to the first byte of the segment whose descriptor is pointed to

by fs.

5.2 Implementation of Pioneer on x86

We now discuss how we implement the checksum code so that it has all the properties

we describe in Section 4.1. Then we describe how the checksum code sets up the

execution environment described in Section 4.2 on the x86 architecture.

Every iteration of the checksum code performs these five actions: 1) deriving the

next pseudo-random number from the T-function, 2) reading the memory word for

checksum computation, 3) updating the checksum, 4) rotating the checksum using a

rotate instruction, and 5) updating some program state such as the data pointer.

Except for reading the CPU state and our defense against the memory copy attack,

all properties are implemented on the x86 architecture exactly as we describe in

Section 4.1. Below, we describe the techniques we employ to obtain the CPU state

7 The EM64T extensions to the IA32 architecture support segmentation in a limited way.

When running in 64-bit mode, the CPU does not use the segment base values present in

segment descriptors pointed to by the cs, ds, ss and es segment registers.
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on the x86 architecture. We also describe how we design our defense against the

memory copy attacks.

CPU state inputs. The CPU state inputs, namely the Program Counter (PC) and the

data pointer, are included in the checksum to detect the three memory copy attacks.

On the x86 architecture with EM64T extensions, the PC cannot be used as an operand

for any instruction other than the lea instruction. So, if we want to include the

value of the PC in the checksum, the fastest way to do it is to use the following two

instructions: first, the lea instruction moves the current value of PC into a general

purpose register, and next, we incorporate the value in the general purpose register

into the checksum. Since the value of the PC is known in advance, the adversary

can directly incorporate the corresponding value into the checksum as an immediate.

Doing so makes the adversary’s checksum computation faster since it does not need

the lea instruction. Hence, on the x86 platform we cannot directly include the PC

in the checksum.

Instead of directly including the PC in the checksum, we construct the check-

sum code so that correctness of the checksum depends on executing a sequence of

absolute jumps. By including the jump target of each jump into the checksum, we

indirectly access the value of the PC.

5

jmp *reg

Block 2 

jmp *reg

jmp *reg

jmp *reg

Block 3

Block 1

1

Block 4

2

3

4

Fig. 7. Structure of the checksum code. There are 4 code blocks. Each block is 128 bytes in

size. The arrows show one possible sequence of control transfers between the blocks.

As Figure 7 shows, we construct the checksum code as a sequence of four code

blocks. Each code block generates the absolute address of the entry point of any of

the four code blocks using the current value of the checksum as a parameter. Both the

code block we are jumping from and the code block we are jumping to incorporate

the jump address in the checksum. The last instruction of code block jumps to the

absolute address that was generated earlier.

All of the code blocks execute the same set of instructions to update the check-

sum but have a different ordering of the instructions. Since the checksum function is
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strongly ordered, the final value of the checksum depends on executing the checksum

code blocks in the correct sequence, which is determined by the sequence of jumps

between the blocks.

The checksum code blocks are contiguously placed in memory. Each block is

128 bytes in size. The blocks are aligned in memory so that the first instruction of

each block is at an address that is a multiple of 128. This simplifies the jump target

address generation since the jump targets can be generated by appropriately masking

the current value of the checksum.

Memory copy attacks. Memory copy attacks are the most difficult attacks to de-

fend against on the x86 architecture, mainly for of three reasons: 1) the adversary

can use segmentation to have the processor automatically add a displacement to the

data pointer without incurring a time overhead; 2) the adversary can utilize mem-

ory addressing with an immediate or register displacement, without incurring a time

overhead because of the presence of dedicated AGUs in the load and the store execu-

tion units; and 3) the PC cannot be used like a general purpose register in instructions,

which limits our flexibility in designing defenses for the memory copy attacks.

We now describe how the adversary can implement the three memory copy at-

tacks on the x86 architecture and how we construct the checksum code so that the

memory copy attacks increase the adversary’s checksum computation time.

In the first memory copy attack shown in Figure 3(b), the adversary runs a mod-

ified checksum code from the correct memory location and computes the checksum

over a copy of the unmodified verification function placed elsewhere in memory.

This attack requires the adversary to add a constant displacement to the data pointer.

There are two ways the adversary can do this efficiently: 1) it can annotate all in-

structions that use the data pointer with one of the segment registers, fs or gs, and

the processor automatically adds the segment base address to the data pointer, or 2)

the adversary can use an addressing mode that adds an immediate or a register value

to the data pointer, and the AGU in the load execution unit will add the correspond-

ing value to the data pointer. However, our checksum code uses all sixteen general

purpose registers, so the adversary can only use an immediate to displace the data

pointer.

Neither of these techniques adds any time overhead to the adversary’s check-

sum computation. Also, both techniques retain the correct value of the data pointer.

Thus, this memory copy attack cannot be detected by including the data pointer in

the checksum. However, both these techniques increase the instruction length. We

leverage this fact in designing our defense against this memory copy attack. The seg-

ment register annotation adds one byte to the length of any instruction that accesses

memory, whereas addressing with immediate displacement increases the instruction

length by the size of the immediate. Thus, in this memory copy attack, the adver-

sary’s memory reference instructions increase in length by a minimum of one byte.

An instruction that reads memory without a segment register annotation or an imme-

diate displacement is 3 bytes long on the x86 architecture with EM64T extensions.

We place an instruction having a memory reference, such as add mem, reg, as

the first instruction of each of the four checksum code blocks. In each checksum
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code block, we construct the jump target address so that, the jump lands with equal

probability on either the first instruction of a checksum code block or at an offset

of 3 bytes from the start of a code block. In an unmodified code block, the second

instruction is at an offset of 3 bytes from the start of the block. When the adver-

sary modifies the code blocks to do a memory copy attack, the second instruction

of the block cannot begin before the 4th byte of the block. Thus, 50% of the jumps

would land in the middle of the first instruction, causing the processor to generate an

illegal opcode exception.

Additional
Instructions

Block 1Block 1

Block 2

Block 2

Block 3

Block 3

Block 4

Block 4

Fig. 8. Comparison of the code block lengths in the original verification function and an

adversary-modified verification function. The adversary moves its code blocks in memory

so that the entry points of its code blocks are at addresses that are a power of two.

To accommodate the longer first instruction, the adversary would move its code

blocks farther apart, as Figure 8 shows. The adversary can generate its jump target

addresses efficiently by aligning its checksum code blocks in memory in the follow-

ing way. The adversary places its code blocks on 256 byte boundaries and separates

its first and second instruction by 8 bytes. Then, the adversary can generate its jump

addresses by left-shifting the correct jump address by 1. We incorporate the jump

address into the checksum both before and after the jump. So, the adversary has to

left-shift the correct jump address by 1 before the jump instruction is executed and

restore the correct jump address by right-shifting after the jump is complete. Thus,

the adversary’s overhead for the first memory copy attack is the execution latency of

one left-shift instruction and one right-shift instruction.

In the second memory copy attack shown in Figure 3(c), the adversary keeps the

unmodified verification function at the correct memory location, but computes the

checksum using a modified checksum code that runs at different memory locations.

In this case, the entry points of the adversary’s code blocks will be different, so the

adversary would have to generate different jump addresses. Since we include the

jump addresses in the checksum, the adversary would also have to generate the cor-

rect jump addresses. Hence, the adversary’s checksum code blocks would be larger

than 128 bytes. As before, to accommodate the larger blocks, the adversary would
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Fig. 9. The layout of the stack on an x86 processor with EM64T extensions. Both checksum

pieces are 8 bytes long and are aligned on 16-byte boundaries. The empty regions are also 8

bytes long. The stack pointer is assigned at random to one of the two locations SP1 or SP2.

move its code blocks apart and align the entry points at 256 byte boundaries (Fig-

ure 8). Then, the adversary can generate its jump address by left-shifting the correct

jump address and by changing one or more bits in the resulting value using a logical

operation. To restore the correct jump address, the adversary has to undo the changes

either by loading an immediate value or by using a right-shift by 1 and a logical

operation. In any case, the adversary’s time overhead for this memory copy attack is

greater than the time overhead for first memory copy attack.

In the third memory copy attack shown in Figure 3(d), both the unmodified ver-

ification function and the adversary’s checksum code are not present at the correct

memory locations. Thus, this attack is a combination of the first and the second mem-

ory copy attacks. The adversary’s time overhead for this memory copy attack is the

same as the time overhead for the second memory copy attack.

Variable instruction length. The x86 Instruction Set Architecture (ISA) supports

variable length instructions. Hence, the adversary can reduce the size of the check-

sum code blocks by replacing one or more instructions with shorter variants that

implement the same operation with the same or shorter latency. The adversary can

use the space saved in this manner to implement the memory copy attacks without

its code block size exceeding 128 bytes. To prevent this attack, we carefully select

the instructions used in the checksum code blocks so that they are the smallest in-

structions able to perform a given operation with minimum latency.

Execution environment for untampered code execution. In order to get the guar-

antee of execution at the highest privilege level with maskable interrupts turned off,

the checksum code incorporates the CPU flags in the checksum. The flags register

on the x86 architecture, rflags, can only be accessed if it is pushed onto the stack.

Since we use to the stack to hold a part of the checksum, we need to ensure that

pushing the rflags onto the stack does not overwrite the part of the checksum that

is on the stack. Also, a processor with EM64T extensions always pushes the proces-

sor state starting at a 16-byte boundary on receiving interrupts or exceptions. Thus,

we need to make sure that the checksum pieces on the stack are aligned on 16-byte

boundaries so they will be overwritten when an interrupt or exception occurs.

Figure 9 shows the stack layout we use for x86 processors with EM64T exten-

sions. Our stack layout has checksum pieces alternating with empty slots. All four

elements are eight bytes in size. The checksum code moves the stack pointer so that

the stack pointer points either to location SP1 or to location SP2. On the x86 architec-
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ture, the stack grows downwards from high addresses to low addresses. To push an

item onto the stack, the processor first decrements the stack pointer and then writes

the item to the memory location pointed to by the stack pointer. With EM64T exten-

sions, pushes and pops normally operate on 8-byte data. Since the stack pointer is

always initialized to either SP1 or to SP2, a push of the rflags register will always

write the flags to one of the empty 8-byte regions. If an interrupt or exception were to

occur, the processor would push 40 bytes of data onto the stack, thereby overwriting

either checksum piece 1 or both checksum pieces.

We keep checksum pieces on the stack to prevent the adversary from getting

control through an exception or a non-maskable interrupt. However, the x86 archi-

tecture has a special non-maskable interrupt called System Management Interrupt

(SMI), which switches the processor into the System Management Mode (SMM).

The purpose of SMM is to fix chipset bugs and for hardware control.

The SMI does not save the processor state on the stack. So, it is not possible

to prevent the SMI by keeping checksum pieces on the stack. Since the SMI is a

special-purpose interrupt, we assume that it never occurs when the verification func-

tion runs. During our experiments, we found this assumption to be true all the time.

In Section 5.4, we discuss how we can extend the current implementation of Pioneer

to handle the SMI.

Description of verification function code. Figure 10 shows the pseudocode of one

code block of the verification function. The block performs six actions: 1) deriving

the next pseudo-random value from the T-function; 2) generating the jump address,

the stack pointer, and the data pointer using the current value of the checksum, 3)

pushing rflags onto the stack, 4) reading a memory location containing the veri-

fication function, 5) updating the checksum using the memory read value, previous

value of the checksum, the output of the T-function, the rflags register, and the

jump address, and 6) rotating the checksum using the rotate instruction.

The checksum is made up of twelve 64-bit pieces, ten in the registers and two on

the stack. The checksum code uses all sixteen general purpose registers.

Figure 11 shows the assembler code of one block of the verification function.

The code shown is not the optimized version but a verbose version to aid readability.

5.3 Experiments and Results

Any attack that the adversary uses has to be combined with a memory copy attack

because the adversary’s checksum code will be different from the correct checksum

code. Hence, the memory copy attack is the attack with the lowest overhead. Of the

three memory copy attacks, the first has the lowest time overhead for the adversary.

Hence, we implemented two versions of the checksum code using x86 assembly: a

legitimate version and a malicious version that implements the first memory copy

attack (the correct code plus two extra shift instructions).

Experimental setup. The dispatcher is a PC with a 2.2 GHz Intel Pentium IV pro-

cessor and a 3Com 3c905C network card, running Linux kernel version 2.6.11-8.

The untrusted platform is a PC with a 2.8 GHz Intel Pentium IV Xeon processor
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with EM64T extensions and an Intel 82545GM Gigabit Ethernet Controller, running

Linux kernel version 2.6.7. The dispatcher code and the verification function are im-

plemented inside the respective network card interrupt handlers. Implementing code

inside the network card interrupt handler enables both the dispatcher and the un-

trusted platform to receive the Pioneer packets as early as possible. The dispatcher

and the untrusted platform are on the same LAN segment.

Empty instruction issue slots. In Section 4.1, we mentioned that the checksum

code instruction sequence has to be carefully arranged to eliminate empty instruc-

tion issue slots. The Netburst Microarchitecture issues µops, which are derived from

decoding x86 instructions. Hence, to properly sequence the instructions, we need to

know what µops are generated by the instructions we use in the checksum code. This

information is not publically available. In the absence of this information, we try to

sequence the instructions through trial-and-error. To detect the presence of empty

instruction issue slots we place no-op instructions at different places in the code. If

there are no empty instruction issue slots, placing no-op instructions should always

increase the execution time of the checksum code. We found this assertion to be only

partially true in our experiments. There are places in our code where no-op instruc-

tions can be placed without increasing the execution time, indicating the presence of

empty instruction issue slots.

Determining number of verification function iterations. The adversary can try to

minimize the Network Round-Trip Time (RTT) between the untrusted platform and

dispatcher. Also, the adversary can pre-load its checksum code and the verification

function into the CPU’s L1 instruction and data caches respectively to ensure that it

does not suffer any cache misses during execution. We prevent the adversary from

using the time gained by these two methods to forge the checksum.

The theoretically best adversary has zero RTT and no cache misses, which is a

constant gain over the execution time of the correct checksum code. We call this

constant time gain as the adversary time advantage. However, the time overhead of

the adversary’s checksum code increases linearly with the number of iterations of

the checksum loop. Thus, the dispatcher can ask the untrusted platform to perform a

sufficient number of iterations so that the adversary’s time overhead is at least greater

than the adversary time advantage.

The expression for the number of iterations of the checksum loop to be performed

by the untrusted platform can be derived as follows. Let c be the clock speed of the

CPU, a be the time advantage of the theoretically best adversary, o be the adversary’s

overhead per iteration of the checksum loop represented in CPU cycles, and n is the

number of iterations. Then n >
c∗a
o

to prevent false negatives8 in the case of the

theoretically best adversary.

Experimental results. To calculate the time advantage of the theoretically best ad-

versary, we need to know the upper bound on the RTT and the time saved by pre-

warming the caches. We determine the RTT upper bound by observing the ping

latency for different hosts on our LAN segment. This gives us an RTT upper bound

8 A false negative occurs when Pioneer claims that the untrusted platform is uncompromised

when the untrusted platform is actually compromised.
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of 0.25 ms since all ping latencies are smaller than this value. Also, we calculate the

amount of time that cache pre-warming saves the adversary by running the checksum

code with and without pre-warming the caches and observing the running times us-

ing the CPU’s rdtsc instruction. The upper bound on the cache pre-warming time

is 0.0016 ms. Therefore, for our experiments we fix the theoretically best adversary’s

time advantage to be 0.2516 ms. The attack that has the least time overhead is the

first memory copy attack, which has an overhead of 0.6 CPU cycles per iteration of

the checksum loop. The untrusted platform has a 2.8 GHz CPU. Using these values,

we determine the required number of checksum loop iterations to be 1,250,000. To

prevent false positives due to RTT variations, we double the number of iterations to

2,500,000.

The dispatcher knows, r, the time taken by the correct checksum code to carry out

2,500,000 iterations. It also knows that the upper bound on the RTT, rtt. Therefore,

the dispatcher considers any checksum result that is received after time r+ rtt to be

late. This threshold is the adversary detection threshold.

We place the dispatcher at two different physical locations on our LAN seg-

ment. We run our experiments for 2 hours at each location. Every 2 minutes, the dis-

patcher sends a challenge to the untrusted platform. The untrusted platform returns

a checksum computed using the correct checksum code. On receiving the response,

the dispatcher sends another challenge. The untrusted platform returns a checksum

computed using the adversary’s checksum code, in response to this challenge. Both

the dispatcher and the untrusted platform measure the time taken to compute the two

checksums using the CPU’s rdtsc instruction. The time measured on the untrusted

platform for the adversary’s checksum computation is the checksum computation

time of the theoretically best adversary.

Figures 12 and 13 show the results of our experiments at the two physical loca-

tions on the LAN segment. Based on the results, we observe the following points:

1) even the running time of the theoretically best adversary is greater than the Ad-

versary Detection Threshold, yielding a false negative rate of 0%; 2) the checksum

computation time shows a very low variance, that we have a fairly deterministic run-

time; 3) we observe some false positives (5 out of 60) at location 2, which we can

avoid by better estimating the RTT.

We suggest two methods for RTT estimation. First, the dispatcher measures the

RTT to the untrusted platform just before it sends the challenge and assumes that

the RTT will not significantly increase in the few tens of milliseconds between the

time it measures the RTT and the time it receives the checksum packet from the

untrusted platform. Second, the dispatcher can take RTT measurements at coarser

time granularity, say every few seconds, and use these measurements to update its

current value of the RTT.
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//Input: y number of iterations of the verification procedure

//Output: Checksum C, (10 segments in registers C0 to C9,

// and 2 on stack Cstk1
, Cstk2

, each being 64 bits)

//Variables: [code start,code end] - bounds of memory address under verification

// daddr - address of current memory access

// x - value of T function

// l - counter of iterations

// r f lags - flags register

// jump target[1 : 0] - determines which code block to execute

// temp - temp register used to compute checksum

daddr← code start

for l = y to 0 do

Checksum 1

//T function updates x where 0≤ x≤ 2n

x← x+(x2∨5) mod 2n

//Read r f lags and incorporate into daddr

daddr← daddr+ r f lags

//Read from memory address daddr, calculate checksum.Let C be the checksum vector

and j be the current index.

jump target← not( jump target)+ loop ctr⊕ x

temp← x⊕C j−1 +daddr⊕C j

if jump target[1] == 0and jump target[0] == 0 then

C j←C j +mem[daddr+8]+ jump target

else

C j←C j + jump target

end if

C j−1←C j−1 + temp

Cstk←Cstk⊕ jump target

C j−2←C j−2 +C j

C j−3←C j−3 +C j−1

C j← rotate right(C j)
//Update daddr to perform pseudo-random memory traversal

daddr← daddr+ x

//Update rsp and jump target

rsp[1]←C j[1]
j← ( j+1) mod 11

jump target[8 : 7]←C j[8 : 7]
jump target[1 : 0]← temp[0], temp[0]
if jump target[8 : 7] = 0 then

goto Checksum 1

else if jump target[8 : 7] = 1 then

goto Checksum 2

else if jump target[8 : 7] = 2 then

goto Checksum 3

else if jump target[8 : 7] = 3 then

goto Checksum 4

end if

Checksum 2

...

Checksum 3

...

Checksum 4

...

end for

Fig. 10. Verification Function Pseudocode
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Assembly Instruction Explanation

//Read memory

add (rbx), r15 memory read

sub 1, ecx decrement loop counter

add rdi, rax x← (x∗ x) OR 5+ x

//modifies jump target register rdx and rdi

xor r14, rdi rdi← rdi⊕C j−1

add rcx, rdx rdx← rdx+ loopctr

add rbx, rdi rdi← rdi+daddr

xor rax, rdx input x (from T function)

xor r15, rdi rdi← rdi⊕ c j

//modifies checksum with rdx and rdi

add rdx, r15 modify checksum C j

add rdi, r14 modify checksum C j−1

xor rdx, -8(rsp) modify checksum on stack

xor r15, r13 C j−2←C j−2⊕C j

add r14, r12 C j−3←C j−3 +C j−1

rol r15 r15← rotate[r15]
//Pseudorandom memory access

xor rdi, rbx daddr← daddr⊕ randombits

and mask1, ebx modify daddr

or mask2, rbx modify daddr

//Modify stack pointer and target jump address

xor rdx, rsp Modify rsp

and mask3, esp create rsp

or mask4, rsp create rsp

and 0x180, edx jump target← r15

and 0x1, rdi rdi← rdi AND 0x1

add rdi, rdx rdx← rdx+ rdi

add rdi, rdi shift rdi

add rdi, rdx rdx← rdx+ rdi

or mask, rdx create jump target address

xor rdx, r15 add jump target address into checksum

//T function updates x, at rax

mov rax, rdi save value of T function

imul rax, rax x = x*x

or 0x5, rax x← x∗ x OR 5

//Read flags

pushfq push rflags

add (rsp), rbx daddr← daddr+ r f lags

jmp *rdx jump to 1 of the 4 blocks

Fig. 11. Checksum Assembly Code
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Fig. 12. Results from Location 1.
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Fig. 13. Result from Location 2.

5.4 Discussion

We now discuss virtual-memory-based attacks, issues concerning the practical de-

ployment of Pioneer, and potential extensions to the current implementation of Pio-

neer to achieve better properties.

Implementing the verification function as SMM module. The System Manage-

ment Mode (SMM) is a special operating mode present on all x86 CPUs. Code

running in the SMM mode runs at the highest CPU privilege level. The execution

environment provided by SMM has the following properties that are useful for im-

plementing Pioneer: 1) all interrupts, including the Non-Maskable Interrupt (NMI)
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and the System Management Interrupt (SMI), and all exceptions are disabled by

the processor, 2) paging and virtual memory are disabled in SMM, which precludes

virtual-memory-based attacks, and 3) real-mode style segmentation is used, making

it easier to defend against the segmentation-based memory copy attack.

Virtual-memory-based attacks. There are two ways in which the adversary might

use virtual memory to attack the verification function: 1) the adversary could cre-

ate memory protection exceptions by manipulating the page table entries and obtain

control through the exception handler, or 2) the adversary could perform a memory

copy attack by loading the instruction and data Translation Lookaside Buffer (TLB)

entries that correspond to the same virtual address with different physical addresses.

Since we use the stack to hold checksum pieces during checksum computation and

later replace the exception handlers, the adversary cannot use memory protection

exceptions to gain control.

The adversary can, however, use the CPU TLBs to perform a memory copy at-

tack. Wurster et al. discuss how the second attack can be implemented on the Ultra-

Sparc processor [28]. Their attack can be adapted to the Intel x86 architecture in the

context of Pioneer as follows: 1) the adversary loads the page table entry correspond-

ing to the virtual address of the verification function with the address of the physical

page where the adversary keeps an unmodified copy of the verification function,

2) the adversary does data accesses to virtual addresses of the verification function,

thereby loading the its mapping into the CPU’s D-TLB, and 3) the adversary replaces

the page table entry corresponding to the virtual address of the verification function

with the address of the physical page where the adversary keeps the modified check-

sum code is kept. When the CPU starts to execute the adversary’s checksum code,

it will load its I-TLB entry with the mapping the adversary set up in step 3. Thus,

the CPU’s I-TLB and D-TLB will have different physical addresses corresponding

to the same virtual address and the adversary will be able to perform the memory

copy attack.

The current implementation of Pioneer does not defend against this memory copy

attack. However, a promising idea to defend against the attack is as follows. We

create virtual address aliases to the physical pages contaning the verification function

so that the number of aliases is greater than the number of entries in the CPU’s TLB.

Each iteration of the checksum code loads the PC and the data pointer with two of the

virtual address aliases, selected in a pseudo-random manner. If the checksum loop

performs a sufficient number of iterations so that with high probability all virtual

address aliases are guaranteed to be used then the CPU will eventually evict the

adversary’s entry from the TLB.

The adversary can prevent its entry from being evicted from the TLB by not using

all the virtual address aliases. However, in this case, the adversary will have to fake

the value of the PC and the data pointer for the unused virtual address aliases. Since

each iteration of the checksum code selects the virtual address aliases with which to

load the PC and the data pointer in a pseudo-random manner, the adversary will have

to check which aliases are used to load the PC and the data pointer in each iteration of

the checksum code. This will increase the adversary’s checksum computation time.
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The TLB-based memory copy attack can also be prevented by implementing the

verification function as an SMM module. Since the CPU uses physical addresses in

SMM and all virtual memory support is disabled, the memory copy attack that uses

the TLBs is not possible anymore.

Why use Pioneer instead of trusted network boot? In trusted network boot, the

BIOS on a host fetches the boot image from a trusted server and executes the boot

image. In order to provide the guarantee of verifiable code execution, trusted network

boot has to assume that: 1) the host has indeed rebooted; 2) the correct boot image has

indeed reached the host; and 3) the BIOS will correctly load and transfer control to

the boot image. To guarantee that the BIOS cannot be modified by the adversary, the

BIOS will have to stored on an immutable storage medium like Read-Only Memory

(ROM). This makes it impossible to update the BIOS without physically replacing

the ROM, should any vulnerability be discovered in the BIOS code.

Pioneer does not require any code to reside in immutable storage media, thereby

making it easy to update. Also, Pioneer provides the property of verifiable code ex-

ecution without having to reboot the untrusted platform, without having to transfer

code over the network and without relying on any unverified software on the un-

trusted platform to transfer control to the executable.

MMX and SSE instructions. x86 processors provide support for Single Instruction

Multiple Data (SIMD) instructions in the form of MMX and SSE technologies [13].

These instructions can simultaneously perform the same operation on multiple data

items. This is faster than operating on the data items one at a time. However, the

adversary cannot use the MMX or SSE instructions to speed up its checksum code,

since we design the checksum code to be non-parallelizable.

Pioneer and TCG. A promising approach for reducing exposure to network RTT

and for achieving a trusted channel to the untrusted platform is to leverage a Trusted

Platform Module (TPM). The TPM could issue the challenge and time the execution

of the checksum code and return the signed result and computation time to the dis-

patcher. However, this would require that the TPM be an active device, whereas the

current generation of TPMs are passive.

Directly computing checksum over the executable. Why do we need a hash func-

tion? Why can the checksum code not simply compute the checksum over the exe-

cutable? While this simpler approach may work in most cases, an adversary could ex-

ploit redundancy in the memory image of the executable to perform data-dependent

optimizations. A simple example is a executable image that contains a large area ini-

tialized to zeros, which allows the adversary to suppress memory reads to that region

and also to suppress updating the checksum with the memory value read (in case of

add or xor operations).

skinit and senter. AMD’s Pacifica technology has an instruction called skinit,

which can verifiably transfer control to an executable after measuring it [4]. Intel’s

LaGrande Technology (LT) has a similar instruction, senter [12]. Both senter

and skinit also set up an execution environment in which the executable that is in-

voked is guaranteed to execute untampered. These instructions can be used to start-up
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a Virtual Machine Monitor (VMM) or a Secure Kernel (SK). Both instructions rely

on the TCG load-time attestation property to guarantee that the SK or the VMM is

uncompromised at start-up. Unlike Pioneer, however, neither Pacifica nor LT can be

used on legacy computing systems.

Implementing Pioneer on other architectures. We use the x86 architecture as

our implementation platform example for the following reasons: 1) since x86 is the

most widely deployed architecture today, our implementation of Pioneer on x86 can

immediately be used on many legacy systems; and 2) due to requirements of back-

ward compatibility, the x86 is a complex architecture, with a non-orthogonal ISA.

Therefore, implementing Pioneer on the x86 architecture is more challenging than

implementing it on RISC architectures with more orthogonal instruction sets, such

as the MIPS, and the Alpha.

Verifying the timing overhead. Pioneer relies on the execution time of the check-

sum code. Therefore, the dispatcher has to know ahead of time what the correct

checksum computation time should be for the untrusted platform. The checksum

computation time depends on the CPU of the untrusted platform. There are two ways

by which the dispatcher can find out the correct checksum computation time: 1) if

the dispatcher has access to a trusted platform having the same CPU as the untrusted

platform, or a CPU simulator for the untrusted platform, it can run experiments to

get the correct execution time; or 2) we can publish the correct execution time for

different CPUs on a trusted web-site.

6 Applications

In this section, we first discuss the types of applications that can leverage Pioneer

to achieve security, given the assumptions we make. Then, we describe the kernel

rootkit detector, the sample application we have built using Pioneer.

6.1 Potential Security Applications

Pioneer can be applied to build security applications that run over networks con-

trolled by a single administrative entity. On such networks, the network administrator

could configure the network switches so that an untrusted host can only communi-

cate with the dispatcher during the execution of Pioneer. This provides the property

of message-origin-authentication while eliminating proxy attacks. Examples of net-

works that can be configured in this manner are corporate networks and cluster com-

puting environments. On these networks the network administrator often needs to

perform security-critical administrative tasks on untrusted hosts, such as installing

security patches or detecting malware like viruses and rootkits. For such applica-

tions, the administrator has to obtain the guarantee that the tasks are executed cor-

rectly, even in the presence of malicious code on the untrusted host. This guarantee

can be obtained through Pioneer.

As an example of how Pioneer could be used, we briefly discuss secure code

updates. To verifiably install a code update, we can invoke the program that installs
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the code update using Pioneer. Pioneer can also be used to measure software on

an untrusted host after a update to check if the code update has been successfully

installed.

6.2 Kernel Rootkit Detection

In this section, we describe how we build a kernel rootkit detector using Pioneer.

Our kernel rootkit detector allows a trusted verifier to detect kernel rootkits that may

be installed on an external untrusted host without relying on signatures of specific

rootkits or on low-level file system scans. Sailer et al. propose to use the load-time at-

testation guarantees provided by a TPM to detect rootkits when the kernel boots [20].

However, their technique cannot detect rootkits that do not make changes to the disk

image of the kernel but only infect the in-memory image. Such rootkits do not sur-

vive reboots. Our rootkit detector is capable of detecting both kinds of rootkits. The

only rootkit detection technique we are aware of that achieves similar properties to

ours is Copilot [19]. However, unlike our rootkit detector, Copilot requires additional

hardware in the form of an add-in PCI card to achieve its guarantees. Hence, it cannot

be used on systems that do not have this PCI card installed. Also, our rootkit detector

runs on the CPU of the untrusted host, making it immune to the dummy kernel attack

that we describe in Section 7 in the context of Copilot.

Rootkits primer. Rootkits are software installed by an intruder on a host that

allow the intruder to gain privileged access to that host, while remaining unde-

tected [19, 29]. Rootkits can be classified into two categories: those that modify

the OS kernel, and those that do not. Of the two, the second category of rootkits can

be easily detected. These rootkits typically modify system binaries (e.g., ls, ps, and

netstat) to hide the intruder’s files, processes, network connections, etc. These rootk-

its can be detected by a kernel that checks the integrity of the system binaries against

known good copies, e.g., by computing checksums. There are also tools like Trip-

wire that can be used to check the integrity of binaries [1]. These tools are invoked

from read-only or write-protected media so that the tools do not get compromised.

As kernel rootkits subvert the kernel, we can no longer trust the kernel to de-

tect such rootkits. Therefore, Copilot uses special trusted hardware (a PCI add-on

card) to detect kernel rootkits. All rootkit detectors other than Copilot, including

AskStrider [26], Carbonite [14] and St. Michael [9], rely on the integrity of one

or more parts of the kernel. A sophisticated attacker can circumvent detection by

compromising the integrity of the rootkit detector. Recently Wang et al. proposed a

method to detect stealth software that try to hide files [27]. Their approach does not

rely on the integrity of the kernel; however, it only applies when the stealth software

makes modifications to the file system.

Implementation. We implement our rootkit detector on the x86 64 version of

the Linux kernel that is part of the Fedora Core 3 Linux distribution. The x86 64

version of the Linux kernel reserves the range of virtual address space above

0xffff800000000000. The code segment of the kernel starts at virtual address

0xffffffff80100000. The kernel text segment contains immutable binary code
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which remains static throughout its lifetime. Loadable Kernel Modules (LKM) oc-

cupy virtual addresses from 0xffffffff88000000 to 0xfffffffffff00000.

We build our kernel rootkit detector using a Kernel Measurement Agent (KMA).

The KMA hashes the kernel image and sends the hash values to the verifier. The

verifier uses Pioneer to obtain the guarantee of verifiable code execution of the KMA.

Hence, the verifier knows that the hash values it receives from the untrusted host were

computed correctly.

The KMA runs on the CPU at the kernel privilege level, i.e., CPL0; hence, it

has access to all the kernel resources (e.g., page tables, interrupt descriptor tables,

jump tables, etc.), and the processor state, and can execute privileged instructions.

The KMA obtains the virtual address ranges of the kernel over which to compute

the hashes by reading the System.map file. The following symbols are of interest

to the KMA: 1) text and etext, which indicate the start and the end of the

kernel code segment; 2) sys call table which is the kernel system call table;

and 3) module list which is a pointer to the linked list of all loadable kernel

modules (LKM) currently linked into the kernel. When the Kernel Measurement

Agent (KMA) is invoked, it performs the following steps:

1. The KMA hashes the kernel code segment between text and etext.

2. The KMA reads kernel version information to check which LKMs have been

loaded and hashes all the LKM code.

3. The KMA checks that the function pointers in the system call table only refer

to the kernel code segment or to the LKM code. The KMA also verifies that the

return address on the stack points back to the kernel/LKM code segment. The

return address is the point in the kernel to which control returns after the KMA

exits.

4. The KMA returns the following to the verifier: 1) the hash of the kernel code

segment; 2) the kernel version information and a list indicating which kernel

modules have been loaded; 3) the hash of all the LKM code; 4) a success/failure

indicator stating whether the function pointer check has succeeded.

5. The KMA flushes processor caches, restores the register values, and finally re-

turns to the kernel. The register values and the return address were saved on the

stack when the kernel called invoked the Pioneer verification function.

We now explain how the verifier verifies the hash values returned by the untrusted

platform. First, because the kernel text is immutable, it suffices for the verifier to

compare the hash value of the kernel code segment to the known good hash value for

the corresponding kernel version. However, the different hosts may have different

LKMs installed, and so the hash value of the LKM code can vary. Therefore, the

verifier needs to recompute the hash of the LKM text on the fly according to the list

of installed modules reported by the KMA. The hash value reported by the KMA is

then compared with the one computed by the verifier.

Experimental results. We implemented our rootkit detector on the Fedora Core 2

Linux distribution, using SHA-1 as the hash function. The rootkit detector ran every 5

seconds and successfully detected adore-ng-0.53, the only publically-known rootkit

for the 2.6 version of the Linux kernel.
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Table 1. Overhead of the Pioneer-based rootkit detector

Standalone (s) Rootkit Detect (s) % Overhead

PostMark 52 52.99 1.9

Bunzip2 21.396 21.713 1.5

Copy Directory 373 385 3.2

We monitor the performance overhead of running our rootkit detector in the back-

ground. We use three representative tasks for measurements: PostMark, bunzip2, and

copying the entire contents of a directory. The first task, PostMark [5], is a file sys-

tem benchmark that carries out transactions on small files. As a result, PostMark is a

combination of I/O intensive and computationally intensive tasks. We used bunzip2

to to uncompress the Firefox source code, which is a computationally intensive task.

Finally, we modeled an I/O intensive task by copying the entire /usr/src/linux

directory, which totaled to 1.33 GB, from one harddrive to another. As the table above

shows, all three tasks perform reasonably well in the presence of our rootkit detector.

Discussion. As with Copilot, one limitation of our approach is that we do not verify

the integrity of data segments or CPU register values. Therefore, the following types

of attacks are still possible: 1) attacks that do not modify code segments but rely

merely on the injection of malicious data; 2) if the kernel code contains jump/branch

instructions whose target address is not read in from the verified jump tables, the

jump/branch instructions may jump to some unverified address that contains mali-

cious code. For instance, if the jump address is read from an unverified data segment,

we cannot guarantee that the jump will only reach addresses that have been verified.

Also, if jump/branch target addresses are stored temporarily in the general purpose

registers, it is possible to jump to an unverified code segment, after the KMA returns

to the kernel since the KMA restores the CPU register values. In conclusion, Pioneer

limits a kernel rootkit to be placed solely in mutable data segments; it requires any

pointer to the rootkit to reside in a mutable data segment as well. These properties

are similar to what Copilot achieves.

Our rootkit detection scheme does not provide backward security. A malicious

kernel can uninstall itself when it receives a Pioneer challenge, and our Pioneer-based

rootkit detector cannot detect bad past events. Backward security can be achieved if

we combine our approach with schemes that backtrack intrusions through analyzing

system event logs [17].

7 Related Work

In this section, we survey related work that addresses the verifiable code execution

problem. We also describe the different methods of code attestation proposed in the

literature and discuss how the software-based code attestation provided by Pioneer

is different from other code attestation techniques.
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7.1 Verifiable Code Execution

Two techniques, Cerium [8] and BIND [23], have been proposed. These use hard-

ware extensions to the execution platform to provide a remote host with the guarantee

of verifiable code execution. Cerium relies on a physically tamper-resistant CPU with

an embedded public-private key pair and a µ-kernel that runs from the CPU cache.

BIND requires that the execution platform has a TPM chip and CPU architectural

enhancements similar to those found in Intel’s LaGrande Technology (LT) [12] or

AMD’s Secure Execution Mode (SEM) [3] and Pacifica technology [4]. Unlike Pio-

neer, neither Cerium nor BIND can be used on legacy computing platforms. As far

as we are aware, Pioneer is the only technique that attempts to provide the verifiable

code execution property solely through software techniques.

7.2 Code Attestation

Code attestation can be broadly classified into hardware-based and software-based

approaches. While the proposed hardware-based attestation techniques work on gen-

eral purpose computing systems, to the best of our knowledge, there exists no

software-based attestation technique for general purpose computing platforms.

Hardware-based code attestation. Sailer et al. describe a load-time attestation

technique that relies on the TPM chip standardized by the Trusted Computing

Group [20]. Their technique allows a remote verifier to verify what software was

loaded into the memory of a platform. However, a malicious peripheral could over-

write code that was just loaded into memory with a DMA-write, thereby breaking

the load-time attestation guarantee. Also, as we discussed in Section 1, the load-

time attestation property provided by the TCG standard is no longer secure since the

collision resistance property of SHA-1 has been compromised. Terra uses a Trusted

Virtual Machine Monitor (TVMM) to partition a tamper-resistant hardware platform

in multiple virtual machines (VM) that are isolated from each other [11]. CPU-based

virtualization and protection are used to isolate the TVMM from the VMs and the

VMs from each other. Although the authors only discuss load-time attestation using a

TPM, Terra is capable of performing run-time attestation on the software stack of any

of the VMs by asking the TVMM to take integrity measurements at any time. All the

properties provided by Terra are based on the assumption that the TVMM is uncom-

promised when it is started and that it cannot be compromised subsequently. Terra

uses the load-time attestation property provided by TCG to guarantee that the TVMM

is uncompromised at start-up. Since this property of TCG is compromised, none of

the properties of Terra hold. Even if TCG were capable of providing the load-time

attestation property, the TVMM could be compromised at run-time if there are vul-

nerabilities in its code. In Copilot, Petroni et al. use an add-in card connected to the

PCI bus to perform periodic integrity measurements of the in-memory Linux kernel

image [19]. These measurements are sent to the trusted verifier through a dedicated

side channel. The verifier uses the measurements to detect unauthorized modifica-

tions to the kernel memory image. The Copilot PCI card cannot access CPU-based
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state such as the pointer to the page table and pointers to interrupt and exception han-

dlers. Without access to such CPU state, it is impossible for the PCI card to determine

exactly what resides in the memory region that the card measures. The adversary can

exploit this lack of knowledge to hide malicious code from the PCI card. For in-

stance, the PCI card assumes that the Linux kernel code begins at virtual address

0xc0000000, since it does not have access to the CPU register that holds the pointer

to the page tables. While this assumption is generally true on 32-bit systems based

on the Intel x86 processor, the adversary can place a correct kernel image starting

at address 0xc0000000 while in fact running a malicious kernel from another mem-

ory location. The authors of Copilot were aware of this attack [6]. It is not possible

to prevent this attack without access to the CPU state. The kernel rootkit detector

we build using Pioneer is able to provide properties equivalent to Copilot without

the need for additional hardware. Further, because our rootkit detector has access

to the CPU state, it can determine exactly which memory locations contain the ker-

nel code and static data. This ensures that our rootkit detector measures the running

kernel and not a correct copy masquerading as a running kernel. Also, if the host

running Copilot has an IOMMU, the adversary can re-map the addresses to perform

a data substitution attack. When the PCI card tries to read a location in the kernel,

the IOMMU automatically redirects the read to a location where the adversary has

stored the correct copy.

Software-based attestation. Genuinity is a technique proposed by Kennell and

Jamieson that explores the problem of detecting the difference between a simula-

tor-based computer system and an actual computer system [16]. Genuinity relies on

the premise that simulator-based program execution is bound to be slower because

a simulator has to simulate the CPU architectural state in software, in addition to

simulating the program execution. A special checksum function computes a check-

sum over memory, while incorporating different elements of the architectural state

into the checksum. By the above premise, the checksum function should run slower

in a simulator than on an actual CPU. While this statement is probably true when

the simulator runs on an architecturally different CPU than the one it is simulat-

ing, an adversary having an architecturally similar CPU can compute the Genuinity

checksum within the alloted time while maintaining all the necessary architectural

state in software. As an example, in their implementation on the x86, Kennell and

Jamieson propose to use special registers, called Model Specific Registers (MSR),

that hold various pieces of the architectural state like the cache and TLB miss count.

The MSRs can only be read and written using the special rdmsr and wrmsr in-

structions. We found that these instructions have a long latency (≈ 300 cycles). An

adversary that has an x86 CPU could simulate the MSRs in software and still com-

pute the Genuinity checksum within the alloted time, even if the CPU has a lower

clock speed than what the adversary claims. Also, Shankar et al. show weaknesses

in the Genuinity approach [22]. SWATT is a technique proposed by Seshadri et al.

that performs attestation on embedded devices with simple CPU architectures using

a software verification function [21]. Similar to Pioneer, the verification function is

constructed so that any attempt to tamper with it will increase its running time. How-
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ever, SWATT cannot be used in systems with complex CPUs. Also, since SWATT

checks the entire memory, its running time becomes prohibitive on systems with

large memories.

8 Conclusions and Future Work

We present Pioneer, which is a first step towards addressing the problem of verifi-

able code execution on untrusted legacy computing platforms. The current version

of Pioneer leaves open research problems. We need to: 1) deriving a formal proof

of the optimality of the checksum code implementation; 2) proving that an adver-

sary cannot use mathematical methods to generate a shorter checksum function that

generates the same checksum output when fed with the same input; 3) deriving a

checksum function that is largely CPU architecture independent, so that it can be

easily ported to different CPU architectures; and 4) increasing the time overhead for

different attacks, so that it is harder for an adversary to forge the correct checksum

within the expected time. There are also low-level attacks that need to be addressed:

1) the adversary could overclock the processor, making it run faster; 2) malicious pe-

ripherals, a malicious CPU in a multi-processor system or a DMA-based write could

overwrite the executable code image in memory after it is checked but before it is

invoked; and 3) dynamic processor clocking techniques could lead to false positives.

We plan to address these open research problems in our future work.

There are also two known issues with the current version of Pioneer: 1) On the

x86 architecture with 64-bit extensions, any interrupt and exception handler can be

set up to have a dedicated stack. The CPU will unconditionally switch to this stack

when it calls the corresponding interrupt or exception handler. This feature can be

used to defeat the stack trick used by Pioneer, thereby allowing the attacker to tamper

with the execution of the executable by generating an exception. 2) The attacker

can run the Pioneer verification function in user space with interrupts turned off

while running a malicious operating system kernel in kernel space. The malicious

kernel could obtain control through an exception after the checksum code returns the

checksum to the verifier. We will address these issues in our future work.

This chapter shows an implementation of Pioneer on an Intel Pentium IV Xeon

processor based on the Netburst Microarchitecture. The architectural complexity of

Netburst Microarchitecture and the complexity of the x86 64 instruction set archi-

tecture make it challenging to design a checksum code that executes slower when

the adversary tampers with it in any manner. We design a checksum code that ex-

hausts the issue bandwidth of the Netburst microarchitecture, so that any additional

instructions the adversary inserts will require extra cycles to execute.

Pioneer can be used as a new basic building block to build security applications.

We have demonstrated one such application, the kernel rootkit detector, and we pro-

pose other potential applications. We hope these examples motivate other researchers

to embrace Pioneer, extend it, and apply it towards building secure systems.
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