Refutation of “On the Difficulty of Software-Based Attestation o
Embedded Devices”

Adrian Perrig Leendert van Doorn
CyLab/CMU AMD

August 11, 2010

Abstract

The paper “On the Difficulty of Software-Based AttestatidrEmnbedded Devices” had been published at the
ACM CCS 2009 conference [1]. Although the paper containsymeseful points, unfortunately, it also contains
numerous errors and inaccuracies which we would like tafyewith this note.

1 Context

Software-based attestation is a promising technique, which enables arverdfieeck the integrity of software that is
executing on an untrusted device. In contrast to hardware-basad@miessoftware-based attestation does not require
any special hardware support. Instead, software-based attestlteman the execution properties of a verification
function, that enables external detection if the verification function des/faten the intended execution.

Before we discuss the Castelluccia et al. paper in detail, we would like tédgreeme context on our software-
based attestation research since early in year 2003 when we startedgrnamkSWATT. Until recently, the develop-
ment of software-based attestation techniques was accompanied by nardetits proclaiming that “the current
techniques were not useful in practice and that the next step woulckrieabible.” We are glad to note that today the
community has largely accepted the beneficial properties and the feasibsibjtefre-based attestation, and that we
now need to work on approaches that provide provable propertieseWn, several research results were necessary
to get to this point.

When our first paper (SWATT) was published at the IEEE Security ainédy Symposium [13], researchers
mentioned that verifying the entire memory is impractical and that it would be iripess only verify a subset
of the memory. A common criticism also was the claim that these techniques worddwerk on more complex
hardware architectures. Many researchers we interacted with alsotdidlieve that these techniques would be useful
in practice and that the community should dedicate a concerted reseanthcefhitigate the shortcomings.

Since we firmly believed in the utility of these mechanisms, we continued ourrcbseafurther develop this
research. Initially, our main goal was to demonstrateusefulnesand broad applicability of these techniques, and
that software-based attestation wassibleon a variety of architectures. By attempting to convince the community
of the utility and feasibility of software-based attestation, our hope was tha researchers will join the effort and
work on proving the correctness of these approaches.

One work that represented a breakthrough for our team was the ‘ffageand ICE” (which was only published
as a TR [8]), in which we found an approach for only checking a smakaiof the total memory, which addressed
many of the shortcomings of the SWATT function. The ICE function coulémisslly be used to establish a dynamic
root of trust for executing security-sensitive code on an untruste@eédda system. The function was later published
in our works on SCUBA [11] and SAKE [10].

To address the criticism that software-based attestation was impossiblehsartugrocessors, we worked on
an implementation on a Pentium IV processor. That work was published aedPifil2]. Although that work did
not address all possible issues, such as SMM-based malware, or oralésed multi-threaded processors, the work
nevertheless represented a leap forward for us because we sstteesignificant number of issues that have been
suspected to be fundamental. We are deeply indebted to the SOSP pragnamittee for recognizing the contribu-
tions of the work without dwelling on the remaining shortcomings. Unfortunabedny of the hallway discussions

after the Pioneer presentation still revolved around criticisms that soffvessed attestation lacks useful applications
and that it would be impossible to obtain a provably secure function for éighprocessors that covers all issues.
Fortunately though, Greg Nelson who was attending the conferenceaugadwepe that his Denali optimizer could be
used to formally prove the optimality of a software-based attestation functibiie\&till on the mission of convincing
the community of the utility and feasibility, we continued our work in that directionilevemphasizing that formal
properties need to be shown to apply these techniques in practice.

In his thesis, Arvind Seshadri worked on Pioneer-NG, a softwasedbattestation function that addresses all
the issues on a high-end AMD processor (with the exception of ovelioigdke processor, which needed to be
detected based on the physical artifacts of overclocking), includingkattaased on SMM mode and multi-core
execution [9]. Simultaneously, we also continued our work on realistic agifgits, to demonstrate use in embedded
car networks [14], SCADA networks [16], and sensor network$.[11

An exciting result was based on an insight by Virgil Gligor, that softwaased attestation performs attestation
without secrets. This is a significant advantage of software-basethéitinover hardware-based attestation, because
the absence of secrets enables use in settings where the adversammpesmised the secrets on a system. Moreover,
since secrecy is difficult to achieve over the lifetime of the secret, in partiitusaoften impossible to detect whether
secrecy has been breached in the past. As a consequence of thecatifsgecrecy, software-based attestation can be
used for secure recovery after compromises. Our SAKE protocaldges the fact that the device checksum can be
used as a short-lived shared secret, which can be used to bootstragp-terdm shared secret [10]. We found these
to be exciting results, because it demonstrates that software-basediatigstavides fundamental properties that
cannot be achieved with existing techniques.

This overview was written from our perspective, several other ggtiape been working on software-based attes-
tation and have faced similar issues [2—7,17-19].

Fortunately, many people in the community now agree on the utility of softwaseekattestation. While itis clear
that software-based attestation does not solve all of our security prstalad is not applicable in all settings, it has
emerged that it is a useful technique for some specific applications in s@oéispettings. The next challenge now
is to design software-based attestation schemes that provide formallyblerffecurity guarantees.

2 TheCastelluccia et al. Paper

The recent paper by Castelluccia et al. revisits several prior workdtinare-based attestation and presents perceived
shortcomings [1]. Such research is very important, because indegerg®ysis and validation of published work is
crucial for sound scientific progress.

Their paper contains several technical contributions, but alas, alsp faetnal errors and inaccuracies, which
prompted the production of this document.

2.1 Rootkit / ROP-based Attack (Section 3.1 [1])

From Section 3 [1]: “The first attack circumvents malware detection by ngomalicious code between program
memory and non-executable memory, during the code attestation procéligrés achieved using a technique called
Return-Oriented Programming.”

The idea behind the attack is to leverage Return-Oriented Programming (R&}R) subvert the control flow
after software-based attestation executed. In ROP, jump targets are listed dadkelamt are executed after the
main function returns. In this attack, Castelluccia et al. make several assompbout software-based attestation:
(1) software-based attestation achieves control-flow integrity, (2) thea®-based attestation function does not
verify stack information.

To the first assumption, software-based attestation was primarily desigreschi®ve code integrity, but not
control-flow integrity. In particular, the SWATT function’s main purposesw@validate the code memory. Hence, the
presented “attack” is on a property that is not attempted in general seftveesed attestation mechanisms.

The specific property that software-based attestation provides is thetiexeintegrity of the verification function.
Under execution integrity, we understand code integrity, a defined epint mto the code, and an untampered
execution environment where no other external code can tamper withéhatmn. The verification function can be

crafted to establish an untampered execution environment, which can theseth¢o execute some piece of code.
Of course, all data used (including jump targets, stack, etc.) are validatedesified before use. Similarly, the
untampered execution environment can be used to validate the stack, @réate a compliant stack.

To the second point, some software-based attestation mechanism do versfyatk information. For example,
in the Pioneer [12] paper in Section 6.2, list point 3, we state: “The KMA wsdies that the return address on the
stack points back to the kernel/lLKM code segment.” Hence, if such piepavere required, the code that executes
right after the verification function can validate the stack integrity. The aitatkis based on a naive implementation,
which utilizes stack inputs that are unverified. This is hardly an attack awaa-based attestation itself, but rather
on a flawed implementation of a system that leverages software-basediattestaa primitive.

We now discuss their attack in some more detail. The authors propose theirfigllolaecksum code in Section
3.1 [1]: “Figure 4 presents a generic attestation function. In our progotye insert a hook to the rootkit bootstrap
code, by replacing the first instruction of the attestation function with a jump.”:
void receive checksum request(uint8 t nonce){

uint8 t checksum[8];
prepare checksum(nonce) ;
do checksum(checksum) ;
send (checksum) ;

return;

Itis certainly convenient to assume a weak function and then attack it. implamentation, we perform security-
sensitive operations right after performing the attestation. Because th&attte sets up an untampered execution
environment, the ROP would not gain control because we still did not dalimeThe security-sensitive operations
can also verify areas in memory, as we did in a rootkit detector for Piot@gnfhich would also validate the sanity
of the stack, preventing an ROP-based hook.

2.2 Memory Shadowing Attack

Section 4.1 presents a memory shadowing attack [1]. In a nutshell, the aaughionplement SWATT on a different
platform, and attack their new implementation. Once the attack on their re-implememaiccessful, they conclude
that SWATT is also vulnerable.

Unfortunately, there are several issues with this approach. ForemoSWATT system was implemented for the
Atmel ATMEGA163L microcontroller, an 8-bit Harvard Architecture with 1@®Kprogram memory and 1K of data
memory [13]. The authors implemented their attack on the ATMegal28L miaroedter, which has 128 KBytes of
program memory. Since their attack requires that the latter half of the memeytészero! the much larger memory
size is quite convenient for the attack. Since the 16K program memory onmaeg&l163| system is almost always
completely filled with code, their attack would not work on a practical system.

Moreover, their attack still exhibits a 7.4% overhead, which is much lowerdbai3% overhead. However, in
our implementations of software-based attestation systems we assume thatrmagdcan design an attack function
with half the overhead of our optimal attack function, thus, we set the tbieesth 6.5%. This point is illustrated well
by the Pioneer system, where we set the threshold even below half of tbleea8averhead [12]. This also indicates
that we do not claim to have invented the best possible attack — we alway®pbthat we need to prove the run-time
optimality of the checksum function as well as of the best attack code.

Furthermore, footnote 9 claims [1]: “This attack would therefore not Issibte if the free program memory is
used or filled with randomness (as in [5, 33]), but this is not the case withT$W

However, in the SWATT paper in Section 3.5 [13] we state: “Empty regions ahong are often filled with
zeros. So, if an attacker places malicious code in the empty memory regicas sippress the read to these memory
locations and substitute it with zero. Also, the attacker need not compute eh@pgration when computing the

LActually, a sufficient condition is that the contents of the third quarter of tamary equals the contents of the fourth quarter of memory. In
the unlikely and highly construed case where the first quarter also efeaecond quarter, no conditional statement would even be necessary
The attack would work by copying the most significant memory addri¢gsd the second most significant bit, which in turn would enable the
attacker to use the second and third quarter of memory for its codegfgpleeding up the attack compared to the one presented.

checksum of a zero-valued memory location. Together, the time saved Ipgriorming these two operations may
offset the time for an extra if statement. To prevent this attack, we suggesrtipty memory regions be filled with
a pseudo-random pattern.”

Filling the empty memory regions with the pseudo-random pattern is anothenredy the proposed attack does
not work on the SWATT system as presented in the paper.

The positive aspects of this section though is that the authors have indedified a faster attack. Although we
have attempted to explore possible attacks based on all branch instruttimagiack based on tI$8RS instruction
seems to have eluded us. That faster attack is a good contribution.

2.3 Attack on ICE

The attack on the ICE function in Section 4.2 indeed works f1lnfortunately, we missed two opportunities that
we were aware of that would have defended against this attack. Firstidagot use the entropy of the carry bit
in the ICE function. The attack would likely be trivially prevented by using ADihstead of ADD. Second, the

attack was enabled by an omission of a mechanism that we planned to usk,welsi¢o alter the computation of

the checksum in each loop. Pioneer uses this approach, but untefyuioar ICE implementation ended up with all

the same computations in each iteration, most likely due to time constraints when dpailgiototype system. This

attack illustrates that we need better mechanisms to formally validate these fenatfmoint that we make repeatedly
in our papers.

2.4 Weéll-known Recommendations and Various | naccur acies

The Castelluccia et al. paper lists numerous recommendations that wedy alrlaknown in the literature, without
attributing those recommendations to the prior publications.

From Section 2.2 [1]: “Indisputable Code Execution (ICE) based scheatg on an attestation procedure being
performed on the attestation routine itself, including the program counter icoth@utation. ... Unfortunately, not
all platforms make the program counter available to software. This is the foassxample, of the AVR family of
micro-controllers 4 used on MicaZ devices. Porting ICE on this family of ggeors would require complex changes
or would just not be feasible.”

From Section 4.1.2 [1]: “We conclude that the security of SWATT reliesa@mesunique characteristic of the
devices considered by the authors to run their experiments. Porting SW#a&hew device with a new instruction set
or a different memory size, dramatically changes the rules for both the etttact the verifier, which can undermine
the security of the scheme.”

In all our papers we emphasize that a shortcoming of software-basethttie is the tight coupling between the
attestation function and the hardware architecture. Consequently,dorspacific hardware architecture, a specific
attestation function needs to be designed.

From Section 2.2.2 [1]: “They claim to have implemented the fastest chedkswtiion and to have considered the
fastest redirection routine and show that it would still introduce a coraditieoverhead to checksum computation.”

We were always careful not to claim that we have found the fasteskstimm implementation. In all our papers
we emphasize that formal analysis is required to prove optimality. Moreioveur implementations we assume that
the adversary can find a function with a 50% lower overhead than otiatiask function as we discuss above. So
clearly, we never claim that we found the fastest checksum implementaticdhenfastest attack function.

From Section 2.2.2 [1]: “Moreover, as SWATT does not attest data menargxternal storage, the prover could
store malicious code in one of those memories and restore it after attestatigriR@dh(Section 3.1).”

The SWATT paper actually does point out that the data memory may need &ified/for some applications, for
example for Von Neumann architectures [13].

2We have actually proposed an analogous attack on the Genuinity systémo[] SWATT paper [13], which exploits the fact that XOR
and ADD are analogous for the MSB.

3 Conclusion

While the work by Castelluccia et al. contains useful contributions, it tufately also has numerous technical
factual errors and inaccuracies. These issues could have belgmngtgated through inclusion of domain experts
after acceptance of the paper. For example the conference shaeyhbrdpaper could have asked for additional
input, or the authors themselves could have requested validation for thestueng claims. By removing the errors,
everyone would have benefited. For the audience at the conferanoe time for questions during the Q&A session
(although some people probably found the exchange amusing); for thersuand conference PC, a stronger and
factually more correct paper; for us, not needing to write this paper.

In summary, software-based attestation is a very useful primitive thasagifeviously unachieved properties. It

is our hope that researchers will agree on the importance of these methddgork on addressing the remaining
challenges in this area.

References

[1] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the difficof software-based attestation of
embedded devices. IRroceedings of ACM Conference on Computer and Communicationsitg€iCS)
November 2009.

[2] Y.-G. Choi, J. Kang, and D. Nyang. Proactive code verificatiastgrol in wireless sensor network. Rroceed-
ings of ICCSA2007.

[3] Vanessa Gratzer and David Naccache. Alien vs. quine, the vagishituit and other tales from the industry’s
crypt. InProceedings of EurocrypMay 2006.

[4] Markus Jakobsson and Karl-Anders Johansson. Assuredtibeteof malware with applications to mo-
bile platforms. DIMACS Technical Report 2010-0B;tp://dimacs.rutgers.edu/TechnicalReports/
abstracts/2010/2010-03.html, 2010.

[5] Markus Jakobsson and Karl-Anders Johansson. Assuredtidet®f malware with applications to mobile plat-
forms. InHotSe¢ August 2010.

[6] Rick Kennell and Leah H. Jamieson. Establishing the genuinity of renuotgater systems. IRroceedings of
the 12th USENIX Security Symposiymages 295-308. USENIX, August 2003.

[7] T. Park and K. G. Shin. Soft tamper-proofing via program integréyification in wireless sensor networks.
IEEE Transactions on Mobile Computing (TM@)3), 2005.

[8] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla.ingsfire and ice for detecting and recovering
compromised nodes in sensor networks. Technical Report CMU-C804 School of Computer Science,
Carnegie Mellon University, December 2004.

[9] Arvind Seshadri.A Software Primitive for Externally-verifiable Untampered Execution and ifdiégtions to
Securing Computing System3hD thesis, Electrical and Computer Engineering Department, CarnetjenMe
University, 2009.

[10] Arvind Seshadri, Mark Luk, and Adrian Perrig. SAKE: Softwattestation for key establishment in sensor
networks. InProceedings of International Conference on Distributed Computing is@edystems (DCOSS)
June 2008.

[11] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doand Pradeep Khosla. SCUBA: Secure code up-
date by attestation in sensor networksPhaceedings of ACM Workshop on Wireless Security (Wissgtember
2006.

[12] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendexh Doorn, and Pradeep Khosla. Pioneer:
Verifying integrity and guaranteeing execution of code on legacy platformBroceedings of ACM Symposium
on Operating Systems Principles (SO3#ges 1-16, October 2005.

[13] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, andiPep Khosla. SWATT: Software-based attestation
for embedded devices. Proceedings of the IEEE Symposium on Security and Pri\iday 2004.

[14] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, andiBPep Khosla. Using SWATT for verifying embed-
ded systems in cars. Proceedings of Embedded Security in Cars Workshop (ESQARJ.

5

[15] Hovav Shacham. The geometry of innocent flesh on the bone: iRietiar-libc without function calls (on the
x86). InProceedings of ACM CG®ctober 2007.

[16] Aakash Shah, Adrian Perrig, and Bruno Sinopoli. Mechanismsawighe integrity in SCADA and PCS devices.
In International Workshop on Cyber-Physical Systems Challenges pplications (CPS-CA)June 2008.

[17] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim. Remote softwsaeed attestation for wireless sensors. In
Proceedings of ESA8005.

[18] Diomidis Spinellis. Reflection as a mechanism for software integrity vatiio. ACM Transactions on Infor-
mation and System Securi§(1):51-62, February 2000.

[19] Y. Yang, X. Wang, S. Zhu, and G. Cao. Distributed softwaresdasttestation for node compromise detection in
sensor networks. IRroceedings of IEEE SRD3007.

