
What Lies Beneath? Analyzing Automated
SSH Bruteforce Attacks

AbdelRahman Abdou1, David Barrera2, and Paul C. van Oorschot1

1 Carleton University, Canada
2 ETH Zürich, Switzerland

Abstract. We report on what we believe to be the largest dataset (to
date) of automated secure shell (SSH) bruteforce attacks. The dataset
includes plaintext password guesses in addition to timing, source, and
username details, which allows us to analyze attacker behaviour and
dynamics (e.g., coordinated attacks and password dictionary sharing).
Our methodology involves hosting six instrumented SSH servers in six
cities. Over the course of a year, we recorded a total of ∼17M login
attempts originating from 112 different countries and over 6K distinct
source IP addresses. We shed light on attacker behaviour, and based on
our findings provide recommendations for SSH users and administrators.

1 Introduction

Internet accessible secure shell (SSH [18]) servers are consistently flooded
with credential guessing attempts originating from a wide range of globally-
distributed hosts. Every login attempt generates an entry in a log file which
conscientious system administrators painstakingly monitor. While some of these
guesses target specific systems and user accounts, most aim to identify weak au-
thentication configurations on the entire public IPv4 address space every minute
of every day. This status quo of seemingly endless login attempts has led to
a cottage industry of software tools, recommended service configuration, and
a folklore for throttling the frequency (and corresponding log entries) of such
attacks.

In principle, sensible configurations (e.g., rate-limiting login attempts, dis-
abling remote logins for privileged accounts) of remotely accessible services in
conjunction with strong password selection by users should suffice in limiting
the success of such attacks. However, the low cost of executing these attacks
from geographically-diverse datacenters or from compromised end user systems
(e.g., as part of a botnet) has apparently made these guessing attacks viable
for attackers. Administrators also appear hesitant to deploy restrictive network
access control (e.g., IP address range-blocking) configurations which may lead
to increased service desk call volume or poor user experience.

Version: November 20, 2015. The official Passwords 2015 proceedings version will
appear in Springer LNCS (DOI to be available).

Well known software tools exist (many are free and open source) to monitor
and limit the number of login attempts that can be performed on a given server.
These tools usually maintain state measuring login attempts per source IP ad-
dress, or login attempts from any source within a defined period of time. Once
some pre-defined threshold is met, future login attempts are blocked or throt-
tled, either for a specified time period. Popular SSH server implementations
(e.g., OpenSSH and Dropbear) ship with default configurations that limit the
number of allowed authentication attempts per session (e.g., disconnecting the
remote system after three unsuccessful attempts) and disable remote logins for
privileged accounts. These settings can be easily configured by administrators.
Despite the widespread availability of tools and configurations, SSH bruteforce
login attacks are on the rise [4,1], supporting the theory that some of these login
attempts must be succeeding.

While academic work in the field has identified attacker use of common user-
names and passwords [14], and also focused on detection of highly distributed
or stealthy attacks [13], to our knowledge, there is little academic work in un-
derstanding the anatomy of run-of-the-mill automated SSH bruteforce attacks.
Understanding these attacks can shed light on how attackers create and use pass-
word dictionaries, guessing strategies, and adaptive techniques. Insight on at-
tacker behaviour can help design and improve defensive techniques, and demon-
strate the ineffectiveness of others. This paper makes the following contributions:

• We describe a data collection methodology for SSH login attempts that al-
lowed us to record over 17 million guesses including over 1.4 million plaintext
passwords and nearly 28 thousand usernames. The vast majority of these lo-
gin attempts were performed by automated software tools.

• We perform an in-depth analysis of these login attempts by analyzing two
datasets; the first contains log entries collected on a single system over a
one-year period; the second includes logs from five servers over a 10-week
period. Among others, our analysis offers insights into guessing strategies,
password dictionaries used, and data sharing amongst attackers.

The sequel is organized as follows. Section 2 presents related work. Section 3
describes our data collection methodology and initial dataset observations. In
Section 4, we detail characteristics of attacking sources including network loca-
tion and number of attacker IPs per network block. Section 5 analyzes password
guesses, including composition, re-use, and password sharing among sources.
Section 6 covers distribution of usernames and password guesses per username.
Section 7 provides details on timing dynamics. We discuss recommendations for
users and administrators in Section 8, and conclude in Section 9.

2 Related Work

Host-based detection of bruteforce attacks. By default, SSH server soft-
ware generates log entries when authentication requests are received. An entry
includes timestamp, source IP address, source port, username, and the result

of the authentication request (e.g., success, incorrect password, invalid user,
etc.). These logs can be locally monitored by client software, such as Blockhosts
(www.aczoom.com/blockhosts), Fail2Ban (www.fail2ban.org), or DenyHosts
(www.denyhosts.sourceforge.net), to detect attacks by observing recent lo-
gin attempts and blocking sources that exceed a threshold of login attempts per
time period. Source blocking can be enforced at the network level (i.e., by adding
network firewall rules) or at the application level (e.g., by using tcpwrappers).
Certain tools allow submitting failed attempts to centralized services for aggre-
gation and analytics [1,17].

Analysis of Passwords used in SSH Attacks. Most closely related to our
work, Owens and Matthews [14] collected around 103,000 login attempts on
three honeypots over an 11 week period in 2007-2008. The authors report an
overwhelming majority of attempts targeting the root account, and nearly 49%
of all attempted guesses had the username equal to the password. Compared to
the size of the dataset of Owens and Matthews, the one collected herein is an or-
der of magnitude larger. In addition, our attacker labelling methodology is more
comprehensive by considering usernames, passwords, and timing independently,
which allows us to identify dictionary re-use regardless of dictionary sizes or the
order of password guesses within.

Network-based detection of SSH bruteforce attacks. Javed et al. [13] pro-
pose a methodology to detect distributed and potentially stealthy SSH guessing
activity. Hofstede et al. [11] propose a large-scale system to detect SSH compro-
mises (i.e., successful guessing attempts) using NetFlow data. Satoh et al. [15]
similarly use network flow data to identify the source’s authentication type (in-
teractive, key-based, etc.) in an effort to remove non-automated logins from their
set. We achieve the same server behaviour by configuring the server to exclu-
sively accept password authentication (see Section 3). Sperotto et al. [16] built
Hidden Markov Models from an SSH bruteforce attack recorded at their univer-
sity, and used this model to generate synthetic SSH network traces. The authors
found that the generated traces can be used to simulate a ground truth for the
evaluation of defense systems. We believe our dataset to be a ground truth of
SSH dictionary attacks due to its construction.

3 Data Collection Methodology
All logging was performed on Ubuntu 12.04 or 14.04 virtual machines (VM)
running on a popular cloud server platform, which assigned public and persistent
IPv4 addresses to each VM at creation. IPv6 connectivity was not enabled.
No publicly facing network services were enabled on the VMs other than two
SSH daemons (one for data collection and one for administration), and software
firewalls were configured to allow all inbound and outbound traffic.

The pre-installed SSH daemon served as the management interface for the
VMs. To prevent guessing attempts against this interface, we moved the daemon
to a non-standard TCP port and we disabled password-based authentication (re-
quiring key-based logins). In Appendix A, we describe a small-scale experiment
to determine if attackers target SSH servers on non-standard ports.

www.aczoom.com/blockhosts
www.fail2ban.org
www.denyhosts.sourceforge.net

We installed a second instance of the OpenSSH server (version 6.5p1) on
all VMs to log guessing attempts. To additionally record the password guesses,
we modified the OpenSSH server by inserting a log function in the password
authentication module (auth-passwd.c). This modified server was configured
to start at boot and listen for incoming authentication requests on the default
TCP port 22. The server configuration was also changed to allow up to 50 (from
the default 10) concurrent unauthenticated connections to the daemon. Only
password authentication was allowed on the modified daemon. All login attempts
were logged to the syslog logging facility.

Preventing accidental human logins. Our paper focuses on the analysis of
automated login attempts. Thus, we wish to minimize the probability of record-
ing login information from non-automated sources. To prevent accidental non-
automated logins (by either curious users or by accidentally typing the wrong
IP address or other misconfiguration), we displayed the following SSH banner to
all incoming authentication requests prior to password entry:

WARNING

This OpenSSH server has been modified to STORE USERNAMES AND PASSWORDS.

This server does not have any valid user accounts, so no attempted logins

will succeed. The sole purpose of this server is to collect (for research

purposes) login information used in automated SSH brute-force attacks. If

you are human, you should not attempt to log in to this server.

Data collection. We began collecting login attempts on a single VM running
in Ottawa (OTT), Canada on Mar 1, 2014. On Jan 4, 2015, we instrumented
and enabled five additional VMs, each in a separate geographical region: San
Francisco (SFO), New York (NY), London (LON), Amsterdam (AMS), and Sin-
gapore (SGP). These five VMs collected data for only 66 days, but broadened
our geographical scope allowing us to make location-specific observations. Since
these additional VMs were on distinct networks, they allowed us to detect sources
which target multiple destination IPs. All data collection was halted on Mar 8,
2015, giving a total of 373 days of aggregate data collection. Throughout the
paper, we report on the aggregate set of login attempts performed on all VMs,
clarifying VM-specific observations where necessary.

4 Characteristics of Attacking Systems

Table 1 summarizes the collected login attempts. Collectively, the VMs received
∼17M attempts from ∼6.2K IP addresses located in 112 countries.3 A total of
∼27K distinct usernames and ∼1.4M distinct password guesses were observed.

A single /24 subnet (103.41.124.0/24) based in Hong Kong (HK) was ob-
served guessing credentials aggressively on the OTT VM beginning Nov 15, 2014,
and later on all five VMs of the short-term study within two days of the VMs

3 We used the http://ipinfo.io IP geolocation database [12] to obtain geographic
location and Autonomous System (AS) information of these IP addresses.

http://ipinfo.io

Table 1. A summary of the collected data.

VM Attempts AS
IP addresses Regions Distinct

/8 /16 /24 /32 Country City Usernames Passwords

OTT 9,925,706 934 164 1,735 2,934 4,233 100 580 25,551 1,209,851
LON 2,609,164 357 125 573 826 1,134 66 197 2,742 618,869
NY 1,661,628 245 123 426 508 707 61 137 1,637 464,456
SFO 1,491,949 250 125 444 548 760 58 152 2,160 492,340
AMS 1,107,247 353 126 547 803 1,065 64 199 2,505 314,384
SGP 421,982 333 132 525 834 1,114 62 185 4,520 135,015

* 17,217,676 1,235 171 2,338 4,187 6,297 112 744 27,855 1,449,146

∗ = Combined statistics.

coming online (Jan 4, 2015). This subnet alone was responsible for 8,757,604 (or
∼51%) of all recorded guessing attempts, from 65 observed host addresses.

Because the OTT VM collected attempts for the longest time period, it
received the largest number of login attempts. The corresponding source IP
addresses belong to 934 ASes and 100 countries.

For the short-term study, the five VMs experienced different login attempt
rates. The LON VM received the highest rate, logging ∼2.6M attempts in 10
weeks. The SGP VM received less than one-sixth of those attempts, albeit from
almost the same number of IP addresses (1,114 vs. 1,134). The reason for this
discrepancy is unclear; the aggressive HK subnet discovered both VMs on the
same day, Jan 5 (i.e., the day we started observing login attempts from that
subnet). Of the 65 host addresses belonging to the HK subnet, 64 made attempts
on the LON VM, and 62 similarly on SGP. The two hosts not showing interest
in the SGP VM were among the least aggressive in the subnet, responsible only
for 0.3% and 0.9% of attempts made by the entire subnet.

Attackers may seek to compromise systems in specific regions, and the dis-
crepancy between attacks seen on LON and SGP VMs suggests that attackers
may actually be distributing their resources unevenly, perhaps for higher benefits
(or smaller risk of being shut down).

4.1 Number of IPs per /24

Recall from Table 1 that we logged ∼4.2K distinct /24 subnets. About 84%
(3,528) of those had only one host IP address recorded in our logs. On the other
hand, we observed 76 hosts in 116.10.191.0/24, making it the subnet with
the largest number of malicious4 hosts. This subnet was responsible for 7.5%
(1,298,912) of all guessing attempts. We observed 626 subnets with between 3
and 10 malicious hosts, and 33 subnets with 11 or more malicious hosts.

4 Although a logged IP address may not necessarily belong to a user with deliberate
malicious intent (e.g., it could be remotely exploited by a malicious third party) we
refer to the IP as such for simplicity.

4.2 Countries with the most aggressive sources

Figure 1a shows the relationship between the number of IP addresses observed
per country, and the number of attempts thereof. As expected, the chart reveals
a positive correlation between these factors. Together, Hong Kong and China
(two right most points) constitute ∼90% of all guessing attempts observed.

China also comes first in the list of countries by number of observed IP
address (highest point), followed by Bahrain despite the country’s relatively
small IP address allocation—∼450K IPs [3] (see Section 4.3 below). Additionally,
analyzing the collective number of attempts per /24 subnets, 7 of the 10 most
aggressive (by number of attempts) subnets are Chinese; the remaining three
are from Hong Kong, USA and France.

100 101 102 103 104 105 106 107

100

101

102

103
China

USA

S. Korea

India Brazil

HK

France

New Zealand
Belarus

Bahrain

attempts/country

#
IP

s/
c
o
u
n
tr
y

(a)

U
S
A

B
ra
zi
l

R
u
ss
ia

C
h
in
a

In
d
ia

G
er
m
an
y
U
K

U
k
ra
in
e

Ja
p
an

In
d
on

es
ia

100

101

102

ASes

(b)

Fig. 1. (a) The number of attempts, per country, with respect to IP addresses. For
example, the point (2552, 796) indicates that a country (which is Bahrain) originated
2,552 attempts from 796 IP addresses. (b) The number of ASes per top 10 countries.

The distribution in the number of ASes observed per country is shown in
Fig. 1b. UK, Ukraine, Japan and Indonesia show up in the top 10 countries with
highest number of ASes, while absent from the list of top 10 by number of IP
addresses. This suggests that malicious machines in those countries were more
scattered amongst varying ASes, rather than concentrated in a few. Countries
in which malicious hosts reside in a small number of ASes can more easily coor-
dinate patching efforts. For example, although Bahrain comes second in the list
of countries by number of IP addresses (796 addresses), all such addresses be-
longed to three ASes (six /8 subnets). On the other hand, we saw 538 Brazilian
addresses belonging to 201 ASes, requiring involvement from more ISPs to fix.

4.3 IP addresses as a ratio of the total allocation per country

We analyze each country’s proportion of malicious IP addresses relative to the
total addresses allocated to the country. For example, Panama is allocated a total

of 1,909,212 IP addresses [3] of which we observed only 6 in our logs, giving a
ratio of 0.31 address per 100,000.

Bahrain tops the list of countries with the largest proportion of malicious
addresses, at ∼177 IP per 100K allocated. Figure 2 shows a geo-chart with the
number of IP addresses observed per 100K allocated for each country. Note that
Bahrain is not represented in this chart, as it overshadows the rest of the data.
Additionally, we exclude from the chart data of 10 countries allocated less than
100K addresses in total.

Fig. 2. Ratio of malicious addresses to 100K allocated. Created using the Google Chart
libraries, according to terms described in the Creative Commons 3.0 License.

5 Password Analysis

Figure 3a shows the Cumulative Distribution Function (CDF) of all observed
password guesses, and the CDF of those not appearing in the RockYou (www.
rockyou.com) dataset. Both distributions are highly skewed. Under the hypothe-
sis that these distributions reflect previously successful SSH guesses, their skew-
ness suggests the potential existence of accounts with poorly- (or carelessly-)
chosen passwords. Passwords of such accounts would require less guess work [6]
to crack than those in the RockYou dataset—CDF also plotted in Fig. 3a.

5.1 Password Length

Figure 3b plots the distribution of password lengths next to the number of pass-
words seen for each lengths. The distributions resemble each other, with more
passwords of a given length being reflected as more login attempts for passwords
of that length. Passwords varied in length from 0 (no password received) to 270.
We observed several hosts in a single network attempting passwords that appear
to be Unix shadow file entries (118 characters long), indicating that attackers
may not always inspect the correctness of their dictionary entries.

www.rockyou.com
www.rockyou.com

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Distinct passwords

C
D
F

SSH (logged herein)

SSH /∈ RockYou

RockYou

(a)

100
101
102
103
104
105
106
107

>100 0 10 20 30 40 50 60 70 80 90

Password Length (chars)

Number of passwords
Number of guesses

(b)

Fig. 3. (a) CDF of distinct password guesses; a point (x, y) means the proportion x of
distinct passwords accounted for the proportion y of all observed. (b) Password length
distribution. For each password length, the bar on the left shows the number of unique
passwords of that length in our set. The bar on the right shows the number of login
attempts seen with a password of that length.

5.2 Password composition compared to known dictionaries

In Table 2, we show the password composition of the 1.4M passwords in our
set. Over 22% of password guesses observed were constructed as one or more
letters followed by one or more numbers (e.g., test123 or admin6). More than
half of all passwords contained only lowercase characters. With the exception
of only lowercase passwords,5 the password composition of passwords in our set
resembles that of the RockYou dataset, where the vast majority of passwords
include only alphanumeric characters (i.e., no special characters), and a large
set of passwords was composed by lowercase characters followed by numbers.

Table 2. Password composition: observed per experiments herein versus RockYou.

Password Type
SSH• RockYou dataset

Count % Count %

Only lowercase 771,101 53.2 3,783,103 26.4
Only uppercase 5,883 0.406 234,913 1.64
Only numbers 140,074 9.67 2,348,128 16.4
Letters then numbers 325,547 22.5 5,340,129 37.2

Have no special characters 1,372,858 94.7 13,395,174 93.4
Have special characters 76,288 5.26 949,217 6.62

Total 1,449,146 100 14,344,391 100
•per experiments herein

5 Attackers may guess only lowercase passwords more frequently in expectation that
system administrators pick these types of passwords more often.

We noticed more than 3.2K distinct passwords in the form of URLs (e.g.,
ending in .com, or .edu), which were collectively tried ∼140K times. The most
common of those ending in .com and .net respectively were 123.com (attempted
7,014 times) and nowtop.net (971 times).

Many of the attempted passwords have not been seen in the commonly stud-
ied leaked dictionaries (e.g., RockYou and phpbb). For example, out of the
∼1.4M distinct passwords, 876,012 (60%) passwords were not present in the
RockYou dataset. Those passwords were collectively attempted 7,136,356 times
out of the ∼17M total attempts (or ∼41%). Examples of those passwords include
http://managers.at and CactiEZ. See Appendix B for more details on the top
ten passwords and their counts.

Note that the number of guesses of many passwords unique to our dataset
was relatively high. For example, the password idcidc (likely short for “I don’t
care”) was attempted 5,272 times (0.03% of all ∼17M attempts) from 533 IP
addresses (of all 6,297) belonging to 27 ASes and 11 different countries. This
information increases the likelihood of those ∼5K attempts originating from dif-
ferent attackers using shared lists. Note also that those attempts were (almost)
evenly distributed over the course of 13 months. Table 3 shows five examples of
passwords that did not appear in any of the following leaks: RockYou, Gawker-
Passwords, myspace, phpbb, SonyPasswords, and YahooVoicePasswords.

Table 3. Examples of passwords observed in our experiments but not appearing in
common leaked dictionaries (see inline for details). The column to the right shows the
number of days the password appeared in our logs.

Password # of attempts
of sources

of days (months)
IPs ASes Countries

o12nu27 5,425 512 45 17 369 (12)
idcidc 5,272 533 27 11 368 (12)
rkqldk 4,457 381 9 5 349 (11.4)
\\001 3,837 26 3 1 341 (11.1)
zxm10 3,168 465 32 13 26 (0.85)

5.3 Dictionary Sharing and Splitting Among Sources

Owens and Matthews identified password sharing among bruteforcers [14]. Their
work used a narrow definition of sharing that required distinct attackers to at-
tempt the same username-password pairs in the same order to qualify as sharing.
While we also observed same-order guesses as described by Owens and Matthews,
we also noticed random guessing from shared dictionaries (described below).

One possible way to detect dictionary sharing is to identify overlap between
dictionaries. Figure 4 shows a heatmap of the percentage overlap between pairs
of dictionaries in our set. For this graph, dictionaries are built as the aggregate
set of distinct passwords used by any source within a particular /24 network.
We take the top 1000 largest (by password count) per-/24 dictionaries, and

'heatmapsubnetsbysize.dat' matrix

10
3.4

1.1
24

22
2.1

86
.38

60
.17

3.1
4

91
.20

0.1
2

12
4.1

67
.23

1

21
1.1

10
.14

0

1.9
3.3

2

10
3.2

1.1
41

20
3.6

9.3
7

19
2.1

88
.51

17
8.6

2.2
52

37
.46

.19
7

11
2.7

8.3

58
.21

5.1
72

13
4.2

55
.23

1

21
0.1

4.1
57

20
2.1

17
.2

68
.19

5.1
97

81
.14

9.3
1

12
5.2

2.2

12
2.1

92
.35

103.41.124

222.186.38

60.173.14

91.200.12

124.167.231

211.110.140

1.93.32

103.21.141

203.69.37

192.188.51

178.62.252

37.46.197

112.78.3

58.215.172

134.255.231

210.14.157

202.117.2

68.195.197

81.149.31

125.22.2

122.192.35

Pe
rc

en
t o

ve
rla

p
be

tw
ee

n
di

ct
io

na
rie

s
(0

-1
00

)

100
101
102
103
104
105
106

 1
 10
 20
 30
 40
 50
 60
 70

N
um

. p
as

sw
or

ds

N
um

. I
PsIPs per subnet

Number of passwords

Fig. 4. Overlap between per-subnet dictionaries. See inline. Best viewed in colour.

sort them from largest to smallest on the x and y axes.6 For reference, the
largest subnet dictionary (i.e., passwords used by 103.41.124.0/24) contains
∼1.09M distinct passwords. The 1000th largest dictionary (seen used by sources
in the 122.192.35 subnet) contains 21 distinct passwords. As the colour gradient
shows, white indicates no overlap (i.e., no common entries) between a dictionary
on the x-axis and that on the y-axis, while purple indicates 100% overlap.

Coordinated dictionary split. The horizontal and vertical white bands near
the 1.93.32 subnet indicate that passwords guessed were mostly unique com-
pared to all other passwords. Upon further investigation, we identified 13 sources
each guessing from a set of 500 lowercase alphabetical passwords. 11 of the 13
sources showed no overlap between their 500 passwords and other sets in the
group. This lack of overlap and equally sized dictionaries shows with high prob-

6 In Fig. 8, we show a similar heatmap for overlap between the largest 1000 per-IP
dictionaries (i.e., passwords seen used by each IP).

ability that a single attacker split a large dictionary into smaller sets of 500
entries, distributing these small sets to bots under his control.

Dictionary sharing. Purple squares near the x = y line highlight (possibly
non-contiguous) /24 subnets using the same set of passwords. We identified many
such instances, with the most notorious being the large purple region near the top
right of the heatmap. Here, we identified 404 distinct sources from 54 countries
all guessing from a dictionary of around 90 alphanumeric strings. These guesses
also came from a set of around 90 distinct username-password combinations,
indicating coordination among sources.

Another example is the largest purple region near the bottom left. Here
12 distinct networks were seen using the same dictionary of 10,546 passwords.
Sources in this set also each performed the same number of guesses overall
(10,852), and each guessed each password in their dictionary the same num-
ber of times (e.g., 123456 23 times, password 14 times, 123 11 times, etc).
While this behaviour may hint at coordination or centralized control, it could
also reflect distinct attackers using software configured the same way (e.g., by
not modifying the default configuration or password list).

The predominant purple and orange shading suggests that dictionary shar-
ing or distribution takes place among attackers.7 Small sets of passwords, likely
bundled with bruteforcing tools or found online, are used by many attackers.
However, as we discuss in Section 5.2, the overlap of these passwords with com-
mon web-based leaked dictionaries (e.g., RockYou) is not significant. One pos-
sible explanation is that attackers may be running SSH servers on their botnets
to log guessing attempts made by other attackers. Such a strategy would allow
attackers to effortlessly and quickly expand their dictionaries.

5.4 Reattempting username-password combination

Recall that none of our VMs had any valid accounts, so all login attempts failed
for all guesses. Despite this, we noticed that some username-password guesses
were made by the same source on the same destination VM more than once.
For example, the username nano and password bl3rand,. were tried four times
against the LON VM from a machine in Baotou, China between Jan and Feb
2015. About one-third of all source IP addresses (2,019 of 6,297) manifested that
behavior (77 addresses were particularly responsible for ∼50% of all repeated
attempts). Those addresses belong to 1,189 of all 4,187 /24 IP addresses. In
total, such repeated attempts account for 25% (or ∼4.3M of ∼17M) of all guessing
attempts, with time between pairs of repeated attempts ranging from less than
one second to ∼11 months. Attempts repeated more than twice also occurred, as
evidenced by an address that guessed username root and password \\001 1,220
times against the OTT VM in only 19 minutes.

7 We believe it is unlikely that all such highly overlapping dictionaries belong to a
single attacker since many of their bruteforcing behaviors were different, e.g., timing
dynamics, rate of attempts, etc. Even dictionary pairs with extreme overlap had
different guessing order.

100

101

102

103

104

100 101 102 103 104 105 106 107

admin

test
roo
toot oracle

nagios

debug

default
pi

N
um

be
r o

f d
is

tin
ct

 p
as

sw
or

ds
 (l

og
)

Number of login attempts (log)

(a)

0 0.2 0.4 0.6
0.4

0.6

0.8

1

Distinct usernames

C
D
F

Usernames

w/o root

w/o root and admin

(b)

Fig. 5. (a) Number of login attempts and distinct passwords per username (excluding
root). (b) A CDF of usernames; a point (x, y) means the proportion x of distinct
usernames accounted for the proportion y of all ∼17M observed.

One possible explanation for repeating attempts is that a machine could
be controlled by multiple attackers simultaneously. This may happen when at-
tackers, upon compromising a new system, fail to patch the vulnerability they
exploited.8 Attackers may also be repeating attempts to account for password
aging policies [7], expecting previously-failed attempts to succeed due to a pass-
word change. Although both hypotheses above could explain attempts repeated
within months or weeks, they fail to explain repeated attempts within shorter
intervals (e.g., minutes or seconds). We found that the time between 59,514
(1.4%) pairs of repeated attempts was one second or less, and between 251,305
(5.7%) was one minute or less, hinting at attack software misconfiguration.

Another explanation is that attackers may not have enough resources to store
which username-password pairs were attempted on which SSH server. Thus, they
operate a herd of bots arbitrarily, where any bot guesses a combination (from the
same fixed list of candidate guesses) on any server. Machines showing extremely
large average time (i.e., multiple months) between repeated attempts could have
gone through three phases: compromised, patched, then re-compromised (either
by the same attacker, or another one with overlapping dictionary). The source
may also have completed a full cycle through a list of targets and passwords,
arriving at the starting point once again.

6 Username Analysis

Root and Admin. The most commonly attempted usernames were root

(∼95% of all attempts) and admin (∼3%). Interestingly, only 63% of source IP
addresses guessed passwords for root or admin, meaning that the remaining 37%
specifically targeted non-administrative accounts, though at a much slower rate.
Figure 5a plots the number of login attempts observed for a specific username

8 Attackers may be unwilling to change the password or patch the vulnerability used
to compromise to avoid detection by the legitimate user of that system.

on the x-axis, and the number of distinct passwords for that username on the
y-axis. Based on this behaviour, defensive strategies that block the IP addresses
attempting root will fail to block a large portion of sources, but will succeed in
blocking the vast majority of attempts (until attack behaviour changes).

Figure 5b shows a CDF of username distribution. We note that the skew in
the CDF even when excluding root and admin indicates that attackers target a
narrow set of usernames. We discuss the implications of this in Section 8.

Other Usernames. The remaining set of usernames were tried comparatively
fewer times with fewer distinct passwords. Out of 27,855 total usernames, 7,612
(27.33%) saw only a single login attempt with a single password; 1,369 usernames
(4.91%) saw 2 attempts with a single password; and 7,340 (26.35%) usernames
recorded 2 attempts with 2 distinct passwords. This trend does not continue,
since only 119 usernames received 3 attempts with 3 distinct passwords.

In 2008, Owens and Matthews [14] reported that attackers frequently use the
username as the password (e.g., user david, password david) in SSH guessing
attacks. We recorded 50% of non-root and non-admin guesses attempting user-
names as the password, confirming that attackers continue using this strategy.

7 Timing Analysis

Table 4 summarizes the rates of attempts received on each VM per day, and per
hour. The last row shows combined statistics—minimum of the six minimums,
median of medians, and maximum of maximums respectively.

Table 4. Summary of the rate of attempts.

VM
Rate of attempts

Per day Per hour
Min Median Max Min Median Max

OTT 349 17,805 273,120 0 754 85,770
LON 836 35,445 116,935 0 1,204 15,375
NY 354 15,036 192,351 0 53 69,770
SFO 180 15,993 119,981 0 47 60,026
AMS 281 9,655 91,901 0 101 7,742
SGP 516 3,755 38,290 0 55 10,451

* 180 15,515 273,120 0 55 85,770

On Jun 14, 2014, between 3pm and 4pm EST, the OTT VM received more
than 85K attempts, averaging ∼24 per second. Collectively, those originated from
55 IP addresses in 13 /24s; however, about half of these attempts originated from
a single /16. For the short term study (the other 5 VMs), we noticed that the
two European-based VMs had relatively less skewed distribution of attempts over
time. This can be inferred from the Median Per Hour (relatively large medians)
and Max Per Hour columns (relatively small), suggesting the possible presence

M
A
R
’1
4

A
P
R
’1
4

M
A
Y
’1
4

JU
N
’1
4

JU
L
’1
4

A
U
G
’1
4

S
E
P
’1
4

O
C
T
’1
4

N
O
V
’1
4

D
E
C
’1
4

JA
N
’1
5

F
E
B
’1
5

M
A
R
’1
5

0

1

2

3
·105

Long-term study duration

A
tt
e
m
p
ts
/
d
a
y

OTT

(a)

12
:3
0

13
:3
0

14
:3
0

15
:3
0

16
:3
0

17
:3
0

18
:3
0

19
:3
0

20
:3
0

21
:3
0

22
:3
0

23
:3
0

0

500

1,000

1,500

2,000

First day (Jan 4, 2015)

A
tt
e
m
p
ts
/
m
in

NY LON SFO

SGP AMS

(b)

Fig. 6. (a) Daily attempts during the long-term study. (b) Attempts per minute during
the first day of making the SSH servers public; all five VMs were started at the same
time—the first point on the x-axis is 12:30pm UTC. Best viewed in colour.

of IDS-like systems in common backbone European networks that enforce some
form of rate-limiting.

At no single day did any of the six VMs receive zero attempts. The median
attempts per day varied from 3.7K (SGP) to 17.8K (OTT). Statistical confidence
from this data found a 90% chance the median number of (unthrottled) login
attempts received per day by any SSH server is between 6.7K and 24.3K. The
maximum number of attempts per day varied considerably across VMs. On Nov
16, 2014, the OTT VM experienced 273K attempts—the largest rate per day of
all VMs. Similarly, the NY VM had the highest rate per day in the short term
study, scoring 192K attempts on Jan 24, 2015.

Figure 6a shows the number of attempts received by the OTT VM in each
day of the long term study (373 days). The spikes on May 6 and Jun 14 (126,917
and 260,046 attempts, respectively) occurred when an attacker first discovers
the SSH server. A single source IP address was responsible for 94% of attempts
on May 6, but that machine did not make further attempts on any VM after
May 6. Likewise, a single IP was responsible for 98% of the attempts made on
Nov 16; and 62.210.128.0/18 was responsible for 79% of those on Nov 25.

Figure 6b shows the number of attempts in the first 12 hours (beginning at
12:30pm UTC) after starting the SSH servers of the five short-term study VMs.
The NY VM was the first to receive guessing attempts only 51 minutes after it
was started, versus 4 hours and 33 minutes for the SGP VM which was the latest.
The number of sources attempting guesses on the first day varied as well, from
4 (SFO) to 15 (LON). Only a single source (located in Ukraine) made guesses
on all five VMs on the first day within a two hour window (about four hours
after starting the SSH service). This machine seemed not aggressive, making
only one guess on each VM on that day. In fact, we found that this machine

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

Av
er

ag
e

at
te

m
pt

 p
er

 d
ay

 (l
og

)

Number of days

(a)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300 350 400

Av
er

ag
e

at
te

m
pt

 p
er

 d
ay

 (l
og

)

Range of days

(b)

Fig. 7. A point (x, y) represents a machine (IP address) that made an average of y
attempts per day and appeared in our logs (a) for x possibly non-consecutive days (b)
for a range of x days, i.e., difference between the first and the last day.

guesses a username-password combination on the five VMs then proceeds to the
next combination; attempts on the VMs were in the same order (which is AMS,
LON, SFO, NY, SGP), and the time between VMs was constant (e.g., 7 minutes
between AMS and LON, 25 between LON and SFO, etc.). It is thus likely that
this machine performs reconnaissance concurrently to guessing passwords.

Next, we analyze the density of guessing attempts per source IP address
over time. Figure 7 shows scatter plots where each point represents a source IP
address. In Fig. 7a, the average number of attempts per day made by an IP
address is plotted against the number of days the address appeared in our logs.
Most IP addresses showed up for ten days or less. The highest point is a source
machine that made 119,267 guessing attempts within a two hour period. Similar
behaviour was noticed from five other hosts in the same /24, and there was a
high degree of overlap between password guesses.

The point (x, y) = (39, 2) is a source machine that collectively made 79
attempts in 39 non-consecutive days, averaging ∼2 attempts per day. All guesses
were attempted on the SFO VM. The concentration of points between 35 and
50 (circled in Fig. 7a) belonged to the aggressive HK subnet 103.41.124.0/24
(see Section 4), highlighting the persistence of this subnet.

Figure 7b similarly shows the average number of attempts but over a duration
of consecutive days, from the first to the last day an IP address has appeared in
the logs. The concentration of points is now closer to the bottom of the y-axis,
compared to the previous case, since the average is taken over a longer period of
time. Although the maximum number of (possibly non-consecutive) days an IP
address have appeared in the logs did not exceed 60 (i.e., from Fig. 7a), a range
of up to 350 days was noticed. This could be due to an attacker not fully utilizing
its computing resources, or perhaps machines being fixed then re-exploited. In
conclusion, if IP-blacklisting was employed, system administrators should not

haste into whitelisting addresses shortly after guessing attempts discontinue,
since attacking machines may turn dormant for days before resuming activity.

8 Recommendations

Our data analysis allows us to propose concrete suggestions to administrators for
reducing the probability of successful guesses of SSH credentials. We note that
these recommendations do not preclude additional security mechanisms such as
IDS, public key authentication, etc.

Network blocking. We observed that certain IP addresses, often working
closely with other IP addresses in the same network block can exhibit aggressive
behaviour when guessing credentials. Opportunistic detection and blocking of
these sources could reduce the number of guesses by a significant fraction. For
this purpose, tools such as DenyHosts and Fail2Ban (see Section 2), in addi-
tion to rate-limiting login attempts can prevent login attempts from polluting
the system logs. We note, however, that any mechanism that blocks an IP ad-
dress should periodically (e.g., after three to six months) remove the block, as
attacking systems tend to persist their attack for short time periods.

Username whitelisting/blacklisting. The overwhelming majority of login
attempts target the root account. Thus, disabling remote logins for root could
be an effective method of preventing successful guesses. A more proactive ap-
proach involves explicitly whitelisting usernames that are allowed to login via
SSH, thus reducing the attack surface. Moreover, from our dataset, blacklisting
the top 20% of observed usernames could prevent 80% of successful attacks,
which aligns with suggestions by Florencio et al. [9]. This strategy may impose
less cognitive load on the user (as compared to blacklisting passwords), since
usernames must not be secret.

Proactive password checks. Proactive password checking is believed to im-
prove the security of a system [5]. Florencio et al. further suggest that blacklists
of as many as 106 passwords seems to be an effective operating point to prevent
online guessing without causing substantial user inconvenience [10]. In addition
to identifying frequently targeted accounts and passwords, we suggest proactive
checking to disallow passwords equal to usernames.

9 Conclusion

We presented a methodology for collecting automated SSH login attempts, and
analyzed the largest set of attack logs to date. By analyzing plaintext password
guesses, we were able to identify broad dictionary sharing across all attackers,
and note that many of the passwords used during SSH bruteforce campaigns are
independent from those of common web-based password leaks. We also observed
highly coordinated and highly distributed guessing attacks both within single
subnets and distributed across multiple regions. Our analysis shows that attacks
target all publicly accessible systems, but some systems may be of more interest
to attackers due to their physical location or connectivity.

Acknowledgements. We thank Hala Assal, Elizabeth Stobert, Mohamed Aslan,
Raphael Reischuk, and the anonymous referees for insightful comments which
have improved this paper.

References

1. Internet Storm Center - SSH Scanning Activity. https://isc.sans.org/ssh.html
Accessed September 13, 2015.

2. Nagios. https://www.nagios.org Accessed Sep. 13, 2015.
3. Country IP Blocks - Allocation of IP addresses by Country. https://

www.countryipblocks.net/allocation-of-ip-addresses-by-country.php, Ac-
cessed September 13, 2015, 2015.

4. M. Alsaleh, Mohammad Mannan, and P. C. van Oorschot. Revisiting Defenses
against Large-Scale Online Password Guessing Attacks. IEEE Transactions on
Dependable and Secure Computing (TDSC), 9(1):128–141, 2012.

5. F. Bergadano, B. Crispo, and G. Ruffo. High dictionary compression for proac-
tive password checking. ACM Transactions on Information and System Security
(TISSEC), 1(1):3–25, 1998.

6. J. Bonneau. The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In IEEE Symposium on Security and Privacy, 2012.

7. S. Chiasson and P. C. van Oorschot. Quantifying the security advantage of
password expiration policies. Designs, Codes and Cryptography, 77(2-3):401–408,
Springer 2015.

8. Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-wide scan-
ning and its security applications. In USENIX Security, Aug. 2013.

9. D. Florêncio, C. Herley, and B. Coskun. Do Strong Web Passwords Accomplish
Anything? In USENIX HotSec, pages 10:1–10:6, 2007.

10. D. Florêncio, C. Herley, and P. C. van Oorschot. An Administrator’s Guide to
Internet Password Research. In USENIX LISA, pages 35–52, 2014.

11. R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras. SSH Compromise Detection
using NetFlow/IPFIX. ACM SIGCOMM CCR, 44(5):20–26, 2014.

12. IPinfo. IP Address Details - ipinfo.io. http://ipinfo.io Accessed Sep. 13, 2015.
13. M. Javed and V. Paxson. Detecting Stealthy, Distributed SSH Brute-Forcing. In

ACM CCS, 2013.
14. J. Owens and J. Matthews. A Study of Passwords and Methods Used in Brute-

Force SSH Attacks. In USENIX LEET, 2008.
15. A. Satoh, Y. Nakamura, and T. Ikenaga. Identifying User Authentication Methods

on Connections for SSH Dictionary Attack Detection. In IEEE Annual Computer
Software and Applications Conference Workshops (COMPSACW), 2013.

16. A. Sperotto, R. Sadre, P.-T. d. Boer, and A. Pras. Hidden Markov Model Model-
ing of SSH Brute-Force Attacks. In Integrated Management of Systems, Services,
Processes and People in IT, pages 164–176. Springer Berlin Heidelberg, 2009.

17. J. L. Thames, R. Abler, and D. Keeling. A Distributed Active Response Architec-
ture for Preventing SSH Dictionary Attacks. In IEEE Southeastcon, pages 84–89,
2008.

18. T. Ylonen. SSH - Secure Login Connections over the Internet. In USENIX Security,
1996.

https://isc.sans.org/ssh.html
https://www.nagios.org
https://www.countryipblocks.net/allocation-of-ip-addresses-by-country.php
https://www.countryipblocks.net/allocation-of-ip-addresses-by-country.php
http://ipinfo.io

Appendix A SSH servers on non-standard ports

A commonly suggested strategy to reduce the chances of guessing attacks suc-
ceeding is to change the default listening port (TCP 22) to a non-standard port.
Using a port other than the default requires client-side changes, so easy to re-
member ports (such as 2222 or 2022) are sometimes suggested by administrators
and users [14]. To investigate the validity of this suggestion, we created a network
daemon that accepts incoming connections on all TCP ports (except port 22).
When a new connection is received, the daemon looks for an initial SSH hand-
shake and immediately closes the connection. We recorded the source IP, port
number, and timestamp of all incoming SSH protocol connections. We ran this
daemon on a separate VM over a 12 day period, and recorded 30,169 incoming
connections to 522 distinct ports, out of which 77 were SSH connection. These
incoming connections originated from 9 distinct source IP addresses. The full
list of ports which received SSH connections are listed in Table 5. Notice that all
incoming SSH connections have the digit 2 in the port number, many with two
or more occurrences. Also of interest is that none of the 9 sources was seen mak-
ing connections in the long-term or short-term study, hinting at the possibility
that attackers dedicate some bots to non-standard scans/attacks. Despite the
short duration of this study above (port numbers), the results show that attack-
ers do not simply ignore non-standard ports. With availability of modern (and
extremely fast) network scanning tools [8], attackers can quickly scan all open
ports on sets of systems typically identified by an IPv4 address. Thus, moving an
SSH daemon to a port other than 22 may not provide a comprehensive solution.

Table 5. List of non-standard ports on which incoming SSH connections were received.

Port Count Port Count Port Count Port Count Port Count Port Count

2222 29 55022 3 22002 3 8822 1 2101 1 2233 1
1202 7 2312 3 21002 3 8022 1 2011 1 10022 1
2111 5 2266 3 7022 2 22203 1 2001 1
22088 4 221 3 22201 2 2212 1 122 1

Appendix B Top usernames and passwords (non-root)

Table 6 shows the top ten usernames and passwords, including the top ten pass-
words that did not appear in the RockYou dataset (RockYou’s top ten are also
included for reference). From the second column, we notice that the top ten pass-
words in our set are likely relevant to conventions among system administrators,
due to the nature of SSH. The most common attempted password, toor, is the
mirror of root. Nagios [2] is an open-source monitoring software.

For reference, in Table 7 we list the most frequent username-password com-
binations in our set. Note that most of these combinations follow the “username
as password” strategy described in Section 6.

Table 6. Top ten passwords

SSH• SSH• Not in RockYou RockYou

Password Count % Password Count % Password Count %

admin 20657 0.120 toor 7204 0.101 123456 290729 0.892
123456 17592 0.102 root@123 6771 0.095 12345 79076 0.243
password 14981 0.087 r00t 6593 0.092 123456789 76789 0.236

root 12122 0.070 data 6275 0.088 password 59462 0.182
1234 11515 0.067 root00 6269 0.088 iloveyou 49952 0.153
test 10091 0.059 p@ssw0rd1 5947 0.083 princess 33291 0.102
12345 9963 0.058 nagios 5908 0.083 1234567 21725 0.067
123 9371 0.054 admin@123 5806 0.081 rockyou 20901 0.064

abc123 9113 0.053 root123!@# 5581 0.078 12345678 20553 0.063
12345678 8747 0.051 shisp.com 5543 0.078 abc123 16648 0.051

•per experiments herein

Table 7. Top ten username-password combination, where the username is neither root
nor admin. The length of this set is 294,694, of which 69,110 are unique.

Username Password Count %

ubnt ubnt 2098 0.712
guest guest 1933 0.656
test test 1932 0.656
oracle oracle 1893 0.642
support support 1516 0.514
info info 1412 0.479
nagios nagios 1203 0.408
pi raspberry 1199 0.407

postgres postgres 1103 0.374
ftp ftp 1089 0.370

Appendix C Overlap of per-IP dictionaries

Figure 8 shows percentage overlap between per-IP dictionaries. For this graph,
the per-IP dictionary contains the set of all passwords tried by that IP address
during the full collection period. We sort the IP addresses numerically on the
x and y axes, which allows us to identify large contiguous IP space exhibit-
ing similar behaviour. For example, the subnet 103.41.124.0/24 contains many
hosts with similarly sized dictionaries that have very little overlap (white vertical
banding) with other dictionaries in the set.

'heatmaptop1000-sorted-full.dat' matrix

1.9
3.0

.0/
18

60
.17

3.0
.0/

16

61
.16

0.0
.0/

16

61
.17

4.5
1.0

/24

62
.21

0.0
.0/

16

10
3.4

1.1
24

.0/
24

11
1.7

4.2
38

.0/
23

11
5.2

30
.0.

0/1
2

11
6.1

0.1
91

.0/
24

11
7.2

1.0
.0/

16

12
2.2

25
.0.

0/1
6

14
4.0

.0.
0/2

4

18
3.5

7.5
7.0

/24

19
2.1

26
.12

0.0
/24

20
2.1

09
.14

3.0
/24

21
8.2

.0.
0/2

4

22
0.1

77
.19

8.0
/24

22
1.2

29
.16

0.0
/16

22
2.1

86
.0.

0/1
6

1.93.0.0/18

60.173.0.0/16
61.160.0.0/16

61.174.51.0/24

62.210.0.0/16

103.41.124.0/24

111.74.238.0/23

115.230.0.0/12

116.10.191.0/24

117.21.0.0/16

122.225.0.0/16

144.0.0.0/24

183.57.57.0/24
192.126.120.0/24
202.109.143.0/24

218.2.0.0/24

220.177.198.0/24
221.229.160.0/16

222.186.0.0/16

Pe
rc

en
t o

ve
rla

p
be

tw
ee

n
di

ct
io

na
rie

s
(0

-1
00

)

102
103
104
105
106

 N
um

. p
as

sw
or

ds

Number of passwords

Fig. 8. Overlap between per-IP dictionaries. This figure plots overlap between the
1000 largest per-IP dictionaries. Dictionaries are sorted by IP address. The histogram
below the heatmap shows the number of passwords in the per-IP dictionary for the IP
immediately above.

	What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks

