
Distributed Detection of Node Replication Attacks
in Sensor Networks∗

Bryan Parno† Adrian Perrig‡

Carnegie Mellon University
{parno, perrig}@cmu.edu

Virgil Gligor §

University of Maryland
gligor@eng.umd.edu

Abstract

The low-cost, off-the-shelf hardware components in
unshielded sensor-network nodes leave them vulnera-
ble to compromise. With little effort, an adversary may
capture nodes, analyze and replicate them, and sur-
reptitiously insert these replicas at strategic locations
within the network. Such attacks may have severe con-
sequences; they may allow the adversary to corrupt net-
work data or even disconnect significant parts of the net-
work. Previous node replication detection schemes de-
pend primarily on centralized mechanisms with single
points of failure, or on neighborhood voting protocols
that fail to detect distributed replications. To address
these fundamental limitations, we propose two new al-
gorithms based on emergent properties [17], i.e., prop-
erties that arise only through the collective action of
multiple nodes. Randomized Multicast distributes node
location information to randomly-selected witnesses, ex-
ploiting the birthday paradox to detect replicated nodes,
while Line-Selected Multicast uses the topology of the
network to detect replication. Both algorithms pro-
vide globally-aware, distributed node-replica detection,
and Line-Selected Multicast displays particularly strong
performance characteristics. We show that emergent al-
gorithms represent a promising new approach to sensor
network security; moreover, our results naturally extend
to other classes of networks in which nodes can be cap-
tured, replicated and re-inserted by an adversary.

∗The views and conclusions contained in this paper are those of the
authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of Bosch, Carnegie Mellon Univer-
sity, NSF, the Army Research Office, the Army Research Laboratory,
the U.S. Government or any of its agencies.

†Bryan Parno is supported in part by an NDSEG Fellowship, which
is sponsored by the Department of Defense.

‡This research was supported in part by CyLab at Carnegie Mellon
under grant DAAD19-02-1-0389 from the Army Research Office,and
grant CAREER CNS-0347807 from NSF, and by a gift from Bosch.

§Virgil Gligor was supported in part by the U.S. Army Research
Office under Award No. DAAD19-01-1-0494, and by the U.S. Army
Research Laboratory under Cooperative Agreement DAAD19-01-2-
0011 for the Collaborative Technology Alliance for Communications
and Networks.

1 Introduction

The ease of deploying sensor networks contributes to
their appeal. They can quickly scale to large configura-
tions, since administrators can simply drop new sensors
into the desired locations in the existing network. To
join the network, new nodes require neither administra-
tive intervention nor interaction with a base station; in-
stead, they typically initiate simple neighbor discovery
protocols [6, 13] by broadcasting their prestored creden-
tials (e.g., their unique ID and/or the unique ID of their
keys).

Unfortunately, sensor nodes typically employ low-
cost commodity hardware components unprotected by
the type of physical shielding that could preclude ac-
cess to a sensor’s memory, processing, sensing and com-
munication components. Cost considerations make it
impractical to use shielding that could detect pressure,
voltage, and temperature changes [11, 33, 36] that an
adversary might use to access a sensor’s internal state.
Deploying unshielded sensor nodes in hostile environ-
ments enables an adversary to capture, replicate, and in-
sert duplicated nodes at chosen network locations with
little effort. Thus, if the adversary compromises even
a single node, she can replicate it indefinitely, spread-
ing her influence throughout the network. If left un-
detected, node replication leaves any network vulner-
able to a large class of insidious attacks. Using repli-
cated nodes, the adversary can subvert data aggregation
protocols by injecting false data or suppressing legiti-
mate data. Further, blame for abnormal behavior can
now be spread across the replicas, reducing the likeli-
hood that any one node exceeds the detection thresh-
old. Even more insidiously, node replicas placed at ju-
diciously chosen locations can revoke legitimate nodes
and disconnect the network by triggering correct execu-
tion of node-revocation protocols that rely on threshold
voting schemes [6, 10, 13, 27].

Previous approaches for detecting node replication
typically rely on centralized monitoring, since localized
voting systems [6, 27] cannot detect distributed replica-
tion. Centralized schemes require all of the nodes in the

network to transfer a list of their neighbors’ claimed lo-
cations1 to a central base station that can examine the
lists for conflicting location claims. Like all centralized
approaches, this creates a single-point of failure. If the
adversary can compromise the base-station or interfere
with its communications, then the centralized approach
will fail. Also, the nodes surrounding the base station
are subjected to an undue communication burden that
may shorten the network’s life expectancy.

In this paper, we use two different emergent algo-
rithms to provide the first examples of globally-aware
distributed node-replication detection systems. The
emergent nature of our algorithms makes them ex-
tremely resilient to active attacks, and both protocols
seek to minimize power consumption by limiting com-
munication, while still operating within the extremely
limited memory capacity of typical sensor nodes. An
emergent algorithm leverages the features that no indi-
vidual node can provide, but that emerge through the
collaboration of many nodes. Our first protocol, Ran-
domized Multicast, distributes location claims to a ran-
domly selected set of witness nodes. The Birthday Para-
dox predicts that a collision will occur with high prob-
ability if the adversary attempts to replicate a node.
Our second protocol, Line-Selected Multicast, exploits
the routing topology of the network to select witnesses
for a node’s location and utilizes geometric probabil-
ity to detect replicated nodes. This protocol has mod-
est communication and memory requirements. Further-
more, our solutions apply equally well to any class of
network in which the adversary can capture, replicate
and insert additional nodes. Examples include wireless
ad hoc networks and peer-to-peer networks. We argue
that such networks require the resiliency of emergent se-
curity techniques to resist an adversary that can subvert
an arbitrary number of nodes at unpredictable locations.
We expect that distributed algorithms based on emer-
gent properties will provide the best defenses for attacks
against these systems.

In the following section, we provide a more detailed
description of the node replication attack that we plan
to thwart, and we supply a summary of notation used
throughout the paper. Then, in Section 3 we summa-
rize some of the earlier proposals and explain why they
fail to prevent replication attacks. After discussing some
preliminary approaches to distributed detection in Sec-
tion 4, we present and analyze our two primary pro-
tocols, Randomized Multicast and Line-Selected Mul-
ticast, in Sections 5 and 6 respectively. We compare

1To prevent the adversary from using the location information to
find and disable nodes, we could instead broadcast a locator unique
to the node’s neighborhood that would reveal less information but still
be verifiable by the neighbors. For example, the locator could consist
of the node’s list of neighbors. If the list becomes prohibitively long,
each node can broadcast the list to its neighbors but sign a hash of the
list. The neighbors verify that they are on the list, check the hash, and
then only propagate the hash value, instead of the entire list.

and contrast the protocols, discuss synchronization and
authentication issues and generalize our algorithms in
Section 8. Finally, we review related research in Sec-
tion 9 and present our future work and conclusions in
Sections 10 and 11.

2 Background

2.1 Goals

For a given sensor network, we would like to detect
a node replication attack, i.e., an attempt by the ad-
versary to add one or more nodes to the network that
use the same ID as another node in the network. Ideally,
we would like to detect this behavior without centralized
monitoring, since centralized solutions suffer from sev-
eral inherent drawbacks (see Section 3.1). The scheme
should also revoke the replicated nodes, so that non-
faulty nodes in the network cease to communicate with
any nodes injected in this fashion.

We evaluate each protocol’s security by examining
the probability of detecting an attack given that the ad-
versary insertsL replicas of a subverted node. The pro-
tocol must provide robust detection even if the adver-
sary captures additional nodes. We also evaluate the ef-
ficiency of each protocol. In a sensor network, commu-
nication (both sending and receiving) requires at least
an order of magnitude more power than any other oper-
ation [14], so our first priority must be minimizing com-
munication, both for the network as a whole and for the
individual nodes (since hotspots will quickly exhaust a
node’s power supply). Moreover, sensor nodes typically
have a limited amount of memory, often on the order of a
few kilobytes [14]. Thus, any protocol requiring a large
amount of memory will be impractical.

2.2 Sensor Network Environments

A sensor network typically consists of hundreds, or
even thousands, of small, low-cost nodes distributed
over a wide area. The nodes are expected to function
in an unsupervised fashion even if new nodes are added,
or old nodes disappear (e.g., due to power loss or acci-
dental damage). While some networks include a central
location for data collection, many operate in an entirely
distributed manner, allowing the operators to retrieve ag-
gregated data from any of the nodes in the network. Fur-
thermore, data collection may only occur at irregular in-
tervals. For example, many military applications strive
to avoid any centralized and fixed points of failure. In-
stead, data is collected by mobile units (e.g., unmanned
aerial units, foot soldiers, etc.) that access the sensor
network at unpredictable locations and utilize the first
sensor node they encounter as a conduit for the informa-
tion accumulated by the network. Since these networks
often operate in an unsupervised fashion for long periods

of time, we would like to detect a node replication attack
soon after it occurs. If we wait until the next data col-
lection cycle, the adversary has time to use its presence
in the network to corrupt data, decommission legitimate
nodes, or otherwise subvert the network’s intended pur-
pose.

We also assume that the adversary cannot readily cre-
ate new IDs for nodes. Newsome et al. describe sev-
eral techniques to prevent the adversary from deploying
nodes with arbitrary IDs [27]. For example, we can tie
each node’s ID to the unique knowledge it possesses. If
the network uses a key predistribution scheme [6, 13],
then a node’s ID could correspond to the set of secret
keys it shares with its neighbors (e.g., a node’s ID is
given by the hash of its secret keys). In this system, an
adversary gains little advantage by claiming to possess
an ID without actually holding the appropriate keys. As-
suming the sensor network implements this safeguard,
an adversary cannot create a new ID without guessing
the appropriate keys (for most systems, this is infeasi-
ble), so instead the adversary must capture and clone a
legitimate node.

2.3 Adversary Model

In examining the security of a sensor network, we
take a conservative approach by assuming that the ad-
versary has the ability to surreptitiously capture a lim-
ited number of legitimate sensor nodes. We limit the
percentage of nodes captured, since an adversary that
can capture most or all of the nodes in the network
can obviously subvert any protocol running in the net-
work. Having captured these nodes, the adversary can
employ arbitrary attacks on the nodes to extract their
private information. For example, the adversary might
exploit the unshielded nature of the nodes to read their
cryptographic information from memory. The adversary
could then clone the node by loading the node’s crypto-
graphic information onto multiple generic sensor nodes.
Since sensor networks are inherently designed to facili-
tate ad hoc deployment, these clones can then be easily
inserted into arbitrary locations within the network, sub-
ject only to the constraint that each inserted node shares
at least one key with some of its neighbors. We allow
all of the nodes under the adversary’s control to commu-
nicate and collaborate, but we make the simplifying as-
sumption that any cloned node has at least one legitimate
node as a neighbor. In Section 8.4, we show how we can
remove this assumption while retaining security. We as-
sume that the adversary operates in a stealthy manner,
attempting to avoid detection, since detection could trig-
ger an automated protocol to sweep the network, using a
technique such as SWATT [32] to remove compromised
nodes, or draw human attention and/or intervention. In
the following discussion, we will also assume that nodes
under the adversary’s control (both the subverted nodes

and their clones) continue to follow the protocols de-
scribed. This allows us to focus on the details of the
protocols, but in Section 10, we will suggest methods
for relaxing this assumption.

As described above, our adversary model differs from
the Dolev-Yao adversary [9] in several respects. Tra-
ditionally used to analyze cryptographic protocols, the
Dolev-Yao model allows the adversary to read and write
messages at any location within the network. However,
in our discussion, we restrict the adversary to read and
write messages using only the nodes under its control.
On the other hand, our model also allows the adversary
to subvert and replicate existing nodes in an adaptive
manner, capabilities not available to the Dolev-Yao ad-
versary. These capabilities allow the adversary to mod-
ify both the network topology and the “trust” topology,
since the set of legitimate nodes changes as the adver-
sary subverts nodes and inserts additional replicas.

2.4 Notation

For clarity, we list the symbols and notation used
throughout the paper below:

n Number of nodes in the network
d Average degree of each node
p Probability a neighbor will replicate

location information
g Number of witnesses selected by

each neighbor
lα Location nodeα claims to occupy

H(M) Hash of M
Kα α’s public key
K−1

α α’s private key
{M}K

−1
α

α’s signature on M
S Set of all possible node IDs

3 Previous Protocols

Thus far, protocols for detecting node replication
have relied on a trusted base station to provide global
detection. For the sake of completeness, we also discuss
the use of localized voting mechanisms. We consider
these protocols in the abstract; for specific examples of
previous protocols, see Section 9. Until now, it was gen-
erally believed that these two alternatives exhausted the
space of possibilities. This paper expands the design
space to offer new alternatives with strong security and
efficiency characteristics.

3.1 Centralized Detection

The most straightforward detection scheme requires
each node to send a list of its neighbors and their claimed

locations to the base station. The base station can then
examine every neighbor list to look for replicated nodes.
If it discovers one or more replicas, it can revoke the
replicated nodes by flooding the network with an authen-
ticated revocation message.

While conceptually simple, this approach suffers
from several drawbacks inherent in a centralized system.
First, the base station becomes a single point of failure.
Any compromise of the base station or the communica-
tion channel around the base station will render this pro-
tocol useless. Furthermore, the nodes closest to the base
station will receive the brunt of the routing load and will
become attractive targets for the adversary. The protocol
also delays revocation, since the base station must wait
for all of the reports to come in, analyze them for con-
flicts and then flood revocations throughout the network.
A distributed or local protocol could potentially revoke
replicated nodes in a more timely fashion. Finally, many
networks do not have the luxury of a powerful base sta-
tion, making a distributed solution a necessity.

In terms of security, this protocol achieves 100% de-
tection of all replicated nodes, assuming all messages
successfully reach the base station. As far as efficiency,
if we assume that the average path length2 to the base
station isO(

√
n) and each node has an average degreed

(for d ≪ n), then this protocol requiresO(n
√

n) com-
munication for all of the reports from the nodes to reach
the base station. The storage required at each node is
O(d). At the base station, the protocol requiresO(n ·d),
though storage is presumably less of a concern for the
base station.

3.2 Local Detection

To avoid relying on a central base station, we could
instead rely on a node’s neighbors to perform replica-
tion detection. Using a voting mechanism, the neigh-
bors can reach a consensus on the legitimacy of a given
node. Unfortunately, while achieving detection in a dis-
tributed fashion, this method fails to detect distributed
node replication in disjoint neighborhoods within the
network. As long as the replicated nodes are at least
two hops away from each other, a purely local approach
cannot succeed.

4 Preliminary Approaches

One might imagine addressing the shortcomings of
previously proposed protocols by implementing dis-
tributed detection using a simple broadcast scheme, or
by using deterministic replication of location claims. To
the best of our knowledge, neither of these protocols

2This will hold true if the sensor network deployment approximates
any regular polygon.

have been discussed in the literature. Despite their draw-
backs, we discuss them to provide background and intu-
ition for our two primary protocols, Randomized Mul-
ticast and Line-Selected Multicast, presented in Sec-
tions 5 and 6 respectively. In all four protocols, we as-
sume that nodes know their own geographic positions.
Numerous researchers have proposed schemes for deter-
mining node location, using everything from highly ab-
stract graph embeddings [28], to connectivity informa-
tion [8], to powerful beacon nodes placed on the perime-
ter of the network [5]. Some of these proposals require
that some or all of the nodes have GPS receivers, but
many do not. For our purposes, any of these protocols
will suffice. We also assume that the nodes in the net-
work remain relatively stationary, at least for the time
it takes to perform one round of replication detection.
If the network designers anticipate occasional mobility,
they can schedule regular detection rounds. As long as a
node successfully participates in a round, it can continue
to communicate until the next round, even if its position
changes in the interim. We discuss additional timing de-
tails in Section 8.2.

4.1 Node-To-Network Broadcasting

One approach to distributed detection utilizes a sim-
ple broadcast protocol. Essentially, each node in the net-
work uses an authenticated broadcast message to flood
the network with its location information. Each node
stores the location information for its neighbors and if it
receives a conflicting claim, revokes the offending node.

This protocol achieves 100% detection of all dupli-
cate location claims under the assumption that the broad-
casts reach every node. This assumption may not hold
if the adversary can jam key areas or otherwise interfere
with communication paths through the network. Nodes
could employ redundant messages or authenticated ac-
knowledgment techniques to try to thwart such an attack.
In terms of efficiency, this protocol requires each node
to store location information about itsd neighbors. One
node’s location broadcast requiresO(n) messages, as-
suming the nodes employ a duplicate suppression algo-
rithm in which each node only broadcasts a given mes-
sage once. Thus, the total communication cost for the
protocol isO(n2). Given the simplicity of the scheme
and the level of security achieved, this cost may be justi-
fiable for small networks. However, for large networks,
the n2 factor is too costly, so we investigate schemes
with a lower cost.

4.2 Deterministic Multicast

To improve on the communication cost of the previ-
ous protocol, we describe a detection protocol that only
shares a node’s location claim with a limited subset of
deterministically chosen “witness” nodes. When a node

broadcasts its location claim, its neighbors forward that
claim to a subset of the nodes called witnesses. The wit-
nesses are chosen as a function of the node’s ID. If the
adversary replicates a node, the witnesses will receive
two different location claims for the same node ID. The
conflicting location claims become evidence to trigger
the revocation of the replicated node.

More formally, in this protocol, whenever nodeγ
hears a location claimlα from nodeα, it computes
F (α) = {ω1, ω2, . . . , ωg}, whereF maps each node ID
in the set of possible node IDs,S, to a set ofg node IDs:

F : S → {σ : σ ∈ 2S , |σ| = g} (1)

The nodes with IDs in the set{ω1, ω2, . . . , ωg} consti-
tute the witnesses for nodeα. Nodeγ forwardslα to
each of these witnesses. Ifα claims to be at more than
one location, the witnesses will receive conflicting loca-
tion claims, which they can flood through the network,
discreditingα.

In this protocol, each node in the network storesg lo-
cation claims on average. For communication, assuming
α’s neighbors do not collaborate, we will need each of
α’s neighbors to probabilistically decide which of theωi

to inform. If each node selectsg ln g

d
random destinations

from the set of possibleωi, then the coupon collector’s
problem [7] assures us that each of theωi’s will receive
at least one of the location claims. Assuming an aver-
age network path length ofO(

√
n) nodes, this results in

O(g ln g
√

n

d
) messages. Unfortunately, this cost does not

provide much security. SinceF is a deterministic func-
tion, an adversary can also determine theωis. Thus, they
become targets for subversion. If the adversary can cap-
ture or jam allg of the messages destined to theωis, then
she can create as many replicas ofα as she desires (lim-
ited only by the requirement that no two replicas share
a neighbor). Since the communication costs of this pro-
tocol grow asO(g ln g), we cannot afford a large value
for g, and yet a small value forg allows the adversary al-
most unlimited replication abilities after compromising
a fixed number of nodes; in other words, if the adversary
controls theg witnesses forα, she can create unlimited
replicas ofα and suppress the conflicting reports arriv-
ing at the witness nodes. These disadvantages make this
protocol unappealing.

5 Randomized Multicast

To improve the resiliency of the deterministic mul-
ticast protocol discussed in Section 4.2, we propose a
new protocol that randomizes the witnesses for a given
node’s location claim, so that the adversary cannot an-
ticipate their identities. When a node announces its lo-
cation, each of its neighbors sends a copy of the location
claim to a set of randomly selected witness nodes. If the
adversary replicates a node, then two sets of witnesses

will be selected. In a network ofn nodes, if each loca-
tion produces

√
n witnesses, then the birthday paradox

predicts at least one collision with high probability, i.e.,
at least one witness will receive a pair of conflicting lo-
cation claims. The two conflicting locations claims form
sufficient evidence to revoke the node, so the witness can
flood the pair of locations claims through the network,
and each node can independently confirm the revocation
decision.

5.1 Assumptions

As discussed in Section 4, our protocols assume that
each node knows its own location. We also assume that
the network utilizes an identity-based public key sys-
tem such that each nodeα is deployed with a private
key, K−1

α , and any other node can calculateα’s public
key usingα’s ID, i.e., Kα = f(α). If necessary, we
could replace this system with a more traditional PKI
in which we assume the network authorities use a mas-
ter public/private-key pair (KM , K−1

M) to signα’s pub-
lic key; however, transmitting this public-key certificate
will have a substantial communication overhead.

Traditionally, researchers have assumed that public
key systems exceed the memory and computational ca-
pacity of sensor nodes. However, public key cryptogra-
phy on new sensor hardware may not be as prohibitive
as traditionally assumed. In recent work, Malan et al.
demonstrate that they can successfully generate 163 bit
ECC keys on the MICA 2 in under 34 seconds [22]. Fur-
thermore, the latest generation of Telos sensors come
with 10KB of RAM and can achieve 5x the data rate of
the MICA 2, making public-key algorithms more prac-
tical. In Section 8.3.2, we discuss how we could instead
use symmetric-key cryptography to lower the computa-
tional overhead, at the expense of additional communi-
cation.

5.2 Protocol Description

At a high level, the protocol has each node broadcast
its location claim, along with a signature authenticating
the claim. Each of the node’s neighbors probabilisti-
cally forwards the claim to a randomly selected set of
witness nodes. If any witness receives two different lo-
cation claims for the same node ID, it can revoke the
replicated node. The birthday paradox ensures that we
detect replication with high probability using a relatively
limited number of witnesses.

More formally, each nodeα broadcasts a location
claim to its neighbors,β1, β2, . . . , βd. The loca-
tion claim has the format〈IDα, lα, {H(IDα, lα)}K

−1
α

〉,
wherelα representsα’s location (e.g., geographic coor-
dinates(x, y)). Upon hearing this announcement, each
neighbor,βi, verifiesα’s signature and the plausibility

of lα (for example, if each node knows its own posi-
tion and has some knowledge of the maximum prop-
agation radius of the communication layer, then it can
loosely boundα’s set of potential locations). Then, with
probabilityp, each neighbor selectsg random locations
within the network and uses geographic routing (e.g.,
GPSR [19]) to forwardα’s claim to the nodes closest to
the chosen locations (as in GHT [30]). Since we have
assumed the nodes are distributed randomly, this should
produce a random selection from the nodes in the net-
work. In Section 5.3, we show that the probability of
selecting the same node more than once is generally neg-
ligible. Collectively, the nodes chosen by the neighbors
constitute the witnesses forα.

Each witness that receives a location claim, first ver-
ifies the signature. Then, it checks the ID against all of
the location claims it has received thus far. If it ever re-
ceives two different locations claims for the same node
ID, then it has detected a node replication attack, and
these two location claims serve as evidence to revoke the
node. It blacklistsα from further communication by im-
mediately flooding the network with the pair of conflict-
ing location claims,lα andl′α. Each node receiving this
pair can independently verify the signatures and agree
with the revocation decision. Thus, the sensor network
both detects and defeats the node replication attack in a
fully distributed manner. Furthermore, the randomiza-
tion prevents the adversary from predicting which node
will detect the replication.

5.3 Security Analysis

Let malicious nodeα claim to be atL locations,l1,
l2,. . . , lL. We would like to determine the probability of
a collision using the randomized multicast protocol out-
lined above, since a collision at a witness corresponds
to detection ofα’s replication. At each locationli, p · d
nodes randomly selectg witnesses. If the neighbors co-
ordinated perfectly, this would storeα’s location claim
at exactlyp · d · g locations. However, since we pre-
fer to have each neighbor act independently, there may
be some amount of overlap between the witnesses each
neighbor selects. To determine the impact of this over-
lap, we would like to determine the number of nodes,
Nreceive, that will receive the location claim assuming
the neighbors choose witnesses independently. IfPclaim

is the probability that a node hears at least one claim and
Pnone is the probability that a node hears no location
claims, then we have:

E[Nreceive] = n · Pclaim (2)

Pclaim = 1 − Pnone (3)

Since each neighbor is assumed to selectg random,
unique witness locations, the probability (Pf) that a
node fails to hear any of theg announcements from one

neighbor is:

Pf = 1 − g

n
(4)

Since each neighbor decides independently whether to
send out location claims, the number of nodes that ac-
tually send out location claims is distributed binomially,
with meanp · d and varianced · p(1− p). For a network
with d = 20 andp = 1

10
, the variance will be less than

0.005, so we will approximate the number of neighbors
that send out locations claims asp · d. Since the neigh-
bors choose their destinations independently, we have:

Pnone =

(

1 − g

n

)p·d

(5)

Combining equations 2, 3 and 5, the number of witness
nodes that receive at least one location claim is:

E[Nreceive] = n ·
(

1 −
(

1 − g

n

)p·d)

(6)

The Binomial Theorem allows us to approximate
(1 − x)

y as(1 − xy) for smallx, so as long asg ≪ n,
we haveNreceive ≈ p·d·g, so overlapping witness loca-
tions should not impact the security of the protocol. As
an example, in a network withn = 10, 000, g = 100,
d = 20, andp = 0.1, perfect coordination would tell
200 nodes, while independent selection would tell 199.
Thus, for the remainder of the analysis, we will assume
thatp · d · g nodes receive each location claim.

If the adversary insertsL replicas ofα, we would
like to determine the probability that two conflicting lo-
cation reports collide at some witness node, since this
corresponds to the probability that a witness detects the
node replication. Note that even if there are more than
two replicas ofα, we still only need two location claims
to collide in order to completely revoke allL of the
replicas, since one collision will prompt a network-wide
flood of the duplicate claims (li and lj) and any other
node that has heard location claimlk for k 6= i, j will
also revokeα.

Following the standard derivation of the birthday
paradox [7], the probabilityPnc1 that thep · d · g re-
cipients of claiml1 do not receive any of thep · d · g
copies of claiml2 is given by:

Pnc1 =

(

1 − p · d · g
n

)p·d·g

(7)

Similarly, the probabilityPnc2 that the2·p·d·g recipients
of claimsl1 andl2 do not receive any of thep·d·g copies
of claim l3 is given by:

Pnc2 =

(

1 − 2 · p · d · g
n

)p·d·g

(8)

Thus, the probabilityPnc of no collisions at all is given
by:

Pnc =

L−1
∏

i=1

(

1 − i · p · d · g
n

)p·d·g

(9)

Using the standard approximation that(1+x) ≤ ex, we
have:

Pnc ≤
L−1
∏

i=1

e
−i·p2

·d2
·g2

n (10)

≤ e
−p2

·d2
·g2

n

PL−1
i=1 i (11)

≤ e
−p2

·d2
·g2

n

L(L−1)
2 (12)

Since the probability of a collision,Pc, is simply1−Pnc,
the probability of detectingL replicas is:

Pc ≥ 1 − e
−p2

·d2
·g2

n

L(L−1)
2 (13)

Thus, ifn = 10, 000, g = 100, d = 20, andp = 0.05,
we will detect a single replication ofα with probability
greater than63%, and if α is replicated twice, we will
detect it with probability greater than95%.

Unlike the deterministic proposal (Section 4.2), we
no longer need to worry about the adversary using a lim-
ited number of captured nodes to enable an unlimited
amount of replication. If the adversary captures neigh-
boring nodesα andβ, then the total number of claims
about either node is reduced by1

d
, essentially reducing

the neighbor count of each node by one. Since all of the
protocol decisions are made locally by individual nodes,
the adversary has only two options remaining: it can dis-
rupt the routing of packets from the remaining legitimate
neighbors or it can capture all of the legitimate neigh-
bors. Routing disruptions create tell-tale signs of the ad-
versary’s presence in the network and will be avoided by
a prudent adversary. Capturing all of the neighbors of a
node targeted for replication leads to a practical attack
which we address in Section 8.4.

5.4 Efficiency Analysis

This scheme still poses a relatively high storage cost.
On average, each node will have to storep · d · g loca-
tion claims. To ensure a collision with greater than 50%
probability,p·d·g will have to be on the order ofO(

√
n).

Even if we can reduce the size of each claim to the pay-
load of a packet, 36B, our hypothetical network with
n = 10, 000, g = 100, d = 20, andp = 0.05 will re-
quire, on average, that each node store 3,700 B, which is
just under 91% of the Mica 2’s total RAM. Similarly, the
communication requirements of the protocol are non-
trivial. For each node, we generatep · d · g messages
that must be evenly spread throughout the network. In a
network randomly deployed on the unit square, the aver-
age distance between any two randomly chosen nodes is
approximately0.521

√
n ≈

√
n

2
, so the communication

costs for the network are on the order ofO(n
√

n·p·d·g).
As mentioned before,p · d · g ≈ O(

√
n), so our com-

munication costs areO(n2), equivalent to those of the
naive broadcast scheme outlined in Section 4.1.

We can employ a number of enhancements to im-
prove both the communication and space requirements
of our protocol. First, we can trade resiliency for mem-
ory and communication savings. For example, in our
hypothetical network3, if we are willing to allow the ad-
versary to create up to four replicas ofα, then we can
reduce the number of messages sent out,g, by 75%.
Since communication costs areO(g2) we save on com-
munication and require less than 1KB of space, but we
would still detect the adversary’s presence with proba-
bility greater than 50%. We can also save both commu-
nication and space by reducing the number of location
claims sent out by1

d
, i.e.g′ = g

d
. Each recipient of one

of these claims uses a broadcast message to query her
neighbors as to whether they have a conflicting value.
Even with these additional queries, the communication
costs are nowO(

√
n · p · g) messages per node. Fi-

nally, we can reduce the storage burden by introducing
a loose notion of synchronization into the process – see
Section 8.2.

6 Line-Selected Multicast

6.1 Overview

To reduce the communication costs of our ran-
domized multicast protocol, we investigate a different
scheme to detect conflicting location claims. Inspired
by Braginsky and Estrin’s work on Rumor Routing [4],
we note that nodes in a sensor network function both
as sensing units and as routers. For a location claim to
travel from nodeα to nodeγ, it must pass through sev-
eral intermediate nodes as well. If these intermediate
nodes also store the location claim, then we have effec-
tively drawn a line across the network. If a conflicting
location claim ever crosses the line, then the node at the
intersection will detect the conflict and initiate a revoca-
tion broadcast. Since the expected number of intersec-
tions,c, of x randomly drawn lines4 intersecting within
the bounds of the unit circle is given by:

E(c) = x(x − 1)

(

1

6
+

245

144π2

)

(14)

we only need a few such lines to insure an intersection.
For example, with only three lines, we expect two colli-
sions (see Solomon’s lecture notes [34] for details of the
derivation). With this insight in mind, we can craft an al-
ternate detection protocol with improved performance.

3The network in whichn = 10, 000, g = 100, d = 20, and
p = 0.05.

4Lines drawn by randomly selecting two points,p1 andp2, from
within the unit circle, and drawing the line extending through them.

X

A

B

C1

R

C2

R

C3

R

R

Figure 1. Line-Segment IntersectionGiven three
randomly selected points,A, B andX, then if the fourth
randomly-selected pointY falls in any of theCi regions,
the resulting quadrilateral will be convex. IfY falls in
any of theR regions, the figure will be re-entrant. For
XY to intersectAB, Y must fall in regionC3.

6.2 Protocol Outline

Our new protocol modifies the Randomized Multi-
cast protocol, so that we fixp · d · g as a small constant
r. Whenα’s neighbors send out the evidence ofα’s lo-
cation claim to ther witnesses, each of the nodes along
the route stores a copy of the location claim as well. For
example, letβi send a copy ofα’s location claimlα toγj

viaσ1, σ2 . . . σm. Upon receivinglα, σk verifies the sig-
nature on the claim, checks for a conflict with the claims
already in its buffer, stores a copy oflα in its buffer, and
then forwardslα to σk+1. If any of the nodes discov-
ers a conflict, i.e., finds another location claiml′ for α
such thatlα 6= l′α, then it floods the network with the
unforgeable evidence (the conflicting set of signed loca-
tion claims) ofα’s attempted replication, resulting in a
distributed revocation ofα. If the collision happens to
occur at a replica, it still does not preclude another col-
lision from occurring elsewhere in the network. Also,
since all protocol decisions are made locally and proba-
bilistically, the adversary cannot predict the location of
the collision, so the probability of a collision occurring
at a node under the adversary’s control will be negligi-
ble, unless the adversary already has an overwhelming
presence within the network.

6.3 Analysis

As described above, our protocol actually “draws”
line-segments, not lines, through the network. Unfor-
tunately, the probability of two segments intersecting

α′

β1
′

β3
′

γ1
′

γ3
′

β2
′

γ2
′

α

β1

β2 β3

γ1

γ2

γ3

σ

Figure 2. Line-Selected MulticastIn this figure, the
adversary has created a replica ofα, α′. Neighbors
(βi andβi

′) at these locations all report these claims to
randomly selected witnessesγi andγi

′, which results in
an intersection atσ.

is considerably less than that of two lines intersecting
(given above by Equation 14). To find the probability
that two line-segments intersect5, we can use the solu-
tion to Sylvester’s Four-Point Problem. The Four-Point
Problem asks for the probability that four randomly se-
lected points in a convex domain will form a re-entrant
quadrilateral, i.e., one in which one point falls within
the triangle formed by the other three points. Solomon
shows that if the points are selected from a circular do-
main, then the probability that the points form a re-
entrant quadrilateral is35

12π2 [34]. If we select our first
three points at random, then we can divide the region
into seven sections: four re-entrant and three convex (see
Figure 1). The two line-segments will only intersect if
the fourth point falls in the convex regionC3. Thus, the
probability of intersection is given by:

Pintersect =
1

3

(

1 − 35

12π2

)

≈ 0.235 (15)

To further complicate the analysis, our line segments are
not drawn independently at random, but originate from
a central point and radiate out in random directions (see
Figure 2). However, Monte-Carlo simulations indicate
that even if we only draw two random segments origi-
nating fromα and two fromα′, the probability of at least
one intersection is greater than 56%, and with five line
segments per point, we have a 95% probability of inter-
section. Since an intersection corresponds to detecting
a node replication attack, we can detect an attack with

5Segments drawn by randomly selecting two points,p1 and p2,
from within the unit circle, and drawing the line segment connecting
them.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Nodes

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

 N
um

be
r

of
 P

ac
ke

ts
 S

en
t a

nd
 R

ec
ei

ve
d

P
er

 N
od

e

Randomized Multicast
Line-Selected Multicast
SQRT(n)

(a) Communication OverheadThis figure indicates the
average amount of communication per node. Note that
Randomized Multicast scales linearly with the number of
nodes, while Line-Selected Multicast scales as

√

n. The
error bars on the data from the two Multicast schemes
represent the standard error.

Thin H Thin Cross S Large Cross L Large H Uniform
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

(b)Probability of Detection This graph illustrates the av-
erage probability of detecting a single node replication
using Line-Selected Multicast in a variety of topologies.
See Appendix A for examples of the graphs tested.

Figure 3. Simulation Results

high probability, using only a constant number of line-
segments. While this approach depends on the routing
topology of the network, our simulations indicate that
it reliably detects node replication in realistic scenarios
(see Section 7).

Since we only use a constant number of line-
segments per node, the Line-Selected Multicast proto-
col has very reasonable performance characteristics. As-
suming each line-segment is of lengthO(

√
n), then our

protocol only requiresO(n
√

n) communication for the
entire network and each node storesO(

√
n) location

claims. We can also reduce the storage requirement by
using the time synchronization enhancements described
in Section 8.2.

7 Simulations

To verify the accuracy of our theoretical predictions,
we ran simulations to measure the communication re-
quirements of our two primary protocols, Randomized
Multicast and Line-Selected Multicast. Since Line-
Selected Multicast relies on the topology of the network
to detect node replications, we also evaluated its detec-
tion rate in a variety of network configurations. Ex-
amples of the network topologies tested appear in Ap-
pendix A.

In our simulations, we deployn nodes uniformly at
random within a500 × 500 square, withn varying be-
tween 1,000 and 10,000. We assume the standard unit-
disc bidirectional communication model and we adjust
the communication range, so that each node will have

approximately40 neighbors on average6. We use an av-
erage of the total number of messages sent or received
per node as a measure of the communication require-
ments, and we measure resiliency by counting the num-
ber of times we must run the protocol in order to detect
a single node replication (i.e., we select a random node
and insert one replica into the network). Thus, we cal-
culate the probability of detection,Pd as:

Pd =
1

repetitions
(16)

For the Randomized Multicast protocol, we used

p · d · g =
√

n

which theoretically gives us a 63% probability to de-
tect replication, and for Line-Selected Multicast we used
r = 6 (i.e., each location claim creates six line seg-
ments). For each network configuration, we generated
twenty random graphs and averaged the results of ten
trials on each graph.

As shown in Figure 3(a), the simulations closely
match our theoretical predictions. The communication
for Randomized Multicast scales linearly with the num-
ber of nodes, while the Line-Selected Multicast only
grows atO(

√
n). Our simulations also indicate that the

maximum amount of communication required of any
one node as compared to the average case scales loga-
rithmically with the number of nodes in the graph. Using

6Our simulations show little variance with values ofd ranging from
10 to 50, though the communication required by the Randomized Mul-
ticast drops slightly for larger values ofd.

Communication Memory

Broadcast O(n2) O(d)

Deterministic Multicast O(g ln g
√

n

d
) O(g)

Randomized Multicast O(n2) O(
√

n)

Line-Selected Multicast O(n
√

n) O(
√

n)

Table 1. Summary of Protocol CostsThis tables il-
lustrates the memory and communication costs for each
protocol. The communication costs are for the entire
network and the memory costs are per node. The Line-
Selected Multicast protocol offers the most efficient so-
lution in terms of resiliency versus cost.

Randomized Multicast in a network with 1,000 nodes
requires a maximum of four times as much communica-
tion as the average case, and with 10,000 nodes, it re-
quires seven times as much. With Line-Selected Multi-
cast, the maximum amount of communication in a net-
work with 1,000 nodes is twice as much as the average
case and four times as much for 10,000 nodes.

As Figure 3(b) illustrates, Line-Selected Multicast re-
liably detects node replications in a variety of irregular
network configurations. To improve the probability of
detection, we can always repeat the protocol or add a
few additional line segments per node.

8 Discussion

In this section, we compare the performance of the
various protocols we have discussed, and we present
several techniques based on loose-time synchronization
that reduce the storage requirements of the protocols.
We also discuss potential issues that may arise from our
use of public-key cryptography, as well as symmetric
alternatives that would require less computational over-
head at the price of additional communication. In Sec-
tion 8.4, we describe a sophisticated attack that applies
to all of the protocols we have discussed, and we present
a defense against it. Finally, based on the success of
our Randomized Multicast and Line-Selected Multicast
protocols, we argue that algorithms based on emergent
properties offer the most promising techniques for pro-
viding security in sensor networks.

8.1 Protocol Comparison

Table 1 summarizes the costs for each of the dis-
tributed protocols previously discussed. The Broadcast
protocol offers the simplest solution, but the commu-
nication overhead will only be tolerable for small net-
works. Deterministic Multicast improves on the com-
munication requirements, but by selecting a fixed set

of witnesses, it loses resiliency. An attacker can per-
form unlimited replications after only compromising a
fixed number of nodes. Randomized Multicast pro-
vides excellent resiliency, since it prevents the adversary
from anticipating the identity of the witnesses. Unfor-
tunately, it imposes communication overhead equal to
that of the Broadcast scheme. However, for networks
in which the number of nodes is less than the square of
the average degree, Randomized-Multicast will tend to
be more space efficient. Finally, Line-Selected Multicast
uses less communication than Broadcast or Randomized
Multicast, but provides comparable or greater resiliency,
making it a particularly attractive choice. Our simula-
tions confirm that this resiliency remains in a variety of
network configurations (see Section 7). We can also re-
duce the storage requirements for these protocols by us-
ing the time synchronization enhancements described in
Section 8.2.

8.2 Synchronized Detection

We now consider the synchronization issues involved
in detecting node replication. All of the protocols de-
scribed above require a loose notion of synchroniza-
tion to insure timely detection. Various protocols exist
that can offer the coarse-grained level of synchroniza-
tion that we require. For example, Reference-Broadcast
Synchronization (RBS) enables pairwise synchroniza-
tion with low overhead and high precision [12]. Hu
and Servetto describe a protocol that provides asymp-
totically optimal time synchronization in dense net-
works [18]. Any of these protocols will suffice for our
purposes.

Deciding how often to perform the detection protocol
trades efficiency of detection against the communication
and storage costs required by each iteration. However,
as we describe below, we can leverage our assumption
of loose synchronization to mitigate the cost of running
the protocols.

8.2.1 High Noon

In one modification, detection happens during a fixed
window of time (of lengtht) that occurs everyT units
of time (forT ≫ t). At the beginning of each time win-
dow, each node broadcasts its location claim to its neigh-
bors, who then resend it to random locations in the net-
work. Each node looks for conflicts in location claims
arriving during the time window and revokes conflicting
nodes. After timet has elapsed, the nodes forget all of
the location claims (but continue to remember the list of
revoked nodes). Using this modification, the nodes only
devote significant memory resources to detection during
the brief time window of lengtht. The rest of the time
(T − t), they can utilize their entire memory for non-
detection purposes.

8.2.2 Time Slots

As an alternate approach, we assume the node IDs are
randomly distributed on some fixed interval [0..N]. For
a given protocol parameterk, we can divide time into
epochs of lengthT , with each epoch consisting ofk time
slots. During each epoch, in time slots, all of the nodes
with IDs located in the interval [s· N

k
..(s+1)· N

k
] broad-

cast their location claims to their neighbors, who then
follow the standard protocol. Nodes receiving a location
claim from a node with an ID in that interval store the
claim for the duration of the time slot and check for con-
flicts. At the end of the time slot, they can forget all of
the claims they have heard. Using this method reduces
the storage requirements at each node toO(p·d·g

k
).

8.2.3 Security Requirements

Since both of these modifications operate deterministi-
cally, the adversary might attempt to launch her replica-
tion attack between time slots or refuse to follow the pro-
tocol (i.e., by not broadcasting her location at the spec-
ified time). However, we can thwart this behavior by
having each node remember which neighbors it heard
from during the previous epoch. Later, if a node hears
from a neighbor that did not participate in the previous
epoch, it will refuse to communicate with that node until
the node successfully participates in a detection epoch.
This effectively precludes the adversary from avoiding
randomized detection.7 Since the nodes in most sensor
networks must already remember a list of their neigh-
bors, this would only require an additionald bits. Of
greater concern is the fact that this modification limits
when new nodes can join the network. This can be mit-
igated by appropriate choices fort, T , andk, as well as
decisions regarding deployment timing.

8.3 Authentication

The use of public-key signatures requires several ex-
tensions to our protocols to prevent the signatures them-
selves from becoming a security threat. Also, while we
argued in Section 5.1 that algorithmic and hardware im-
provements are beginning to make public-key cryptog-
raphy practical for sensor networks, we also present a
mechanism that utilizes symmetric one-time signatures
as an alternative to the public-key authentication previ-
ously assumed. While the symmetric signatures reduce
the computational overhead of generating and verifying
signatures, they require additional communication, mak-
ing them less appealing than the public-key approach.

7Technically, both of these modifications would require someaddi-
tional configuration to account for propagation delays and uncertainty
as to the size and width of the network, but the essential idearemains
sound.

8.3.1 Public Key Security Adjustments

To prevent the use of signatures from becoming a secu-
rity liability, we need to ensure that the adversary can-
not perform a Denial-of-Service attack by making nodes
verify bogus signatures or by reporting its neighbors’
position claims to every node in the network, rather than
probabilistically reporting them tog nodes. In practice,
these two attacks are unlikely to be a concern. Since
the basic protocol currently requires each node that re-
ceives a location claim to verify the signatures contained
within the claim, legitimate nodes will immediately de-
tect any attempt to inject faulty signatures. If we add
some form of neighbor-to-neighbor authentication, then
a node identifying a faulty signature can also assign ap-
propriate blame for the fault. It may then choose to
blacklist or otherwise revoke the guilty party. If the ad-
versary can flood a node with faulty signatures not orig-
inating from a node (via some other broadcast source),
then the adversary could just as easily perform a jam-
ming attack or otherwise interfere with legitimate com-
munication. Neighbor-to-neighbor authentication also
prevents the adversary from framing an innocent third
party.

To address the second concern, we note that when
a legitimate node,γ, forwards a location claim to itsg
randomly chosen locations, these location claims must
be routed through its neighbors. If the neighbors lis-
ten promiscuously, they can all detectγ’s attempts to
forward the same location claim more thang times and
refuse to forward additional claims. Unfortunately, this
does require each node to keep a count associated with
each neighbor, but it may be necessary to prevent the ad-
versary from wasting the network’s collective memory.

8.3.2 Symmetric Alternatives

As an alternative to computation-intensive public-key
algorithms, researchers have proposed using more effi-
cient symmetric cryptographic mechanisms for sensor
networks – for example, broadcast authentication based
on one-way chains and time synchronization [20, 29], or
one-time signatures based on one-way functions [25].

For the purposes of this paper, if sensor nodes only
need to sign a single location statement, a one-time
signature will suffice. For example, we could use the
Merkle-Winternitz signature [25], which has already
been successfully used for stream signatures [31]. To
verify a Merkle-Winternitz signature, a verifier only
needs to possess an authentic verification value, i.e., the
public key, which in this case is a hash value over several
one-way chain values. However, since storing all of the
public values of all the nodes would have a high over-
head, we could instead construct a Merkle hash tree [24]
over all public values, and the resulting root node could
be used to authenticate any one-time signature in that
tree. For signature verification, a node would include

all the values in the hash tree that allow a verifier to
recompute the root node of the hash tree; forn nodes,
this approach would requirelnn extra values. Using the
parameters suggested by Rohatgi [31] for the Merkle-
Winternitz signature, a signature is 230 bytes large, and
the additional verification values would require an addi-
tional 100 bytes. This is quite large for a sensor network,
and thus we suggest using asymmetric cryptography to
achieve smaller messages, despite the higher verification
cost. Since message transmission accounts for the ma-
jority of energy consumption, we may conserve energy
by sending smaller messages but requiring a higher com-
putation overhead.

8.4 Masked-Replication Attacks

In our discussion of the resiliency of the various pro-
tocols, we have assumed that each node has at least one
legitimate neighbor. Without this assumptions, all of the
protocols discussed thus far may fail to detect node repli-
cation. If the adversary compromises all ofα’s neigh-
bors, then she can create one replica ofα without fear
of detection, since the compromised nodes will not send
out location claims for the originalα. To create a sec-
ond replica ofα, the adversary must also compromise
the nodes surrounding the first replica. Thus, the adver-
sary must compromise an additionald nodes for each
replica ofα she wishes to create. However, if the com-
promised nodes mask the replicated nodes, the adversary
can improve her foothold in the network. For example,
if the adversary compromises nodesµ1, µ2 . . . µk, then
she can assign replicas of{µ1, µ2 . . . µi−1, µi+1 . . . µk}
as neighbors ofµi. This gives the adversary the influ-
ence ofk2 nodes after she compromisesk nodes. As a
concrete example, suppose the adversary compromises
nodesµ1 andµ2. Now, she can create replicasµ′

1 and
µ′

2. By assigningµ1 asµ′
2’s only neighbor, andµ2 as

µ′
1’s only neighbor, the compromised nodes can mask

the replicas. None of the protocols discussed will de-
tect these replicas, since they rely on a replicated node’s
neighbors to propagate the replica’s location claims.

Fortunately, we can thwart this attack with a straight-
forward defense. Each nodeβ maintains a list of them
nodes from which it has seen the most traffic. For each
nodeα on the list,β appoints itself a pseudo-neighbor
of α with probability

Ppseudo ∝ trafficα

claimsα
(17)

wheretrafficα is the amount of traffic thatβ has seen
from α, andclaimsα is the number of location claims
β has seen concerningα. As a pseudo-neighbor,β re-
quests a location claim directly fromα. If α fails to
respond,β ceases to forward traffic fromα. If α does re-
spond,β follows the same protocol-dependent behavior

as the real neighbors ofα (e.g., in the Randomized Mul-
ticast,β will forward the location claim to a randomly
selected set of witness nodes).

The use of pseudo-neighbors successfully defeats
masked-replication attacks. If the masked nodes fail
to send out location claims, then the closest legitimate
nodes will have a higher probability of appointing them-
selves pseudo-neighbors. If the replicated nodes fail to
respond to requests from the pseudo-nodes, the legiti-
mate nodes will cut off communication. By forcing all
nodes to provide location claims, we can rely on the re-
siliency of our detection algorithm to revoke replicated
nodes.

8.5 Emergent Properties

Our two primary algorithms, Randomized Multicast
and Line-Selected Multicast, achieve distributed detec-
tion of global events, while imposing low overheads
and providing high resiliency. Their strong properties
are a result of their emergent nature. Emergent algo-
rithms utilize the collective efforts of multiple sensor
nodes to provide capabilities beyond those of any indi-
vidual node. For example, after a network’s initial de-
ployment, a topology emerges as nodes exchange neigh-
bor information and establish a routing infrastructure.
Since emergent algorithms operate in a distributed fash-
ion, they tend to be highly robust in the face of individ-
ual node failures, and they avoid the problems inherent
in centralized solutions. These properties make them
ideal for security applications, particularly in a setting
in which we cannot predict the number or identity of
the sensors that will be subverted by an adversary. To
the best of our knowledge, our protocols represent the
first application of emergent algorithms to the problem
of security in sensor networks, and we believe that ad-
ditional research will only continue the trend towards
distributed solutions. Furthermore, emergent algorithms
apply more generally to security in other classes of net-
works in which individual nodes are vulnerable to com-
promise (e.g., peer-to-peer networks and ad-hoc wire-
less networks), allowing solutions in one class to extend
naturally to the others.

9 Related Work

Eschenauer and Gligor [13] propose centralized node
revocation in sensor networks. When the base station
detects a misbehaving node, it broadcasts a message to
revoke that node. Chan, Perrig, and Song [6] propose
a localized mechanism for sensor network node revoca-
tion; in their approach, nodes can revoke their neigh-
bors. Neither paper discusses a distributed approach for
detecting distributed intrusions.

In broadcast encryption, key revocation has been
an important mechanism to recover from compromised

keys [2, 3, 15, 16, 21, 26]; however, these approaches do
not provide duplicate node detection in sensor networks.
Similarly, the results of key revocation in the context of
multicast content distribution [35, 37] do not apply here.

The Sybil attack is related to the node replication
attack—in the Sybil attack, a malicious node gains an
unfair advantage by claiming multiple identities [10].
Douceur presents countermeasures for peer-to-peer net-
works that involve resource verification (computation,
communication, and memory) [10]. Newsome et al.
present techniques to defend against the Sybil attack in
sensor networks [27]. Their countermeasures include
wireless network testing, key space verification, and
central node registration. Only their centralized node
registration technique (similar to the one we describe in
Section 3.1) can detect a node replication attack, but it
is brittle in the face of node compromise and has a high
overhead, as we show in this paper.

Bawa et al. [1] propose an algorithm for counting the
number of members of a peer-to-peer network that is re-
lated in spirit to our approach; they propose a random
sampling approach that provides an estimate of the net-
work size afterO(

√
n) samples are drawn and a dupli-

cate node is sampled (for a network of sizen), by using
the birthday paradox. Our Randomized Multicast also
relys on the birthday paradox.

10 Future Work

In the preceding discussion, we have assumed that the
nodes controlled by the adversary continue to follow the
protocols described. In our future work, we would like
to explore additional mechanisms to ensure that our pro-
tocols continue to function even in the face of misbehav-
ing nodes. For example, McCune et al. describe a tech-
nique that uses secure implicit sampling to detect nodes
that suppress or drop messages [23]. We could also use
some of the techniques described in Section 8.2 to peri-
odically sweep the network for replicas, thus preventing
the adversary from establishing a significant foothold in
the network.

11 Conclusion

We have discussed various approaches used to detect
node replication. In Section 3, we show how central-
ized approaches place excessive trust in the base station
and excessive load on those nodes near it. Local vot-
ing schemes are ill equipped to detect distributed node
replication. In contrast, we present two schemes that en-
able distributed detection of distributed events. The fi-
nal scheme, Line-Selected Multicast, provides excellent
resiliency while achieving near optimal communication
overhead with only modest memory requirements. Both
of our primary schemes illustrate the power of emer-
gent properties in sensor networks. Given the adversary

model typically assumed in sensor networks, we argue
that the security of such networks will increasingly de-
pend on emergent algorithms. Cost considerations and
unattended deployment will always leave individual sen-
sors vulnerable to compromise. Since we cannot predict
the exact nature or number of targets the adversary will
select, the network must collectively resist, report and
revoke compromised nodes in a manner that goes be-
yond traditional intrusion detection systems. We expect
that emergent algorithms will ultimately provide the best
defense against these insidious attacks.

Acknowledgements

The authors would like to thank Haowen Chen and
Dawn Song for their insightful comments and sugges-
tions. Diana Seymour provided discerning observations
and invaluable help editing the paper. We would also
like to thank the anonymous reviewers for their helpful
suggestions.

References

[1] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani.
Estimating aggregates on a peer-to-peer network. Tech-
nical report, Stanford University, 2003.

[2] C. Blundo and A. Cresti. Space requirements for broad-
cast encryption. InAdvances in Cryptology (EURO-
CRYPT), 1995.

[3] C. Blundo, L. Mattos, and D. Stinson. Trade-offs be-
tween communication and storage in unconditionally se-
cure schemes for broadcast encryption and interactive
key distribution. InAdvances in Cryptology (CRYPTO),
1996.

[4] D. Braginsky and D. Estrin. Rumor routing algorithm
for sensor networks. InProceedings of ACM Workshop
on Wireless Sensor Networks and Applications, 2002.

[5] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low-
cost outdoor localization for very small devices.IEEE
Personal Communications Magazine, October 2000.

[6] H. Chan, A. Perrig, and D. Song. Random key predistri-
bution schemes for sensor networks. InProceedings of
IEEE Symposium on Security and Privacy, May 2003.

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Intro-
duction to Algorithms. MIT Press, 2001.

[8] L. Doherty, K. S. J. Pister, and L. E. Ghaoui. Convex
position estimation in wireless sensor networks. InPro-
ceedings of IEEE Infocom, 2001.

[9] D. Dolev and A. C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory,
1983.

[10] J. R. Douceur. The Sybil attack. InProceedings of Work-
shop on Peer-to-Peer Systems (IPTPS), Mar. 2002.

[11] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van
Doorn, S. W. Smith, and S. Weingart. Building the IBM
4758 Secure Coprocessor.IEEE Computer, 2001.

[12] J. Elson, L. Girod, and D. Estrin. Fine-grained net-
work time synchronization using reference broadcasts.
SIGOPS Oper. Syst. Rev., 2002.

[13] L. Eschenauer and V. Gligor. A key-management
scheme for distributed sensor networks. InProceedings
of the ACM Conference on Computer and Communica-
tion Security (CCS), Nov. 2002.

[14] D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar.
Next century challenges: Scalable coordination in sensor
networks. InMobile Computing and Networking, 1999.

[15] A. Fiat and M. Naor. Broadcast encryption. InAdvances
in Cryptology (CRYPTO), 1994.

[16] J. Garay, J. Staddon, and A. Wool. Long-lived broad-
cast encryption. InAdvances in Cryptology (CRYPTO),
2000.

[17] V. D. Gligor. Security of emergent properties in ad-hoc
networks. InProceedings of International Workshop on
Security Protocols, Apr. 2004.

[18] A. Hu and S. D. Servetto. Asymptotically optimal time
synchronization in dense sensor networks. InProceed-
ings of ACM International Conference on Wireless Sen-
sor Networks and Applications, 2003.

[19] B. Karp and H. T. Kung. GPSR: Greedy perimeter state-
less routing for wireless networks. InProceedings of
Conference on Mobile Computing and Networking (Mo-
biCom), Aug. 2000.

[20] D. Liu and P. Ning. Efficient distribution of key chain
commitments for broadcast authentication in distributed
sensor networks. InProceedings of Network and Dis-
tributed System Security Symposium (NDSS), Feb. 2003.

[21] M. Luby and J. Staddon. Combinatorial bounds for
broadcast encryption. InAdvances in Cryptology
(EUROCRYPT), 1998.

[22] D. Malan, M. Welsh, and M. Smith. A public-key infras-
tructure for key distribution in TinyOS based on elliptic
curve cryptography. InProceedings of IEEE Conference
on Sensor and Ad hoc Communications and Networks
(SECON), Oct. 2004.

[23] J. M. McCune, E. Shi, A. Perrig, and M. K. Reiter. De-
tection of denial-of-message attacks on sensor network
broadcasts. InProceedings of IEEE Symposium on Se-
curity and Privacy, May 2005.

[24] R. Merkle. Protocols for public key cryptosystems. In
Proceedings of the IEEE Symposium on Research in Se-
curity and Privacy, Apr. 1980.

[25] R. Merkle. A digital signature based on a conven-
tional encryption function. InAdvances in Cryptology
(CRYPTO), 1988.

[26] D. Naor, M. Naor, and J. Lotspiech. Revocation and
tracing schemes for stateless receivers. InAdvances in
Cryptology (CRYPTO), 2001.

[27] J. Newsome, E. Shi, D. Song, and A. Perrig. The Sybil
attack in sensor networks: Analysis and defenses. In
Proceedings of IEEE Conference on Information Pro-
cessing in Sensor Networks (IPSN), Apr. 2004.

[28] J. Newsome and D. Song. GEM: Graph embedding for
routing and data-centric storage in sensor networks with-
out geographic information. InACM Conference on Em-
bedded Networked Sensor Systems (SenSys), Nov. 2003.

[29] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D.
Tygar. SPINS: Security protocols for sensor networks.
In ACM Conference on Mobile Computing and Networks
(MobiCom), July 2001.

[30] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan, and S. Shenker. GHT: A geographic hash

table for data-centric storage. InProceedings of ACM In-
ternational Workshop on Wireless Sensor Networks and
Applications (WSNA), Sept. 2002.

[31] P. Rohatgi. A compact and fast hybrid signature scheme
for multicast packet. InProceedings of ACM Conference
on Computer and Communications Security (CCS), Nov.
1999.

[32] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.
Swatt: Software-based attestation for embedded devices.
In Proceedings of IEEE Symposium on Security and Pri-
vacy, May 2004.

[33] S. W. Smith and S. Weingart. Building a high-
performance, programmable secure coprocessor.Com-
puter Networks, Apr. 1999. Special Issue on Computer
Network Security.

[34] H. Solomon.Geometric Probability. Society for Indus-
trial and Applied Mathematics (SIAM), 1978.

[35] D. Wallner, E. Harder, and R. Agee. Key manage-
ment for multicast: Issues and architectures. Internet
Request for Comment RFC 2627, Internet Engineering
Task Force, June 1999.

[36] S. Weingart. Physical security devices for computer sub-
systems: A survey of attacks and defenses. InCryp-
tographic Hardware and Embedded Systems (CHES),
Aug. 2000.

[37] C. Wong, M. Gouda, and S. Lam. Secure group com-
munications using key graphs. InProceedings of ACM
SIGCOMM, 1998.

A Network Topologies

(a) Thin H (b) Thin Cross (c) S

(d) Large Cross (e) L (f) Large H

Figure 4. Assorted Network TopologiesWe tested the Line-Selected Multicast protocol with a variety of network topolo-
gies. Samples of each are shown here. Dots represent nodes, and lines represent connections between neighbors.

