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ABSTRACT

This paper examines a new building block for next-genenatiet-
works: SNAPP, or Stateless Network-Authenticated PathiRn
SNAPP-enabled routers securely embed their routing derssn
the packet headers of a stream of traffic, effectively pig@ifiow’s
path between sender and receiver. A sender can use the patied
(even if routes subsequently change) by including the paitheel-
ding in later packet headers. This architectural builditagk de-
couples routing from forwarding, which greatly enhancesatail-
ability of a path in the face of routing misconfigurations oalim
cious attacks. To demonstrate the extreme flexibility of SIRA
we show how it can support a wide range of applications, ol
sender-controlled paths, expensive route lookups, sembeymity,
and sender accountability. Our analysis shows that SNARRs
head is low, and the system is easily implemented in hardwslee
believe that SNAPP is a worthy addition to the network asatiis
toolbox, enabling a variety of new designs and trade-offs.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: Security and pro-
tection; C.2.1Network Architecture and Design]: Circuit-switch-
ing networks, Packet-switching networks
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1. INTRODUCTION

In decades past, debates abounded over the relative merits o
circuit-switched networks vs. packet-switched netwovkith each
camp claiming unbeatable technical advantages. With tbente
expansion of community interest in novel Internet architess, the
discussions are beginning again [18].

Recognizing the merits of both approaches, we propose a new
technique that achieves the advantages of both, at the sxpém-
creased packet state. As available bandwidth continuestease,
we believe this represents a beneficial tradeoff.

Specifically, we considerath pinning approach. Like a circuit-
switched network, path pinning binds a particular flow (onmec-
tion) to a specific path through the network for as long as the fl
and the path both exist. Like a packet-switched network ptité
pinning mechanism we present does not require per-flow state
the network. Prior techniques for providing path pinninty ren
copious per-flow state in routers, or provide end hosts withra
comfortable degree of control (see §2).

The contribution of this work is atateless, secure path-pinning
building block that provides numerous benefits without thend
backs of prior approaches. This mechanism, SNAPP, addsla sma
amount of information to packet headers as they pass thrthegh
network, akin to the techniques used by network capalslitl®,
28, 30]. Once a packet has traversed a path, the sender ainerec
can send additional packets that are forwarded based updn-th
formation encoded in the packet. Of course, routers mayyalwa
make a new routing decision; 84.5 shows how to seamlesshitepd
the path pinning while implicitly informing the sender areteiver
of the change.

We explore SNAPP’s suitability as a basic building blockdse
at the network layer, as well as at higher-layers such adayer
networks. Our evaluation in 86 indicates that we can impleme
SNAPP using today’s hardware, and that SNAPP is a useful tool
for new network architectures.

SNAPP’s versatility addresses many problems:

Expensive Route Lookups. Because SNAPP decouples route ta-
ble lookups and forwarding, a designer might consider anitac-
ture in which comparatively expensive routing lookups ar®g
tized over subsequent packets. As an extreme example,tée In
tional Naming System [1] performs complex string-matchémg
range comparisons when computing packet destinations. PENA
provides an attractive optimization for data flow in sucheyss.
Decoupling Forwarding from Routing Failures. By placing
the results of routing decisions into packet-carried st&tdAPP
makes it possible to send subsequent packets without dieyyeorl
per-hop routing calculations. This greatly improves thailability

of forwarding in the face of routing misconfigurations or ro@us
attacks. Even if the routing infrastructure is temporalitpken,
communicating parties can continue to use establishecections.



Efficient Packet Forwarding. SNAPP forwarding requires only
sequential processing of header information, withoutirgggicom-
plex routing table lookups or even high-latency memory lgusk
Such streamlined packet processing enables the constradthigh-
speed forwarding nodes. For example, the two largest cigdke
in developing optical networks are signal buffering and rogm
lookups. By eliminating these steps from the forwardingnpla
SNAPP lowers the barrier for the deployment of purely optica
switching elements.
Sender-Controlled Paths. Systems such as NIRA[29] and Platy-
pus [20] give senders more control over the route their padkée
through the network. These systems typically use a meamanis
such as source routing to provide senders with this coriidAPP
separates the forwarding plane from the mechanism by wiattsp
are established, potentially allowirgyl of these solutions to co-
exist on the same network.
Capability-Based Networks. A drawback of capability-based
designs [19, 28, 30] is their fragility under path changesthpin-
ning binds flows to their original paths, so capability-gaied com-
munication is not interrupted as long as the physical patrames
intact, thus enhancing the robustness of most existinghilitga
architectures.
Load Balancing. Fine-grained load balancing is complicated by
protocols such as TCP that perform poorly when packets are re
ordered [31]. Load balancing techniques therefore oftarppihs
to ensure good TCP performance.
Sender Anonymity. In 8§5.1, we examine a bidirectional variant
of SNAPP, which stores in packets both forward and revertie pa
information, to support sender anonymity.
Sender Accountability.  Surprisingly, SNAPP can also be used
to create the polar opposite of sender anonymity: a systemsfo
signing responsibility for every packet and its contenth#origi-
nating sender. While we do not necessarily support creatiof a
system (and it would require infrastructure in addition AP P),
we believe SNAPP’s ability to support applications at twoemes
of the design space demonstrates its flexibility and suitgplais a
basic building block.

In the next section, we review work related to SNAPP. In §3, we
consider the design requirements for a path pinning sysitéran,

we describe SNAPP in depth in 84 and present a sampling of the

applications it enables in 85. In §6, we analyze the secuarity
performance of SNAPP, and in 87, we discuss additional ptigse
it provides. Finally, in 88, we present our conclusions.

2. RELATED WORK

This section first examines the network capability systeimsse
design inspired SNAPP. It then examines some of the relatekl w
in packet and circuit switching. In 85, we discuss variougliap-
tions that SNAPP enables, along with work related to thoseifip
applications.

2.1 Capability-based Architectures

SNAPP encodes path pinning information into packets in aman
ner inspired by network capabilities [3, 17, 19, 28, 30]. Wlda-
pabilities resemble our path token, the capabilities aeel ymirely
to authorize packet transmission, not to encode per-heysafaling
information.

As we discuss further in 87, SNAPP complements rate-limitin
and DoS-preventing capability architectures by redudiegprob-
lems they have with route changes. Since both types of sgstem
use cryptographically encoded information in packetsy theuld
be ideal candidates to integrate with SNAPP.

2.2 Path Pinning via Virtual Circuits

One effect of a virtual circuit architecture is that coniats are
typically pinned to the path they traversed during setupugin in
some systems they may be re-bound, particularly in the ddad-o
ure. Virtual circuits meet many of the requirements we espifer
a path pinning system in 83: They are unforgeable, becausé al
the intelligence about the path is maintained in the netwdtiey
give the network complete control over the path that is uséd.
tual circuits can also be very efficient because of theirltastups
(e.g., MPLS [22] and Threaded-Indices [10]), and they mayire
less space in the packet header than an equivalent pacitehst
network.

However, static virtual circuits must be explicitly preéigured
by provisioners, typically in response to heavy-weighgwen out-
of-band, requests from customers, making the overheadlkjitivt
for brief, transient communication. With both static andhasnic
virtual circuits, switches typically maintain per-cirttate, even
with lighter-weight IP-based protocols such as RSVP [9]grsy
gation is possible with protocols like MPLS, but MPLS typiga
operates within a single domain.

2.3 Packet Switching and Path Pinning

Current IP forwarding tightly couples routing and forwangli
The router performs a route table lookup for every packee-t r
ceives and then forwards the packet out of the chosen interfa
The need to perform a routing lookup (or calculation) forrgve
packet limits the complexity of routing algorithms, sinbe algo-
rithm should not constrain forwarding speed. By closelyptimg
routing and forwarding, traditional IP forwarding also ptes their
failure modes: routing failures inevitably result in fomslang fail-
ures. Moreover, the sender has no control over the path &pack
traverses.

One frequently discussed alternative to destinationbaset-
ing is source routing, which can provide a pinned path. Unfortu-
nately, traditional IP strict source routing has severattomings.
Sources must understand the entire network topology tdecieea
hop-by-hop path to the destination. Loose source routirigates
this requirement, but sacrifices path pinning in the pracssirce
routing implicitly trusts sources to construct valid, alled paths;
routers have little or no control over whether such pathsilshie
permitted.

Platypus [20] uses a capability-like mechanism to allow sysd
tems to request routes from ISPs and to enable the routeesifg v
that the use of that route is permitted. In contrast, SNARRIs-
ings are generated on the path by the routers themselvessingg
no coordination between routers in an ISP. In addition, yipla
is explicitly designed to allow endhosts to create arbjtraaths
through the network (loosely constrained by routing pgliand
delegate those paths to other hosts, whereas SNAPP opeithties
existing routing decisions and prevents sharing or reupathfem-
beddings. Despite these differences, we believe that SNAGRRI
be an effective generic mechanism upon which to build a Plety
like system. In fact, the developers of Platypus note thdtvay]
for Platypus routers to cache forwarding directives faificélows”
would be a valuable addition to their protocol. SNAPP presiéx-
actly such a mechanism without requiring any state on theerou

A number of projects, such as Platypus, NIRA [29], and RON [2]
have shown that many benefits arise from source-influenctéd pa
selection; we discuss some of these possibilities in motalde
85.4. Like Platypus, WRAP [4] uses a form of loose sourceingut
to specify a domain-level path through the Internet. WRARews
explicitly fill in the reverse path as the packet progrestesugh
the network. Unlike Platypus and SNAPP, WRAP’s header is not



authenticated. Note that while SNAPP enables senders ¢otsel
amongst available network paths, it prevents arbitrarycmrout-
ing that would violate router policies.

Overlay networks are another popular approach to proviclimg
trol over paths. Routing overlays such as RON [2], the X-B@1¢,
andi® [24] permit end hosts limited control over forwarding by
sending packets indirectly through other end-hosts. Irtrash
SNAPP is intended to provide router-level path pinning ia fibr-
warding path. Routing overlays could take advantage of path
ning in a number of ways (see the discussion in §5.4).

LIRA [25] binds packets to a particular path by computing a
packet label based on the XOR of the IP addresses of the souter
on the path. Since these labels are used within a single 8, t
are not secured. LIRA also requires per-path router state.

3. DESIGN REQUIREMENTS

At a high level, a dynamic path-pinning system allows rasiter
to insert information about their routing decisions intaleacket
they receive. Senders can then include this informatiorubse-
quent packets, allowing the routers to forward the packéttsowt
performing a routing calculation. Below, we outline the uig-
ments for such a scheme.

Unforgeable Paths. End-hosts should not be able to construct ar-
bitrary network paths, nor to recombine parts of estabtigbeghs.
While a malicious router can always misdirect a packet, weire

a legitimate router to detect such a deviation and drop tlckgqta
The first constraint prevents hosts from violating the mgipol-
icy at the routers; the second prevents subverted netwerkegits
from hijacking legitimate flows.

Local Router Operation. Each router should act using only lo-
cal information. That is, the system should require no cioaitibn
between routers. In addition, the system must not requinetnest
relationships between an end host and the routers or betiieen
routers themselves. These requirements ease deployntéithan
prove security, since each router only trusts itself. Femriore, a
compromised router only affects its own traffic; it canndiuance
another legitimate router.

Dynamic Setup and Maintenance. The path pinning mecha-
nism must not impose additional configuration effort noruieg
statically constructed routes. Excessive configuratiscalirages
adoption and limits the number and types of routes to whieh th
system would apply.

Controllable Topology Disclosure. The basic building block
should be flexible in terms of the amount of information iteals
about the network topology. Some applications may wish &pke
the topological information completely opaque, while othmay
wish to reveal it, or may simply not care. For example, sonfesIS
currently block traceroute traffic or use internal tunnel$ide the
topology of their networks, while other ISPs permit such piag.
Our primitive should be amenable to either choice.

Minimal Packet Overhead. To conserve bandwidth, the infor-
mation inserted into the packets must not consume excesgsace
in the packets.

No Per-Flow Router State. Eliminating per-flow state at routers
decreases the cost of routers, both because less highseeecty
is required (busy routers handle hundreds of thousands ws flo
each minute [23]), and because it simplifies the router'sgtlesnd
implementation. It also improves the scheme’s scalability
Efficient Forwarding. A viable forwarding scheme must support
efficient packet forwarding at line rates. The high latentypem-
ory accesses suggests that we minimize memory lookups.aphis
proach will also eliminates one of the largest hurdles faticab
networks, lowering the barrier to their deployment.

Algorithm 1 : Basic Router PseudocodeThese are the two main
functions performed by a router. If the incoming packet p is a
SETUP packet, the router invokes the setuproutine, and if the in-
coming packet contains a path embedding, it invokes the pinned
routine.

1: function setup()

2:  r « CalculateRoute(p)
3: ' < EncodeRoute(r)
4:  m « ComputeAuthenticator (r")
5.  Add segment embeddir(@’, m) top
6. Forwardp based omr.
7: function pinned()
8: s’ « LocateMySegmentEmbedding(p)
9 (r',m) s
10:  m' « ComputeAuthenticator (")
11:  if m # m/ then
12: Authentication failure. Drop packet.
13:  r = DecodeRoute(r")
14:  Forwardp based orr.
4. SNAPP

We begin with a high-level description of SNAPP. We then ex-
plain how senders create a pinned path and how routers use the
information in a path pinning to forward packets. Then, wevsh
in detail how to preserve the integrity of a pinned path. Fna
we explain how routers maintain and update the pinned p&itrs.
clarity, our detailed description of the cryptographic imegisms
underlying SNAPP begins with a simplified version in 84.4jckh
we revise through the following subsection to add additignap-
erties. We present the bit-level details of the fields in a 8RA
packet’'s header in 84.6.

4.1 Protocol Overview

Figure 1 illustrates the SNAPP protocol. A sender initigtath
pinning by sending a SETUP packet to the receiver. Eachrouate
the path makes its usual routing calculation and embedsthétr
in the setup packet, along with an authenticator. Togetherleci-
sion and the authenticator form a segment embedding. Th&ezc
returns the accumulated set of segment embeddings, cafiatha
embedding, to the sender. The sender includes the path eéinged
in subsequent packets.

When a router receives a packet containing a path embedting,
locates its own segment embedding, verifies the autheotjcaid
then forwards the packet based on the routing decision ealciod
the segment embedding. Note that SNAPP data can be pigggdback
on top of existing network traffic. For instance, the initGETUP
packet can accompany the SYN packet sent at the start of TCP’s
three-way handshake.

Below, we discuss these steps in more detail and considsi-pos
ble optimizations.

4.2 Path Setup

To create a pinned path, the sender transmits a SETUP packet
to the receiver, and each router along the path adds a segment
bedding to the packet. The accumulated segment embeddiligs w
form a path embedding.

Basic Setup. To setup a pinned path, the sender creates a new
SNAPP header and sets the packet type to SETUP. When a router
receives a SETUP packet, it first calculates the next/holt en-
codes the routing decision (as discussed belowj asd computes

an authenticatom (as discussed in 84.4). It adds its segment em-
bedding(r’, m) to the list of segment embeddings. Finally, it for-
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Figure 1: SNAPP Overview. During the setup phase, each router makes a routing calcutat (e.g., Longest Prefix Match — LPM) and
adds the resulting segment embedding to the packet. Theivecaeturns the resulting collection of segment embeddinalled a path
embedding) to the sender. When a sender includes the pathesiding in subsequent packets, the routers can forward thekzd without

performing a route table lookup.

wards the packet to the next hop. When the SETUP packet reache will produce a different ciphertext upon every invocatiewen if

its destination, the receiver returns the path embeddings{st-
ing of the accumulated segment embeddings) to the sendeseTh
steps are summarized in the setup function shown in linesoi—6
Algorithm 1.

Encoding the Routing Decision. When a setup packet arrives,
the router performs a routing calculation to determine fh@apri-

we encrypt the same plaintext twice. Thus, an adversarybeill
unable to correlate the encrypted neighbor ID with the raaglo
which the packet is forwarded. Technically, the encrypsoheme
used should be secure against Chosen-Ciphertext AttacBA)(C
as well, since the router essentially provides a decrypti@tle
by attempting to decrypt the contents of the neighbor ID faid

ate next hop. To create a segment embedding, we must choose anoute the packet appropriately. However, as discussedvhélp

encoding for the next hop. We reject the obvious encodingeff
address of the next hop. Such an encoding requires 32 biilg, mzh
router ha2®? next-hop neighbors. Instead, in general, we encode
the next hop neighbor ID based on the outbound interfaceechos
for the packet. For some routers, a single interface mayexinn
via a shared medium to multiple next-hop neighbors. Suctersu
must maintain a small table mapping locally assigned unideie-
tifiers to next hop neighbors. In 84.6, we show how each router
can customize the length of its unique identifiers so thatitsodne
wasted, while still accommodating routers with anywheogftwo

to thousands of neighbors.

Hiding Topological Information.  As described, embedding a
neighbor ID leaks topological information, since an insteel party
can map neighbor IDs to the corresponding routers and thtes-de
mine the path traversed by a particular packet. For manyicppl
tions, this is perfectly acceptable. For applications triah to hide

this topological information, we can instead embed an gtedy
version of the neighbor ID.

To create opagque embeddings, each router maintains a kegret
known only to itself. After it selects the appropriate ndighID, it
encrypts the ID using its secret Kegnd an encryption scheme re-
silient to Chosen-Plaintext Attacks (CPA). A CPA-securhesne

'For proper cryptographic hygiene, this key should be diffier

computing the router’s authenticator over the encryptadion of

the neighbor ID, we can securely achieve CCA security with a
CPA-secure encryption scheme, since the router will onbyrygst

the neighbor ID if the authenticator verifies correctly. [Be¢ and
Namprempre demonstrate the security of this construcén [

4.3 Forwarding

Having established a path embedding during setup, the sende
can include itin later packets, allowing routers to forwtre packet
without making extra routing calculations.

To use a path embedding, the sender creates a new SNAPP,header
sets the type field to USE, zeroes the additional fields, apdrags
the path embedding to the packet. When a router receives a USE
packet, it locates the current segment embeddihgn) indicated
by the segment pointer field. It calculates a new authewticat
using the same method it would use for a SETUP packet. If the
two authenticatorsrf andm’) fail to match, the router discards
the packet. Otherwise, the router updates the packet'sf{§#l6),
decodes’ and forwards the packet. Lines 7-14 of Algorithm 1
summarize these steps.

If the path embedding that arrives at the receiver has beeh mo
ified (route or key updates, as discussed below, may modédy th
path embedding), the receiver must return the new path embed

from the key used to compute the segment authenticator, -as de ding to the sender. The change in the embedding alerts beth th

scribed in 84.4.

receiver and the sender that an update has taken placee timik



current Internet in which routes can change transparertlyhe

path embedding arrives unmodified, the sender can use the sam

path embedding for subsequent packets.

4.4 Preserving Path Integrity

To secure the steps described above, SNAPP must enablesroute
to verify that the routing decision encoded in a segment eldibg
is the same one calculated during path setup. It must alagrens
that endhosts cannot use the segment embeddings to comsbiic
trary paths through the network, as dictated by our desiguire-
ments (83).

Authenticating the Segment Embedding. To prevent another
entity from modifying the encoded routing decision, thetepunust
also include an authenticator in the segment embedding.e$ire
router is the only entity that needs to authenticate itd@aer rout-
ing decision, the authenticator can use a secret key knoiynton
the router. Below, we present a naive version of an autheotic
which we refine in Equations 2 — 4.

In its simplest form, the authenticator can be a Messagagtity
Code (MIC) computed over the encoded routing decisiGrysing
the router’s secret keys. Thus, a simple segment embedding
would be:

s=(r', MICx(r") Q)

When a packet arrives containing the active segment embgddi
(r’,m), the router calculated/ IC(r") and compares it ten. If
they match, the router forwards the packet to the destinaic
coded ag’. If they fail to match, the router drops the packet.

If the application using SNAPP employs the topologicallpgpe
next-hop encodings discussed in 84.2, then the MIC desteabeve
should be computed over the encrypted version of the engodin
We use this technique to convert a CPA-secure encryptioanseh
for the encoding into a CCA-secure encryption scheme, dinee
router will refuse to decrypt an encoding if the MIC does nextify
properly [6].

Enforcing Path Integrity.  As presented above, the authentica-
tor for each router is independent of the other routers orpétb.
While this allows each router to verify the authenticity tsf own
routing information, it does not ensure the integrity of gmire
path. Endhosts can combine different segment embeddinggsto
ate new path embeddings, violating one of our key desigriplies
from 83.

As a first step towards guaranteeing path integrity, we can in
clude both the source and destination IP addresses fronattiep
in the computation of the router’s authenticator. Thus, aremod-
ify Equation 1 such that a segment embedding of the routiieg de
sionr’ becomes:

s = (r', MICx(r'||SrclP||DestlP) 2

bedding from Equation 2 as follows:

s = (r', MICx(r'||SrcIP|DestiR|sy||sz2] ... ||sz))  (3)

The router can add this new segment embedding to the setkptpac
and forward it along. If a subsequent packet containingetibed-
ded path arrives at the router via a path other thamo, ..., rg,
the list of segment embeddings in the packet will differ frtme
original list (s1, s2,..., sk), so the MIC in the packet will not
match the MIC computed by the router.

45 Path Maintenance

Occasionally, a router may need to update the segment embed-
ding contained within a USE packet. Security concerns tidteat
each router must periodically rotate the secret key usedrtpate
authenticators, which will necessarily change the valuettiose
authenticators. A change in routing policy may also reqaireuter
to update its segment embedding to reflect a new routingidacis

Unfortunately, computing authenticators based on Eqoaio
makes it difficult for routers to update their private keysabr
ter their routing decisions. If a router updates its key ameht
overwrites its segment embedding with the new authentictiten
the authenticators computed by subsequent routers wilinadth
those in the packet, so it will be dropped. As an alternatile,
router could leave its existing segment embedding unmaifie
start a new list of segment embeddings. This could potéytialu-
ble the packet overhead of SNAPP. Instead, we propose adtiffe
version of the authenticator that only requires a constaauat of
space in the packet header, and we show how to use the modified
authentication scheme to allow routers to perform key amdero
updates.

Updateable Authenticators. To facilitate maintenance of pinned
paths without imposing undue overhead, we introduce a neatifi
version of the authenticator calculation shown in EquaBiomo do

so, we add an additional fielfl to the SNAPP header which will
hold a copy of the segment embedding from the previous router
Thus, during setup, the sender initializ8¢0 0. When a router
receives a SETUP packet, it calculates an authenticatéor its
encoded routing decisiati as follows:

m = MICx(r'||SrcIP||DestlR|S) 4)

It adds the segment embeddiag= (r’,m) to the packet header
and overwrites the contents Sfwith s.

This mechanism only requires a constant amount of additiona
space in the packet header, but each authenticator deparals o
previous authenticators, so the property of path integgisyill pre-
served. As an additional side benefit, the MIC computationw no
occurs over a fixed amount of data, rather than the variabéiatn
required by Equation 3. Below, we describe how to use thisimod
fied version of the authenticator to perform updates.

Key Updates. To maintain the security of the system, routers

where || denotes concatenation. This prevents an endhost from must periodically rotate the key used to create authetisaRather

sharing a path embedding with other hosts or reusing the pathe
embedding to communicate with multiple destinations. Hawe
it does not prevent endhosts from rearranging or mixing niber4
mediate segment embeddings from multiple path embeddings.
To fully guarantee path integrity, we make each router'si@mt
ticator depend on the previous segment embeddings. Thus;a p
ticular router's segment embedding will only authentiqateperly
if the packet has traversed the same path to the router tbat th
original setup packet followed. More concretely, supposetap
packet arrives at a router containing a list of segment enibgd
(s1,$2,...,sk) from previous routers;i, ro, ..., r%, on the path.
The current router creates a modified version of the segnmant e

than force the sender to initialize a new SETUP packet, th&ero
can modify its segment embeddimmgsitu. After validating the cur-
rent segment embedding’, m) using the old keyk, the router
calculates a new authenticaterusing Equation 4 with a new key
K', and overwrites its old segment embeddingith the segment
embeddings’ = (v, ). After sufficient time, the router can re-
tire the old key and exclusively use the new one. Howeveteats
of filling in S with &', it usess. The next router in the path can
use the contents @& to correctly validate its segment embedding.
However, the discrepancy betweénand the value of the previ-
ous segment embedding indicates an update has been maldat, so t
router also updates its authenticator, usihdor the value ofS in
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Figure 2: SNAPP Header. Fields contained in the header of a
SNAPP packet. Each field's size in bits is shown in parenthese
The header contains one segment embedding for each router on
the path. While the length of the segment embedding is fixdu t
relative lengths of the next-hop encoding and the autheratior

are selected by each router to maximize the size of the authen
cator, given the number of next-hop neighbors.

the new authenticator calculation. The updates continti¢ the
packet reaches its destination. The receiver must retismgw
path embedding to the sender, so the sender can utilize tfegagp
path embedding.
Route Updates. The effect that a routing change has on existing
path embeddings depends on an ISP’s policy. An ISP may choose
to apply the route update only to new connections, in whideca
current path embeddings continue to function, and SNAPRthe
fore completely decouples routing and forwarding. The IS8/ m
instead decide to apply certain types of route updates &iiegi
connections as well. This decreases the independence tirigou
and forwarding, but SNAPP facilitates this type of policyvas!.
When a router wishes to change the routing decision embedded
in a packet, the portion of the path embedding leading tothent
router remains valid, but the subsequent segment embexidiey
no longer accurate. SNAPP updates the remaining entriekeon t
fly, rather than forcing the sender to create another SET\dRepa
When a packet arrives, the router makes a new route caloulati
and encodes it gs It calculates a new authenticajousing Equa-
tion 4 (replacing”’ with p), and overwrites its segment embedding
with s" = (p, 1). The router changes the packet type from USE
to SETUP, telling subsequent routers to follow the setuggdare
outlined in 84.2. The change in packet type also alerts tlie en
host that the updated path embedding represents a new natte,
merely the result of a key update. The receiver must retusmtw

pointer. During forwarding, a router assumes that the aciag-
ment embedding belongs to it. If the segment embedding is au-
thentic, the router increments the segment pointer befoneafrd-

ing the packet. Finally, the header contains the figlthat holds a
copy of the segment embedding calculated by the previousmrou
(the sender initializes it to 0). §4.5 explains how this fisldised

to update segment embeddings in place.

Segment embeddings consist of two parts: an encoded npxt-ho
neighbor ID and an authenticator. Each segment embeddi3g) is
bits long, but the division of bits between the two parts isalale.

This allows SNAPP to adapt to the fact that many routers oaleh

a handful of neighbors, but some, such as DSL aggregatirignu
may have tens of thousands of neighbors [16]. The next-higihne
bor encoding may use from 2 to 16 bits, leaving 16 to 30 bits for
the authenticator. Even routers that require all 16 bitsniwode
the next-hop neighbor ID still have 16 bits for the autheattc,
which, as we explain in §6.1, will still provide sufficientcasity.
Since each router decodes its own segment embeddings, SNAPP
does not need to waste bits to indicate the sub-field lengthse

a router is configured to usébits for the neighbor encoding, it
knows that the remaining bits encode the authenticator.

To reduce space overhead, SNAPP can employ path-embedding
caching nearly identical to the caching scheme used by TG [3
The scheme uses constant space at routers to cache the path em
beddings for the largest flows, in which the overhead is migst s
nificant. The caching adds a 48-bit flow ID to the header. A send
chooses a random nonce for the flow ID, and each router inglude
the flow ID in the calculation of the authenticator. When akgac
arrives with a valid path embedding, the router caches the flo
ID along with the path embedding. The sender can omit the path
embedding in subsequent packets, adding only the flow IDs Thi
caching scheme adds complexity, since endhosts must nmadet r
cache evictions, but for some applications, the bandwidtlngs
may justify the additional complexity.

5. APPLICATIONS

SNAPP can serve as a building block in a wide range of applica-
tions. This section considers four applications enable8KAPP.
We present these applications not as complete or optimaticos,
but rather as examples of SNAPP’s usefulness and vergatiia
basic primitive.

5.1 Sender Anonymity

With a few changes, SNAPP can provide a system for preserv-
ing sender anonymity. When forwarding a packet, routersegmb
both forward and reverse routing decisions using the opaque
beddings described in 84.2. When a SETUP packet arrives at a
destination, it also contains a reverse-path embedding rdteiver
can use this embedding to reply to the initiator without héag

path embedding to the sender, so the sender can use the rfew patanything about the initiator’s location in the network.

embedding.
4.6 SNAPP Details

In this section, we present a detailed view of a SNAPP packet,
discuss the important fields, and highlight potential penfance
optimizations.

The SNAPP header contains a fixed-length portion with infor-
mation about the packet followed by a variable length lish@fu-
mulated segment embeddings, each 32 bits wide (see Figuie 2)
the fixed-length portion, a type field indicates whether theket
is of type SETUP or USE. The segment pointer indicates the cur
rently active segment embedding. During setup, a routeregla
its segment embedding at this location and increments tiraeset

For brevity, we make two simplifying assumptions beforeadet
ing the anonymity system. First, while routes between hoetyg
be asymmetric (e.g., because of routing policies), we asdtiat
the network can, if necessary, provide symmetric routethobigh
this assumption may not hold for some specialized netwaitksh
as some wireless links, one-way satellite links, or micnaveon-
nections, most links are bidirectional in the current In&r This
assumption could also hold by construction in the designuifré
network architectures or overlay networks. Second, wenasshat
routers can identify which neighbor sent them a particutaakpt.
If an interface connects to a broadcast medium with multigigh-
bors, packets from these neighbors must be distinguishexithy
tional markings or layer 2 header information.



Given these two assumptions, we can design an anonymity sys-
tem based on the SNAPP protocol. When a sender initiates BET
packet, its local router (or potentially a proxy) encrygis source
IP address using symmetric key encryption based on a sesyet k
known only to the router. It then embeds the encrypted |Pessdr
in the packet, removes the original source IP address, an@fds
the packet to the next-hop router.

When a SETUP packet arrives at a router, the router recoeds th
neighbor, n, from which it received the packet. It encodes the
neighbor ID asn’ using the opaque encodings discussed in §4.2
and computes a standard authenticator that includesVhen the
SETUP packet arrives at the recipient, it will contain ae®df seg-
ment embeddings that point from the recipient to the sentiee
recipient can include this reverse-path embedding in Epaese.
Each router will locate its segment embedding and decodetlie
ing informationn’ to obtain the IDn of the appropriate next-hop
neighbor. The router then forwards the packet. Eventu#ily,
packet will reach the router local to the original senderattbuter
decrypts the IP address embedded in the path embedding and fo
wards the packet across the final hop to the sender.

The scheme described above provides efficient initiatorgn
mous communication. Only the first router knows the true titien
of the sender, which is reasonable in most scenarios, amdtiige
knowledge can be weakened by using a proxy or other relatéd te
niques for anonymity [21, 26]. Each router on the path knonlg o
the previous and next-hop routers; compromising a portfcihe
routers will not compromise the sender’s identity. A global
versary, however, could trace a message. Resisting thexsaty
requires stronger cryptographic approaches such as DxJ41t

5.2 Sender Accountability

Many experts have opined that most current Internet thoeaisl
be addressed if the source of a packet and its contents ceuld b
reliably identified. The hope is that sender accountabiliuld
provide the foundation for eradicating worms, viruses, iBkeof-
Service attacks, and other forms of Internet threats. Wthgeef-
fectiveness of such an approach is debatable, we desigreensch
built on top of SNAPP that efficiently provides strong accaiil-
ity guarantees of packet (and packet data) origin. In domg\ve
illustrate the versatility of SNAPP, and in particular dematate its
usefulness in enabling very expensive routing calculation
Requirements. In this application, we use SNAPP to achieve
two properties: 1) Each router can securely and statelefstyify
the host responsible faach packet it forwards, and 2) A packet
recipient can prove to an ISP that a particular sender ioresbple
for the packet it received.

These are strong requirements that are difficult to achiéfire e
ciently; so far, researchers have informally suggestetsaders
could digitally sign every packet, which would be quite exgige,
especially in terms of the computation required.

The first requirement prevents malicious hosts from masalier
ing as legitimate hosts, allowing routers to perform acufitter-
ing. Attackers must either take responsibility for theaffic or
compromise legitimate hosts. The second requirement allS®s
to respond to customer complaints in a fair and accurate arann

Our scheme achieves these properties while imposing a minim
computational overhead. Our key insight for designing dicient
system is to perform a relatively expensive key setup beivtiee
sender and each router on path setup, leverage SNAPP iefpack
state to store the cryptographic information, and use thaite-
graphic state to efficiently verify subsequent packets. siseace,
we amortize an expensive route establishment over subseogmek-
ets to achieve a viable sender accountability system.

This scheme does require additional space within the paelast-
ers, but we believe this is a necessary tradeoff to achievel¢h
sired accountability properties in a stateless manner. rdvige
accountability, we assume the presence of a Public-Kegstrinc-
ture (PKI) that routers can access, and leave a PKl-lest@olas
an open problem.

Overview. This scheme expands upon the basic SNAPP proto-
col to establish a symmetric session key between a senderaahd
router along a path without requiring per-flow state at theteo
During setup, the sender authenticates to the routers asiagym-
metric signature. Each router uses the PKI to verify theatigme,
generates a symmetric session key based on the sender’sndd us
a pseudo-random permutation, and encrypts the symmetrigrke

der the sender’s public key. The router includes the enedygey

in the packet, and it uses SNAPP to securely embed the sender’
identity in the packet.

In later packets, the sender includes the path embedding and
MIC of the packet’s static contents for each router on thdn.pat
Each router uses SNAPP to verify the integrity of its segneemt
bedding, regenerate the symmetric session key and vesdfiyitic
on the packet. Since the segment embedding contains thersend
identity, the router can treat the packet appropriately.

Details. Senders prepare a standard SNAPP SETUP packet and
include an asymmetric signature computed over the statitopo

of the packet's header and contents. The signature scheche-is
sen such that verification is relatively inexpensive (éRgbin sig-
natures, ECC signatures, or RSA signatures with a smaliiceeri

tion exponent). An attacker attempting to use the verificagiro-

cess to deny service to other senders will be held accoentibl
she uses a valid signature, or, at worst, invalid signatwiksnly

hurt the first-hop router, which is in the best position tanitify the
attacker.

When a router receives a setup packet, it uses the sendér's pu
lic signing key to verify the signature and assign the seadecal
IDs. To save space, routers could agree on a canonical identifier
for each sender, so that the sender’s ID would only be include
the packet header once. Then the router generates a symkestri
Ksr; = Fx,(IDs) that it will share with the sender, wheré
is pseudo-random permutation keyed by the router’s seeyeCk.

The router then encrypt& s, under the sender’s public encryp-
tion key, P K 5. The asymmetric encryption scheme is chosen such
that encryption is relatively inexpensive (e.g., RSA or E&€ryp-
tion). Finally, the router creates the following segmenberdtding

(in a manner similar to the usual SNAPP embedding):

s = (T’,IDs,{KSRi}pKS,Auth(T/,IDs)) (5)

wherer’ is the usual SNAPP encoding of the routing decision, and
Auth() is the usual SNAPP authenticator shown in Equation 4, but
with I Dgs as an additional input. As usual, the receiver returns the
collection of segment embeddings to the sender.

Upon receiving the collection of segment embeddings, thdexe
decrypts the symmetric kei(sr, for each router. To send a new
packet, the sender computes a MIC over the static conteriteof
packetp using eachi(sg, in turn. The packet must contain each
of these MICs, along with the segment embeddings returnédeby
receiver. Thus, for each router on the path, the senderdastu

s = (r’,IDs,Auth(r/,IDs),MICKSRi(p)) (6)

When a router receives such a packet, it first verifies thecatitta-
tor. Then, it regeneratesr, usingl Ds and/C; and verifies the
MIC on the packet. If these checks succeed, the router caloaet
the packet and its contents to the sender representédby Fi-
nally, the router forwards the packet based on the decoding o



If an endhost receives a malicious packet, it can provide the
packet as evidence to the ISP responsible for the routerfahat
warded the packet. Since the ISP controls the router, it caess
the router’s secret keiZ;, verify the packet’s authenticator, regen-
erate Ksg, and verify the MIC on the packet. Presumably, the
ISP trusts its own routers, so it knows that sentiBrs must have
originated the packet, and it can blacklist that senderénftiture.
While this scheme does not provide infallible legal evide(gince
the ISP can lie), it does allow the party with the most powsiitier
network traffic to accurately identify the traffic to be fikek.

5.3 Traffic Engineering

The goal of traffic engineering (TE) is to balance networldloa
across different paths to improve the utilization or regdeness
of the network. A challenge facing traffic engineering istttre
balancing must not split a single flow across multiple paties,
cause TCP performs poorly in the face of packet re-ordei®dg [
As aresult, most TE schemes either operate offline at a gretyul
larger than per-flow [12], or pin flows to a particular path J[15
requiring per-flow state in the router doing the splitting.sit
SNAPP, a router can allow established flows to remain bound to
their original path, while directing newly arriving flows & al-
ternate route. Of course, SNAPP does not ease the task afdindi
the right load balancing, but it makes it possible to do sdauit
per-flow state. If SNAPP were configured to share autheimicat
keys between routers, the splitting router could even défieeest
of the path through an ISP, a task currently performed bygusin
tunnels configured with a protocol such as RSVP-TE [5].

5.4 Sender-Controlled Paths

SNAPP gives senders an appropriate amount of control oger th
paths their traffic traverses. SNAPP’s properties expjigitevent
senders from creating arbitrary paths that would violate¢ewo(or
ISP) policies; instead, senders can select amongst pathilpd
by the network infrastructure.

Of course, we must assume the existence of a mechanism for

discovering multiple network paths. One simple implemgote
might be for senders to periodically send SETUP packetsitiro
the network to a destination and cache the resulting pattingrfor
later use. Another common mechanism for finding and using mul
tiple Internet paths is an overlay network [2, 24, 27]. Cagety,
once an overlay discovers a desirable set of paths (e.g.whsse
first hops all traversed different links), it could use théhgainning
to ensure that these properties persisted through roupidgtes.
Finally, an architecture that allowed SNAPP to divulge toge
cal information could facilitate finding efficient overlapths in a
manner similar to “path painting” [14].

6. ANALYSIS

In this section, we analyze the security and performancaef t
basic SNAPP protocol presented in §4.

6.1 Security Analysis

We first consider the effects of malicious endhosts and tixen e
amine the impact of malicious routers.
Malicious Endhosts. A malicious endhost may try to attack the
availability of the SNAPP system, recombine segment embgdd
to create unauthorized paths, or subvert the cryptogrgmfiici-
tives we employ. To attack the availability of the systemead-
host might attempt to launch a Denial-of-Service (DoS)ckttan
a router by forcing it to compute many authenticators. Hawev
as discussed in the performance analysis below, a SNAPRipack
requires only a single MIC computation over a fixed amount of

data, which can be performed at line speed, making a DoSkattac
on the router infeasible. SNAPP itself is not designed togmtare-
cipients from DoS attacks, though it does improve capgHilased
systems that do so, as discussed in 87. We also note thatdiingre

a segment embedding, a router does not give up control oveaho
packet is forwarded; it can always reroute a packet.

The design of the segment authenticator prevents an endhost
from modifying the encoded routing decision or recombirseg-
ment embeddings. Since the authenticator is always coruhjower
the encoded routing decision, modifying the routing infation
will invalidate the authenticator (we discuss attacks anahthen-
ticator itself below). Since the router always checks thbentica-
tor before acting on the routing information, any such madifon
will be detected. The final version of the authenticatorvahn
§ 4.4 and 4.5 Equation 4, incorporates the segment embefiding
the previous router. Thus, the authenticators form an atittegion
chain, and each new authenticator is based on all of thequrevi
segment embeddings, preventing recombination.

Changing the value of any one segment embedding necessarily
invalidates the authenticators for the subsequent raufuppose
that a malicious endhost has two path embeddipgsdp’, each
consisting of a list of segment embeddings:

(817827 e

(51,85, ...

p 7Sk)
’

p . Sn)

If the endhost attempts to rearrange the segment embedditigs

p, €.0., by swapping; with s;;1, then there will be an authenti-
cation failure at routef. Routeri — 1 will forward the packet to
routers as before, but routerwill attempt to authenticate the seg-
ment embedding created by routef 1, which will fail with high
probability as discussed below. Thus, routerill drop the packet.
Now, suppose that the malicious host attempts to splicewioe t
paths to creatp = (s1, S2,...,8i,85,...,8p). If s # siy1, then
router: will forward the packet to router+ 1, which will attempt to
authenticate the embedding. This will fail with high probability.
Otherwise, when the packet arrives at roytethe router will cal-
culate the target authenticator usisngas the value of the previous
segment embedding and compare it with the existing auttegoti
which was calculated using the valuesf ;. With high probabil-
ity these two values will not match and the packet will be gegh
Similarly, attempting to remove segment embeddings froerbi-
ginning of pathp to createp = (s, . .., sn) will fail, since the first
router will calculate the target authenticator usinas the previous
value, whereas the existing authenticator used the valug_qf

A malicious endhost could truncate the path embedding tatere
p = (s1,...,8:), but routers; will forward the packet to router
si+1. When routers;; fails to find an appropriate embedding in
the packet header, it will drop the packet.

A malicious endhost could also attempt to subvert the crypto
graphic authenticator used by SNAPP. Since the autheaotican-
sists of a standard cryptographic MIC, an adversary attiegpd
forge a correct authenticator must resort to brute forcesgjng.
Assume that the router has over 32,000 neighbors and hetge on
uses 16 bhits for the authenticator, even though most roaters
likely to have far fewer neighbors and therefore use 25 orenhits
for their authenticators. With a 16-bit authenticator, &acker
will find a correct forgery after computing'®~! = 32,768 au-
thenticators, in expectation. With a 25-bit authenticaforging a
single authenticator will require over 33 million attempBsnce the
adversary cannot locally verify the validity of a forgerg ar she
must transmit a packet for every guess, indicating thatdhersary
must send over 32,000 packets to find a forgery for a singlkitL6-
authenticator. Simultaneously forging two consecutiviheutica-



tors would require over a billion attempts. To prevent aneasiary
from using TTL values to probe one router at a time, we can in-
corporate the value of the TTL field in the authenticator'sQyI
forcing the adversary to successfully forge authentisafor the
entire path. The amount of work required for a successfiger
makes this attack prohibitively expensive, particulailyce peri-
odic router key changes will invalidate the work done.

Malicious Routers. Much of the above analysis also applies to
malicious routers. A router might also misroute a packetter ¢he
packet's SNAPP-related data. If a router reroutes a paitketll
arrive at a legitimate router, but the segment embeddingtediat
by the segment pointer will not belong to that new router.c8in
the legitimate router has a different key from the intendext+op
router, the authenticator will fail to validate with highgirability,
and the probability of two successive authenticators ailid suc-
cessfully is negligible. When the authenticator fails tbdeate, the
router will drop the packet. While this is certainly not itlé@m
the sender’s perspective, it is also no worse than if theaioais
router decided to drop the packet itself.

A similar analysis applies to modifications of SNAPP data. A
malicious router can cause a packet to be dropped by anrearlie
router on the path, but the malicious router could just aByedi®p
the packet itself. Modifying an earlier router's embeddhging
setup will cause later packets to be dropped when they résch t
earlier router. Similar modifications to non-setup packétshave
no effect. Modifying a later segment embedding will cause&an
thentication failure since the authenticator will fail talidate, re-
sulting in a dropped packet. As discussed in 85.4, SNAPPastpp
sender-selected paths; such a mechanism would allow tdeistn
avoid a path that drops too many packets.

Finally, since SNAPP does not require any trust relatiqrshe-
tween routers, subverting one router does not aid the aatyens
subverting (or otherwise affecting) other legitimate eoat

6.2 Performance Analysis

SNAPP can operate at line-speed and requires a reasonatl@gam
of space in packet headers, an amount that can be furthezegdu
to only six bytes through the use of caching.

When a setup packet arrives, the router must perform thd usua
routing calculation. It must also compute the MIC shown im&q
tion 4 over 112 bits of input. When a packet arrives contajran
path embedding, the router must perform the same MIC computa
tion and compare the result to the packet contents, but ibmgelr
needs to perform a routing calculation. Thus, the amouninuoé t
and state required to forward a packet is no longer deperatent
the size of the routing table, but instead depends only ottirtie
required to compute a single MIC.

A single MIC can be easily implemented in hardware to provide
line-speed performance. A typical block-cipher-based BUICh as
CBC-MIC requires two serial invocations of a block cipheclsas
AES. ASIC cores for AES can operate at data rates ranging 3m
Mbps to 25 Gbps and require between 6,000 and 30,000 gafes [13
We can further optimize the MIC computation by using PMAC, an
alternative mode of operation for block-cipher based Ml s
fully parallelizable and hence highly efficient to implemanhard-
ware [7]. Thus, the MIC computation will not create a botéek
on the router’s throughput.

7. DISCUSSION

This section examines some of the additional useful pragsert
that SNAPP provides. We also consider an ISP’s control awetr r
ing decisions once SNAPP is deployed. Finally, we discuss th
effectiveness of SNAPP in incremental deployments.

Availability. By allowing forwarding to be decoupled from rout-
ing, SNAPP enhances network availability. As discusseddo-S
tion 4.5, ISP policy ultimately determines the extent of deeou-
pling. With a policy of maximal decoupling, an attack on rout
ing (or a misconfiguration [8, 32]) will not interrupt exisg flows,
since the routers will continue to forward their packetsslolasn the
earlier routing decision encoded in the packets. As longsender
possesses a valid path embedding leading to the recipiepadk-
ets can continue uninterrupted by problems on the routingepl
Senders can cache recently used path embeddings so thaisetu
performed infrequently.

Network Measurement. SNAPP can also facilitate network mea-
surements. A measurement tool could pin a path in place &nd el
nate path variability as a source of measurement noise r@at.
Any change in the path (as the result of a routing policy ugdat
will be reflected in the modified value of the path embeddirg, s
that the change can be properly factored into the measutemen
The change in the path embedding would also allow a measure-
ment tool immediately know when path changes occur, which ma
also provide useful insight into network characteristics.
Capability Systems. SNAPP addresses an important limitation of
capability systems: their fragility under path changespatsity
systems allow a receiver to provide legitimate senders witia-
pability token that authorizes them to send privileged oekvraf-

fic. Each capability is typically tied to a particular pathtween
the sender and receiver. Any deviation from the path ineddis
the capability. Using SNAPP, a sender can pin the path ineplac
preserving the capability even in the face of routing protdeor
transient routing changes.

Since most capability systems require routers to compute an
check an authenticator for information embedded in a patket
router functions required for capabilities and for SNAPRrtap
and could be easily combined.

ISP Route Control. By implementing SNAPP, ISPs do not give
up control over how routes are determined. Indeed, the ISP pr
vides the various routes in the first place, and one of SNAPP’s
explicit design goals (83) prohibits endhosts from cordding ar-
bitrary paths. Furthermore, even after a path has been giime
place, a router may still decide to reroute the flow's traffigugh

this decision will increase the dependence between foinguahd
routing. As explained in 84.5, our design includes the fldigjtto
update the path embedding dynamically in place in ordercorae
modate such changes.

Incremental Deployment. While we primarily envision SNAPP

as a building block for new architectures, we also believieas
value in incremental deployments. The effectiveness otla @an-
bedding depends on the number of SNAPP routers along the path
as well as the stability of routes through the non-SNAPPeamut
The non-SNAPP routers do not embed their routing decision in
setup packets, and hence they may make different routirigides

for subsequent packets. Thus, path embeddings for pathsawit
small fraction of SNAPP routers that make frequent routengea

Examining space overhead, a standard SNAPP header requiredn@y prove unstable. Nonetheless, many path embeddingbavill

five bytes plus four additional bytes for each router trasersAs
discussed in 84.6, after the initial round, routers can edbh path
embedding, so that the sender need only include a six-byte flo
ID in most of the packets sent, but the routers still use ateoins
amount of state.

sufficiently stable over the lifetime of a connection, andA&IR
routers, particularly those close at the edge of the netwecak
still benefit from SNAPP’s decoupling of forwarding from tmg,
as well as the amortization of expensive initial route lqukover
subsequent packets.



8. FUTURE WORK AND CONCLUSIONS

We are continuing to investigate techniques for verifialgigra-
gation of segment embeddings in order to reduce packet eadrh
We also hope to perform Internet-scale simulations to battder-
stand SNAPP’s behavior during routing failures.

In considering architectural primitives for designing awark
architecture, whether for an overlay network or a next-geien
network core, we find that SNAPP represents a versatile ingild
block for achieving a number of useful properties. SNAPP pro
vides sufficient flexibility to: 1) decouple forwarding frorauting
to enhance the availability of paths in the face of routingfut
bances, 2) provide route-selection control to the sendee@uest
multiple routes and select among them), 3) enable appitsitivith
expensive route lookups, 4) provide capability-basedesgstwith
stable paths despite routing changes, 5) enable load lradpat
the sender, 6) provide sender anonymity at the network ,|ayet
7) provide sender accountability.

SNAPP also provides additional flexibility forimplemergirouters
and other forwarding devices; for example we can envisioysa s
tem where high-speed switches perform the packet forwgydind
separate servers are used to aid in path setup. This mayolead t
approach for optical networks, where switching may be fdasn
the all-optical domain, whereas the more complex routirgisiiens
occur in traditional hardware.
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