
Bootstrapping Trust in a “Trusted” Platform

Bryan Parno
Carnegie Mellon University

Abstract

For the last few years, many commodity computers have
come equipped with a Trusted Platform Module (TPM). Ex-
isting research shows that the TPM can be used to establish
trust in the software executing on a computer. However,
at present, there is no standard mechanism for establish-
ing trust in the TPM on a particular machine. Indeed, any
straightforward approach falls victim to acuckoo attack. In
this work, we propose a formal model for establishing trust
in a platform. The model reveals the cuckoo attack problem
and suggests potential solutions. Unfortunately, no instan-
tiation of these solutions is fully satisfying, and hence, we
pose the development of a fully satisfactory solution as an
open question to the community.

1 Introduction

Before entrusting a computer with a secret, a user needs
some assurance that the computer can be trusted. Without
such trust, many tasks are currently impossible. For exam-
ple, if Alice does not trust her PC, then she cannot login to
any websites, read or edit confidential documents, or even
assume that her browsing habits will remain private. While
the need to bootstrap trust in a machine is most evident when
traveling, this problem arises more generally. For example,
Alice might wish to check her email on a friend’s computer.
Alice may not even be able to say for sure whether she can
trust her own personal computer.

One way to bootstrap trust in a computer is to use secure
hardware mechanisms to monitor and report on the software
state of the platform. Given the software state, the user (or
an agent acting on the user’s behalf) can decide whether the
platform should be trusted. Due to cost considerations, most
commodity computers do not include a full-blown secure
coprocessor, such as the IBM 4758 [11]. Instead, the move
has been towards cheaper devices called Trusted Platform
Modules (TPMs) [13]. The cost reduction is due in part to
the decision to make the TPM secure only against software
attacks. As a consequence, a TPM in the physical possession
of an adversary cannot be trusted.

With appropriate software support, the TPM can be used
to measure and record each piece of software loaded for ex-
ecution, and securely convey this information (via an attes-
tation) to a remote party [9,13]. Thus, the TPM can be used
to establish trust in the software on a machine.

However, the question remains: How do we bootstrap
trust in the TPM itself? Surprisingly, neither the TPM spec-
ifications and nor the academic literature have considered
this problem. Instead, it is assumed that the user magically
possesses the TPM’s public key. While this assumption dis-
penses with the problem, it does not truly solve it, since in
real life the user does not typically receive authentic public
keys out of the blue. Without the TPM’s public key, the user
cannot determine if she is interacting with the desired local
TPM or with an adversarially-controlled TPM. For example,
malware on the local machine may forward the user’s mes-
sages to a remote TPM that the adversary physically con-
trols. Thus, the user cannot safely trust the TPM’s attesta-
tion, and hence cannot trust the computer in front of her.

As a result, we need a system to allow a conscientious
user to bootstrap trust in thelocal TPM, so that she can
leverage that trust to establish trust in the entire platform.
In this paper, we make the following contributions:

1. We formally define (using predicate logic) the problem
of bootstrapping trust in a platform.

2. We show how the model captures the cuckoo attack, as
well as how it suggests potential solutions.

3. We give sample instantiations of each type of solution
and discuss their advantages and disadvantages.

4. None of the solutions feasible with current hardware
are entirely satisfactory, so we recommend improve-
ments for future platforms that aspire to be trusted.

2 Problem Definition

In this section, we provide a summary of the high-level TPM
properties relevant to this work. We then give an informal
description of the problem, followed by a more rigorous,
formal definition.

2.1 TPM Background

From an abstract perspective, a Trusted Platform Module
(TPM) can be described as a security chip equipped with a
public/private keypair{KTPM,K−1

TPM} and a set of secure
memory regions known as Platform Configuration Registers
(PCRs). While the TPM specification requires the TPM to
preserve the secrecy of the private keyK−1

TPM and the in-
tegrity of the PCRs against software attacks, it makes no
guarantees against determined hardware attacks.



Verifier Local PC Remote PC

TPM
L

TPM
M

(a) Example Implementation

Verifier

TPM
L

TPM
M

(b) Logical Equivalent

Figure 1:The Cuckoo Attack. In one implementation of the cuckoo attack (a), malware on the user’s local machine sends messages
intended for the local TPM (TPML) to a remote attacker who feeds the messages to a TPM (TPMM) inside a machine the attacker
physically controls. Given physical control of TPMM, the attacker can violate its security guarantees via hardware attacks. Thus, at a
logical level (b), the attacker controls all communication between the verifier and the local TPM, while having access to an oracle that
provides all of the answers a normal TPM would, without providing the security properties expected of a TPM.

The TPM’s manufacturer provides the TPM with an En-
dorsement Certificate (EC). The EC certifies that the TPM
is a genuine, hardware TPM and serves to authenticate the
TPM’s public keyKTPM. Note that the EC only guaran-
tees that the public key belongs tosomeTPM, not aspecific
TPM. This weakness can be exploited via a cuckoo attack.

Assuming an external verifier can obtain a TPM’s au-
thentic public keyKTPM, the TPM can securely describe
the software state of the platform to the verifier via anat-
testation. Software on the platform records measurements
(hashes) of software executed into the PCRs. Given a cryp-
tographic nonce from the verifier, the TPM can produce a
signature over the nonce and the current PCR values. The
signature is calculated using1 the private 2048-bit RSA key
K−1

TPM. The verifier can use the public key to verify the sig-
nature and hence authenticate the PCR values. Using the
PCR values, the verifier can decide whether to trust the soft-
ware on the computer with the user’s secrets.

2.2 Informal Problem Description

Our high-level goal is to establish trust in a potentially com-
promised computer, so that a user can perform security-
sensitive tasks. To achieve this goal, we must assume the
user already trusts someone or something, and then leverage
that trust to establish trust in the computer.

Specifically, we make two initial trust assumptions. First,
we assume the user has a mobile, trusted device, such as
a cellphone, or a special-purpose USB fob that can compute
and communicate with the computer. This device is assumed
to be trusted in part due to its limited interface and func-

1Technically, most TPMs use an Attestation Identity Key (AIK)to sign
the attestation. An AIK is a public keypair generated by the TPM. Using the
TPM’s private key and EC, a TPM owner can convince a Privacy Certifi-
cate Authority to issue an anonymous certificate indicating that the public
portion of the AIK was generated by a legitimate TPM. Since theAIK’s
authenticity is based on the EC, it is vulnerable to the cuckoo attack. As
an alternative to AIKs, the v1.2 TPM specification [13] includes support
for Direct Anonymous Attestation (DAA). However, the goal ofDAA is to
demonstrate thata TPM signed the attestation while preventing the verifier
from discoveringwhichTPM signed it, thus allowing the cuckoo attack.

tionality,2 so it cannot be used for general security-sensitive
tasks. We also assume the user trusts someone (potentially
herself) to vouch for the physical integrity of the local ma-
chine. Without this assumption (which may not hold for
kiosk computers), it is difficult to enable secure, general-
purpose computing. Fortunately, humans are relatively good
at protecting their physical belongings (as opposed to virtual
belongings, such as passwords). Furthermore, the assump-
tion is true relative to Internet-based attackers.

Ideally, from these two trust assumptions (a trustworthy
verifier device and a physically secure local computer), we
would establish trust in the secure hardware (TPM) in the
local computer. Trust in the TPM could then be used to es-
tablish trust in the software on the computer. Unfortunately,
there is currently no way to connect our trust assumptions to
trust in the local TPM. When a user walks up to a computer,
she has no reliable way of establishing the identity (public
key) of the TPM inside the computer. As a result, she may
fall victim to what we call a cuckoo attack.

In a cuckoo attack,3 the adversary convinces the user that
a TPM the adversary physically controls in fact resides in the
user’s own local computer. Figure 1(a) illustrates one pos-
sible implementation of the cuckoo attack. Malware on the
user’s local machine proxies the user’s TPM-related mes-
sages to a remote, TPM-enabled machine controlled by the
attacker. The attacker’s TPMM can produce an EC certi-
fying that the TPM’s public keyKTPMM

comes from an

authentic TPM. The attacker’s computer then faithfully par-
ticipates in the TPM protocol, and it provides an attestation
that trusted software has been loaded correctly.

As a result, the user will decide to trust the local PC.
Any secrets she enters can be captured by malware and for-
warded to the attacker. Even secrets protected by TPM-
based guarantees (e.g., encrypted usingKTPMM

) will be

compromised, since the TPM’s specifications offer no guar-
antees for a TPM in the physical possession of the adversary.

2Arguably, this assumption does not hold for current smartphones.
3The cuckoo bird replaces other birds’ eggs with its own. The victim

birds are tricked into feeding the cuckoo chick as if it were their own. Sim-
ilarly, the attacker “replaces” the user’s trusted TPM withhis own TPM,
leading the user to treat the attacker’s TPM as her own.



Predicates
Predicate Meaning
TrustedPerson(p) User trusts personp.
PhysSecure(c) Computerc is physically secure.
SaysSecure(p, c) Person p says computerc is

physically secure.
TrustedC(c) Computerc is trusted.
TrustedT(t) TPM t is trusted.
On(t, c) TPM t resides on computerc.
CompSaysOn(c, t) Computerc says TPMt is in-

stalled on computerc.

Axioms
1. ∀p,c TrustedPerson(p) ∧ SaysSecure(p, c)

→ PhysSecure(c)
2. ∀t,c On(t, c) ∧ ¬ PhysSecure(c) → ¬ TrustedT(t)
3. ∀t,c On(t, c) ∧ PhysSecure(c) → TrustedT(t)

4. ∀t,c On(t, c) ∧ TrustedT(t) → TrustedC(c)
5. ∀t,c On(t, c) ∧ ¬ TrustedT(t) → ¬ TrustedC(c)

6. ∀c, t CompSaysOn(c, t) → On(t, c)

Figure 2:Trust Model. The predicates describe relevant properties of the system, while the axioms encode facts about the domain.

Assumption Encoding
1. Alice trusts herself. TrustedPerson(Alice)
2. Alice says her computerC is physi-

cally secure.
SaysSecure(Alice, C)

3. The adversary controls machineM
containing TPMM.

On(TPMM, M)

4. M is not physically secure. ¬ PhysSecure(M)
5. Malware on Alice’s machineC

causes it to say that TPMM is in-
stalled onC.

CompSaysOn(C, TPMM)

Figure 3: Assumptions. We encode our assumptions about the
situation in predicates.

(1) TrustedPerson(Alice) Assumption 1
(2) SaysSecure(Alice, C) Assumption 2
(3) PhysSecure(C) Axiom 1: (1), (2)
(4) CompSaysOn(C, TPMM) Assumption 5
(5) On(TPMM, C) Axiom 6: (4)
(6) TrustedT(TPMM) Axiom 3: (5), (3)
(7) TrustedC(C) Axiom 4: (5), (6)

(8) On(TPMM, M) Assumption 3
(9) ¬ PhysSecure(M) Assumption 4
(10) ¬ TrustedT(TPMM) Axiom 2: (8), (9)
(11) ¬ TrustedC(C) Axiom 5: (5), (10)

(12) ⊥ 7, 11

Figure 4:Proof. Applying our axioms to our assump-
tions leads to a logical contradiction.

2.3 Formal Model

To analyze the cuckoo attack more formally, we can model
the situation using predicate logic. Figure 2 summarizes
our proposed model for establishing trust in a computer
equipped with secure hardware. The first axiom encodes
our assumption that trusted humans can vouch for the phys-
ical integrity of a computer. The next two axioms codify
the TPM’s vulnerability to hardware attacks. The second
set of axioms encodes our assumption that trust in the TPM
inside a computer suffices (via software attestations) to es-
tablish trust in the computer. The final axiom represents the
fact that today, without the local TPM’s public key, the user
must accept the computer’s assertion that a particular TPM
resides on the computer.

To “initialize” the system, we also encode our assump-
tions about the concrete setting in a set of predicates (shown
in Figure 3). By applying our set of axioms to the initial
assumptions, we can reason about the trustworthiness of the
local machine. Unfortunately, as shown in Figure 4, such
reasoning leads to a logical contradiction, namely that the
local machineC is both trusted and untrusted. This contra-
diction captures the essence of the cuckoo attack, since it
shows that the user cannot decide whether she should trust
the local machine.

Removing the contradiction requires revisiting our ax-
ioms or our assumptions. We explore these options below.

3 Solutions

The cuckoo attack is possible because the attacker can con-
vince the user to accept assurances from an untrustworthy
TPM. In this section, we first show that an obvious solution,
cutting off network access, addresses one instantiation ofthe
cuckoo attack but does not solve the problem, since malware
on the local machine may have enough information to per-
fectly emulate a TPM in software. To avoid similar missteps,
we return to our formal model and consider solutions that re-
move an assumption, as well as solutions that fix an axiom.
For each approach, we provide several concrete instantia-
tions and an analysis of their advantages and disadvantages.

3.1 Removing Network Access Insufficient

From Figure 1(a), it may seem that the cuckoo attack can
be prevented by severing the connection between the local
malware the adversary’s remote PC. The assumption is that
without a remote TPM to provide the correct responses, the
infected machine must either refuse to respond or allow the
true TPM to communicate with the user’s device (thus, re-
vealing the presence of the malware).

Below, we suggest how this could be implemented, and
show that regardless of the implementation, this solution
fundamentally does not work. We demonstrate this both
with the formal model from Section 2.3, and with an attack.



There are several ways to remove the local malware’s ac-
cess to the remote TPM. We could instruct the user to sever
all network connections. If the user cannot be trusted to re-
liably accomplish this task,4 the verifier could jam the net-
work connections. For example, the user’s fob might include
a small RJ-45 connector to plug the Ethernet jack and jam
the wireless network at the logical level (by continuously
sending Request-to-Send frames) or at the physical level.
Finally, we could use a distance-bounding protocol [3] to
prevent the adversary from making use of a remote TPM.
Since the speed of light is constant, the verifier can require
fast responses from the local platform and be assured that
malware on the computer does not have time to receive an
answer from a remote party. However, with current TPMs,
identification operations take half a second or more, with
considerable variance both on a single TPM and across the
various TPM brands. A signal traveling at light speed can
circle the earth about four times in the time required for
an average TPM to compute a signature, making distance-
bounding infeasible.

Unfortunately, removing network access is fundamentally
insufficient to prevent the replay attack. One way to see this
is via the formal model from Figure 2. Neither the predicates
nor the axioms assume the local adversary has access to the
remote PC. The logical flaw that allows the cuckoo attack
to happen arises from Axiom 6, i.e., the local computer’s
ability to convince the user that a particular TPM resides on
it. In other words, as shown in Figure 1(b), the cuckoo at-
tack is possible because the malware on the local machine
has access to a “TPM oracle” that provides TPM-like an-
swers without providing TPM security guarantees. If the lo-
cal malware can access this oracle without network access,
then cutting off network access is insufficient to prevent the
cuckoo attack.

In particular, since the adversary has physical possession
of TPMM, he can extract its private key. He can then pro-
vide the malware on the local computer with the private key,
TPMM’s Endorsement Certificate, and a list of trusted PCR
values. Thus provisioned, the malware on the local machine
can perfectly emulate TPMM, even without network access.

3.2 Eliminate Malware

An alternate approach is to try to remove the malware on
Alice’s local computer. In our formal model, this equates
to removing Assumption 5, which would remove the contra-
diction that results in the cuckoo attack. Unfortunately, this
approach is both circular and hard to achieve.

First, we arrived at the cuckoo attack based on the goal
of ensuring that the local machine could be trusted. In other
words, the goal is to detect (and eventually remove), any
malware on the machine using the TPM. Removing malware
in order to communicate securely with the TPM, in order to
detect and remove malware, potentially leaves us stuck in an
endless loop.

4For example, it may be difficult to tell if an infected laptop hasits
wireless interface enabled.

In practice, there are two approaches to cutting through
this circularity, but neither is satisfactory.

§1 Trust. The “null” solution is to simply ask the local ma-
chine for its key and trust that no malware is present.
Pros: This is clearly the simplest possible solution.
Cons: The assumption that the machine is not compro-
mised will not hold for many computers. Unprotected
Windows PCs are infected in minutes [1]. Even newly
purchased devices may not meet this criteria [6,12].

§2 Timing Deviations. Seshadri et al. note [10] that certain
computations can be done faster locally than malware
can emulate the same computations while hiding its own
presence. By repeating these computations, a timing gap
appears between a legitimate execution of the protocol,
and a malware-simulated execution. Using their system,
Pioneer, we can check for malware.
Pros: Since Pioneer does not rely on special hardware,
it can be employed immediately on current platforms.
Cons: Using Pioneer requires severing the PC’s network
access; Section 3.1 shows that this is non-trivial. Also,
Pioneer requires specific hardware knowledge that the
user is unlikely to possess.

3.3 Establish a Secure Channel

Given the conclusions above, we must keep the assumptions
in Figure 3. Thus, to find a solution, we must fix one or more
of our axioms. We argue that the correct target is Axiom 6,
as the others are fundamental to our problem definition.

We cannot simply remove Axiom 6, since without it, we
cannot introduce the notion of a TPM being installed on
a computer. Instead, establishing a secure (authentic and
integrity-preserving) channel to the TPM on the local ma-
chine suffices to fix Axiom 6. Such a secure channel may be
established using hardware or cryptographic techniques.

For a hardware-based approach, we would introduce a
new predicateHwSaysOn(t,c) indicating that a secure
hardwired channel allowed the user to connect to the TPM
on the local machine. Axiom 6 would then be written as:

∀t,c HwSaysOn(t,c) → On(t,c)

A cryptographic approach requires the user to obtain
some authentic cryptographic information about the TPM
she wishes to communicate with. Based on the user’s trust
in the source of the information, she could then decide that
the TPM was in fact inside the machine. We could encode
this using the predicatePersonSaysOn(p, t, c) indi-
cating that a personp has claimed that TPMt is inside com-
puterc. Axiom 6 would then be written as:

∀p, t,c TrustedPerson(p)∧PersonSaysOn(p, t,c)
→ On(t,c)

3.3.1 Hardware-Based Secure Channels

Below, we analyze ways to establish a secure channel with
the TPM on the local computer.



§3 Special-Purpose Interface.Add a new hardware inter-
face to the computer that allows an external device to
talk directly to the TPM.
Pros: The use of a special-purpose port reduces the
chances for user error (since they cannot plug the exter-
nal verifier into an incorrect port).
Cons: Introducing an entirely new interface and con-
nector specification would require significant industry
collaboration and changes from hardware manufactur-
ers, making it an unlikely solution in the near term.

§4 Existing Interface. Use an existing external interface
(such as Firewire or USB) to talk directly to the TPM.
Pros: This solution is much simpler to deploy, since it
does not require any manufacturer changes.
Cons: Existing interfaces are not designed to support
this type of communication. For example, USB de-
vices cannot communicate with the host platform until
addressed by the host. Even devices with more free-
dom, such as Firewire devices, can only read and write
to memory addresses. While the TPM is made available
via memory-mapped I/O ports, these mappings are es-
tablished by the software on the machine, and hence can
be changed by malware. Thus, there does not appear to
be a way to reuse existing interfaces to communicate re-
liably with the local TPM.

§5 External Late Launch Data. Recent CPUs from AMD
and Intel can perform alate launchof an arbitrary piece
of code. During the late launch, the code to be executed
is measured and the measurement is sent to the TPM.
The code is then executed in a protected environment. If
the late launch operation also made the code’s measure-
ment code available externally, then the user’s verifier
could check that the invoked code was trustworthy. The
code could then check the integrity of the platform or
establish a secure channel from the verifier to the TPM.
Pros: Recent CPUs contain the late launch functionality
needed to measure and securely execute code.
Cons: Existing interfaces (such as USB) do not allow
the CPU to convey the fact that a late launch occurred
nor the measurement of the executed code in an authen-
tic fashion. Malware on the computer could claim to
perform a late launch and then send a measurement of a
legitimate piece of code. This attack could be prevented
by creating a special-purpose interface that talks directly
to the CPU, but this brings us back to§3, which is a sim-
pler solution.

§6 Special-Purpose Button.Add a new button on the com-
puter for bootstrapping trust. For example, the button
can execute an authenticated code module that estab-
lishes a secure channel between the verifier (connected
via USB, for example) and the TPM.
Pros: A hardware button press cannot be overridden
by malware. It also provides the user with a tangible
guarantee that secure bootstrapping has been initiated.
Cons: Executing an authenticated code module requires
hardware not only for invoking the necessary code, but
also for verifying digital signatures (similar to§9), since
the code will inevitably need updates. This approach

also relies on the user to push the button before connect-
ing the verifier device, since the device cannot detect the
button push. If the user plugs in the verifier before push-
ing the button, on the computer could fool the device
with a cuckoo attack.

3.3.2 Cryptographic Secure Channels

Establishing a cryptographically-secure channel requires the
user to share a secret with the TPM or to obtain the TPM’s
public key. Without a prior relationship with the TPM, the
user cannot establish a shared secret, so in this section we
focus on public-key methods.

§7 Seeing-is-Believing (SiB).An approach suggested by
McCune et al. [8] (and later used for kiosk comput-
ing [4]) is to have the computer’s manufacturer encode a
hash of the platform’s identity in a 2-D barcode and at-
tach the barcode to the platform’s case. Using a camera-
equipped smartphone, the user can take a picture of the
2-D barcode and use the smartphone to process the com-
puter’s attestation.
Pros: This solution is attractive, since it requires rela-
tively little effort from the manufacturer, and most peo-
ple find picture-taking simple and intuitive.
Cons: Because it requires a vendor change, this solu-
tion will not help current platforms. It also requires the
user to own a relatively expensive smartphone and install
the relevant software. The user must also trust that the
smartphone has not been compromised. As these phones
grow increasingly complex, this assumption is likely to
be violated. In a kiosk setting, the 2-D barcode may be
replaced or covered up by an attacker.

§8 SiB Without a Camera. Instead of using a 2-D barcode,
the manufacturer could encode the hash as an alpha-
numeric string. The user could then enter this string into
a smartphone, or into a dedicated fob.
Pros: Similar to §7, except the user no longer needs a
camera-equipped device.
Cons: Similar to those of§7, but it still requires non-
trivial input capability on the user’s device. Relies on the
user to correctly enter a complicated string.

§9 Trusted BIOS. If the user trusts the machine’s BIOS,
she can reboot the machine and have the trusted BIOS
output the platform’s identity (either visually or via an
external interface, such as USB). The trusted BIOS must
be protected from malicious updates. For example, some
Intel motherboards will only install BIOS updates signed
by Intel [5].
Pros: This approach does not require the user to use any
custom hardware.
Cons: The user must reboot the machine, which may
be disruptive. It relies on the user to only insert the ver-
ifier after rebooting, since otherwise the verifier may be
deceived by local malware. The larger problem is that
many motherboards do not include the protections nec-
essary to guarantee the trustworthiness of the BIOS, and
there is no indicator to signal to the user that the BIOS
in the local computer is trustworthy.



§10 Trusted Third Party. The TPM could be equipped with
a certificate provided by a trusted third-party associating
the TPM with a particular machine. The verifier can use
the trusted third party’s public key to verify the certifi-
cate and establish trust in the TPM’s public key.
Pros: The verifier only needs to hold the public key
for the trusted third party and perform basic certificate
checks. No hardware changes are needed.
Cons: It is unclear how the verifier could communicate
the TPM’s location as specified in the certificate to the
user in a clear and unambiguous fashion. This solution
also simply moves the problem of establishing a TPM’s
identity to the third party, who would need to employ
one of the other solutions suggested here.

4 Preferred Solutions

We argue that§3 (a special-purpose hardware interface) pro-
vides the strongest security. It removes almost every oppor-
tunity for user error, does not require the preservation of se-
crets, and does not require software updates. Unfortunately,
the cost and industry collaboration required to introduce a
new interface make it unlikely to be deployed.

Of the plausibly deployable solutions, we argue in favor
of §8 (an alphanumeric hash of the TPM’s public key), since
it allows for a simpler verification device.

Nonetheless, we recognize that these selections are open
to debate, and believe that considerable room remains for
additional solutions.

5 Related Work

Measurement. Various TPM-based systems have been pro-
posed, including the Integrity Measurement Architecture
by Sailer et al. [9], and the more recent, late-launch-based
Flicker [7]. To date, these systems assume that the external
verifier has somehow obtained the TPM’s authentic public
key, thus ducking the bootstrapping problem.
Device Pairing. Considerable work has studied how to es-
tablish secure communication between two devices. Pro-
posals use infrared, visual, and audio channels, as well as
physical contact, shared acceleration, and even the electrical
conductivity of the human body. Unlike this work, in these
systems, the two devices are trusted, and the adversary is
assumed to be an external entity.
Kiosk Computing. Garriss et al. study the problem of kiosk
computing [4], a specific case of the problem considered
here. They note the potential for a cuckoo attack (though
not by that name) and propose solution§7, which has the
advantages and disadvantages described above.
Secure Object Identification. In the realm of access con-
trol, researchers have studied a related problem known as
the Chess Grandmaster Problem, Mafia Fraud, or Terrorist
Fraud [2], in which an adversary acts as a prover to one hon-
est party and a verifier to another party in order to obtain ac-
cess to a restricted area. Existing solutions rely on distance

bounding [3], which, as explained in Section 3.1, is inef-
fective for a TPM, or employ radio-frequency hopping [2]
which is also infeasible for the TPM.

6 Conclusion

Trust in a local computer is necessary for a wide variety of
important tasks. Ideally, we should be able to use secure
hardware, such as the TPM, to leverage our trust in the phys-
ical security of the machine in order to trust the software ex-
ecuting on the platform. Our formal model reveals that cur-
rent attempts to create this chain of trust are vulnerable tothe
cuckoo attack. The model is also useful for identifying so-
lutions, though we find that instantiations of these solutions
come with multiple disadvantages. We hope that additional
research into trust establishment will provide more elegant
solutions that can be easily deployed and yet provide strong
security guarantees.

7 Acknowledgements

Lujo Bauer and Scott Garriss provided invaluable assistance
with the development of the formal logic model. Discus-
sions and editing suggestions from Jonathan McCune and
Diana Parno greatly improved the paper, as did discussions
with Adrian Perrig. The anonymous reviewers also provided
helpful suggestions. The author is supported in part by a Na-
tional Science Foundation Graduate Research Fellowship.

References
[1] B. Acohido and J. Swartz. Unprotected PCs can be hijackedin min-

utes.USA Today, Nov. 2004.

[2] A. Alkassar, C. Sẗuble, and A.-R. Sadeghi. Secure object identication
or: Solving the chess grandmaster problem. InProceedings of the
New Security Paradigm Workshow (NSPW), 2003.

[3] S. Brands and D. Chaum. Distance-bounding protocols. InEURO-
CRYPT, 1994.

[4] S. Garriss, R. Ćaceres, S. Berger, R. Sailer, L. van Doorn, and
X. Zhang. Trustworthy and personalized computing on public kiosks.
To Appear in Proceedings of MobiSys, 2008.

[5] P. Lang. Flash the Intel BIOS with confidence.Intel Developer UP-
DATE Magazine, Mar. 2002.

[6] J. LeClaire. Apple ships iPods with Windows virus.Mac News World,
Oct. 2006.

[7] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An execution infrastructure for TCB minimization. In Pro-
ceedings of EuroSys, Apr. 2008.

[8] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing is believing: Using
camera phones for human-verifiable authentication. InProceedings
of IEEE Symposium on Security and Privacy, May 2005.

[9] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and im-
plementation of a TCG-based integrity measurement architecture. In
Proceedings of USENIX Security Symposium, Aug. 2004.

[10] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla.
Pioneer: Verifying integrity and guaranteeing execution of code on
legacy platforms. InProceedings of SOSP, Oct. 2005.

[11] S. Smith and S. Weingart. Building a high-performance, pro-
grammable secure coprocessor.Computer Networks, 31, 1999.

[12] Sophos. Best Buy digital photo frames ship with computer virus, Jan.
2008.

[13] Trusted Computing Group. Trusted platform module main specifica-
tion. Version 1.2, Revision 103, July 2007.


