
1

Network Transparency for Better Internet Security
Christos Pappas, Taeho Lee, Raphael M. Reischuk, Pawel Szalachowski, and Adrian Perrig

Abstract—The lack of transparency for Internet communi-
cation prevents effective mitigation of today’s security threats:
i) Source addresses cannot be trusted and enable untraceable
reflection attacks. ii) Malicious communication is opaque to all
network entities, except for the receiver; and although ISPs are
control points that can stop such attacks, effective detection
and mitigation requires information that is available only at the
end hosts. We propose TRIS, an architecture that bootstraps
transparency for Internet communication. TRIS enables the
definition of misbehavior according to the unique requirements
of hosts, and then it constructs verifiable evidence of misbehavior.
First, hosts express desired traffic properties for incoming traffic;
a deviation from these properties signifies misbehavior. Second,
ISPs construct verifiable evidence of misbehavior for the traffic
they forward. If misbehavior is detected, it can then be proven
to the ISPs of the communicating hosts. We implement our
architecture on commodity hardware and demonstrate that
verifiable proof of misbehavior introduces little overhead with
respect to bandwidth and packet processing in the network: our
prototype achieves line-rate performance for common packet
sizes, saturating a 10 Gbps link with a single CPU core. In
addition, we tackle incremental deployment issues and describe
interoperability with today’s Internet architecture.

Index Terms—Network transparency, accountability, verifiable
misbehavior, host policies

I. INTRODUCTION

Security threats and attacks have been increasing at an alarm-

ing rate in recent years. Akamai reports a 20% increase in

network- and transport-layer attacks (e.g., reflection attacks,

SYN flooding) over the recent months; web-application attacks

(e.g., HTTP-request flooding) increased by 30% in the same

period [1]. Businesses have responded by raising their cyber-

security budgets by an average of 24% [2].

We identify three fundamental reasons that hamper the

effective mitigation of most attacks in today’s Internet. First,

the lack of source accountability enables attackers to spoof

addresses and evade detection mechanisms [3]. Second, the

network layer allows any host to send packets to any other

host without explicit consent from the receiver, and at a

transmission rate that is typically determined by the sender [4],

[5]. Third, detection and defense mechanisms are not col-

located: malicious communication is detectable only by the

receiving host since only end hosts have knowledge about

their available resources; however, ISPs—not end hosts—are

the critical control points to mitigate the attacks [6], [7].

We thus propose to enlist ISPs as essential components

in dealing with cyber-security threats: i) ISPs are in a

strategic position to cost-effectively stop attacks since they

are on the path of the malicious traffic [6]. Furthermore,

ISPs should be actively involved in mitigating cyber-security

threats, according to the recent regulatory push for increased

accountability and transparency [8]. ii) ISPs can gain a new

source of revenue, build customer loyalty, and reduce customer

turnover by selling new security services bundled with their

connectivity services [9]; businesses already pay large fees to

cloud-based traffic-scrubbing services, which require traffic to

be redirected through the cloud infrastructure [10]. However,

ISPs are in a weak position to effectively define and detect

malicious activity against their customer hosts: the needs

and resources of hosts are highly diverse and any automated

misbehavior detection would be plagued by false-positives or

false-negatives.

To bridge the gap between the knowledge of end hosts and

the mitigation capabilities of ISPs, we attempt to answer the

following question: Is it possible to account for the unique

needs of hosts and prove misbehavior against them to ISPs?

More so, can we do it without imposing unrealistic overhead

to the communication performance?

The security community has provided multiple solutions

to address the three above mentioned problems, but only

in isolation: Source accountability proposals leverage cryp-

tographic primitives to ensure that the identity of sources in

the network can be trusted [3], [11], [12]. Network capabilities

are authorization tokens that enable the receiver to distribute

its downstream bandwidth according to its policies [4], [13],

[14]. Filtering proposals use filters close to the attacker in

order to minimize collateral damage [15], [16], [17]. Although

we acknowledge the virtues of these proposals, we aim for

an approach that jointly addresses the underlying problems.

Our work combines existing primitives (source accountability)

and novel ideas (granular host-specific policies and verifiable

misbehavior) in an architecture that enhances accountability

with respect to host misbehavior.

In this paper, we propose an architecture that generates

verifiable proof of misbehavior. Communication is based on

explicit consent from the two hosts, and consent is given

through sending policies that define misbehavior if they are

violated. ISPs construct verifiable evidence of such misbehav-

ior, and a victim can prove to its ISP and the sender’s ISP that

it has been attacked.

Applications. Verifiable misbehavior serves as a building

block to provide better security, rather than as a protection

framework per se. For example, the ISP of a misbehaving host

can reveal the host’s identity in a legal recourse against the

host. Also, ISPs can directly contact misbehaving customers

and inform them of potentially infected software [18]. The 5-

year “Cyber Clean Center“ project in Japan—a collection of

76 security concerned ISPs—bore positive results in mitigating

botnet activity [19].

The virtues of verifiable misbehavior go beyond the protec-

tion of single hosts. The clear line between misbehavior and

benign traffic can complement AS-reputation systems [20],

[21], [22] by providing input about misbehavior distributions,

attack patterns, and attack strategies. For example, it makes

2

it easier to identify cybercrime-friendly ISPs that host high

botnet activity without taking action [23], [24]. At the same

time, TRIS incentivizes security-concerned ISPs to take action

and enforce stricter security policies to protect their reputation.

For example, GoDaddy (ASN 26496), although a legitimate

AS, was repeatedly ranked at the bottom of the Hostexploit

AS-reputation list [25].

Contributions. This paper proposes a cohesive architecture,

TRIS, which leverages TRansparency for better Internet Se-

curity. Our architecture jointly tackles the three previously

mentioned causes that hamper mitigation of today’s security

threats. It enables a host to provably demonstrate misbehavior

and ensures that an innocent host cannot be falsely framed as

malicious. Moreover, TRIS satisfies the following additional

properties:

• fine-grained host-specific policies,

• efficient border routers (no per-flow state),

• compatibility with today’s Internet practices and proto-

cols

We provide a proof-of-concept implementation of a border

router that can process typical Internet traffic at line rate.

Furthermore, we design and implement a middlebox that

performs the host-related functionalities, without requiring

changes for the end-host network stack.

II. OVERVIEW

We describe TRIS starting with our goals and followed by our

central ideas. We present our architecture in two steps. First,

we describe a core protocol (Section III) that comes at a low

deployment barrier. Then, we describe an extended protocol

(Section V) that provides stronger security properties at the

cost of a higher deployment barrier.

A. Goals

Our goal is to enable hosts to express policies with the desired

properties for incoming traffic and to construct verifiable proof

of misbehavior when a policy is violated. Consider two hosts

H1 and HN that want to establish a communication session

(Figure 1). Prior to any communication, hosts authenticate to

their Autonomous Systems (ASes)1 and receive required in-

formation to establish sessions with other hosts. The initiating

host (H1 in Figure 1) specifies a policy that the other host

(HN) should respect when sending traffic to H1. Similarly,

HN specifies a policy that H1 should respect. After the

bidirectional policy specification, the hosts can exchange data.

We want to enable the host HN to prove to the source and

destination ASes (AS1 and ASN) that H1 violated the sending

policy. To this end, HN provides the received packets and the

policy as proof of misbehavior. The framework must enable a

victim to provably protest, while protecting an innocent host

from being unfairly framed by another host. For example, a

malicious host can replicate the received packets and provide

them as proof of a flooding attack. Thus, our architecture must

ensure that malicious actions cannot be concealed and that

benign hosts cannot be framed.

1In our descriptions we will use the term AS for protocol interactions.

1. Host

Bootstrapping

(§ 3.2)
2a. Connection Establishment (§ 3.3.1)

2b. Data Forwarding (§ 3.3.2)

3. Proving Misbehavior (§ 3.4)

1. Host

Bootstrapping

(§ 3.2)

.

AS1 ASN

Η1 ΗN

B
B

Fig. 1: Communication life cycle in TRIS.

Threat Model. We consider a threat model in which sender

and recipient hosts can be malicious. Specifically, we are

interested in i) attacks that conceal misbehavior by corrupting

the corresponding evidence, and ii) framing attacks that blame

an innocent host. We consider malicious ASes in the extended

protocol (Section V).

B. Central Ideas

Our solution follows a layered approach, where each step

builds on the previous step with the goal of providing verifiable

proof of misbehavior.

1) Source Accountability

Source accountability enables the identification of the traffic

source; it prevents impersonating other hosts and minting

addresses that do not correspond to actual hosts.

In TRIS, addresses are linked with public / private keys,

which are used by communicating hosts: i) to mutually au-

thenticate, and ii) to construct communication policies that

are publicly verifiable and cannot be repudiated.

ASes act as source accountability agents for their hosts and

perform two functions. First, the source AS creates a strong

notion of identity for its hosts. It ensures that subscribers

use only authenticated addresses to send packets. Thus, every

packet that leaves the source AS can be traced back to the host

that originated it. Second, the source AS acts as a certificate

authority for its hosts. It certifies the binding between the

address and the public key of the host.

We argue that ASes are the ideal agents to perform these

tasks. They know the identities and network attachment points

of their hosts and can therefore enforce source accountability

and certify their hosts’ information to others.

2) Communication Policies

Communication policies govern the communication between

two hosts and express desired properties for each direction of

the exchanged traffic (e.g., sending rates, number of flows).

In TRIS, communication policies define misbehavior and

enable its detection, in case a host deviates from the policy of

its peer. Hosts can specify policies at three granularities: host-

based, flow-based, and application-based policies. This enables

hosts to achieve flexibility by specifying policies according

to their resources and unique needs. Moreover, policies have

specific validity periods. Each host notes two timestamps to

indicate a starting time (the currently local time at the host)

and an ending time. Validity periods allow hosts to update

and/or re-negotiate their policies.

Host Policies. Host policies are coarse-grained policies that

specify traffic properties for the aggregate traffic between two

3

hosts. Such policies are negotiated before the hosts exchange

data and they can specify the following properties:

i. Maximum number of concurrent flows per source: an

adversary may attempt to establish a large number of

flows with a victim in order to exhaust the victim’s

resources and prevent legitimate hosts from establishing

connections (e.g., as in SYN flooding attacks).

ii. List of acceptable (or unacceptable) ports: packets that

are received at unused ports are typically dropped without

consuming resources of the host. However, such packets

consume bandwidth of a host’s access link and thus, may

affect established connections.

iii. Transmission properties: an adversary may launch a vol-

umetric flooding attack by sending traffic at a high bit

and/or packet rate. A host can specify any two out of

the three Token Bucket (TB) parameters [26] that the

sending host should use for shaping its traffic towards

the receiving host. For example, a host can specify the

committed information rate (CIR) and the maximum

committed burst size (CBS) in order to maintain an

average rate of CIR during a time interval of Tc seconds.

Given two of the TB parameters, the third one can be

determined from the equation CIR = CBS/Tc.

Flow Policies. Flow policies are more fine-grained than host

policies, in that they specify the transmission properties for

one specific flow between two hosts. They resemble end-to-

end flow control, but enhanced with verifiability properties.

Moreover, they have a higher priority than host policies in that

a higher/lower sending rate of a flow policy does not count

towards the aggregate sending rate defined in the host policy.

However, the host policy still constrains the number of flows

that can be generated.

We envision flow policies to be used mostly for TCP: the

policy exchange requires one Round-Trip-Time (RTT) to let

each host express its policy. The three-way handshake in TCP

already requires this RTT, thus, the policy specification can be

embedded in the TCP handshake to avoid additional latency.

However, low-latency UDP services typically want to avoid

this overhead; hence, they can fall back to the default host

policy and negotiate a flow policy while traffic is already in

transit. Hosts that exchange UDP flows have to negotiate a

host policy once; this overhead is then amortized over the

subsequent UDP flows.

Application Policies. Policies at the application layer provide

the highest degree of expressiveness. We highlight two aspects

for such policies:

i) Application layer request-rate metrics are needed, since

policies that rely on traffic properties (e.g., bit rates or packet

rates) are not sufficient. For example, a web server may exe-

cute computationally expensive queries for a certain request.

Therefore, the server must restrict the request rate, not the

packet and/or bit rate of the flow. ii) Attackers can leverage

encryption (e.g., SSL/TLS) to conceal the application-layer

commands/payload from security middleboxes.2

2Current defense practices employ TLS termination proxies or require the
host to share the encryption keys with a security middlebox; both approaches
sacrifice host privacy.

As an example, we will refer to HTTP(S) policies and the

corresponding request (GET/POST) rates; it is the most widely

used application and HTTP flooding attacks are frequent [27].

Furthermore, the use of end-to-end encryption makes provable

misbehavior more challenging. In TRIS, an HTTP(S) server

can specify an upper limit for the request rate and burstiness

for the client to respect (using TB parameters, but for requests

instead of bits). Then, the hosts exchange data by using

multi-context encryption [28]: the HTTP request method is

encrypted using a different key from the rest of the request.

Thus, the key for the HTTP request can be revealed at a later

stage, without sacrificing payload privacy (Section III-D).

Specifying Policies. Specifying meaningful policies for in-

bound traffic will be a challenging task: conservative policies

may harm users’ quality-of-experience, whereas lenient poli-

cies may open up attack vectors. We cannot provide concrete

guidelines for specifying meaningful policies, since the needs

and resources of receivers can be highly diverse. However,

we have engineered our protocols to provide flexibility: first,

we envision hosts to specify conservative sending rates for

host policies to protect themselves. Then, if higher sending

rates are needed, they can be specified through more detailed

flow policies. Second, short-lived policy durations, specified

through timestamps, enable the receiver to reconsider its policy

for a sender, based on the sender’s behavior and also based

on the receiver’s available resources. For example, the receiver

can start with a conservative rate for a sender and then upgrade

it later. Similarly, a receiver can downgrade the sending rate

if demand for a service rises and computational resources are

limited.

3) Verifiable Proof of Misbehavior

Verifiable proof of misbehavior enables the victim host to

prove to its AS and to the sender’s AS that the sender has

violated a policy.

A fundamental challenge we address in TRIS is the follow-

ing: Is it possible to prove host misbehavior with respect to

a policy, without imposing impractical requirements for the

infrastructure or unrealistic overhead to the communication

performance?

Consider a straw-man approach in which the hosts exchange

traffic and routers store statistics about the exchanged flows.

Obviously, this approach comes with impractical storage re-

quirements since routers forward traffic at several Gbps.

To eliminate excessive storage requirements, an alternate

solution can leverage cryptography. Each host can use a

public/private key pair and sign every packet with its private

key. Thus, misbehavior becomes publicly provable since a host

cannot deny having sent a packet that carries its signature.

However, this solution comes with a prohibitive processing

overhead and an excessive latency due to per-packet public-

key operations.

We overcome the above limitations by combining concepts

from both approaches: we involve ASes in constructing proof

of misbehavior with the use of fast symmetric-key cryptogra-

phy, but hosts—not ASes— store the proofs. More specifically,

our approach works as follows: Hosts insert timestamps in

packets. Then, the source and destination ASes verify the

4

TABLE I: Summary of symbols and notation.

kAi Local symmetric secret key for ASi.

kHiAi Shared symmetric key between host
Hi and its AS (ASi).

k
0
HiHj

Shared symmetric key between hosts
Hi and Hj at the network layer.

k
1
HiHj

, k2
HiHj

Shared symmetric keys between hosts
Hi and Hj at the application layer,
for header and payload encryption,
respectively.

HIDi→j Identifier that host Hi must use when
sending packets to host Hj .

K
+

Hi

/

K
−

Hi
Public/private key pair of Hi.

K
+

Ai

/

K
−

Ai
Public/private key pair of ASi.

αi Network address of Hi.

CHi Certificate that binds αi to K+

Hi
,

signed by the AS of host Hi.

σk(M) Message M together with a Message
Authentication Code using key k.

{M}K− Message M together with a signature
using private key K−.

Ek(M)/E−1

k (M) Symmetric encryption/decryption of
message M using key k.

λ Maximum one-way latency.

ǫ Maximum clock-synchronization
error.

validity of timestamps and insert symmetric cryptographic

tokens in every packet. The tokens serve as stateless reminders

that the AS forwarded the packets and—together with the

timestamps—enable proof of misbehavior when a host com-

plains about a policy violation. In Section IV-B, we show

that our scheme achieves multi-Gbps forwarding rates on

commodity hardware.

III. PROTOCOL DESCRIPTION

We now present the details of our architecture. We build

TRIS on well-established and mature technologies to keep

our proposal as practical as possible. Specifically, some of

our main design choices are the following:

• Asymmetric cryptography is used for infrequent opera-

tions (e.g., flow-policy creation), where non-repudiation

is required.

• Symmetric-key cryptographic primitives are used for the

rest of the data traffic.

• Storage requirements are shifted to the end hosts, keeping

the border routers stateless.

Table I summarizes the notation that we use.

A. Assumptions

• Entities can retrieve and verify the public keys of all

ASes. For instance, RPKI [29] enables entities to authen-

ticate certificates that bind Autonomous System Numbers

(ASNs) to public keys, based on the RPKI public root

keys.

• Cryptographic primitives are secure: signatures and Mes-

sage Authentication Codes (MACs) cannot be forged, and

encryptions cannot be broken.

• Hosts and ASes in the protocol have synchronized clocks

with an accuracy of a few milliseconds (e.g., using NTP).

B. Host Bootstrapping

The bootstrapping procedure is performed when a host con-

nects to the network of its AS, prior to any communication

session. The goal of this step is twofold: i) bootstrap source

accountability by creating a strong notion of host identity, and

ii) provide to the hosts all required information to establish

communication sessions.

Initially, a host Hi authenticates to its AS (ASi)
3 using the

authentication credentials that were created by the AS during

subscription for Internet service.4 The AS operates a registry

service (RS) that performs all required operations for host

bootstrapping. Existing protocols that provide confidentiality

and integrity [30], [31] can be used for the exchanged mes-

sages between the host and the RS.

Host bootstrapping proceeds over the secure channel be-

tween the host and the AS’s RS as follows: Host Hi generates

a public/private key pair K+
Hi

/K−
Hi

that will be used to sign

policies and to generate symmetric keys with other entities.5

Hi sends its public key K+
Hi

to ASi, so that ASi will generate

a corresponding certificate for the host.

ASi generates and sends the bootstrapping information to

Hi. This information contains an address αi for the host (e.g.,

IPv4 or IPv6) and a certificate CHi
, which certifies that the

host with the address αi owns K+
Hi

. To this end, ASi creates

a certificate that contains αi, K
+
Hi

, and an expiration time to

indicate the validity period; the certificate is signed with the

private key of the host’s AS (Equation 1). The Autonomous

System Number (ASN) of the issuing AS is added, so that

entities can fetch the corresponding public key and verify the

signature. Moreover, ASi generates a shared symmetric key

kHiAi
for Hi. The key is used to authenticate Hi’s packets,

proving to ASi the ownership of the address αi.

CHi
= {αi, K+

Hi
, Exp_time, ASNi}K−

Ai

(1)

The bootstrapping procedure is repeated whenever the AS

issues a new address to the host (e.g., due to an expiration of

the address lease), or whenever the host wants to update its

public/private key pair. Furthermore, if a host has multiple

public IPs (supported by IPv6), then a public key can be

certified for each address or a single certificate can associate

all the IP addresses with a single public key.
C. Communication Procedure

After a host has authenticated to its AS and has received the

bootstrapping information, it can start communicating with

other hosts. Three concepts are fundamental for the correct

operation of TRIS: timestamp validation, policy identifiers,

and replay detection. We provide a brief overview here and

defer the details to Section III-C3.

• Timestamp Validation: The function isTstmpValid() is

evaluated by the source and destination ASes on the

3For better readability, the index i indicates that Hi is a host of ASi, since
our descriptions are simplified with one host per source/destination AS.

4The credentials can be pre-configured into the host’s access device, e.g.,
DSL modem.

5In practice, public/private key pairs used to sign policies and to derive
shared keys are different. For ease of exposition, we present them as a single
key pair.

5

forwarded packets to ensure that the reported timestamps

are recent, i.e., timestamps do not deviate from the current

time beyond a certain threshold.

• Policy Identifiers: Hosts may exchange multiple policies

(e.g., per-flow or per-application). Therefore, packets

must be associated with their corresponding policies to

avoid ambiguities when complaining about misbehavior:

if two different applications exchange packets, these

packets must be associated with either one or the other

application to detect policy violations. For now, the

function sendingPol() abstracts the policy details (e.g.,

sending rates) and the policy-identifying information.

• Replay Detection: Detecting replay attacks is required to

prevent innocent hosts from being framed (Section VI).

We use a combination of sequence numbers and time-

stamps to reveal replay attacks when a victim complains;

replay detection is not performed during forwarding, thus,

it does not degrade forwarding performance.

1) Connection Establishment

Connection establishment triggers a policy exchange in which

each host specifies its preferences for the incoming traffic.

Figure 2 depicts the operations for connection establishment

and policy exchange.6 The following steps are necessary only

for host policies, but not for flow and application policies:

i) Host identifiers (HIDs) are generated only during a host-

policy exchange to demultiplex hosts behind NATs. ii) The

shared symmetric key k0H1HN
, which is used to authenticate

messages between two communicating hosts, is computed

during a host-policy exchange.

Host identifiers (HIDs) are generated during a host-policy

exchange and their role is to demultiplex multiple hosts that

share a single IP address (e.g., with NAT devices). Host H1

generates an identifier HIDN→1 (Line 1) that host HN should

put into all packets destined to H1; the same step takes

places for the reverse direction (Line 14). Since HIDs are

host generated they are not globally unique, but are used in

conjunction with public addresses to identify hosts. Once the

details of policy P1 have been specified (Lines 2-4), H1 signs

P1 with its private key K−
H1

(Line 5) so that the policy is

publicly verifiable and non-repudiable. Then, H1 sends the

signed policy (msg1) along with its certificate (CH1
) to its

peer host HN . The sent message (msg2) is protected with a

MAC that is computed with the shared key kH1A1
between the

host and the AS (Line 6). The MAC ensures that the host’s

address is valid by proving to its AS that the host owns the

correct shared key for the MAC computation.

The border router of the host’s AS (AS1), receives the

packet and processes it as follows. First, it verifies that the

MAC of the host is valid (Line 7); an invalid MAC indicates

a spoofing attempt and the packet is dropped. Then, it checks

if H1 has indicated a valid timestamp for the start of the policy

P1 (Line 8). This check is also performed by the destination

AS, ASN , to ensure that H1’s timestamp is valid and that

H1 does not create a malicious policy that will implicate

the peer host HN . AS1 inscribes a sequence number in the

6An application policy can be exchanged at the same time as a flow policy,
during connection establishment.

H1 AS1 ASN HN

- Has obtained CHN
, kHNAN

prior to communication

- Has obtained CH1
, kH1A1

prior to communication

1.P1 .hid=HIDN→1

2.P1 .sp=sendingPol(HN)
3.P1 .start=now()
4.P1 .end=tend
5.msg1 ={P1}

K
−

H1
6.msg2 =σkH1 A1

(msg1 ,CH1
)

msg2

7. verMAC (kH1A1
,msg2)

8. isTstmpValid(msg1)
9.m1 =σkA1

(msg2 ,+seqno1)

m1

m1

10. isTstmpValid(msg1)
11.mN =σkAN

(mN−1 ,+seqnoN)

mN

12. verSig(K+

H1
,msg1)

13. k0
H1 HN

=DH (K+

H1
,K

−

HN
)

14.PN .hid=HID1→N

15.PN .sp=sendingPol(H1)
16.PN .start=now()
17.PN .end=t′end
18.msg3 ={msg1 ,P1 ,PN }

K
−

HN
19.msg4 =σkHNAN

(msg3 ,CHN
)

msg4msg4
Same Procedure as Steps 7 through 11

20. verSig(K
+

HN
,msg3)

21. k0
H1 HN

=DH (K+

HN
,K

−

H1
)

[Optional For Application Policies] 22. Negotiate Keys k1
H1 HN

, k2
H1 HN

Fig. 2: Procedure for connection establishment and policy

exchange.

packet, which is used together with the timestamp to detect

replay attacks during connection establishments. The sequence

number can be implemented as a simple packet counter (see

Section III-C3). Then, AS1 computes a MAC over the message

and the inscribed information with the local secret key kA1

(Line 9); this information is used during the complaint phase

and the MAC ensures that modifications will be detected.

We highlight that the MAC that was in the incoming packet,

computed with the shared key kH1A1
with the host, is dropped:

AS1 has verified that the host’s address is legitimate and the

newly inscribed MAC protects the integrity of the address in

the packet.

Upon reception, ASN , checks the validity of the timestamp

(Line 10), inserts a sequence number and a MAC (Line 11),

and then forwards the packet to HN . The sequence number

and MAC is required also from ASN , in case HN tries to

frame H1 to ASN by replicating packets and providing them

as evidence of a flooding attack.

The receiving host HN completes the policy exchange.

First, it verifies the signature of H1 (Line 12) using the

public key K+
H1

(obtained from CH1
). Then, it generates a

shared symmetric key k0H1HN
with H1 (Line 13); it uses an

authenticated Diffie-Hellman key exchange with H1’s public

6

key K+
H1

and its own private key K−
HN

. It generates HID1→N

for H1 to use (Line 14), it provides its own desired properties

for the receiving traffic (Line 15), and a validity period

(Lines 16-17). HN signs the received policy P1 and its policy

PN with its private key (Line 18) and sends it back to H1.

The sent message is protected with a MAC, computed with the

shared key between HN and ASN (Line 19), as in the forward

direction (Line 6). On the reverse path, the same steps take

place. In case HN does not want to receive traffic from H1,

it does not return a policy. H1 is considered malicious if it

sends further traffic without having received a signed policy

from HN . Furthermore, a malicious host that floods a victim

with policy-request packets can be detected: the packets have

inscribed MACs from the source and destination ASes and

indicate misbehavior since only one policy-exchange packet

is needed (or a few in case of packet loss).

Upon reception, H1 verifies the signature of HN (Line 20)

and generates the same symmetric key kH1HN
(Line 21).

Application-layer policies follow the same procedure, with one

additional step in case of application-layer encryption. Hosts

generate two more shared symmetric keys: one for application-

header encryption (k1H1HN
) and one for application-payload

encryption (k2H1HN
). These keys are generated based on TLS

PKI certificates, not based on AS-issued certificates. This

procedure is a typical TLS handshake that follows after the

TCP handshake.

2) Data Forwarding

After the policy exchange (whether host, flow, or application

policy), hosts can send traffic. Figure 3 describes the required

operations when two hosts use application-layer encryption.

The sender H1 encrypts the application-layer header and

data (Lines 1-2) using the two separate application-layer keys

k1H1HN
, k2H1HN

that were generated during connection estab-

lishment. H1 creates a packet and adds HID1→N , received

from HN , and the current time as the sending time of the

packet (Line 5). Then, it computes a MAC (Line 6) over the

entire packet. The MAC is computed with the key k0H1HN

that is shared with the host HN ; it enables detection of packet

modification en route. H1 computes another MAC (Line 7)

over the entire packet, including the MAC computed with the

key k0H1HN
. The surrounding MAC computed with kH1A1

,

proves to AS1 that the address of H1 is legitimate since H1

has generated a valid MAC. The packet is then sent out.

The border router of AS1 verifies that the MAC with the

shared key kH1A1
is correct (Line 8), and then it verifies the

validity of the timestamp (Line 9). Furthermore, it inscribes

a sequence number and a MAC over all information using its

own local secret kA1
(Line 10). The border router of ASN

verifies the validity of the timestamp (Line 11), inscribes a

sequence number and a MAC computed with the AS’s local

secret kAN
(Line 12), and forwards the packet to HN . We

highlight two points about border routers: i) They perform the

same operations on packets, whether they are policy packets or

data packets (compare Figure 2 and Figure 3). ii) Processing

involves only efficient symmetric-key operations. This design

leads to simple and efficient border routers.

HN receives the packet and verifies that the end-to-end

H1 AS1 ASN HN

1.app.hdr=E
k1
H1 HN

(req)

2.app.dat=E
k2
H1 HN

(dat)

3.p.payload=app
4.p.hid=HID1→N

5.p.ts=now()
6.msg1 =σ

k0
H1 HN

(p)

7.msg2 =σkH1 A1
(msg1)

msg2

8. verMAC (kH1A1
,msg2)

9. isTstmpValid(msg1)
10.m1 =σkA1

(msg1 ,+seqno1)

m1

m1

11. isTstmpValid(msg1)
12.mN =σkAN

(mN−1 ,+seqnoN)

mN

13. verMAC (k0
H1 HN

,msg1)

14. req=E
−1

k1
H1 HN

(app. hdr)

15.dat=E
−1

k2
H1 HN

(app.dat)

Fig. 3: Procedure for data forwarding.

MAC is correct; it uses the public IP address and HID1→N

in the packet to look up the symmetric key. A malicious

host H1 cannot use an arbitrary HID1→N to avoid detection:

i) Exchanged HIDs have been signed during connection estab-

lishment, and ii) the end-to-end MAC verification (Line 13)

would fail since HIDs are used to look up the symmetric keys.

Then, HN uses k1H1HN
and k2H1HN

to decrypt the application

layer request and data, respectively (Lines 14-15).

3) Details

We provide now the details of timestamp validation, policy

identifiers, and replay detection.

Validation of Timestamps. In TRIS, the host inserts a

timestamp in the packet, and source/destination ASes on the

path check if the timestamp is recent, i.e., it does not deviate

from the current time beyond a certain threshold. Timestamps

in packets are expressed with millisecond granularity. Thus,

timestamps can be used to identify misbehavior of sending

policies, which are expressed at the granularity of seconds.

We now describe the implementation of the function isT-

stmpValid(p). When an AS receives a packet, it verifies that

the time difference between its local view of the time and

the indicated time in the packet does not exceed a certain

threshold λ+ ǫ. The factor λ refers to the maximum one-way

latency, and ǫ refers to the maximum clock-synchronization

error between the clocks of two entities.

We suggest values for these parameters as follows. On one

hand, λ must be small so that it prevents a host from reporting

delayed timestamps that conceal abnormal sending rates. On

the other hand, λ must be large enough to account for the

one-way latency and prevent dropping of legitimate packets.

Thus, we suggest using twice the value of a maximum one-way

latency estimate; according to a recent latency-measurement

study [32], we set λ = 200ms. This value is small enough

7

to prove misbehavior (since policies are expressed at the

granularity of seconds) and large enough to prevent dropping

of legitimate packets. The value of ǫ is determined by the

accuracy of clock synchronization, and we conservatively set

ǫ = 100ms; synchronization over the Internet has a typical

accuracy of a few tens of milliseconds [33].

Policy Identifiers. Each policy has an identifier, which must

be present in each sent packet. This requirement is important

since two hosts may exchange multiple policies. We specify

identifiers for each type of policy.

Host policies are the least granular policies; two hosts

exchange such a policy for each direction of communication.

The policy-identifying information is the (source, destina-

tion) public-address tuple together with the host identifiers

HID1→N and HIDN→1 ; this information is present in every

data packet. Flow policies are additionally identified by source

and destination ports.

For application policies, we use the flow information, but

without the source port (referring to the H1 to HN direction).

This is due to the following constraints: i) We have to couple

the application identifier to information that is present in the

data packets such as the flow information, and ii) data of

one application can be carried by multiple flows, i.e., multiple

(source, destination)-port tuples. Therefore, including only the

destination port, i.e., the listening port for the application,

satisfies both constraints.

The task of specifying policy identifiers is further compli-

cated by practices such as multihoming. In today’s Internet,

addresses serve both as identifiers and as locators [34]; hence,

a host with two addresses is recognized as two different hosts.

Consequently, a multihomed host that uses two addresses to

communicate with a peer must specify two host policies.

Similarly, two application policies are also needed if the

underlying flows that carry application data are distributed

over both addresses (e.g., as in multipath TCP [35]).

Replay Detection. The goal of our replay-detection mecha-

nism is to detect replay attacks, both for connection estab-

lishment packets and for regular data packets. A malicious

destination host may frame a source host by providing the

same packets multiple times as evidence of misbehavior;

similarly, a malicious source host may send packets with the

same content multiple times and deny misbehavior by accusing

the destination of replaying the received traffic. To detect such

attacks, source and destination ASes use sequence numbers.

We do not consider packet duplication by the network as a

notable concern since it happens only occasionally.

Replayed traffic is only retroactively identified when a host

complains; it is not dropped in the network at the time of

packet forwarding. Dropping replayed packets in the network

would introduce an excessive storage overhead for keeping a

history of forwarded packets at routers.

Our mechanism builds on the combination of timestamps

and sequence numbers. The source host inserts the times-

tamp, which can be trusted by source/destination ASes in

the complaint phase, because a packet is forwarded only if

the timestamp is recent. The sequence number of each AS is

protected by a MAC, ensuring that modification of sequence

numbers is detected. The sequence-number mechanism can be

implemented as a simple packet counter. We highlight that this

is not a per-flow packet counter and there is no synchronization

needed among the border routers of an AS.

D. Proving Misbehavior

Proving misbehavior is an offline procedure that enables a

victim host to provably complain about a policy violation. The

victim host provides verifiable evidence of the misbehavior to

its own AS, which brokers for its customer by sending the

evidence to the AS of the misbehaving host. The evidence

consists of the signed policy, the received traffic, and option-

ally the application-layer encryption key k1H1HN
.

Initially, the victim host provides the evidence to its AS.

The AS examines the validity of the evidence, and if valid

sends the evidence to the source AS. Similarly, the source

AS examines the evidence and acknowledges or rejects the

complaint; we describe the steps to examine the evidence at

the end of the section.

An approved complaint signifies that the reporting host has

indeed been attacked by a malicious or compromised host.

The source/destination ASes can then act according to their

security policies: destination ASes can install blocking filters

to protect their customers and source ASes can notify or

disconnect malicious customers.

Evidence Examination. Policy packets that were sent during

connection establishment contain information that is used to

prove misbehavior (e.g., maximum burst size or number of

concurrent flows). The data packets contain information for

the actual traffic that was sent. Source and destination ASes

examine this evidence as follows.

i. ASes verify the signatures of the two hosts in the policy.

The corresponding public keys of the hosts are obtained

from the certificates in the policy. The certificates are

signed by the host’s ASes, whose public keys can be

obtained from RPKI.

ii. ASes verify the MAC that they inscribed in the header

and examine the sequence numbers to detect replay

attacks. Under our threat model, replayed packets indi-

cate that the destination host tries to falsely blame an

innocent host. For performance reasons, replay detection

is performed only retro-actively, after a victim complains,

and not during packet forwarding on the fast path.

iii. ASes check the traffic properties against the policy de-

tails. For example, they count the number of concurrent

flows and compare with the policy specification. To

detect sending-rate violations, they run Token-Bucket

based on the packet lengths and the timestamps in the

packet headers. For application-layer policies, they use

the symmetric key k1H1HN
and decrypt the application-

layer request. Then, they check for violations, without

compromising the privacy of the payload (encrypted with

k2H1HN
).

IV. IMPLEMENTATION & EVALUATION

A. Packet Header

Our proposal requires additional information in every sent

packet. We describe the length of the additional fields and the

8

Seqno

4 bytes

2 bytes

Source

AS

H

2 bytes

Timestamp

MACkH1HN
0

4 bytes

MACkA11

Seqno 2 bytes 2 byteskANN
MAC

Upper Layer Protocols

1

1

Network Header

ASN

4 bytes
HID1 N

Fig. 4: TRIS data packet format.

format of the packet header; then, we quantify the introduced

bandwidth overhead.

In order to moderate the bandwidth overhead, we use the

concept of short MACs [36], [37]: the MACs that are inscribed

in the packets are considerably shorter than the length of

a typical MAC (e.g., 16 bytes for an AES-based MAC).

However, this approach does not compromise security for

two reasons: i) we care about the collective proof, which

is derived from an aggregate of packets (rather than from

a single packet), and ii) a malicious host HN can at best

generate random MACs without feedback about their validity

since the keys (kA1
, kAN

) that are used to generate MACs are

only known to the ASes. While the short MAC length allows

an adversary to generate few valid MACs, it is statistically

difficult to generate a sufficient number of valid MACs to

influence the collective proof; the invalid MACs that are

generated as a byproduct will reveal the misbehavior.

Data Packets. Figure 4 shows the format of a data packet.

The host identifier is 4 bytes long, which is sufficient to

demultiplex hosts of large networks that share a single public

address. We allocate 4 bytes for the timestamp that is inscribed

by the source host; it can encode a time period of 49 days

at the granularity of one millisecond, which is sufficiently

large even for long-lived host policies. The end-to-end MAC

between the hosts, computed with k0H1HN
, is 4 bytes long

and protects the whole packet (except for the mutable fields

such as the TTL). Note that this MAC is independent from

any MAC generated by protocols in higher layers (e.g., TLS).

Then, the source and destination ASes inscribe each a 2-

byte sequence number and a 2-byte MAC computed over the

packet content (including the sequence number). The 2-byte

sequence number is long enough to detect replay attacks since

it can uniquely identify 65K packets within one millisecond;

this renders multiple occurrences of a sequence number per

timestamp value suspicious.

To quantify the bandwidth overhead, we look at the traffic

statistics of three backbone-link packet traces obtained from

CAIDA.7 In total, each packet carries additional 20 bytes of

data in the TRIS header. Furthermore, we note that this space

is pre-allocated in the packet by the source host; this ensures

that the packet length does not increase en route and packets

do not get dropped because of the MTU length. Table II shows

the bandwidth overhead for the mean and median packet sizes

observed in the three traces.

7https://www.caida.org/data/passive/trace_stats/

Trace 1 Trace 2 Trace 3
pkt. size 747 B 463 B 906 B 1420 B 691 B 262 B

overhead 2.14% 3.46% 1.77% 1.13% 2.32% 6.11%

TABLE II: Bandwidth overhead for the mean and median

packet sizes for 3 CAIDA packet traces.

The introduced bandwidth overhead is considerably low

given the provided benefits. For example, the IPv6 header

would introduce a 2.65% bandwidth overhead over IPv4,

assuming a packet size of 747 bytes.

TRIS incurs a storage overhead for end hosts since they

have to store incoming packets as proof of misbehavior in case

of policy violations. To get a pessimistic idea of the storage

overhead, we have considered a middlebox that stores infor-

mation for approx. 1500 users [38] and processes all the traffic

observed in Trace 1 (Table II). For the peak packet rate of the

trace, we find that the middlebox has to store 390 MB every

second. We assume a flow duration of 15 minutes after which

packets are deleted; 98% of flows are less than 15 minutes

long [39]. This yields an overall peak storage requirement

of 343 GB that the middlebox must have available, which

is well within practical limits for today’s hardware; for the

actual traffic of an access network and for more realistic flow

durations the overhead would be significantly lower.

Policy-Exchange Packets. We describe the format of a policy-

exchange packet. For the start and end time of the policy, we

allocate 4 bytes. Similarly, 4 bytes are needed for the HID. The

signature of the host over the policy requires 64 bytes: we use

the Ed25519 SUPERCOP REF10 signature implementation8,

which uses 64-byte signatures (and 32-byte public keys). The

certificate of the host CH1
is 108 bytes: a 4-byte address α1,

a 32-byte public key K+
Hi

, the 4-byte ASN of the issuing

AS, and a 4-byte expiration time for the certificate; finally,

there is a 64-byte signature over the certificate’s information,

computed with the source AS’s public key. Furthermore, the

source adds a 4-byte MAC, computed with kH1A1
.

The source and destination ASes insert a 2-byte sequence

number and a 2-byte MAC, which are computed with the local

secret keys kA1
and kAN

, respectively. We have not considered

the bandwidth overhead of policy-exchange packets since the

overall bandwidth overhead is dominated by data packets.

B. Border Router

Border routers perform different tasks depending on their

position on the path (source vs. destination AS). Border routers

verify the validity of the timestamp, inscribe a sequence

number, and compute a MAC over the packet’s content using

their local secret key. The source AS must additionally verify

the MAC that is inscribed by its host.

We implement all described procedures in software, using

the Data Plane Development Kit [40] on a commodity server.

The server is equipped with an Intel Xeon E5-2680 CPU and

a 10 GbE Network Interface Card (NIC). We dedicate only

one CPU core to perform all required processing to show a

pessimistic lower bound on the throughput. We connect the

NIC to a traffic generator, which generates load on the software

router. For our evaluation, we use IPv4 packets; we modify the

Forwarding Information Base (FIB) in order to accommodate

8http://bench.cr.yp.to/supercop.html

9

100% 100% 100%

100% 100% 100%

100%
91%

100%

100%

62%

100%

7
.6

2
 G

b
p

s

7
.6

2
 G

b
p

s

4
.7

0
 G

b
p

s

8
.6

5
 G

b
p

s

8
.6

5
 G

b
p

s

7
.8

7
 G

b
p

s
9.28

Gbps

9.28

Gbps

9.28

Gbps

9.43

Gbps

9.43

Gbps

9.43

Gbps

Fig. 5: Forwarding performance for packet sizes of 64, 128,

and 256 bytes and for iMIX (340 bytes avg.)

the shared keys with other ASes; the FIB contains entries for

55k different ASes.9

Figure 5 shows the forwarding performance of data packets

for three packet sizes (64, 128, and 256 bytes) and a repre-

sentative mixture of Internet packet sizes (iMIX) [41]. The

minimum data-packet length is 64 bytes, which is sufficiently

long to accommodate the additional TRIS-header; the mini-

mum packet length translates to the highest packet rate and

is the worst case for packet processing. The baseline for the

experiments is the forwarding performance without additional

processing. Each bar shows the achieved throughput in terms

of packet rate, with the corresponding bit rate indicated inside

the bar; on top of the bar we annotate the achieved throughput

as a percentage of the baseline throughput. We show the

performance for border routers of source and destination ASes.

For 64-byte packets, our results show that for the source AS,

the throughput degrades by 38%; the destination AS achieves

the baseline performance. This difference is due to the one

additional MAC computation at the source AS. For 128-byte

packets, the source AS’s performance degrades by 9% and

the destination AS performs optimally. As the packet size

increases, i.e., the packet rates decreases, the performance

degrade diminishes. For 256-byte packets and a representative

mixture of Internet packet sizes (iMIX) [41], both routers per-

form optimally. Furthermore, i) the computational complexity

of data packets does not depend on the complexity of the

policy, since all operations on data-packet fields (Figure 4) are

policy agnostic; ii) the computational complexity for policy-

packets is the same as for data packets for border routers since

asymetric cryptography is used only by end hosts.

V. EXTENDING TRIS

We describe an extension that builds on the core ideas of TRIS

and provides additional security properties. Our extended

protocol involves the transit ASes, so that host misbehavior

can be proven to all deploying ASes on the communication

path—not only the source/destination ASes. This enhancement

raises awareness of attacks and misbehavior to more entities

in the network and is particularly useful in case of rogue

source ASes: if a source AS does not take action against its

misbehaving hosts, then other ASes can deprioritize or even

block traffic from such ASes, given verifiable evidence of

misbehavior.

9http://www.cidr-report.org/as2.0/

On the downside, the extension has a higher deployment

barrier since it requires additional actions from all the ASes

on the communication path and also requires stronger assump-

tions from the network, compared to the core protocol: source

ASes need to know the interdomain path that their traffic will

follow to the destination AS.

Extended Threat Model. We consider a stronger threat model

in which source, transit, and destination ASes can be malicious

and conceal misbehavior by destroying the corresponding

evidence or try to frame an innocent host. In our security

analysis (Section VI), we describe how we can detect and

constrain the location of such actions on the communication

path.

A. Protocol Modifications

Next, we describe the additional actions that source, transit,

and destination ASes have to perform.

ASes leverage RPKI and their public/private key pairs to

derive long-term pairwise symmetric keys. More precisely, a

source AS AS1 shares a symmetric key kA1AN
with every

destination AS ASN , which is established through pairwise

DH key exchanges.

1) Connection Establishment

During connection establishment (Figure 2), AS1 additionally

adds the AS path to the destination that the traffic will follow,

so that the proof of misbehavior can be sent back to all the

corresponding ASes on the path. The AS path information,

together with the sequence number are protected with a MAC

computed with the symmetric key kA1AN
(Line 9), which is

shared with the destination’s AS (ASN). Note that the MAC

is computed with the key kA1AN
—not kA1

—so that ASN can

detect modification from malicious transit ASes.

The transit ASes (ASt) on the path perform similar steps as

AS1. Specifically, they insert a sequence number and a MAC

that is computed over their inserted information with the AS’s

local secret key kAt
. Sequence numbers by the transit ASes are

used to constrain the location of a replaying adversary, based

on the patterns of repeating sequence numbers (Section VI-B).

The MAC protects the integrity of the information inserted and

serves as a stateless reminder to the AS that it forwarded the

traffic. The destination AS, similar to the source AS, inserts

the AS path that traffic will follow towards the source AS.

Note that the return path to the source AS can be different,

since AS paths are not necessarily symmetric [42].

2) Data Forwarding

For data forwarding, AS1 creates a new packet header and

adds the same information as in the core protocol (Figure 3).

However, the packet header is created with sufficient length

to accommodate the information of the transit ASes on the

path. Transit ASes (ASt) perform similar operations as AS1

and insert a sequence number and a MAC computed with

their local secret kAt
. The role of the MAC and the sequence

number is to provide integrity and detect replay attacks. ASN

does not perform any additional actions.

3) Proving Misbehavior

The procedure of proving misbehavior is extended to two

rounds because transit ASes can be malicious as well. Similar

10

to the core protocol, the evidence consists of the signed policy

and the received traffic with the embedded proofs, but the

evidence must be sent to all the ASes on the path.

In the first round, the victim host provides the evidence

to its AS. The AS examines the validity of the evidence,

and if valid sends the evidence to all ASes on the com-

munication path (transit and source). Similarly, these ASes

examine the evidence and acknowledge or reject the complaint.

An approved complaint by an AS signifies that it forwarded

traffic that violates the policy properties. However, this does

not mean that the source host has misbehaved; if a transit

AS has replayed traffic, the source is not responsible for the

violation. Therefore, the victim’s AS collects approved and

rejected complaints and proceeds to the second round.

In the second round, the victim’s AS sends the collected

information back to the ASes. Based on the collective infor-

mation of approvals and rejections, ASes conclude whether the

source host has misbehaved or if it has been falsely blamed.

For example, if all ASes acknowledge the complaint, then the

source host has misbehaved. We discuss framing of innocent

hosts in Section VI-B.

B. Overhead Evaluation

Involving transit ASes incurs additional overhead compared

to the core protocol. Specifically, packet headers carry more

information and border routers of transit ASes also have to

perform additional operations.

For data packets, the source AS creates the TRIS header

sufficiently long so that it accommodates the information from

each transit AS on the path. This information includes the

sequence number and the MAC inserted by each AS; each

field is 2 bytes long. Furthermore, the packet header includes

a pointer field (1 byte) that points to the correct location in the

packet header, where the next AS should add its information.

To quantify the total bandwidth overhead, we analyze the

same packet traces from CAIDA (Section IV-A). The source

AS inserts 9 bytes in the packet, and every other AS inserts

4 bytes; we assume an average AS-path length of 4 hops.10

Table III shows the bandwidth overhead for the mean and

median packet sizes in the three traces. We observe that the

bandwidth overhead is higher compared to the core protocol

(Table II), but we believe it is well within reach of today’s

overprovisioned network capacities.

For policy-exchange packets, the source AS must addition-

ally indicate the list of ASes on the path; 4 bytes are used for

each AS. Again, we do not evaluate the bandwidth overhead

since such packets are sent infrequently.

The border routers of transit ASes perform additional

actions as described in Section V-A2. The processing load

of these operations is the same with that of border routers

in destination ASes. Thus, we obtain the same performance

(Figure 5) for transit border routers, i.e., achieving the baseline

performance.

10RIPE reports an average AS-path length of 3.9 hops for IPv4 and 3.5
hops for IPv6 [43].

Trace 1 Trace 2 Trace 3
pkt. size 747 B 463 B 906 B 1420 B 691 B 262 B

overhead 4.95% 7.99% 4.08% 2.61% 5.35% 14.12%

TABLE III: Bandwidth overhead for the extended protocol and

the mean and median packet sizes for 3 CAIDA packet traces.

...

H1 HN

AS1 ... ASNASt+1ASt

Fig. 6: Scope of security properties, when ASt is malicious

and i) corrupts evidence of misbehavior for H1 or ii) replays

traffic and frames H1.

VI. SECURITY ANALYSIS

We describe the security properties of TRIS, according to the

threat model presented in Section II-A. We analyze two (over-

lapping) attack classes: i) attacks that conceal misbehavior by

destroying the corresponding evidence, and ii) framing attacks

that blame an innocent host. We explicitly indicate which

attacks apply only to the extended threat model. Furthermore,

we note the flooding the proof-verification process is not a

notable concern, since it is an offline process that does not

affect forwarding performance.

A. Evading Misbehavior Detection

In this class of attacks, we consider a malicious host (H1 in

Figure 6) that violates a policy of its communication peer HN

and attempts to evade detection. We start by describing attacks

that H1 can launch on its own; then we describe collusion

attacks.

H1 may attempt to hide misbehavior by reporting a different

network-layer source address in sent data packets; e.g., an

address that belongs to another host or an address that does

not correspond to a host.11 Such attacks are prevented by

the first building block of TRIS, i.e., source accountability:

every outgoing packet contains a MAC that is computed with

the shared key kHiAi
between the host and the host’s AS.

Without this key, the adversary cannot create valid MACs

and the spoofed packets will be dropped by the source AS.

Furthermore, a host cannot generate new addresses on its

own. Each host is assigned exactly one address, which is

generated by the host’s AS during the bootstrapping procedure

(Section III-B). In a similar fashion, H1 may report a false

HID in sent packets. Specifically, it can generate a random

HID or use one from sniffed traffic. In both cases, H1 cannot

generate a valid end-to-end MAC since it does not have a valid

corresponding key. Furthermore, the policy exchange during

connection setup explicitly states the valid HID for data traffic.

H1 can attempt to hide misbehavior by tampering with the

policy of HN . The policy of HN is protected with a signature

that is computed with the private key K−
HN

of HN . Thus,

H1 cannot modify the policy properties without invalidating

HN ’s signature. Furthermore, H1 cannot claim that it did not

receive the policy of HN , since receiving the policy acts as an

admission to send packets; H1 would be deemed malicious if

it sent traffic without receiving HN ’s policy.

Under the extended threat model, H1 can collude with

11This attack can also be considered a framing attack: H1 frames another
host in the eyes of the other network entities.

11

an on-path AS (e.g., ASt in Figure 6) in order to corrupt

the evidence of misbehavior in data packets. More precisely,

H1 sends traffic that violates HN ’s policy; ASt forwards

packets, but corrupts all the MACs of the previous ASes in

the packet. Thus, in the first complaint round only the ASes

after ASt will acknowledge the misbehavior. This degrades

the security guarantees of TRIS, however, complaints to the

ASes after ASt will still be successful. More precisely, proof

of misbehavior is successful to all benign ASes adjacent to the

victim’s AS, as shown by previous work [36].

B. Framing Attacks

In this class of attacks, we consider a malicious entity (host

or AS) that tries to frame an innocent host (H1 in Figure 6).

A communication peer HN can attempt to frame H1 by

tampering with its own policy. More precisely, HN sends its

signed policy to H1, but presents a different policy when

it complains. It presents a policy with a lower sending rate

than the original policy, thus accusing H1 of a violation.

However, H1 has the original policy, which is signed by

HN ; policies cannot be repudiated. Since the correct signature

can be computed only by HN , it is clear to the source and

destination ASes that HN has misbehaved.

HN can modify packet contents in an attempt to forge

evidence of misbehavior; e.g., modify timestamps to craft a

high sending rate, or even substitute the source addresses in

packets to frame another host. Such modifications are caught in

the complaint phase, since every bit in the packet is protected

by the MACs of the source and destination ASes.

Another family of framing attacks are packet replays, which

come in two variations: i) a malicious host replicates the

received packets when it complains to the source/destination

ASes, and ii) a malicious transit AS (ASt) replays packets

(under the extended threat model). Both variations frame the

source host. Such attacks are detected from the built-in replay-

detection mechanism that is based on timestamps and sequence

numbers: if ASt replays packets, then the combinations of

the timestamp and the sequence numbers of the first t − 1

ASes appear multiple times. This constrains the location of the

attack to either ASt or ASt+1, since ASt may increment its

sequence number normally. The approach does not identify the

replaying AS, but informs ASes of an in-network replay attack.

The same mechanism applies when a host replicates received

packets: the combination of the timestamp and the sequence

numbers of the source/destination ASes appear multiple times.

VII. PRACTICAL CONSIDERATIONS

A. NAT Devices

Multiple hosts that share a connection through a NAT are

represented as a single host to the AS. To attribute misbehavior

to a certain host, the NAT acts a small AS for its hosts, while it

still acts as one host for the AS. The NAT ensures that internal

hosts are held accountable and cannot frame another internal

host by address spoofing. Since only a public address can be

held accountable for misbehavior by the public Internet, there

are a few protocol modifications when NATs are involved.

For connection establishment (Figure 2), the NAT is also

involved in the policy exchange. The host initiates the policy

by specifying the desired traffic properties, but not the policy

identifier, since the source address and port will be translated.

The NAT fills in the policy identifier and signs the policy with

its AS-provided key. In addition, the shared symmetric key

with the peer host is generated by the NAT. For data packets,

the NAT uses the symmetric key kH1HN
to compute the end-

to-end MAC around the packet. Similarly, this is performed

by the NAT because the network and transport-layer header

gets rewritten by the NAT.

B. Host Modifications

An important obstacle in deploying new architectures is the

requirement to update the network stack of the end hosts [44].

Security-concerned users have an incentive to update their net-

work stack and specify fine-granular policies, but this is not in

the interest of all users. We outline two deployment strategies

that leave the host’s network stack intact, while providing

the security properties of TRIS: a middlebox deployment

(Section VII-B1) and a gateway deployment (Section VII-B2).

The main idea behind both methods is that the additional

functionality required by the hosts is delegated to another

device. The main difference is that the middlebox is owned

by the AS, whereas the gateway by the host. This difference

raises trust and performance implications, which we describe

in the following.

1) Middlebox Deployment

We design and implement a middlebox that can be deployed

by ASes in order to offer TRIS services to its customer hosts.

We envision the middlebox to be collocated with the first-

hop router, serving a few hundreds or thousands hosts in the

access network; a study for CDN deployment identified a total

of 1478 distinct users over a span of 42 days [38].

The middlebox deployment introduces the following three

differences to the protocol operations of Section III:

• The middlebox generates and stores the public/private key

pair K+
Hi

/K−
Hi

(and the corresponding certificate CHi
)

for each host Hi; it uses this key pair for the required

connection-establishment operations. The key pair is not

used to generate encryption keys and thus it can be

delegated to the middlebox.

• Source accountability is no longer achieved through the

host-generated MAC in data packets. Therefore, the mid-

dlebox must perform ingress filtering [45], ensuring that

a malicious host does not spoof its address.

• Application policies are no longer possible since the use

of two separate keys for end-to-end encryption requires

host modification. In theory, it is possible to construct

application policies if the middlebox is allowed to access

the encryption key by acting as a man-in-the-middle.

However, disclosing encryption keys to the AS is beyond

any realistic threat model. In Section VII-B2, we describe

how this approach can work in a trusted environment.

More specifically, the middlebox acts as a transparent proxy

for end-to-end communication and performs the following

steps for connection establishment and data-packet sending.

For outgoing connection establishments (Figure 2), it spec-

ifies a policy for the incoming traffic of the peer host HN

and signs the policy with the host’s private key (Lines 2-5).

12

When the policy reply for the connection establishment arrives,

the middlebox verifies the signature of HN and generates the

shared symmetric key between the two hosts (Lines 20, 21).

For incoming connection establishments (Figure 2), it veri-

fies the signature of the initiating host H1 (Line 12), generates

the shared symmetric key between the two hosts, specifies the

sending policy for the incoming traffic, and signs the policy

packet with the host’s private key (Lines 12-18).

For outgoing data packets (Figure 3), it indicates the sending

time of the packet and inserts a MAC over the packet,

computed with the shared key between the hosts (Lines 5, 6).

Furthermore, the middlebox rate-limits the traffic sent from its

hosts, so that the sending rates conform to the policy that the

middlebox has negotiated with the communication peer. For

incoming data packets (Figure 3), it verifies the MAC with the

shared key between the hosts (Line 11) and stores the packet

as proof of potential misbehavior.

We implement the described host procedures and all re-

quired data structures of the middlebox in software. We

use cryptographic primitives based on Curve25519 [46] for

public-key operations; key exchange is based on the elliptic

curve variant of Diffie-Hellman (ECDH). Our implementation

uses DPDK on the same commodity setup as described in

Section IV-B.

To evaluate our middlebox, we need information about the

load and typical traffic patterns of an access network. Due

to the lack of extensive data sets, we base our evaluation by

analyzing a one-hour packet-level trace of a tier-1 ISP, released

by CAIDA in 2016.12 Note that the obtained statistics are an

overestimate for our purpose, since the traffic load of an access

network is considerably lower than the load of a backbone link

of a tier-1 ISP.

Forwarding Performance. First, we focus on the efficiency

of connection establishments, which require public-key cryp-

tographic operations. From the trace, we compute a peak flow-

generation rate of 8443 flows/sec. We generate the same load

on the middlebox and report that the middlebox can handle

it without a performance degradation. We further increase the

load to find the maximum throughput, which peaks at 9100

connection establishments per second. We thus conclude that

the middlebox can definitely handle the processing load of

connection establishments in an access network.

Second, we focus on the forwarding performance of data

packets, which is mainly influenced by symmetric-key crypto-

graphic operations. From the trace, we compute a peak packet

rate of 533 Kpps. We impose the same load on the middlebox

and observe that it can handle it without packet loss. We

further increase the load to reach the throughput saturation

point, which is at 10.6 Mpps—a twenty-fold higher capacity

than the maximum imposed load.

Storage Overhead. The use of a middlebox introduces a

more considerable storage overhead since it serves and stores

information for multiple users. It has to keep per-user state

(a public/private key and a certificate), which is common for

middlebox devices. However, it has to keep also per-flow state

12Equinix-Chicago, direction A, April 2016

(a policy, a shared key, and packet counters) and especially it

stores packets in order to prove policy violations.

First, the amount of fast-path memory (SRAM) that is

required is minimal since only per user and per flow state

is needed at the fast path: the flow generation and data-packet

processing procedures require looking up the user’s keys and

tracking the per flow policies. However, the received packets

that serve as proof of misbehavior can be stored in the slow

path, i.e., stored in DRAM and transferred to stable storage.

More specifically, storing packets is implemented as a ring

buffer with a head and a tail pointer. Every received packet

is stored at the location instructed by the head pointer; the

head pointer is then incremented to store the next packet. A

consumer thread transfers the stored packets to stable storage,

starting from the tail pointer’s location. Only a minimal

amount of fast memory is required, which is the buffer’s area

that will store the incoming packet; this area is then evicted to

slow memory and copied over to stable storage. This approach

minimizes the amount of fast memory and bridges the speed

gap between fast and slow memory.

Second, the overall storage overhead is well within practical

boundaries. Note that the middlebox can store the packets

of a flow only for the flow’s duration; after flow expiration

it discards the stored packets in the common case where no

misbehavior is detected. In case of longer-lived host policies

that specify a threshold for the total number of flows, the

middlebox can store a single packet from the flow that proves

its existence.

To put the storage overhead into context, we look at the

same CAIDA trace. For the peak packet rate of 533 Kpps, we

find that the middlebox has to store 394 MB every second;

the original packet and 28 bytes/packet additionally for the

TRIS header (for an interdomain path of 4 hops). To obtain

a conservative estimate, we assume a flow duration of 15

minutes after which packets are deleted; 98% of flows are less

than 15 minutes long [39]. This yields an overall maximum

storage requirement of 346 GB for the middlebox, which is

well within practical limits for today’s hardware.

2) Gateway Deployment

The second deployment strategy is using a gateway, which

performs the additional host functionalities and resides in the

trust zone of the host. For example, it can be a device owned by

an enterprise network or the functionality can be implemented

by the home router of a residential ISP customer. We highlight

the following points for the gateway operation:

• The gateway generates and stores the public/private key

pair K+
Hi

/K−
Hi

for its hosts. Unlike to the middlebox, it

performs the host-bootstrapping phase in order to obtain

the corresponding certificates CHi
from the AS.

• Application policies are possible if the gateway is con-

figured as a TLS termination proxy, which is common

practice in enterprise environments. Hosts have to install

an enterprise-generated certificate, trusting the enterprise

as a certificate authority. Then, the gateway operates

as man-in-the-middle by replacing the certificate of the

communication peer with a self-generated certificate that

is accepted by the host. Note that the communication

13

between the gateway and the host is assumed to be secure.

Delegating the host-related functionality to a gateway con-

tradicts our motivation of collocating intelligence and defense

mechanisms: the gateway cannot tell what constitutes an

attack against a host. Yet, delegating host’s functionality is

a necessary step for incremental deployment. However, hosts

can manually configure the gateway with some predefined

policies in the same way that home routers are configured

through web interfaces.

C. Network-Layer Deployment

We have presented our ideas without considering a partic-

ular underlying Internet architecture. Deployment of TRIS

in today’s Internet is not straightforward due to extensibility

limitations of the existing protocols, and especially of IPv4.

IPv6 enables an elegant implementation using Extension

Headers (EHs) [47]. We define a new EH that is processed only

by border routers of TRIS-enabled ASes; TRIS-agnostic ASes

follow the typical forwarding procedure without considering

the TRIS header.

More precisely, we define a new hop-by-hop EH with a

corresponding IP protocol number for TRIS; this would be

assigned by the Internet Assigned Numbers Authority (IANA).

The TRIS EH is placed after the IPv6 header or after other

hop-by-hop EHs, if present. The Next Header field in

the IPv6 header indicates the presence of a TRIS header,

which contains all the necessary information, as described in

Section IV-A. Furthermore, two additional fields are necessary:

a Next Header field that points to the Transport Layer

protocol, and a Header Length field that indicates the

length of the EH to enable routers to correctly parse the EH.

Using EHs in IPv6 provides a straightforward and backwards-

compatible deployment path, which is not the case for IPv4.

Interoperability with IPv4 is more complex due to the pro-

tocol’s inherent limitations with regard to extensibility: IPv4

lacks EHs and routers are typically configured to drop IPv4

packets with non-supported IP protocol numbers. Therefore,

we describe a deployment path that leverages the IP-in-IP

protocol for packet encapsulation [48]; it enables virtual point-

to-point links that can encapsulate other protocols. We use

IP-in-IP to interconnect TRIS-enabled routers over the IPv4

network. More precisely, for the core protocol, source and

destination ASes set up a single tunnel. For the extended

protocol, an end-to-end path consists of multiple tunnels, with

the tunnel end points supporting TRIS. The original packet of

the source—together with the TRIS header—is encapsulated

in an outer IPv4 packet that is used to transfer the original

packet from the tunnel’s entry point to the exit point, even

over non-supporting ASes.

Furthermore, ASes can disseminate the addresses of their

TRIS tunnel end points by piggybacking this information

in BGP messages; alternately, they can advertise tunnel end

points in their RPKI certificates [29].

VIII. RELATED WORK

Accountability architectures are commonly used as building

blocks for better security. Source accountability proposals

ensure that source addresses in packet headers can be trusted.

AIP [3], a major proposal in this area, provides source ac-

countability at a high deployment cost: transitioning to a self-

certifying host-address space (the hash of a public-key) leads

to large routing and forwarding tables; also, the requirement

for asymmetric cryptographic operations on the data plane

would harm forwarding performance substantially. APIP [49]

is an accountability architecture that introduces accountability

delegates, which vouch for their customers’ traffic. However,

in APIP a malicious sender can omit reporting its traffic to its

accountability delegate. Our approach fixes this shortcoming

by using the host’s ISP as the accountability delegate, which by

default is on the path of the traffic. Both AIP and APIP are de-

signed to offer only source accountability, but a clear guideline

of what constitutes misbehavior is missing. In contrast, TRIS

leverages receivers to define which traffic profiles are accept-

able. In addition, APIP is designed to balance accountability

and privacy as it provides sender-flow unlinkability. While

an orthogonal issue, this can be achieved in TRIS if an ISP

allocates multiple addresses (with corresponding certificates)

to its customers, so that they can decide which address to use

for each flow.

Active defense mechanisms against DDoS attacks can be

divided into two main categories – capabilities and filtering.

In capability proposals [4], [13], [14], sources obtain short-

term cryptographic authorization tokens from the destinations;

the tokens are put into the packets and are then verified

by routers on the path. Filtering proposals stop malicious

traffic in the network before reaching the victim [15], [16],

[17]. Typically, filters are installed in upstream routers and

as close to the source as possible. Capabilities and filtering

rely on the destination to identify the misbehavior; then, the

network protects the host by dropping misbehaving traffic. Our

architecture does not provide active protection; rather, it makes

misbehavior provable to the network, based on flexible, host-

specific policies. The knowledge of malicious activity can then

be used to provide better security.

Middlepolice [50] is a hybrid approach that combines the

deployability of cloud-based solutions with the destination-

based control of capability systems. Victim hosts can specify

policies that will be enforced by the cloud service. However,

the scope of the policies is more limited compared to our

proposal, as in TRIS a destination can specify a different

policy for each communicating host; this does not scale when

outsourcing policies to the cloud. Furthermore, Middlepolice

requires rerouting all traffic through the cloud, causing an av-

erage AS-path inflation of 59%. On the contrary, Middlepolice

comes with a lower deployment barrier than TRIS, as it builds

on cloud deployments without requiring significant network

upgrades from ISPs.

IX. CONCLUSION

This paper proposes increased accountability as a building

block towards better security. Hosts can express their prefer-

ences and provide verifiable proof of misbehavior to all ASes

on the communication path in case of misbehavior. We have

implemented TRIS and demonstrated that it comes with a

modest bandwidth overhead. In addition, forwarding does not

require per-policy state at border routers; our software-router

14

prototype achieves line-rate performance for common packet

sizes, saturating a 10 Gbps link with a single CPU core.

We believe that a more accountable network layer will

be used in conjunction with active defense mechanisms; and

that verifiable proof of misbehavior can aid the regulatory

discussions with respect to Internet security.

X. ACKNOWLEDGEMENTS

We would like to thank the reviewers for their insightful

feedback and suggestions. The research leading to these results

has received funding from the European Research Council

under the European Union’s Seventh Framework Programme

(FP7/2007-2013) / ERC grant agreement 617605. We grate-

fully acknowledge support from ETH Zürich and from the

Zürich Information Security and Privacy Center (ZISC).

REFERENCES

[1] “Q3 2017 State of the Internet Security Report,” "http://bit.ly/2neaUat",
2017.

[2] “The Global State of Information Security Survey,” "http://www.pwc.
com/gsiss", 2016.

[3] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, “Accountable Internet Protocol (AIP),” in Proceedings

of ACM SIGCOMM, 2008.
[4] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing Internet Denial-

of-Service with Capabilities,” SIGCOMM Computer Communication

Review, 2004.
[5] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker, “Off

by Default!” in Proceedings of ACM Hotnets, 2005.
[6] Y. Huang, X. Geng, and A. B. Whinston, “Defeating DDoS Attacks by

Fixing the Incentive Chain,” ACM Trans. Internet Technol., 2007.
[7] J. Mirkovic and P. Reiher, “A Taxonomy of DDoS Attack and DDoS

Defense Mechanisms,” SIGCOMM Comput. Commun. Rev., 2004.
[8] Federal Communications Commission, “Open Internet Order,” "http://

www.fcc.gov/openinternet", 2015.
[9] B. Rowe, D. Wood, D. Reeves, and F. Braun, “The Role of Internet

Service Providers in Cyber Security,” http://bit.ly/1YaTvsZ, 2011.
[10] “Cloudflare Features and Pricing,” "https://www.cloudflare.com/plans",

2016.
[11] X. Liu, A. Li, X. Yang, and D. Wetherall, “Passport: Secure and

Adoptable Source Authentication,” in Proceedings of USENIX NSDI,
2008.

[12] A. Li, X. Liu, and X. Yang, “Bootstrapping Accountability in the
Internet We Have,” in Proceedings of USENIX NSDI, 2011.

[13] A. Yaar, A. Perrig, and D. Song, “SIFF: A Stateless Internet Flow Filter
to Mitigate DDoS Flooding Attacks,” in Proceedings of IEEE Security

and Privacy, 2004.
[14] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting Network

Architecture,” in Proceedings of ACM SIGCOMM, 2005.
[15] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and

S. Shenker, “Controlling High Bandwidth Aggregates in the Network,”
SIGCOMM Computer Communication Review, 2002.

[16] K. Argyraki and D. R. Cheriton, “Active Internet Traffic Filtering:
Real-time Response to Denial-of-service Attacks,” in Proceedings of

USENIX ATC, 2005.
[17] X. Liu, X. Yang, and Y. Lu, “To Filter or to Authorize: Network-layer

DoS Defense Against Multimillion-node Botnets,” in Proceedings of

ACM SIGCOMM, 2008.
[18] “FCC looks to ISPs for Cybersecurity Assistance,” "http://bit.ly/

1r9IJWr", 2012.
[19] “Talking Bots with Japan’s “Cyber Clean Center”,” "http://bit.ly/

1PehLD2", 2010.
[20] “Hostexploit,” "http://hostexploit.com".
[21] “BGP Ranking,” "http://bgpranking.circl.lu/".
[22] “Internet Storm Center,” "http://dshield.org".
[23] K. Jeremy, “ISP Cut off From Internet After Security Concerns,” "http:

//bit.ly/1ZrhMcH", 2008.
[24] K. Jeremy and M. Robert, “After weeklong fight, rogue ISP Troyak

struggles for life,” "http://bit.ly/1Zdsbsb", 2010.
[25] Hostexploit, “World Host Report,” "http://bit.ly/1stlKGZ", 2014.
[26] Cisco, “Cisco Policing and Shaping Overview,” "http://bit.ly/1HOHr9V",

May 2015.

[27] “Q2 2016 State of the Internet Security Report,” "http://akamai.me/
2fGSURh", 2016.

[28] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn,
D. R. López, K. Papagiannaki, P. Rodriguez Rodriguez, and
P. Steenkiste, “Multi-Context TLS (mcTLS): Enabling Secure In-
Network Functionality in TLS,” in Proceedings of ACM SIGCOMM,
2015.

[29] ARIN, “Resource Public Key Infrastructure,” "http://bit.ly/1EJCQoT".
[30] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote

Authentication Dial In User Service (RADIUS),” RFC 2865, 2000.
[31] V. Fajardo, J. Arkko, J. Loughney, and G. Zorn, “Diameter Base

Protocol,” RFC 6733, 2012.
[32] R. Durairajan, S. K. Mani, J. Sommers, and P. Barford, “Time’s

Forgotten: Using NTP to Understand Internet Latency,” in Proceedings

of ACM HotNets, 2015.
[33] “Understanding and Using the Network Time Protocol,” "http://bit.ly/

1oOCp4a".
[34] J. Saltzer, “On the Naming and Binding of Network Destinations,”

RFC 1498, 1993.
[35] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,

O. Bonaventure, and M. Handley, “How Hard Can It Be? Designing
and Implementing a Deployable Multipath TCP,” in Proceedings of

USENIX NSDI, 2012.
[36] C. Pappas, R. M. Reischuk, and A. Perrig, “FAIR: Forwarding Account-

ability for Internet Reputability,” in Proceedings of IEEE ICNP, 2015.
[37] X. Zhang, Z. Zhou, H.-C. Hsiao, A. Perrig, and P. Tague, “ShortMAC:

Efficient Data Plane Fault Localization,” in Proceedings of NDSS, 2012.
[38] C. Imbrenda, L. Muscariello, and D. Rossi, “Analyzing Cacheable

Traffic in ISP Access Networks for Micro CDN Applications via
Content-centric Networking,” in Proceedings of ACM ICN, 2014.

[39] L. Quan and J. Heidemann, “On the Characteristics and Reasons of
Long-lived Internet Flows,” in Proceedings of ACM IMC, 2010.

[40] “Data Plane Development Kit,” "http://dpdk.org".
[41] A. Morton, “IMIX Genome: Specification of Variable Packet Sizes for

Additional Testing,” RFC 6985, 2013.
[42] Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker, “On routing

asymmetry in the internet,” in Proceedings of IEEE GLOBECOM, Nov.
2005.

[43] RIPE Labs, “Update on AS Path Lengths Over Time,” "http://bit.ly/
1tbTeKF".

[44] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox, “Intelligent Design Enables Architectural Evolution,” in
Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
2011.

[45] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating Denial
of Service Attacks which employ IP Source Address Spoofing,” RFC
2827 (Best Current Practice), Internet Engineering Task Force, May
2000.

[46] D. J. Bernstein, “Curve25519: New Diffie-Hellman Speed Records,” in
Public Key Cryptography (PKC), 2006.

[47] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification,” RFC 2460, 1998.

[48] C. Perkins, “IP Encapsulation within IP,” RFC 2003, 1996.
[49] D. Naylor, M. K. Mukerjee, and P. Steenkiste, “Balancing Accountability

and Privacy in the Network,” in Proceedings of the ACM SIGCOMM

Conference, 2014.
[50] Z. Liu, H. Jin, Y.-C. Hu, and M. Bailey, “Middlepolice: Toward

enforcing destination-defined policies in the middle of the internet,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, 2016.

Christos Pappas received his PhD degree in Com-
puter Science from ETH Zürich in 2018, working in
the Network Security group. He then worked as a
senior researcher at ETH Zürich until 2019. Before
joining ETH Zürich, he worked as a researcher on
search algorithms for 3D audiovisual content in the
National Technical University of Athens. Currently,
he works as an information security engineer at
UBS AG. His interests include network transparency,
privacy/accountability, and identity and access man-
agement.

15

Taeho Lee received his PhD degree in Computer
Science from ETH Zürich in 2018. He was with
the Network Security group where his main research
area was designing a secure future Internet architec-
ture that aims to support both privacy and account-
ability. Before joining ETH Zürich, he worked as
a researcher at Electronics and Telecommunications
Research Institute (ETRI) in South Korea where he
was part of the future Internet research team, fo-
cusing on a mobility-oriented network architecture.
Currently, he is a software engineer at Google, Inc.

Raphael M. Reischuk is head of cyber security
and principal consultant at the Swiss technology
and innovation company Zühlke. He is a member
of several international program committees for in-
formation security, and vice president of the security
commission of ICT Switzerland; he is a frequent and
passionate speaker at international conferences and
appears regularly on topics of network, web, and
cyber security. Before joining Zühlke, he worked
as a senior information security researcher at ETH
Zürich, where he has done research and teaching on

secure Internet architectures. Raphael Reischuk received his PhD with distinc-
tion in web and cloud security at the Information Security and Cryptography
Group at CISPA, Saarland University, and Cornell University.

Pawel Szalachowski is an Assistant Professor at
Singapore University of Technology and Design
(SUTD). Prior to joining SUTD, he was a senior
researcher at ETH Zürich. He received his PhD de-
gree in Computer Science from Warsaw University
of Technology in 2012. He is interested in building
and analyzing secure networked systems.

Adrian Perrig is a Professor at the Department
of Computer Science at ETH Zürich, Switzerland,
where he leads the Network Security group. He
is also a Distinguished Fellow at CyLab, and an
Adjunct Professor of Electrical and Computer Engi-
neering at Carnegie Mellon University. From 2002 to
2012, he was a Professor of Electrical and Computer
Engineering, Engineering and Public Policy, and
Computer Science (courtesy) at Carnegie Mellon
University, becoming Full Professor in 2009. From
2007 to 2012, he served as the technical director

for Carnegie Mellon’s Cybersecurity Laboratory (CyLab). He earned his MS
and PhD degrees in Computer Science from Carnegie Mellon University, and
spent three years during his PhD at the University of California at Berkeley.

