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Abstract. We are now in the post-PC era, yet our mobile devices are insecure.
We consider the different stake-holders in today’s mobile device stasy and
analyze why widely-deployed hardware security primitives on mobildcdev
platforms are inaccessible to application developers and end-usesy/sfémn-
atize existing proposals for leveraging such primitives, and show thptcire
indeed strengthen the security properties available to applications arg] aler
without reducing the properties currently enjoyed by OEMs and netvariecs.

We also highlight shortcomings of existing proposals and make recodatiens

for future research that may yield practical, deployable results.

1 Introduction

We are putting ever more trust in mobile devices. We use tt@ame-commerce and
banking, whether through a web browser or specialiapgs Such apps hold high-
value credentials and process sensitive data that needpmtested. Meanwhile, mo-
bile phone OSes are untrustworthy. While in principle thegrapt to be more secure
than desktop OSes (e.g., by preventing modified OSes frortingpdy using safer

languages, or by sandboxing mechanisms for third-partg apph as capabilities), in
practice they are still fraught with vulnerabilities.

Mobile OSes are as complex as desktop OSes. Isolation anithedng provided
by the OS is routinely broken, c.f. Apple iOS jail-breaking tlicking a button on
a web pagq1l1, 42]. Mobile OSes often share code with open-source @8ek as
GNU/Linux, but often lag behind in applying security fixeseaming that attackers
need only look at recent patches to the open-source codedtedinerabilities in the
mobile device’s code. Therefore, there is a need for ismlatind security primitives
exposed to application developers in such a way that they negtrust the host OS.

We argue that this problem is severe enough to have garngyeificant attention
outside of the security community. Demand for mobile agtlans with stronger se-
curity requirements has given rise to add-on hardware witinger security properties
(§2). However, many current mobile devices already have harelaupport for isolated
execution environments and other security features. tunfately, these features are
not made available to all parties who may benefit from thesspnce.

Today’s mobile device hardware and software ecosystemgtsrd multiplestake-
holders primarily comprising the OEM (handset manufacturer)e¢einmunications
provider or carrier, application developers, and the dggiowner (the human user).
Carriers typically also serve in the role of platform intamr, customizing an OEM'’s



handset with additional features and branding (typicallyfirmware or custom apps).
To date, security properties desirable from the perspestf application developers
and users have been secondary concerns to the OEMs and<cftfie33, 45]. The
historically closed partnerships between OEMs and carhieve lead to a monolithic
trust model within today’s fielded hardware security privés. Everything “inside” is
assumed to be trustworthy, i.e., the software modules éxecin the isolated envi-
ronment often reside in each other’s trusted computing 8E8). As long as this
situation persists, OEMs and carriers will not allow thparty code to leverage these
features. Only in a few cases, where the OEM has partnerédavitird party, are these
features used to protect thiser'sdata (c.f.§2, Google Wallet).

We approach this scenario optimistically, and argue thatetlis room to meet the
needs of application developers and users while addindggiiglgl cost. We thus define
the principal challenge for the technical community:present sound technical evi-
dence that application developers and users can simultanasly benefit from hard-
ware security features without detracting from the security properties required for
the OEMs and carriers.! Our goal in this paper is to systematize deployed (or readily
available) hardware security features, and to provide &eneive and realistic evalu-
ation of existing (largely academic) proposals for mustiphg these features amongst
all stake-holders.

We proceed ig3 by defining a set of security features that may be usefulgptia
cation developers that need to process sensitive data.oOws fs on protecting secrets
belonging to theuser, such as credentials used to authenticate to online ssraiog
locally cached data.

We next provide an overview of hardware security featuredl@vle on today’s mo-
bile platforms §4). We show that hardware security features that can prak&desired
properties to application developers are prevalent, kayt éne typically not accessible
in COTS devices’ default configurations.

We then move on to evaluate existing proposals (given thiwee security features
available on mobile devices) for creating a trustworthyceion environment that is
able to safely run sensitive applications that are potiyti@nsidered untrustworthy
by other stake-holder$%). We show that multiplexing these secure execution envi-
ronments for mutually-distrusting sensitive applicatios quite possible if the threat
model for application developers and users is primarilyvearfe-based attack§q).

Finally (57), we provide an end-to-end analysis and recommendatiorike current
best practices for making the most of mobile hardware-basedrity features, from
the points of view of each stake-holder. Unfortunatelyhwiit firmware or software
changes by OEMs and carriers, individual application dgwels today have little op-
portunity to leverage the hardware security primitivesidey’s mobile platforms. The
only real options are either to partner with a mobile platfantegrator, to distribute
a customized peripheral (e.g., a smart-card-like deviaedan integrate with a phone,
such as a storage card with additional functionality), optiochase unlocked devel-

1 We wish to distinguish this challenge from proposals that OEMs increasehtireiware costs
by including additional hardware security features that are exclusiféhyerest to application
developers and users. Our intention in this paper is to emphasize practzaditthus define
such proposals to be out of scope.



opment hardware. We provide recommendations for OEMs amcerszfor how they
can make hardware-based security capabilities more yeaddessible to application
developers without compromising the security of their exgsuses.

2 Demand for Applications Requiring Hardware Security

Does providing third-party developers with access to haréwsupported security fea-
tures make sense for the OEMSs or carriers? This is an imdortarsideration for an
industry where a few cents in cost savings can be the decfdeigr for features. We
show that there are many applications on mobile devicesrétptire strong security
features, and that must currently work around the lack ofehfeatures. Being forced
to deal with these work-arounds stifles the market for sgeggnsitive mobile appli-
cations, and endangers the security of the applicationstealeployed anyways.

Google Wallet allows consumers to use their mobile phones as a virtuaktvalhe
application stores users’ payment credentials locallyctvare then used to make trans-
actions via near field communication (NFC) with point-ofes@POS) devices. To store
the users’ credentials securely, Wallet relies on a cogesar called a Secure Element
(SE) which provides isolated executidj8], secure storagg3), and a trusted pat§J)
to the on-board NFC radio. Unfortunately, the SE only rurdecthat is signed by the
device manufacturer. This may be because the SE lacks tlity &disolate authorized
modules from each-other, or it may simply be considered denafstime. As a result,
developers without Google’s clout will not be able to legrshese capabilities for their
own applications. There is evidence that Apple has simiangfor its products; they
recently published a patent for an embedded SE with spameasdid for both a Univer-
sal Subscriber Identity Module (USIM) application and “ethapplications [41].

Services such as Square and GoPay allow merchants to cencpéelit card trans-
actions with their mobile device using an application andsgnetic stripe reader [34].
While Square’s security policiésndicate that they do not store credit card data on
the mobile device, the data does not appear to be adequatébcied when it passes
through the mobile device. Researchers have verified tleastiipe reader does not
protect the secrecy or integrity of the read-data [37]. Timiglies that malware on the
mobile device could likely eavesdrop on credit-card datasfwiped cards or inject
stolen credit-card information to make a purchase [37].

These applications could benefit greatly from the hardvbaeked security features
we describe irg3. A trusted path§3) could enforce that the intended client applica-
tion has exclusive access to the audio port (with which theé czaders interface), thus
protecting the secrecy and integrity of that data from medwahey could also ben-
efit greatly from a remote attestation mechani§B),(which the servers could use to
ensure that received-data is actually from the authorifiedteapplication, and that it
used a trusted-path to the reader, thus helping to ensuriéahysical credit card was
actually present. OEMs could provide a more tightly intégaaexperience for devel-
opers, and avoid potential security vulnerabilities byropg up pre-existing hardware
security primitives to application developers.

2 http://www.google.com/wallet/how-it-works-security.html
3 https://squareup.com/security



3 Desired Security Features

Here we describe a set of features intended to enable seceration on mobile de-
vices. This can be interpreted as the wish-list for a seeannscious application devel-
oper. The strength of these features can typically be meddwyr the size, complexity,
and attack surface of the components that must be reliedfopargiven security prop-
erty to hold. This is often referred to as ttrested computing bas@ CB). On many
systems, the OS provides security-relevant APIs for apptio developers. However,
this places the OS in the TCB, meaning that a compromised @IS tloe relevant se-
curity properties. We briefly discuss whether and how theisgcfeatures below are
provided on today’s mobile platforms, and some strategiepifoviding these proper-
ties to applications without including the OS in the TCB.

Isolated Execution.|solated execution gives the application developer thétald
run a software module in complete isolation from other cdtdprovides secrecy and
integrity of that module’s code and data rain-time Today’s mobile OSes provide
process-based isolation to protect applications’ addspases and other system re-
sources. However, these mechanisms are circumventable thbeOS itself is com-
promised. To provide isolated execution that does not diparthe operating system,
some alternative execution environment not under confrtie OS is required. Such
an environment could be provided by a layer running unde8eon the same hard-
ware (i.e., a hypervisor), or in a parallel environment (sas a separate coprocessor).
We examine some candidate isolated execution environnagtsheir suitability for
mobile platforms irt5. Regarding today’s mobile platforms, the Meego Linuxritisi
tion for mobile devices does include provisions for isaléeecution. Meego’s Mobile
Simplified Security Framework (MSSF) implements a trusteecation environment
(TrEE) that is protected from the OS [29]. However, this eowiment is not open to
third party developers.

Secure StorageSecure storage provides secrecy, integrity, and/or fiesshfor a soft-
ware module’s datat rest(primarily when the device is powered off, but also under
certain conditions based upon which software has loaddw®.rost common exam-
ple demonstrating the need for secure storage is accessntigdd, such as a cached
password or a private asymmetric key. Most mobile OSes geattiis property at least
using file system permissions, which are enforced by theatipgr system. However,
this can be circumvented by compromising the OS or by rengpifie storage media
and accessing it directly.

A stronger form of secure storage can be built using a stdoaggion that is physi-
cally protected, and with access control implemented ieddpntly of the OS — called
aroot of trust for storageor RTS. A RTS can be used to bootstrap a larger secure stor-
age mechanism, usirggaled storageThe sealed storage primitive uses a key protected
by the RTS to encrypt the given data, and to protect the atitlitgrof that data and of
attached meta-data. The metadata includes an accessiquoiicy for which code is
authorized to request decryption (e.g., represented astedver the code), and poten-
tially other data such as which software module sealed tteeidahe first place. Sealed
data (ciphertext) can then be stored on an unprotectedystoievice.

Symbian and Meego make use of protected memory and seateds{@9]. MSSF
uses keys kept in its Trusted Execution Environment (TrEE) {0 protect the integrity



of application binaries, and to provide a sealed storagétfaevhich is available to
third party developers [29]. While this offers protectioraamst offline attacks, since
third party applications are not allowed to execute in theH;rdata protected by this
mechanism is vulnerable to online attacks via a comprom38d Recent versions
of i0OS combine a user-secret with a protected device-keynfement secure stor-
age [3]. However, the device-key does not appear to be acoesolled by code iden-
tity, meaning that an attacker can defeat this mechanism i$ lable to obtain the user
secret, e.g., via malware, or via performing an online bfatee attack [17, 25]. An-
droid offers an AccountManager API [2]. The model used bg Pl supports code
modules that perform operations on the stored credentiérahan releasing them
directly, which would make it amenable to a model with seatedage and isolated ex-
ecution. Unfortunately, it appears that the data is culyestbred in plaintext, and can
be retrieved via direct access to the storage device or byamising the operating
system [1,50].

Remote Attestation.Remote attestation allows remote parties to verify thatraquaar
message originated from a particular software module. R@pplication running on a
normal OS, the attestation would necessarily include a ureagent of the OS kernel,
which is part of that TCB, and of the application itself. A ret@ party, such as an online
banking service, could use this information, if it knew adibvalid OS kernel identities
and a list of valid client banking-app identities, to ensiina the system had booted a
known-good kernel, and that the OS had launched a known-gexsibon of the client
banking app. Remote attestations are more meaningful wieeh@B is relatively small
and stable. In the example of a banking application, if dcalittomponent of the app
ran as a module in an isolated execution environment withreote-attestation capa-
bility, then the attestation would only need to include a sugament of the smaller
isolated execution environment code, and of the given neaduibt only would it be
easier to keep track of a list of known-good images but thestdtion would be more
meaningful because the isolated execution environmentsumed to be less suscep-
tible to run-time compromise. This is important becausedttestation only tells the
verifier what code wakaded it would not detect if a run-time exploit overwrote that
code with unauthorized code.

Attestation mechanisms are typically built using a privag that is only accessible
by a small TCB §3) and kept in secure storag¢8]. A certificate issued by a trusted
party, such as the device manufacturer, certifies that thresmonding public key be-
longs to the device. One or more platform configuration tegésstore measurements
of loaded code. The private key can then be used to genegmiedsattestations about
its state or the state of the rest of the system. Some formenodte attestation are im-
plemented and used on today’s mobile platforms [29]. Howesfar as we know, no
such mechanisms are made available to arbitrary thirgrpiastelopers.

Secure Provisioning.Secure provisioning is a mechanism to send data speific
software modulerunning on aspecific devicewhile protecting that data’s secrecy and
integrity. This is useful for migrating data between a uselévices. For example, a
user may have a credential database that he wishes to magratenchronize across
devices while ensuring that only the corresponding credeapplication running on
the intended destination device will be able to access tatt. dne way to build a



secure provisioning mechanism is to use remote attestéff)rto attest that a public
encryption key belongs to a particular software module imgpon a particular device.
The sender can then use that key to protect data to be ser tartfet software mod-
ule on the target device. Some of today’s mobile platformglé@ment mechanisms to
authenticate external information from the hardware stadders (e.g., software up-
dates), with the hash of the public portion of the signing &eyred immutably on the
device [29]. Other secure provisioning mechanisms aré/likeplemented and used by
device manufacturers to implement features such as drigtatis management. As far
as we know, however, secure provisioning mechanisms aravadable for direct use
by arbitrary third-party developers on mobile platforms.

Trusted Path. Trusted path protects authenticity, and optionally seceed availabil-
ity, of communication between a software module and a pergdh(e.g., keyboard or
touchscreen) [18,24,32,46,52]. When used with humanfateevices, this property
allows a human user to ascertain precisely the applicatibtmwhich she is currently
interacting. With full trusted path support, malicious kggtions that attempt to spoof
legitimate applications by creating identical-lookingeugnterfaces will conceivably
become ineffective. Building secure trusted paths is dehging problem. Zhou et. al.
propose a trusted path on commodity x86 computers with amahi CB [52]. Their
system enables users to verify the states and configurati@ame or more trusted-paths
using a simple, secret-less, hand-held device. In priacipbny mobile platforms also
support a form of trusted path, but the TCB is relatively éaggnd untrustworthy. For
example, theHomebutton on iOS and Android devices constituteseaure attention
sequencéhat by design uncircumventably transfers control of ther irsterface to the
OS’s “Home” screen. Once there, the user can transfer ddottbe desired applica-
tion. However, the TCB for such mechanisms includes thee®iS and third-party
apps. The OS can be removed from the TCB of such trusted pgthselienting the
OS from communicating directly with the device and runnihg tlevice driver in an
isolated environment. This requires the platform to suppdow-level access-control
policy for access to peripherals. ARM’s TrustZone extensifacilitate this type of
isolation §4.1).

4 Available Hardware Primitives

In this section we discuss currently-available hardwaceisty primitives with a focus
on existing smartphone and tablet platforms. As the vasbrityajof these platforms are
built for the ARM architectur® we first present a generic ARM platform hardware and
security architecture, focusing our discussion on platftardware components that
help realize the features discussed3nWe then identify design gaps and implementa-
tion challenges in off-the-shelf mobile devices that preévird-party application de-
velopers from fully realizing the desired security projest Finally, we provide details

4 Intel ATOM [26] line of embedded processors are based on commg8fyarchitecture and
are also targetted towards smartphone and tablet platforms. While a fdelsyamntain secu-
rity features such as hardware virtualization, the ATOM System-on-GEu] that is targetted
at smartphone platforms currently does not seem to include suchrs(ippp We therefore
focus our attention on the more widely spread ARM architecture and itsigeextensions.
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Fig. 1. Generic ARM platform hardware and security architecture.

of inexpensive mobilelevelopmenplatforms with myriad security features, to serve as
references against which to compare mass-market devices.

ARM’s platform architecture comprises the Advanced Mianatzoller Bus Archi-
tecture (AMBA) and different types of interconnects, cofiérs and peripherals. ARM
calls these the “CoreLink”, which has four major compondrigure 1).Network in-
terconnectsare the low-level physical on-chip interconnection priveis that bind var-
ious system components together. AMBA defines two basicstgpénterconnects: (i)
the Advanced eXtensible Interface (AXI) — a high performentaster and slave in-
terconnect interface, and (ii) the Advanced Peripheral @42B)—a low-bandwidth
interface to peripheraldviemory controllerscorrespond to the predominant memory
types: (i) static memory controllers (SMC) interfaced w8RAM, and (ii) dynamic
memory controllers (DMC) interfaced with DRAMSystem controllerénclude the:
(i) Generic interrupt controller (GIC)—for managing deviogerrupts, (i) DMA con-
trollers (DMAC)—for direct memory access by peripheral deg, and (iii) TrustZone
Address Space Controller (TZASC) and TrustZone Memory Aetafpr ZMA)—for
partitioning memory between multiple “worlds” in a splitewd architecture §4.1).
System peripheralmclude LCDs, timers, UARTs, GPIO pins, etc. These perialser
can be further assigned to specific “worlds”). We now proceediscuss the above
components in the context of each of the security featurseriteed in§3.
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4.1 Isolated Execution

Multiple hardware primitives exist for isolated executimm ARM architecture devices
today. ARM first introduced their TrustZone Security Exiens in 2003 [4], enabling
a “two-world” model, whereby both secure and non-securenswé can coexist on the
same processor. ARM recently announced hardware suppaiittiealization for their
Cortex A15 CPU family [8]. These extensions enable moreititahl virtualization
solutions in the form of hypervisors or virtual machine nors [39].
Split-World-based Isolated Execution. ARM’s TrustZone Security Extensions [5] en-
able a single physical processor core to safely and effigieecute code in two
“worlds”—the secure worldfor security sensitive application code and thermal
world for non-secure applications (Figure 2). CPU state is babkédeen both worlds;
the secure-world can access all normal-world state, butinetversa. A new processor
mode, called thenonitor mode supports context switching between the secure-world
and the normal-world. The monitor mode software is resgm@$or context-switching
CPU state that is not automatically banked.

Memory Isolation. ARM'’s TrustZone Security Extensions split CPU state into this-
tinct worlds, but they alone cannot partition memory betwé® two worlds. Memory
isolation is achieved using a combination of TrustZonerawdemory Management
Units (MMU), TrustZone Address Space Controllers (TZAST)stZone Memory
Adapters (TZMA), and Tightly Coupled Memory (TCM).

A TrustZone-aware MMU provides a distinct MMU interface feach processor
world, enabling each world to have a local set of virtuaptossical memory address
translation tables. The translation tables have protectiechanisms which prevent the
normal-world from accessing secure-world memory. The TZASBterfaces devices
such as Dynamic Memory Controllers (DMC) to partition DRAMa distinct memory
regions. The TZASC has a secure-world-only programmingrfate that can be used
to designate a given memory region as secure or normal. TMATRrovides similar
functionality for off-chip ROM or SRAM. With a TZMA, ROM or SRM can be par-
titioned between the two worlds. Tightly Coupled Memory (ICis memory that is
in the same physical package as the CPU, so that physicaktargith the external
pins of an integrated circuit will be ineffective in trying tearn the information stored
in TCM. Secure-world software is responsible for configgratcess permissions (se-
cure vs. normal) for a given TCM block.



Peripheral isolation. Peripherals in the ARM platform architecture can be degagha
assecureor normal ARM’s “CoreLink” architecture connects high-speed systae-
vices such as the CPU and memory controllers using the AdvhaXtensible Inter-
face (AXI) bus [7]. The rest of the system peripherals arecslty connected using
the Advanced Peripheral Bus (APB). The AXI-to-APB bridgeide is responsible for
interfacing the APB interconnects with the AXI fabric andntains address decode
logic that selects the desired peripheral based on theigestate of the incoming AXI
transaction; the bridge rejects normal-world transastitperipherals designated to
be used by the secure-world. A TrustZone AXI-to-APB bridga aclude an optional
software programming interface that allows dynamic swititgtof the security state of
a given peripheral. This can be used for sharing a periptetateen both the secure
and normal worlds.

DMA Protection. Certain peripherals (e.g., LCD controllers and storageroters)
can transfer data to and from memory using Direct Memory As¢®MA), which is
not access-controlled by the AXI-to-APB bridge. A Trust@esware DMA controller
(DMAC) supports concurrent secure and normal peripheralAlddcesses, each with
independent interrupt events. Together with the TZASC, PZK8IC, and the AXI-to-
APB bridge, the DMAC can prevent a peripheral assigned tantivenal-world from
performing a DMA transfer to or from secure-world memoryioeg.

Hardware Interrupt Isolation. As peripherals can be assigned to either the secure
normal world, there is a need to provide basic interruptisoh so that interrupts from
secure peripherals are always handled in secure world wéaedinterrupts on the cur-
rent ARM platforms can be categorized into: IRQ (normaliinipt request) and FIQ
(fast interrupt request). The Generic Interrupt Contrgi®lC) can configure interrupt
lines as secure or normal and enables secure-world soffimarenitor mode) to selec-
tively trap such system hardware interrupts. This enabédble interrupt partitioning
models. For example, IRQs can be assigned for normal-wqeédadions and FIQs for
secure-world operations. The GIC hardware also includgs to prevent normal-world
software from modifying secure interrupt line configuragoThus, secure world code
and data can be protected from potentially malicious noswaald interrupt handlers,
but TrustZone by itself is not sufficient to implement dewwualization.
Virtualization-based Isolated Execution. ARM’s Virtualization Extensions provide
hardware virtualization support to normal-world softwatarting with the Cortex A15
CPU family [8]. The basic model for a virtualized system ilves a hypervisor, that
runs in a new normal-world mode called Hyp mode (Figure 2 Tjapervisor is re-
sponsible for multiplexing guest OSes, which run in the redrworld’s traditional OS
and user modes. Note that software using the secure worfetisamged by this model,
as the hypervisor has no access to secure world state. Theviggr can optionally
trap any calls from a guest OS to the secure world. As hardapeorted virtualiza-
tion architectures have been studied for over four deca@fs\ye elide further detalil
on the ARM specifics.

4.2 Secure Storage

Current ARM platform specifications do not include a root rofst for long-term se-
cure storage. Platform hardware vendors are free to chauasénglement a propri-
etary mechanism if desired. The Secure Element (SE) is artemoprietary solution

or



for establishing a root of trust for mobile devices. SEs fewstorage and process-
ing of digital credentials and sensitive data in a physycaéiparate protected module
such as a smart-card, thereby reducing the physical attatkce. Embedded SEs are
commonly used to provide security for near field communica(iNFC) applications
such as automated access control, ticketing, and mobilagatysystems. For example,
Google Wallet uses embedded secure elements to store asgen@ancrypted payment
card credentiald,so that they are never available to a compromised mobiledes.
Development platforms such as the FreeScale i.MXBEB7) and Texas Instruments
M-Shield §4.7), employ an embedded SE to provide a tamper-resistantesexecu-
tion and storage environment. Giesecke & Devrient and T§/fare notable vendors
currently selling removable SEs. Using these, third-pdetyelopers can develop appli-
cations against a single platform-independent interfelmevever, removable SEs are
readily physically separated from the mobile device (¢hg SE may be independently
lost or stolen).

4.3 Remote Attestation

A remote attestation primitive relies on a private key tsaticlusively accessible by a
small TCB, and the presence of one or more registers to steesumements (crypto-
graphic hashes) of the loaded cog8)( A vast majority of off-the-shelf mobile devices
include support for secure or authenticated boot. The B@¥ is a small immutable
piece of code which has access to a public key (or its hash)aatitenticates boot
components that are signed by the device authority’s mrikay. Platforms such as the
FreeScale i.MX534.7) and Texas Instruments’ M-Shielf4(7) contain secure on-
chip keys (implemented using e-fuses) that are one-timgrammable keys accessible
only from inside a designated secure environment for sutheatication purposes.
However, none of the hardware platforms, to the best of oonkedge, support plat-
form registers to accumulate measurements of the loaded bogrinciple, this support
could be added in software by leveraging the hardware isolgirimitives and secure
storage described previously.

4.4 Secure Provisioning

Current mobile platforms implement mechanisms to autbetgiexternal information,
with the hash of the public portion of the signing key storgdniutably on the de-
vice [29]. However, such capabilities are currently restd to OEMs or carriers (e.g.,
software updates, assigning different identities to thaod® and remain unavailable
for use by arbitrary third-party developers.

4.5 Trusted Path

Platforms such as M-Shiel@4.7) provide basic hardware primitives to realize a trusted
path. A special chip interconnect allows peripheral and orgraccesses only by the
designated secure environment, and secure DMA channelsataigtee data confiden-
tiality from origin to destination. Such capabilities areity used for DRM (video

streaming) on certain off-the-shelf mobile devices [22jt ib remains unclear if they
are available to third-party developers.

Shttp://ww. googl e. comf wal | et/ faq. htm



4.6 Design gaps and Challenges

Having described the ARM hardware platform and securithiggcture and how the
different components interplay to provide various hardwsecurity features, we now
identify design gaps and implementation challenges inl@fshelf mobile devices that
prevent third-party application developers from fullyligiag the desired security fea-
tures.

ARM'’s hardware platform architecture is only a specificatiteaving the OEMs
free to customize a specific implementation to suit theiiress needs. This means that
OEMs could leave out components whose absence can sevenslyain some security
features and in some cases even break feature correctoegxample, the absence of
a TZASC (and/or TZMA) leaves main memory (DRAM/SRAM) acdbksto both
the secure and normal worlds. The only way to enforce mensafgtion between the
worlds is to use TCM { 4.1), which has a very limited size (typically 16-32 KB).
Similarly, DMA protection requires a TrustZone-aware DM@éntroller, GIC, TZASC
(and/or TZMA), and a TrustZone-aware AXI-to-APB bridge.erabsence of one of
these components will result in the DMA protection beindfieetive.

Unfortunately, most of today’s off-the-shelf mobile desgcinclude a single set of
devices shared between the secure and normal worlds andtdochale all the re-
quired components to fully realize the hardware securitynipives described previ-
ously. This results in a huge gap between functional spatidic and device imple-
mentation. OEMs and carriers are generally not concerndtdDWA-style attacks or
including a TZASC (and/or TZMA) because their physical séguequirements al-
ready force them to process sensitive data in TCM or otheircdespecific isolated
environments unreachable via DMA.

Many OEMs explicitly lock-out platform security featurd=or example, TrustZone
secure-world is enabled or disabled by a single bit in théesysconfiguration regis-
ter [5]. Once this bit is set to 1 (disabling secure-world)can no longer be cleared
until a device reset. In many off-the-shelf mobile deviceshsas the Droid, Droid-X,
BeagleBoard, and some Gumstix platforms, this bit is sethiy the boot-ROM code,
in essence allowing only normal-world operations.

From a developer’s perspective, an abundance of docurm@mtatd open-source
(or low-cost) development tools are two key factors thailifate device and plat-
form adoption. While ARM offers decent documentation andettgyment tools (Fast-
Model/RVDS/RTSM) to leverage the hardware security piive, the cost of the tools
(outside of academia) is greater than cost of a typical @ewde believe this to be a
significant reason why the open-source and hobbyist contgnbias not rallied around
ARM's tools.

4.7 Platform Case Studies

We now describe readily available, inexpensive developrplkatforms that come with
a host of interesting security features. These example® $ershow that there is no
shortage oBecurity potentiain mobile device platforms.

The FreeScale i.MX53 is a $149 MSRP development board withRivi Cortex A8
CPU and many security features. The i.MX53 supports a Higgufesrce Boot (HAB)
process where the system boot-ROM prevents the platform &xecuting unautho-



rized software during the boot sequence. The i.MX53 Sec@iantroller provides a
small Secure RAM (self-clearing on tamper detection ongaifé deallocation) area for
secure cryptographic key storage. The i.MX53 Security Aare¢or (SAHARA) pro-
vides a dedicated cryptographic engine for importing datartexporting data from
Secure RAM. The SAHARA has a dedicated TrustZone-aware Di#troller and
accelerates several cryptographic functions such as AES, BMAC, SHA-256 etc.
Texas Instruments M-Shield mobile security technologyg@] system-level security
solution with hardware and software components. The Mi8tiecure environment
has a secure state machine (SSM) as well as secure ROM and REM&ESM enforces
isolationby enforcing the system'’s security policy rules during se@nvironment en-
try, execution, and exit. M-Shield provides one-time pesgmable on-chip keys (using
e-fuses) that are accessible only from inside the seculieoamvent, and are typically
used for authentication and encryption. M-Shield also joles hardware cryptographic
accelerators, and hardware primitives fiarsted path The platform exposes the Trust-
Zone API §6) for managing secure services. According to the whiteep§®), there
are associated middleware and developer APIs for devajapinh secure services.

5 Isolated Execution Environments

An execution environment that is isolated from the deviceraping systems@) is per-
haps the most critical security feature describegBinSuch an environment can be used
to run secure services that multiplex hardware-backedggeatures, such as secure
storage §3), amongst the various stake-holders, including thirdypapplication de-
velopers. Greater flexibility can be offered to third-padgvelopers by allowing them
to run modules inside that environment. While this increakessize and complex-
ity of the isolated environment’s trusted-computing-baseh an environment remains
smaller and more trustworthy than a full-featured OS. Tlalable isolated-execution
hardware primitives§4.1) offer several options for implementing isolated execu
environments. We consider two high-level approacheseeitking a parallel execution
environment, or multiplexing a single execution enviromingsing a hypervisor.

5.1 Parallel Isolated Execution

One strategy for isolated execution is to put sensitive éodedistinct, parallel envi-
ronment. As described igd.1, current ARM platforms that support TrustZone offer a
mechanism by which secure software can execute in isolafithin a special processor
world. Several research proposals [14-16, 30, 48, 51] gmplastZone to achieve iso-
lation and provide a subset of the security properties dised ing3. Other approaches
make use of a physically separate protected module such msdcard to achieve
isolation [12, 13, 43]. We provide a detailed discussiorhefabove frameworks ig6.

5.2 Hypervisors

A hypervisoris a microkernel that can run other OSes as deprivilegedepsas. OSes
can run unmodified if the environment provided by the hyaw{optionally with help
from some of its deprivileged services) matches the phi/ser@ware expected by that
OS. Otherwise we say that the OS mustpaga-virtualized—modified to run in the
environment that is provided by the hypervisor. A hypervisan be used to implement
an execution environment that is isolated from the main O®ubying the operating



system as one process (a virtual machine), and by runninmtakiles to-be-isolated
as separate processes.

We now briefly summarize some noteworthy existing ARM hyjsawmprojects. Cur-
rent closed-source hypervisors include Winter [48], se2d],[ OKL4 [35], and IN-
TEGRITY [23]. Winter outlines an approach to merge TCG-fJtusted Computing
concepts with ARM TrustZone technology in order to build @@ Linux-based em-
bedded trusted computing platform. The selL4 project gaimsdriety in 2009 when
they announced a formally verified microkernel for the ARMtlatecture. OKL4 is
a microkernel-based embedded hypervisor with a small fodtpnd CPU support to
target mobile telephony. The INTEGRITY multivisor uses awséy kernel to provide
domain isolation and is targeted at in-vehicle infotaintreard next-generation mobile
devices. CodezefpXenARM [49], and KVMARM' are some noteworthy open-source
hypervisor initiatives. The CodeZero project proposesehyisor based on the L4 mi-
crokernel, written in C/C++ in under 10K SLOC. Samsung haspstied the Xen hy-
pervisor project to produce an open-source variant of the gervisor for the ARM
architecture. A port is underway of the popular Linux KVM (ikel Virtual Machine)
to the ARM architecture.

Hypervisor frameworks potentially hold value for all stakelders (OEMs, carriers
developers, and users). From an OEM perspective, secueshgpr frameworks allow
multiplexing security-critical baseband functionality the same processor as popular
unmodified OSes and user-facing applications, therebyciedguhe cost of materials
in a smartphone [35, 38]. From a developer stand-point, twge frameworks allow
creation of custom security applications that can benefihfimproved isolation (e.g.,
mobile banking and payments or anti-malware). From a uperspective, a hypervisor
framework may enable simultaneous execution of differédes§) offering a rich set of
security features and execution environments on a singlglendevice. Hypervisors
are deployed in custom (OEM- and carrier-specific) envirents on roughly 1 bil-
lion off-the-shelf mobile devices [35, 38]. These can bel kkely already are, used to
run security-critical services in isolation from a fullg&tured OS running on the same
CPU. Unfortunately, we observe that this is done transplgremthe user and to third-
party developers. These devices do not provide an open ARirtbparty developers to
runtheir own module# an isolated execution environment provided by the hyigerv

6 API Architectures

Having discussed the hardware primitives available onytsdaobile platforms irg4,
and how those can be used to implement reduced-TCB isoladedgon environments
in §5, we now discuss potential application programmer inte$a(APIs) that those
isolated execution environments may expose to developérslistinguish between two
types of APIsApp-IEEAPIs andModule-IEEAPIs. App-IEEAPIs specify how normal
applications running on the main OS interact with the ismlagxecution environment.
Module-IEEAPIs specify how to develop modules running inside the isol@xecution
environment.

Shttp://ww. | 4dev. org
“http://wki.ncl.cs.col unbi a. edu/ wi ki / KYMARM Mai nPage



A minimal way to make hardware security features availablepplication develop-
ers is for OEMs or network carriers to provide securityvald services running inside
the isolated execution environment, and expose them vialBgpAPIs. This approach
may be attractive to OEMs and carriers, who may not want to thearisk of allowing
third-party code to run in the device’s isolated environmenthe cost of implementing
strong isolation between modules in that environment. We suummarize the benefits
to application developers that arise from OEM- or carrievjled security services
exposed through an App-IEE interface. Secure stor§8g dan be implemented by
allowing direct access to a secure storage location, or Ipjeimenting a sealed-data
API. Data sealed in this way would be protected from offlirtacits, and attacks where
a different OS is booted (since the sealed-data-servicédwefuse to unseal for the
modified OS). Remote attestatiog3] implemented in the App-IEE-only model can
attest that a known OS image booted. This can provide sonueagas® to remote par-
ties that they are communicating with a client that started known configuration.
However, such mechanisms cannot detect if the OS has begiramised after it was
booted. Similarly, a secure provisioning3j service built in the App-IEE-only model
can ensure that exported data can only be accessed by a kresize that booted a
known OS. However, it would have to trust that OS to not compse the data itself
or to allow unauthorized applications to access that datausted-path service;8)
implemented in the App-IEE-only model can ensure to the tistran authorized OS
booted, but not that the OS remains uncompromised aftesibbated.

Module-IEE API for running custom code in the isolated exeeuenvironment mit-
igates some of the concerns above. We summarize the despedperties that arise
when a Module-IEE API for running custom code in the isolag&dcution environ-
mentis available to application developers. Module-IEE APIs fecwe storage enable
developers to ensure that only their module can accessdsdata, even if the OS is
compromised. Module-IEE APIs for remote attestation canaode isolated from the
OS, and need not include the OS’s measurements in their ecaittestations. Module-
IEE APIs for secure provisioning can ensure that only therided module running in
the isolated execution environment will be able to accessigioned data. A trusted
path implemented via Module-IEE APIs can provide assurdaodbe user that he is
communicating with the intended module running in the igalaexecution environ-
ment. We now discuss several published APIs. All of thesei§pé&pp-IEE APIs;
some of them additionally specify Module-IEE APIs.

Mobile Trusted Module. The Mobile Trusted Module (MTM) is a specification by
the Trusted Computing Group (TCG) for a set of trusted comguprimitives [44].
Like the Trusted Platform Module on PCs, the MTM provides $\Rir secure storage
and for attestation, but does not by itself provide an isolatxecution environment
for third-party code or facilities for trusted path. Unlikee TPM, the MTM is ex-
plicitly designed to be implemented software In particular, it is amenable to being
implemented as a module running inside an isolated exatatisironment on a mobile
platform. Also unlike the TPM, the MTM explicitly supportkd instantiation of sev-
eral parallel instances. This feature is intended to sugpoinstance for each of a few
stake-holders on a mobile platform. Adding an MTM alone toabite platform and al-
lowing third-party developers to access it via App-IEE ARIzuld serve to expose the



underlying hardware security features in a uniform way sstwrdware platforms. The
MTM could also be used in architectures where third-partjecis allowed to execute
in an isolated execution environment by instantiating sr@rivate, MTM instance for
each module that runs. This is similar to the approach takgméwious research on x86
platforms, with the MTM taking the place of the TPM [36, 40]ndther, orthogonal,
way to use an MTM is for the isolated execution environmesglftto use the MTM as
a back-end. This strategy could provide a uniform interfacémplementing the iso-
lated execution environment itself across multiple haméwaatforms. While several
researchers have implemented the MTM [13, 16, 31, 48, 5ig,nbt to our knowledge
implemented on any off-the-shelf mobile platforms.
OnBoard Credentials. OnBoard Credentials (ObC) [14, 30] is an architecture te pro
vide an isolated execution environment to third-partywsafe modules written in the
Lua scripting language [14]. It includes both App-IEE anddvte-IEE APIs. ObC pro-
vides most of the features describedsB1 an isolated execution environment, secure
(sealed) storage, and secure provisioning. It also prevaderm of trusted path, imple-
mented using a management application with a customizatedgface. Unfortunately it
does not provide a remote attestation API, though addingvarid be straightforward.
ODbC'’s key provisioning design seems to be optimized for DRg+oases, where it is
undesirable to have to re-encrypt media for each individesice, As a result, it relies
heavily on the physical security of all participating descSecured data is provisioned
or migrated between devices by encrypting it under a glokmgam-family symmetric
key. In this model, compromising the program-family keynfrany participating device
is sufficient to compromise the confidentiality and intggof data migrated by that
program-family on any device—a break-once, run-anywheeelatlt may be possible
to extend ObC to support a user-centric trust model, by camygprogram-family-keys
with user-keys, and putting the user in charge of provisigrthose keys to the de-
vices that the user owns or otherwise trusts. Such a provgjanechanism could be
built using a remote-attestation mechanism; while ObCragstthe existence of such
a mechanism (using device-keys), its API does not exposmatecattestation feature
to secure software modules. However, adding such an APldMoellstraightforward.
While multiple commaodity smartphones are equipped with #ngessary hardware sup-
port for ObC, enabling it requires a specially signed de¥icaware image from the
OEM or carrier, and is outside the reach of third-party depets and device owners.
TrustZone API. The TrustZone API (not to be confused with the TrustZone -ard
ware features) is an App-IEE API for managing and invokingdoies in an isolated
execution environment [6]. The TrustZone API model is fambstract and provides
interfaces for selecting/hich secure “device” or “world” to communicate witl§4.1).
Hence, the TrustZone API could conceivably be implemergesbmunicate with se-
cure services backed with other protection mechanismsyesr gervices running on a
remote device. The (publicly available) TrustZone API doesinclude Module-IEE
APIs. Hence, while it could be a useful set of APIs to exposapio developers, allow-
ing them to communicate with services running in an isolawegtution environment,
by itself it does not fully specify the APIs needed fdevelopingsuch service mod-
ules. We are not aware of any mobile platforms where the Zarst API is open to
third-party developers.



GP Trusted Execution Environment (TEE). The GlobalPlatform consortium is de-
veloping a set of standards for a Trusted Execution EnvientrtiTEE) [21]. It includes
both App-IEE APIs for applications to interact with isoldt@odules [19], and Module-
IEE APIs for developing such modules [20]. While the systeah#ecture specifically
suggests options where the environment is created by fexliy resources with an
untrusted OS, to our knowledge the only implementation$)effEE use a dedicated
device such as a Secure Eleméjat.2) or smartcard, and only run applications in the
secure environment that are pre-approved by the entitygieyg that device. The TEE
client specification [19] includes APIs for connecting talamvoking a secure applica-
tion. The TEE internal specification [20] defines the runtsupport available to secure
applications running inside the TEE. Of the security feaéitfrom§3, those missing are
remote attestation, secure provisioning, and trusted pagrinciple remote attestation
can be added, which, as discussedB)(can be used to build secure provisioning.

7 Analysis and Recommendations

We now give our analysis of the security properties that y&dmobile devices can
provide, and offer recommendations to the research contyndoiapp developers, to
platform integrators, and to hardware vendors. The set iofigyy stake-holders to-
day includes only the OEMs and telecommunications carfiansl their immediate
business partners). Thus, the hardware security prirsitivat are actually included in
mass-market mobile devices are only those of interest tOtkls and telecommuni-
cations providers. It is our primary recommendation thaliaption developers and de-
vice owners be considered first-clagake-holderdy OEMs and telecommunications
service providers. While economics may prevent the inctusioadditional hardware
security primitives in mass-market devices without a callimgebusiness reason, those
primitives which are present should be leveraged to offditemhal security features to
application developers and devices owners.

Research Community Recommendationdt is our recommendation to the research
community to continue to investigate viable architectuiersmultiplexing mutually-
distrusting stake-holders on resource-constrained reigecurity primitivessg). This
is especially important as virtualization extensions mider way to the ARM archi-
tecture §4.1), opening up the possibility for two divergent appraeg(split-world vs.
virtualization). Special attention should be paid to thegiility for a heterogeneous
threat model: OEMs and carriers are concerned about defagsénst physical attacks,
whereas many use-cases for protecting the end-user’'sm@gpaimarily concerned with
software-based attacks that arrive via a network conneciievelopment hardware
with a multitude of unlocked security features is now readilailable and inexpensive
(84.7). Though hardware with virtualization extensions remmanavailable at the time
of this writing, ARM’s toolkit enables emulation of CortexlA platforms today. The
fear of fragmentation of security APIs can be addressed bgldping consistent in-
terfaces. We recommend the adoption of consistent Modtfeaind App-1EE APIs, so
that application developers that endeavor to privilegeasse their programs today can
continue to reap the security benefits into the future wittsignificant risk of incom-
patibility or maintenance / support nightmares.

Application Developer Recommendationslt is our recommendation to application
developers to continue to demand improved security APIspaimitives in the devel-



opment environment for popular mobile device platforms. &deourage application
developers to learn about existing proposals for Module-#ad App-IEE APIs, and
to consider their implications for the architecture of ttegiplications. Especially those
developers with an interest in open-source can produceerefe implementations that
we expect may be rapidly adopted by other developers.

Platform Integrator Recommendations.We recommend that platform integrators (typ-
ically network carriers) take an interest in the securitapplications on their devices.
We argue that they should adopt a realistic perspectivadegpthe robustness of the
OS APIs for security. Existing Module-IEE and App-IEE prgpts should be adopted,
to avoid fragmentation and a lack of developer buy-in. Theseurity features will
enable application developers to add new value to the maleNéce platforms as a
whole, resulting in an overall increase in the utility of niellevices. We strongly urge
platform integrators to make hardware security featureslable that are otherwise
included in the silicon but disabled immediately during rgviboot. As a viable first
step, we recommend an implementation of the TCG’s Mobilestedi Module (MTM)

in devices with TrustZone capabilities that are otherwisesed §6). This suggestion
is consistent with the App-IEE-only approach discusseféinand offers new secu-
rity features to application developers. Note that it dogtsyive application developers
the ability to directly execute their own code inside of aplased execution environ-
ment §3 and§6). Thus, itis a reasonable compromise between consegyask-averse
OEMs and carriers, and a useful set of APIs for applicatiorelbpers.

Hardware Vendor Recommendationslnconstrained memory isolation and improved
protection against DMA-based attackgl ) are significant needs in current device
hardware. It is more difficult for us to justify the added empe in device hardware at
the present time. If the market does indeed parallel ourneeendations in the preced-
ing sections, and existing hardware security featuresnttegenable new applications,
then the logical next step is to offer additional hardwareusiéy features. To this end,
our recommendation is to address the DMA insecurity prob(g6). This will not
only add protection against currently prevalent attactsfmalicious peripherals [47],
but will also result in the automatic inclusion of memory eekb-space controllers such
as a TZASC and/or TZMAg4.1), so that security-sensitive modules that executein is
lation need not grapple with today’s dearth of Tightly CatpMemory.
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