
A Paged Domain Name System for Query Privacy

Daniele E. Asoni, Samuel Hitz, and Adrian Perrig

Network Security Group
Department of Computer Science, ETH Zürich

{daniele.asoni,samuel.hitz,adrian.perrig}@inf.ethz.ch

Abstract. The lack of privacy in DNS and DNSSEC is a problem that
has only recently begun to see widespread attention by the Internet and
research communities, and the solutions proposed so far only look at
a narrow slice of the design space. In this paper we investigate a new
approach for a privacy-preserving DNS mechanism that hides query in-
formation from root name servers and TLD registries. Our architecture
lets TLD registries group the DNS records in their zones together into
pages. Resolvers cache all pages locally, and retrieve only small incre-
mental updates to optimize performance. We show that this strategy
is particularly effective given the relatively static nature of TLD zone
records. We analyze the privacy guarantees to assess the potential and
limitations of our approach; we also evaluate the memory overhead for
a resolver, and obtain feasibility guarantees through a prototype imple-
mentation of the new functionalities for resolvers and registries.

1 Introduction

The Domain Name System (DNS) [29,30] is a fundamental building block of
the Internet, providing host name to IP address translation. Its design has been
sufficiently scalable to cope with the Internet’s growth, but among its deficiencies
is the lack of privacy protection. The DNS security extensions (DNSSEC), which
are still far from widespread adoption, have addressed some of DNS’s flaws, but
privacy has explicitly remained a non-goal in the design of DNSSEC [5]. While
the Internet Engineering Task Force (IETF) has recently started considering
privacy concerns for DNS more seriously [8], so far only minor improvements
have been proposed [9].

Users with very high privacy requirements will resort to an anonymous com-
munication system (ACS) such as Tor [16], which will anonymize not only the
DNS lookups, but also the subsequent communications with the hosts whose
addresses are obtained through the lookup. This is necessary, for instance, if a
user wishes to hide from its own Internet service provider (ISP) what hosts it
communicates with. However, communication over Tor comes with harsh per-
formance penalties, so for clients which have some degree of trust in their ISP,
a more lightweight solution is desirable. In particular, we identify the main pri-
vacy threat in this scenario to be large-scale information collection at the highest
levels of the DNS hierarchy: the name servers of the root and of the top-level

4. Q: page a379

5. A: page a379

Client

page
cache

ISP’s Resolver

1. Q: www.example.com

TLD
Registries

SLD
Nameserver2. example.com is on

 page a379
3. Page a379 not in cache

6. Q: www.example.com7. A: 198.51.100.35

8. A: 198.51.100.35

Fig. 1: High-level overview of the PageDNS architecture. Steps 2–5 are specific to
PageDNS, while the others are as in DNS. In the example shown, the entire page a379
is retrieved from the TLD registries, but in practice the page would be cached at the
resolver, and at most a (much smaller) incremental update would be retrieved.

domain (TLD) registries. These are centralized observation points that are ide-
ally suited for surveillance by a nation state actor. While a recent proposal [9]
would, if accepted, hide query information from the root name servers, there
seems to be no possibility in current DNS to hide sensitive information from
TLD registries.

Although users gain some privacy by relying on the recursive resolver pro-
vided by their ISP, this method is not secure against an adversary who is able
to correlate multiple queries through timing. For instance, the adversary may
observe that a certain set of domains is always queried together in a short time
interval, and thus infer that the same user is responsible: if one of the domains
identifies the user (e.g., because it is the user’s own website, which is other-
wise scarcely visited), then the adversary is able to deanonymize all the other
queries as well. Furthermore, users may wish to conceal the fact that a certain
domain is being queried at all, a property akin to private information retrieval
(PIR) [11,31], which, incidentally, cannot be achieved even if DNS lookups are
performed over an ACS.

In this paper we propose a system whose goal is to prevent information
leakage to the DNS root and TLD registries, including the information of what
domains are actually queried. Our system requires changes to the TLD registries
and to the recursive resolvers, but is transparent to clients and to second level
domain (SLD) authoritative name servers, which continue to use the traditional
DNS protocol. The core idea of the system is to group records in the TLD zones
into fixed sets we call pages, which are created and maintained jointly by the TLD
registries. Recursive resolvers query for entire pages, rather than single records,
which provides a basic amount of privacy (see Figure 1 for a high-level overview).
We improve the performance of this basic mechanism with optimizations such
as full page caching on the recursive resolvers, and we improve its privacy with
enhancements such as cover page queries from the recursive resolver to the TLD
registries.

1.1 Overview

Our Paged Domain Name System (PageDNS) introduces a new way in which re-
cursive resolvers can obtain records from TLD registries in a privacy-preserving
manner. The TLD registries collaborate to group the records of all their zones
into 2l (' 105) sets of records which we call pages. Each page contains n records,
with n ' 104, assuming a total number of records of around one billion (see Sec-
tion 4.1). The overwhelming majority of these records are name server records
of second level domains (SLDs), i.e., records providing the IP addresses of the
name servers authoritative for various SLDs (e.g., example.com). To spread the
records uniformly across the pages in a way that allows resolvers to easily deter-
mine which page stores which record, each page is given a unique l-bit identifier,
and each record is assigned to the page whose identifier matches the first l bits
of the hash value of the record’s domain name.

A recursive resolver with PageDNS support should, for performance reasons,
cache all pages locally, de facto mirroring all TLD zones. These cached copies are
kept indefinitely, in particular beyond their expiration time. When queried for a
domain name (say www.example.com), the recursive resolver proceeds as follows.
First, it determines which page should store the corresponding SLD record (the
NS record for example.com). Second, it checks whether it has an up-to-date
copy of that page in its cache. If not, the resolver sends a page query to one
of the TLD registries, specifying the version number of the locally cached copy.
The registry then replies with a list of records that have been changed, added,
or removed since the specified version. Because the name servers for SLDs are
relatively static, as we show in Section 4.1, the size of these incremental updates
will typically be small. Finally, once the recursive resolver has obtained the NS
record for the SLD, it completes the iterative lookup as in DNS, and returns the
response to the client.

Replication of popular records. Requesting a page instead of a single domain
protects query privacy, because an adversary observing a page request cannot
directly determine which domain among the ∼104 domains in the requested page
is accessed by a client. However, domains have very different popularity, meaning
that the probability that a certain page is requested because it contains, e.g.,
the record for twitter.com is much higher than the probability that the page
was accessed due to some obscure domain that has its record on the same page.
To counter this problem and provide privacy protection even for popular do-
mains we replicate records of popular domains across multiple pages: the higher
the popularity of a domain, the higher the replication degree of its record. In
Section 3.1, we show in particular that an optimal solution is to replicate the
∼0.01% most popular domains, with the most popular one being replicated on
all pages.

⋮

⋮

⋮

⋮

⋯ ⋯

⋯ ⋯

Fig. 2: Structure of a PageDNS page. The highlighted detail on the right shows the
structure of a single record for the SLD example.com.

2 Design

In this section we describe the details of our Paged Domain Name System
(PageDNS). We begin by describing our threat model and privacy goals, and
then define the structure of pages, name resolution process, and other protocol
aspects.

2.1 Threat Model

We want to prevent (government-level) monitoring which targets DNS query
information. In particular, we want to prevent linkability between clients and
the queries they make, and, to the extent possible, we also try to hide the
fact that a certain name is being queried, i.e., that there is interest by some
client for a certain name. We exclude the case of a compromised client ISP,
which would be able to observe not only the DNS queries of its clients, but also
the communications after that, requiring the use an anonymous communication
system (ACS) to achieve anonymity. For analogous reasons, we do not consider
other types of in-network adversaries. Instead, we aim to provide privacy with
respect to the DNS root and TLD registries, which constitute a centralized point
which is ideal for mass surveillance.

2.2 Page Structure

PageDNS pages consist of a sequence of records, plus information such as the
page’s length, expiration time, and version number. Each page is identified by
an l-bit hash prefix, and all records whose domains’ hash values match the prefix
are contained in the page. Additionally, each page has a small separate section
which contains the records of replicated domains (whose hashes will typically
not match the prefix, see below). Besides the hash of the domain name, each
record contains a set of addresses of the domain’s name servers, and additional
information such as the type of the addresses (e.g., IPv6 or IPv4). The reasons

for indexing records by hash instead of including the domain name are twofold:
first, it fixes the length of the identifier; second, it provides a degree of protection
against zone enumeration [26]. In Figure 2 the high-level structure is depicted
for one sample page, and the details for the record of domain example.com are
shown. This sample record contains four IPv6 addresses, which in terms of size
we consider to be a reasonable upper bound.

Since one IPv6 address is 16 bytes long, and assuming a hash size of 32 bytes1,
we obtain 96 bytes, excluding the additional information, so overall we round
the size of a record to 100 bytes for the scope of this discussion. Considering a
limit of 1 MB on page size and a total of 109 domain names (see Section 4), this
implies a total of 105 pages, each containing around 104 records. We estimate
the variance of the size of pages in Appendix B, and we find that the probability
of a deviation of the size of over 10% is negligible.

Record Replication. We observe that the popularity of domains has the potential
to heavily affect the privacy of page queries. For instance, a query for a page
which contains the record of a very popular domain is likely to be due to an access
to that domain. To mitigate this problem we adopt record replication for popular
domains. In Appendix A, we show analytically that the optimal replication is
proportional to the popularity of the domain, assuming that the popularity of
domains follows a Zipf distribution.2 In particular this means that approximately
only the top 200,000 domains need to be replicated, with the most popular
domain being replicated on all pages (the effects of replication become clearer
in our analysis in Section 3.1, and are depicted in Figure 3). This replication
has an overall size overhead of 0.23% (with a median of 25 replicated records
per page), but it allows to hide accesses even to the most popular domains.
Furthermore, our analysis shows that the probability of accessing a certain page
because of interest in a domain with low popularity (any non-replicated domain)
is lower than the probability that that page is being accessed because of interest
in the most popular domain (which is replicated on that page). This means that
replication provides effective and relatively uniform privacy protection for less
popular domains. These replicas are placed separately on a page (e.g., at the
end, see Figure 2) and are identified by their hash value.

Assigning records to pages. Mapping records to the m = 2l pages is not entirely
trivial. For non-replicated domains, we use the first l bits of the hash value of the
domain name to determine the page identifier to which the domain is assigned.
However, for replicated records another scheme is needed. We propose a scheme
1 We consider SHA-256 as a reasonable choice for the hash function. While the size
could be reduced to 16 bytes while still retaining a negligible collision probability in
a non-adversarial setting, a larger size is necessary if we want to have a negligible
probability even in a scenario where the adversary actively tries to find a domain
name which will result in a collision.

2 In practice, popularity will vary on a regional basis. We envision that replication
may be made region-specific (the non-replicated part of each page would remain the
same). We leave a more detailed analysis of these aspects to future work.

based on a pseudo-random permutation (PRP), keyed with the hash value of
the domain name: this PRP has as domain the set of all page identifiers (i.e., all
integers from 1 to m).3 For a replicated domain d, the PRP maps all integers
between 1 and the replication degree of d, r(d), to the page identifiers on which
the replicas should be stored. Since the PRP is keyed with the hash of d, the
mapping will be independent from the mapping of replicas for other domains.

Note that this method ensures minimal modifications to the pages as the
replication of a domain changes: assuming a domain previously replicated rold
times increases its popularity and has to be replicated rnew times (rnew > rold),
the first rold replicas will remain the same, and only rnew −rold additional pages
have to be changed to include the replica. Similarly, if rnew < rold , the first rnew
replicas will remain the same, and only rold − rnew pages have to be changed to
remove the extra replicas.

We point out that for this mechanism to work, the resolvers need to be
aware of the replication degree of the domains they look up. To that end, the
TLD registries create a special meta-page for replication, which lists all the most
popular domains (by their hash value), and for each of them it provides the
replication degree. This meta-page has a size of about 7 normal pages (7 MB),
and is updated less frequently. We show how the TLD registries determine the
popularity of domains in Section 2.4. In the next section, we show how clients can
resolve a name, including more details about how the case of replicated domains
is handled.

2.3 Resolving a Name

Algorithm 1 shows the steps a recursive resolver performs when resolving a fully
qualified domain name (FQDN), e.g., www.example.com. First, the algorithm
splits the FQDN into the SLD (example.com) and the remaining part (typically
the host name, www). On a high-level, the algorithm then retrieves the address
of an authoritative name server for example.com using PageDNS (Lines 3–30)
before completing the lookup for www.example.com using traditional DNS. The
resolver starts by identifying the replication degree of the SLD. To obtain this
information, it retrieves the meta page from the registries which contains all the
replicated domains together with their replication degree. As for ordinary pages,
the resolvers also keeps the meta page in its cache, and will therefore usually
only need to retrieve an incremental update of the meta page. If a domain is not
replicated it has a replication degree of 1.

Then the algorithm checks whether it already has a cached copy of a page
that contains the record for the domain. To that end, the algorithm computes the
possible page identifiers that could contain the record by calling CalcIdentifier
(Algorithm 2) for all i ∈ {1..ReplDeg} and checks if the cache contains any of
these pages. A possible optimization for this step would be to keep track, for

3 PRPs of small domain size can be implemented using format-preserving encryption
(FPE) schemes, there exist suitable encryption modes that use standard AES block
ciphers as a primitive and achieve FPEs of arbitrary domain size.

Algorithm 1 FQDN resolution on the recursive resolver.
1: procedure ResolveFQDN(FQDN, MetaPage, Cache, Registry)
2: Host, Domain ← DomainSplit(FQDN)
3: if Domain ∈ MetaPage then
4: ReplDeg ← MetaPage[Domain].ReplDeg
5: else
6: ReplDeg ← 1
7: end if
8: for all i ∈ RandomShuffle({1..ReplDeg}) do
9: PageId ← CalcIdentifier(Domain, i)
10: if PageId ∈ Cache then
11: Page ← Cache[PageId]
12: break
13: end if
14: end for
15: if not Page or HasExpired(Page) then
16: if not Page then
17: k ← RandomChoice({1..ReplDeg})
18: PageId ← CalcIdentifier(Domain, k)
19: Page ← Query(Registry, PageId)
20: Page.Registry ← Registry
21: else
22: Page ← Query(Page.Registry, PageId, Page.Version)
23: end if
24: Key ← PubKey(Registry)
25: if not Verify(Page.MerkleRoot.Sig, Key) then
26: abort()
27: end if
28: Cache[PageId] ← Page
29: end if
30: NS ← BinSearch(Page, SHA256(Domain))
31: IP ← CompleteLookup(NS, Host)
32: return IP
33: end procedure

the more highly replicated records that are requested, of the cached pages that
contain them, in order to avoid the computation of tens of thousands of hashes.
This step can also be optimized when all pages are cached by the resolver.

The page identifier calculation depends on the chosen replica ID (k): if k is 1,
the original record for the domain is chosen, and the page identifier determined
as the l-bit prefix of the hash of the domain name (Algorithm 2, line 3). If k > 1,
then the page is determined by applying a PRP with domain {1, . . . , 2l} keyed
with the hash of the domain name to k (line 5).

If the cached page containing the domain has expired, or if no page contain-
ing the domain is cached by the resolver, a page query has to be send out. In
case a cached page is available but outdated, the resolver can perform an incre-
mental query by attaching the version number of the cached page to the request.

Algorithm 2 Calculating the page identifier for a (possibly replicated) domain.
1: procedure CalcIdentifier(Domain, k)
2: if k == 1 then
3: PageId ← SHA256(Domain)[0:l]
4: else
5: PageId ← PRP2l(SHA256(Domain); k)
6: end if
7: return PageId
8: end procedure

Note that we avoid querying multiple registries for the same page (line 22). If,
on the other hand, no page is cached, the algorithm needs to download an en-
tire page page. First, a replica ID is chosen uniformly at random from the set
{1..ReplDeg}. Then, a page containing the chosen replica is determined using
CalcIdentifier, and the registry is queried for that page.

Once the page is obtained, the algorithm verifies the page’s integrity. For
this, the resolver obtains a signed root of a Merkle hash tree (not show in the
algorithm). This hash tree is computed by the registries, for every version num-
ber, over all the pages. The resolver verifies the signature of the root (using
the standard Web PKI), and verifies that the obtained page is in the tree. This
mechanism allows resolvers to use gossiping protocols to ensure that the same
hash tree root provided by the queried registry for a specific version is seen by
all resolver, and across all registries.

If the verification is successful the page is accepted and updated in/added
to the cache. The lookup for the record of interest on the page can be done
efficiently by a binary search over the domain name hashes. Communication has
to be done over TCP or another reliable transport protocol, given the size of the
data returned by the registry (similar to what is done today in DNS for large
responses [15]); this has the advantage of preventing reflection and amplification
attacks [34]. To complete the lookup and obtain the address of the actual host
(Algorithm 1, line 31), the resolver sends an ordinary DNS query directly to the
name server whose address was obtained through PageDNS.

2.4 Keeping Pages Updated

Popularity estimation for replication. As explained in Section 2.2, popular do-
mains are replicated on multiple pages, according to their popularity. TLD reg-
istries have to determine the approximate popularity for all these domains, and
replicate the records across the pages accordingly. To determine the popularity,
we assume that a large fraction of the resolvers can authenticate themselves to
the registries (possibly through some out-of-band mechanism), and then provide,
at regular time intervals, the approximate number of requests received for the
most popular domains (using some randomization to hide the exact numbers).
Based on the reports by the resolvers, the registries can then assess the overall
popularity of the most popular records and update the pages and meta page

accordingly. We point out that strong fluctuation in the popularity are possi-
ble (the so-called slashdot effect) and would require updating a high number
of pages, which is expensive for the registries. For efficiency we therefore allow
registries to consider an averaged popularity, computed for example as a mov-
ing average, which obviates the need for rapid and expensive updates of a large
number of pages. It is important to note that this comes with some privacy cost
for accesses to domains whose popularity has recently increased, which become
more identifiable. Similarly, regional differences in popularity can also impact
the identifiability of queries.

Page updates and authentication. At regular intervals, TLD registries will issue
new versions of the pages which need to change as a consequence of updates,
insertions, and removals. To authenticate the updated pages (the new versions),
each registry constructs a Merkle tree over all the updated pages, and signs the
root. When resolvers query for a page, the registries will also provide the signed
root of the tree, as well as a proof (which consists of a list of hashes) that the page
is part of the tree. We use a binary tree with the pages sorted according to their
identifier (every level determines one additional bit): this makes it impossible
for a registry to include two pages with the same identifier.

3 Privacy and Security Analysis

In this section we analytically model the privacy guarantees of PageDNS. We
start by identifying the ideal replication degree of every domain across pages,
depending on their popularity. We then derive the analytic expression of the
probability that an adversary is able to correctly guess the target domain (i.e.,
the domain the client is accessing) depending on the domain’s popularity, given
that the adversary is able to observe the page requests made by the recursive
resolver queried by the client. We use this probability distribution as the main
metric for the efficacy of PageDNS, and we analyze the impact of replication,
page fingerprints (one website access causing multiple PageDNS page requests)
and of cover page queries (retrieving additional pages to provide extra privacy).
Cover page queries also model the fact that the DNS queries by other clients
of the same resolver cause additional page requests, as well as the fact that the
resolver can autonomously update expired pages when idle.

3.1 Replication

Our goal in PageDNS is to hide a client’s target domain, and ideally we would
like to hide it independently of its popularity. As discussed in Section 2.2, to
hide target domains with high popularity we have to replicate their records
across multiple pages. To determine how much each record should be replicated
depending on its popularity, we try to optimize for two goals. First, we want to
keep the total number of replicas to a minimum. Second, denoting with Ix the
identifiability of a domain x, i.e., how easily x can be guessed based on a page

request (we provide a formal definition in Section 3.2), we want to minimize
the maximum ratio Ix/Iy for any two domains x and y. We solve this problem
analytically in Appendix A under the assumption that domain popularity follows
a Zipf distribution with parameter s (Jung et al. [23] show that this is the case,
and that s = 0.91). We obtain the following replication function that maps a
domain’s rank k ∈ {1, . . . , N} to the replication degree of that domain:

r(k) = max{1, Rk−s} (1)

where R is the maximum replication degree. Note that r(k) = 1 means that only
one record exists for the domain of rank k. Evidently R ≤ m, where m denotes
the total number of pages; the optimal choice in terms of privacy is R = m.

3.2 Identifiability

When accessing a certain domain for web browsing, it is likely that a number of
additional domains have to be looked up by the client: web pages contain external
content from CDNs, from advertisement providers, or from user tracking sites
(e.g., google-analytics.com [1]). While some of these might be safely blocked
by the browser, others are necessary for correctly displaying a page.

For simplicity in our analysis we consider the case where each domain corre-
sponds to a single website (e.g., this can be the index www webpage). We define
the page fingerprint of a domain as the set of pages which are requested due to
an access to the website corresponding to that domain. Different domains may
have the same page fingerprint; we also note that, owing to replication, the same
target domain may have many different possible fingerprints. Intuitively, the size
of a fingerprint and the replication degree of the domains in the fingerprint deter-
mine its uniqueness: a relatively unique fingerprint can undermine the protection
provided by PageDNS. In this section we investigate how identifiable queries are
according to the popularity of the domain, depending on the replication degree,
on page fingerprinting, and the amount of cover page queries.

To measure the privacy risk of domain queries, we analytically determine the
probability of an adversary correctly guessing a target domain with a certain
rank, given that the adversary is able to observe the page fingerprint resulting
from the client’s access to the target domain. We assume that domains are
distributed according to a perfect Zipf distribution with parameter s = 0.91 [23].
This implies that every domain has a unique rank, and we will therefore often
use the rank of a domain to refer to the domain itself. For instance, we use
(lowercase) k to indicate a specific domain of rank k, where the set of possible
values of k is K = {1, . . . , N}.

We define a random variable K indicating the rank of a domain chosen ac-
cording to the Zipf distribution. We also define a stochastic process F that maps
each domain k to its possible fingerprints. More precisely, F maps each domain k
to a random variable that has as possible values all the sets of pages that can be
k’s fingerprint—we assume that for any replicated domain the resolver chooses
one of the possible pages uniformly at random. We will also, as a slight abuse

of notation, consider the application of F to the random variable K, F (K): this
represents another stochastic process, the possible outcomes of which are deter-
mined by first drawing a domain k from K, and then applying F to k. Finally,
we also consider a random variable T = T (k), which represents the choice of the
cover page queries when querying for domain k.4 For ease of notation we will
often write the argument of the stochastic processes as subscript, e.g., FK for
F (K) or Tk for T (k).

We can now provide the definition of the identifiability of domain k, which
denotes the probability of the adversary correctly guessing k having observed
one of k’s fingerprints.

Definition 1 (Identifiability). We define the identifiability of a domain k as
follows:

Ik = Pr(K = k | FK ∪ TK = Fk ∪ Tk) (2)

Intuitively, this models a rational adversary that has no prior information about
the preferences of the client. The adversary observes a set of page requests coming
from a resolver, and assumes that they are due to an access to an unknown
domain K chosen by the client according to the Zipf distribution. The adversary
then determines, for all k′ ∈ K, the probability that K = k′ given the observed
set of pages. This probability for k′ = k (where k is the domain actually accessed
by the client) is the identifiability of k.

We now show how the identifiability can be expressed in a form that allows
us to compute it. For the definition of the basic notation see Section 3.2. First,
we apply Bayes theorem.

Ik = Pr(K = k | FK ∪ TK = Fk ∪ Tk)

=
Pr(FK ∪ TK = Fk ∪ Tk | K = k) Pr(K = k)∑

k′∈K Pr(FK ∪ TK = Fk ∪ Tk | K = k′) Pr(K = k′)
(3)

From Appendix A, Pr(K = k) = f(k) (Zipf distribution). We can rewrite Equa-
tion 3 as follows, where for a random variable X we use notation X ′ to indicate
another random variable with the same distribution.

Ik =
Pr(Fk ∪ Tk = F ′k ∪ T ′k)f(k)∑

k′∈K Pr(Fk′ ∪ Tk′ = Fk ∪ Tk)f(k′)
(4)

Denoting with A the event Fk ∪ Tk = F ′k ∪ T ′k and with B the event Fk′ ∪ Tk′ =
Fk ∪ Tk (for k′ 6= k), we rewrite the equation as follows.

Ik =
Pr(A)f(k)

Pr(A)f(k) +
∑

k′∈K\{k} Pr(B)f(k′)
(5)

If we consider random variable Lk = Fk ∪ Tk, it can be seen that the values
it assumes (sets of pages) are all equiprobable, since all pages in Fk are chosen
4 The pages in T are chosen uniformly at random; the only dependency that T has
from k is for its size. For instance, |T | may be chosen such that the total number of
page requests is higher than or equal to a given minimum.

uniformly at random among the possible replications of each domain, and the
cover pages in Tk are chosen uniformly at random among the remaining pages.
Therefore, denoting with d(X) the possible values (range) of a random variable
X, we have that Pr(A) = 1/d(Lk). With the assumption that the size of the
fingerprint is equal to constant q for all domains, and assuming also a constant
number of cover pages t, we can rewrite the probability as follows.5

Pr(A) =
1

d(Lk)
=

1

r(k)qmt
(6)

Note that r(k) is the replication degree of k (Equation 1). There is an important
assumption behind this equation, which is that all pages in the fingerprint of a
domain have the same popularity as the domain itself. We call this popularity
inheritance, and the rationale behind it is that if a domain is very popular and
requires access to another domain, then the other domain will be requested
at least as often. However, this means that for non-popular domains we might
be overestimating the identifiability, since non-popular domains may very well
include contents from popular domains. We leave it to future work to make the
calculation of the identifiability with fingerprints for unpopular domains more
realistic.

To compute probability Pr(B), we note that it is actually independent of the
value of k′, as long as k′ 6= k. It can be shown6 that Pr(B) is simply equal to
the probability of guessing a randomly chosen set of pages of size q+ t (lottery-
winning probability). We rewrite the probability as follows.

Pr(B) =
1(
m
q+t

) ' 1

mq+t/(q + t)!
=

(q + t)!

mq+t
(7)

Finally we rewrite Equation 5 as follows:

Ik '
1

r(k)qmt f(k)

1
r(k)qmt f(k) + (1− f(k)) (q+t)!

mq+t

(8)

Limitations of the identifiability metric. Because of how the identifiability is de-
fined, our results are in a sense averaged over all possible assignments of records
to pages (i.e., over all possible hash functions). This means that in a concrete in-
stantiation, there might be pages which are worse for privacy. In Appendix B we
determine the distribution of the number of ordinary records and of the number
of replicas per page. Our results show that the number of ordinary records will
in the worst case be less than 10% below the average, which would not signif-
icantly impact the identifiability. However, the number of replicas will be 7 at
5 We are slightly approximating the exact value in Equation 6, ignoring the fact that
the pages in T are chosen from the set of all m pages excluding those that are already
part of the fingerprint.

6 To formally show this step, one needs to average out the probability over all possible
replica sets that could be assumed by all domains, i.e., over all possible hash functions
(or all possible sets of domain names of size N).

100 103 106 109

Domain rank (log scale)

10-5

10-4

10-3

10-2

10-1

100

Id
e
n
ti
fi
a
b
ili

ty

No replication

Replication R=105 (max)

Replication R=104

Zipf (no observation)

Fig. 3: Identifiability of domains accord-
ing to their rank, depending on the max-
imum replication allowed. The figure also
shows the Zipf distribution, which is equal
to the identifiability prior to any observa-
tion of pages by the adversary. We point
out that the sawtooth pattern is due to
rounding in the replication function.

100 103 106 109

Domain rank (log scale)

10-5

10-4

10-3

10-2

10-1

100

Id
e
n
ti
fi
a
b
ili
ty

q=1, t = 0

q=1, t = 3

q=2, t = 0

q=2, t = 6

q=2, t = 8

q=3, t = 0

q=3, t = 9

q=3, t = 12

Fig. 4: Identifiability of domains accord-
ing to their rank, depending on the size
of the fingerprint q and on the number of
cover queries t. As can be seen, fingerprints
can be highly effective for identifying a
website access. However, with a number
of cover queries between twice and three
times the size of the fingerprint, strong pri-
vacy can still be guaranteed.

the minimum with high probability, the median being 25, so this could have an
impact: in particular, a page with few replicas would cause higher identifiability
for the popular records on it (closer to the cases with little or no replication in
Figure 3). For the non-replicated records, the worst case happens for a somewhat
popular record to be on a page with few replicas and few other records of similar
or higher popularity. Even in such an (unlikely) case, the replicas alone will still
provide privacy protection.

3.3 Results

We use identifiability (Definition 1) as a metric to measure the effectiveness of
PageDNS, showing in particular how the identifiability curve (obtained from all
possible values of k) varies depending on the replication degree, on the use of
cover page queries, and on page fingerprinting.

Identifiability and replication. Considering the basic scenario without finger-
printing or cover queries, we study the effectiveness of the basic mechanism of
PageDNS. Figure 3 shows the identifiability curves for two maximum replication
degrees, R = 104 and R = m = 105, the latter being the highest possible repli-
cation degree where the most popular record is replicated on all m pages. The
figure also shows for comparison the case where no replication is used, and it can
be seen how replication is indeed able to achieve its goal of hiding requests to
popular domains. We have plotted also the prior knowledge of the adversary, i.e.,
the identifiability of domains when the adversary does not observe the requested
pages (this is simply the Zipf distribution).

Min Median 95th Max
considering all SLDs 1 12 47 238
without top 100 1 4 24 211
without top 1,000 1 2 8 172

Table 1: Distribution of the fingerprint size q as observed loading 10,971 web-pages.
The total number of SLDs seen over all page loadings is 20,777. The table shows how
most domains in the fingerprints are common (e.g., advertisement, analytics, social
media) by showing how the fingerprint size is reduced when we exclude the most
common 100 or 1,000 SLDs.

Fingerprinting and cover queries. In Figure 4 we show the impact on identifi-
ability of page fingerprinting and of cover queries, considering small fingerprint
sizes. We consider a fingerprint size of q, including the page of the main domain,
and an amount of cover queries t. As can be seen, without cover queries the use
of page fingerprinting by an adversary can be very effective, leading to complete
privacy loss in many cases. Fortunately, we find that cover queries are sufficient
to compensate for this loss. In particular, an amount of cover queries of three
times the size of the fingerprint appears to be enough to provide a privacy level
lower than the basic one obtained for q = t = 0 (even for q > 3, which is not
shown in the figure).

We have also analyzed the size of fingerprints in practice: we have logged all
SLDs that appear in HTTP GET/POST requests for 10,9717 out of the 20,000
most popular domains (according to Alexa [35]) by automatically loading all
these pages in a browser and relaying all requests made by the browser through
a custom proxy. This gave us a list of unique SLDs for each domain loaded by
the browser.

The results, reported in Table 1, show that indeed many websites require
external content from a large number of domains, but also that many of these
domains are common across different websites. Indeed, if we discard the most
popular 100 SLDs, the median number of additional DNS queries performed is
4, and it drops to only 2 when discarding the top 1,000. Still, there appear to be
certain websites which require an exceptionally large number of SLD lookups.
While we expect that in most cases these accesses could be hidden due to the
large number of queries being constantly performed by the resolver of a medium-
large ISP, and due to the fact that a number of page requests can be avoided as
fresh page copies are still in the resolver’s cache, we cannot in general provide
strong guarantees for such websites. To be secure, clients would need to be made
privacy-aware, and restrict the number of SLD queries per page (or perhaps
space them over a longer period of time). We leave a more detailed investigation
of these possibilities to future work.

7 The number of accessed domains is almost half of the 20,000 we consider: this is
because many of them did not have a www host, and also due to some restrictions we
imposed on the loading time.

Total Min Max Mean Median 95th

16205 1 32 5.40 4 30
Table 2: Number of changes of authoritative name servers for the 3000 domains that
had at least one change over the monitored 25 days.

3.4 Security Against Active Attacks

In previous sections we have analyzed the privacy guarantees of PageDNS with
the assumption that the adversary is able to see the page queries made by recur-
sive resolvers, but does not perform any active attack (i.e., deviating from the
protocol). However, it is possible that an adversary may try to improve its abil-
ity to identify the domains accessed by a client by the use of active attacks. In
particular, the adversary could modify the records for some domains he wishes
to monitor to point to a honeypot server under his control: he could use a dif-
ferent server for every connecting resolver, and would therefore be able to link
accesses to one of honeypot servers to a resolver, revealing that one of the re-
solver’s clients has an interest in the monitored domain (this type of attack is
sometimes called split world attack).

In PageDNS this attack is prevented by requiring registries to authenticate
every new set of page versions they create through a Merkle hash tree, and by
having resolvers gossip about the roots of the trees obtained from all the reg-
istries that they contact. Additionally, domain owners can monitor the pages
distributed by PageDNS to ensure that the information contained in them is
correct. This public auditability property also provides significantly higher in-
tegrity guarantees than those achieved in plain DNS. Since we assume that the
adversary wishes to avoid detection, this scheme ensures that active attacks of
this kind are prevented.

4 Evaluation

In this section we present an evaluation of the computational overhead for
maintaining the PageDNS, as well as the memory overhead for registries using
PageDNS.

4.1 Cost of Maintaining the PageDNS

Frequency of Authoritative NS changes. Records in PageDNS pages only con-
tain name servers of SLDs (Section 2.2) to limit the total number of records in
PageDNS, but also to ensure that pages will not change too frequently. The fre-
quency of page changes affects both TLD registries (cost of creating the updated
pages) and resolvers (cost of downloading incremental updates in order to keep
the local cache updated).

To evaluate how frequently authoritative name servers of SLDs change, we
monitored the authoritative name servers of the 100,000 most popular domains
(according to the Alexa Top 1M domains list [35]) over 25 days in July 2017. Out
of the 100,000 monitored domains, we could resolve the authoritative name server
for 75,622 domains8. 72,622 of these, or 96%, did not change their authoritative
name servers over the 25 days. For the remaining 3,000 (4%) domains, Table 2
shows statistics about the number of name server changes. From these results
we can calculate the expected number of changes C to the name servers for each
domain per day:

E[C] =
16205

75622
· 1
25
≈ 0.0086 (9)

Thus, there are expected 10,000 · 0.0086/24 ' 3.6 updates per page per
hour. If new page versions are created, e.g., every 4 hours, less than 15 records
would need to be changed per page on average between two versions. Out of our
monitored domains which where updated, only around 5% had, right before the
change, a TTL lower than 4 hours, so only a small number of domains might
suffer from higher inconsistencies than with DNS’s caching. Furthermore, for all
planned updates, domain owners could schedule an update with their registrar,
ensuring that the update will be included by the registry at a specified version,
at a specified time.

Update Costs per Registry. According to Verisign’s Domain Name Industry
Brief [37] (cf. also ICANN’s monthly report for .com [22]), the DNS has reached
a size of 335M domain names across all TLDs with an increase of about 15 mil-
lion per year over the last few years (∼5%). This is considering only the higher
level domains to which TLDs delegate, e.g., example.org or example.co.uk,
excluding subdomains like cs.example.com. We therefore set, for our analyses
in this paper, the number of SLDs N = 109.9

Given the total number of SLDs and the update frequency we calculated
above (Eq. 9), we find that the TLD registries need to perform, overall, around
100 page updates per second, assuming as above that each page is updated
every 4 hours. We expect this to be well within the capacity of TLD registries;
furthermore, we note that if PageDNS were widely used, the root name servers
would see a significantly reduced query load, meaning that their space resources
could also be spent to assist the registries (this would be particularly easy in
cases where the same company manages both some root name servers and TLDs,
which is the case for instance for Verisign). Still, we assess the feasibility of these
update with our prototype implementation in Section 4.3, and find that even
with low-end hardware this update frequency can be sustained.

8 The reason almost 25% of domains were not resolved is that for our monitoring we
kept low timeouts, and excluded the domains which frequently resulted in time-outs.

9 With a growth rate of ∼5% the number of domains and thus the number of pages
doubles approximately every 14 years. We expect that the available bandwidth and
computing power can easily keep up with the growth of PageDNS.

4.2 Memory Overhead for Resolvers

We assume that resolvers will locally cache the set of all pages, corresponding to
all records in the TLD zones. Given our assumptions (Section 4.1) of 109 SLD
records, distributed across 105 pages of about 1 MB of size each, we have that
the total storage requirement for a resolver is 100 GB (excluding optimizations
such as compression). While this could entail non-negligible upgrading costs for
the ISPs managing the resolvers, in particular for ISPs of small size, we believe
that by the time PageDNS would reach widespread deployment, the cost of this
memory upgrade would be bearable even for smaller ISPs. Initially, ISPs will
still have an incentive for adoption as PageDNS would allow them to provide a
privacy-preserving lookup service to their clients, and it would in all likelihood
also be a faster lookup service than in todays DNS, since a significant fraction
of queries made by clients would be for up-to-date pages, and thus the resolver
can directly query the SLD name server.

4.3 Prototype implementation

We have implemented a prototype of PageDNS in Python to obtain some pre-
liminary performance results and assess the feasibility of our system. Our code
defines both a TLD registry and a resolver, for a total of almost 6K LOCs.
Our evaluation of this prototype was made running a registry instance and a
resolver instance on two Amazon AWS instances (in Ireland and in Germany,
respectively), each with an Intel Xeon CPU with 2.53GHz and 2GB of RAM.

The registry is implemented as a server providing pages over HTTP using
a RESTful API. The pages are represented as plain text for human readability,
and for our evaluation we have not implemented optimizations to compress the
size of pages. In our implementation, the registry lazily computes incremental
updates between the cached version of the resolver, specified in the query, and
the last available version. These incremental updates are cached by the registry
until the new page versions are generated.

We use this setting to evaluate the latency of a page query, both in the case
of cold cache, in which the entire page has to be downloaded (this should happen
only in exceptional cases), and in the case of the download of an incremental
update. The results are averaged over 1000 queries. The time to download an
entire page consisting of 10,000 records is 789ms on average, while for an incre-
mental update of one version the required time was 41ms. This last value is in
the same order of magnitude as a request to Google Public DNS for NS records.

We have also implemented and evaluated the page-updating functionality
of registries, offering a RESTful API for domain owners to communicate their
updates to the registry. The time needed for one page update was on average
68ms, meaning that a registry can perform around 14 page updates per second
using one low-end AWS instance. In practice, we expect registries to deploy
significantly more powerful machines. We leave a more comprehensive evaluation
of the registries’ performance using PageDNS to future work.

5 Related Work

In response to the revelations about the NSA’s mass surveillance programs [2],
the IETF took a stance considering such surveillance practices as an attack [17],
and began analyzing the problem of how to defend against it [6]. One of the
identified threat vectors is DNS [8], but the countermeasures proposed so far are
relatively weak. The simplest (but also weakest) of these proposals calls for query
minimization [9], which would only hide some information from root and TLD
servers.10 Another proposal (a now expired IETF draft) aims to extend DNS
with the option to encrypt queries between the recursive resolver and the au-
thorities [39]. Recently also an academic proposal by Zhu et al. called T-DNS [41]
was submitted as an RFC [21]: their suggestion is to use TLS between clients and
recursive resolvers (and possibly between recursive resolvers and authorities) to
protect against network eavesdroppers.

Outside the IETF other solutions have been devised which are similar in
scope. DNSCurve [7] allows clients or recursive resolvers to establish secure chan-
nels to the authoritative resolvers using efficient cryptography. A related system
is DNSCrypt [13], which offers similar guarantees. Both of these systems have
seen some adoption, e.g., they are supported by OpenDNS [3]. These systems,
as well as the RFCs currently under examination at the IETF, are easily deploy-
able, and could be used complementarily to PageDNS, since their threat model
is orthogonal to ours.

Other researchers aimed to protect against stronger adversaries. Zhao et al. [40]
suggest a simple approach called range queries, which consists in the client send-
ing extra “dummy” queries to the resolver, in order to hide the real query. Fed-
errath et al. [18], however, show that range queries are vulnerable to semantic
intersection attacks. In this same paper, the authors propose another system,
based on a combination of broadcasting and sending the queries over an anony-
mous communication system (ACS): popular records are broadcast to all clients,
while in order to retrieve less popular entries the clients have to query a resolver
through a mixnet or an onion routing system. It is unclear however how these
systems can effectively guarantee privacy against a malicious ISP, which will
inevitably see the communications following the lookup, thus apparently nulli-
fying the efforts to anonymize the queries. We believe that, to protect against a
malicious ISP, an ACS necessarily has to be used.

Our goal in PageDNS of hiding the information of what records are be-
ing queried is analogous to that of private information retrieval (PIR) [10,25],
which leverages either multiple non-colluding servers or computationally expen-
sive cryptography to significantly reduce communication costs. Unfortunately,
even with recent improvements [14,4], PIR has remained too costly in terms of
computation to be used for a critical application like DNS. In PageDNS we do
not try to trade off lower communication costs for additional computation: in-
stead, we show how domain-specific aspects, such as the low variability of TLD

10 It appears that Verisign, Inc. was able to obtain a patent [28] on this technology,
and it is unclear what this will mean for its adoption.

zones, paired with extensive caching, allow us to achieve privacy properties close
to those of PIR, but without its prohibitive performance penalties. Another re-
lated direction regarding weak PIR was taken by Toledo et al. [36], who shown
how privacy guarantees can be increased through the use of anonymous commu-
nication systems, or by leveraging multiple servers.

Other related projects aim to push DNS entries to multiple entities, such
as recursive resolvers, across the Internet. For instance, Cohen and Kaplan [12]
propose proactive caching of records, and similarly Handley and Greenhalgh [20]
also advocate for pushing records to thousands of name servers for higher ro-
bustness. Kangasharju and Ross [24] take an even more radical stance, proposing
a new design for DNS involving distributed servers storing the complete DNS
database. This is perhaps the closest to PageDNS, although without the goal of
privacy. However, in our system we put a much stronger emphasis on efficiency
and deployability: in particular, PageDNS pages only contain TLD zones, not
the entire DNS database, which would be orders of magnitude larger, and change
more frequently.

Researchers have also investigated new approaches to name resolution that
are fundamentally different from DNS, based on distributed architectures that
are not structured hierarchically, which can provide privacy. One such approach
by Lu and Tsudik [27], called PPDNS, adds privacy on top of CoDoNS [33],
an alternative naming system based on distributed hash tables (DHTs). The
scheme also uses computational PIR to reduce communication overhead, but
the ensuing computational costs strongly limit the size of the range and thus
also the privacy guarantees, and leave the system vulnerable to denial of service
attacks. The GNU Name System (GNS) [38,19] is another scheme based on
DHTs, but because it uses a fully peer-to-peer approach it does not provide
global naming consistency, and is thus quite different from today’s DNS. Pappas
et al. [32] have analyzed more generally DHT-based designs for DNS, and arrived
at the conclusion that compared to the current DNS they are inferior in terms of
performance and availability, except in terms of protection against some specific
denial-of-service attacks.

6 Conclusions

We explore the design space of the solutions to the scarcely studied problem of
privacy-preserving DNS lookups, and we identify a yet unexplored but promis-
ing direction. We propose an architecture, PageDNS, which aims to hide query
information from root name servers and TLD registries. PageDNS lets TLD reg-
istries group together the name server records in their zones into pages; recursive
resolvers retrieve entire pages rather than single records, which provides a first
level of privacy protection. Additionally, we design a number of optimizations
and enhancements to make the architecture more efficient, such as full caching
of pages at the resolver, and incremental updates, which reduce the overhead.
PageDNS requires significant changes to resolvers and TLD registries, and a cer-
tain memory overhead for resolvers, but it provides privacy properties close to

those of PIR, and it may even speed up the average DNS query, since effectively
the resolvers will be caching all TLD zones. Furthermore, name is incrementally
deployable by TLD registries, and does not need to be adopted by all resolvers.
Since PageDNS is orthogonal to other privacy solutions, it can be combined with
other approaches to achieve different tradeoffs in efficiency and privacy. These
are interesting directions for future work.

References

1. Google Analytics Solutions. https://www.google.com/analytics. Retrieved on
Sept. 22, 2017.

2. NSA spying on americans. "https://www.eff.org/nsa-spying". Retrieved on
Sept. 22, 2017.

3. OpenDNS. https://www.opendns.com/. Retrieved on Sept. 22, 2017.
4. Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.

XPIR: Private information retrieval for everyone. In PETS, 2016.
5. R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security Intro-

duction and Requirements. RFC 4033, 2005.
6. Richard Barnes, Bruce Schneier, Cullen Jennings, Ted Hardie, Brian Trammell,

Christian Huitema, and Daniel Borkmann. Confidentiality in the face of pervasive
surveillance: a threat model and problem statement. RFC 7624, 2015.

7. Daniel J. Bernstein. DNSCurve: usable security for DNS. https://dnscurve.org/.
Retrieved on Sept. 22, 2017.

8. Stéphane Bortzmeyer. DNS privacy considerations. RFC 7626, 2015.
9. Stéphane Bortzmeyer. DNS query name minimisation to improve privacy. RFC

7816, 2016.
10. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private Infor-

mation Retrieval. In IEEE FOCS, 1995.
11. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private infor-

mation retrieval. Journal of the ACM, 45(6), 1998.
12. Edith Cohen and Haim Kaplan. Proactive caching of DNS records: Addressing a

performance bottleneck. In IEEE/IPSJ International Symposium on Applications
and the Internet (SAINT), 2001.

13. Frank Denis and Yecheng Fu. DNSCrypt. https://dnscrypt.org/, 2011. Retrieved
on Sept. 22, 2017.

14. Casey Devet, Ian Goldberg, and Nadia Heninger. Optimally Robust Private Infor-
mation Retrieval. In USENIX Security, 2012.

15. John Dickinson, Sara Dickinson, Ray Bellis, Allison Mankin, and Duane Wessels.
DNS Transport over TCP - Implementation Requirements. RFC 7766, 2016.

16. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In USENIX Security, 2004.

17. Stephen Farrell and Hannes Tschofenig. Pervasive monitoring is an attack. RFC
7258, 2014.

18. Hannes Federrath, Karl-Peter Fuchs, Dominik Herrmann, and Christopher
Piosecny. Privacy-preserving DNS: Analysis of broadcast, range queries and mix-
based protection methods. In ESORICS, 2011.

19. Christian Grothoff, Matthias Wachs, Monika Emert, and Jacob Appelbaum. NSA’s
MORECOWBELL: knell for DNS. Technical report, GNUnet e.V., 2015.

https://www.google.com/analytics
https://www.eff.org/nsa-spying
https://www.opendns.com/
https://dnscurve.org/
https://dnscrypt.org/

20. Mark Handley and Adam Greenhalgh. The Case for Pushing DNS. In HotNets,
2005.

21. Si Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and Paul
Hoffman. Specification for DNS over Transport Layer Security (TLS). RFC 7858,
2016.

22. ICANN. .com Monthly Registry Reports. https://www.icann.org/resources/
pages/com-2014-03-04-en. Retrieved on Sept. 22, 2017.

23. Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. DNS performance
and the effectiveness of caching. IEEE/ACM Transactions on Networking, 10(5),
2002.

24. Jussi Kangasharju and Keith W. Ross. A replicated architecture for the Domain
Name System. In IEEE INFOCOM, 2000.

25. Eyal Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In IEEE FOCS, 1997.

26. Ben Laurie, Geoffrey Sisson, Roy Arends, and David Blacka. DNS security
(DNSSEC) hashed authenticated denial of existence. RFC 5155, 2008.

27. Yanbin Lu and Gene Tsudik. Towards plugging privacy leaks in the domain name
system. In IEEE P2P, 2010.

28. Danny McPherson and Eric Osterweil. Providing privacy enhanced resolution
system in the domain name system. US Patent 8,880,686 B2, 2014.

29. Paul Mockapetris. Domain names – concepts and facilities. RFC 1034, 1987.
30. Paul Mockapetris. Domain names – implementation and specification. RFC 1035,

1987.
31. Rafail Ostrovsky and William E. Skeith, III. A Survey of Single-Database PIR:

Techniques and Applications. In PKC, 2007.
32. Vasilcios Pappas, Dan Massey, Andreas Terzis, and Lixia Zhang. A comparative

study of the DNS design with DHT-based alternatives. In IEEE INFOCOM, 2006.
33. Venugopalan Ramasubramanian and Emin Gün Sirer. The design and implemen-

tation of a next generation name service for the Internet. In ACM SIGCOMM,
2004.

34. Christian Rossow. Amplification hell: revisiting network protocols for DDoS abuse.
In NDSS, 2014.

35. Alexa the Web Information Company. Alexa top 500 global sites. http:
//www.alexa.com/topsites, 2016.

36. Raphael R. Toledo, George Danezis, and Ian Goldberg. Lower-cost ε-private in-
formation retrieval. PoPETS, (4), 2016.

37. Verisign, Inc. The domain name industry brief. 14(2), 2017. https://
www.verisign.com/assets/domain-name-report-Q12017.pdf. Retrieved on Sept.
22, 2017.

38. Matthias Wachs, Martin Schanzenbach, and Christian Grothoff. A censorship-
resistant, privacy-enhancing and fully decentralized name system. In International
Conference on Cryptology and Network Security (CANS), 2014.

39. Wouter Wijngaards and Glen Wiley. Confidential DNS. Internet Draft draft-
wijngaards-dnsop-confidentialdns-03, 2015.

40. Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. Analysis of privacy disclo-
sure in DNS query. In International Conference on Multimedia and Ubiquitous
Engineering (MUE), 2007.

41. Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin, and Nikita
Somaiya. Connection-oriented DNS to improve privacy and security. In IEEE
Symposium on Security and Privacy, 2015.

https://www.icann.org/resources/pages/com-2014-03-04-en
https://www.icann.org/resources/pages/com-2014-03-04-en
http://www.alexa.com/topsites
http://www.alexa.com/topsites
https://www.verisign.com/assets/domain-name-report-Q12017.pdf
https://www.verisign.com/assets/domain-name-report-Q12017.pdf

A Replication Function

Let P be a page of PageDNS containing n records, and let k′ be the rank of a
record in P. For ease of notation, we write k′ ∈ P, and in general we will often
use a domain’s rank to refer to the domain. We assume a total of N domains,
thus k′ ∈ {1, . . . , N}, where k′ = 1 is the highest rank. We consider a random
variable K indicating the rank of a domain chosen at random (by a generic
client) according to a Zipf distribution with parameter s = 0.91, i.e., such that:

Pr(K = k) = f(k; s,N) =
1

ksHN,s
with HN,s =

N∑
k=1

1

ks
(10)

To simplify the notation, we will write f(k) to mean f(k; s,N) and H to mean
HN,s.

Now we try to analytically express the probability that an adversary would
assign to k′ being the target domain having observed a request to P, which is
equal to the probability that K = k′ given that K is restricted to P. By applying
Bayes theorem, we obtain the following equation:

Pr(K = k′ | K ∈ P) = Pr(K ∈ P | K = k′) Pr(K = k′)∑
k∈P Pr(K ∈ P | K = k) Pr(K = k)

(11)

Probability Pr(K ∈ P | K = k) is equal to 1 if k is not replicated, since we are
assuming that k ∈ P. More generally, if k has a replication degree of r(k) (i.e.,
the record for domain k exists on r(k) pages), then the probability of choosing
the replica in P is 1/r(k). We can therefore rewrite Equation 11 as follows:

Pr(K = k′ | K ∈ P) = f(k′)/r(k′)∑
k∈P f(k)/r(k)

(12)

Now let k′′ be another domain on the same page, i.e., k′′ ∈ P. Ideally, we
would like the replication function to be such that Pr(K = k′ | K ∈ P) =
Pr(K = k′′ | K ∈ P) for all possible choices of k′ and k′′. Unfortunately, it is
possible to see that the only scenario where this could theoretically be achieved
is one where the number of pages is equal to the number of domains, and the
cost of replication would be excessive (the total size of all PageDNS pages would
increase by almost a hundredfold). Instead, we try to get the ratio of those
probabilities as close to 1 as possible. Since we also want to minimize the cost
of replication, we do not replicate the least popular domain (i.e., r(N) = 1):
replication should only help to reduce the probability in Equation 11 for high-
rank domains, to get it closer to the probability of the more unpopular domains.
It is reasonable therefore for the ratio to be at its maximum when k′ = 1 and
k′′ = N .

ρMAX =
Pr(K = 1 | K ∈ P)
Pr(K = N | K ∈ P)

=
f(1)/r(1)

f(N)/r(N)
(13)

100 103 106 109k *

Domain rank (log scale)

100

101

102

103

104

R = 105

R
e
p
lic
a
ti
o
n
 d
e
g
re
e
 (
lo
g
 s
ca

le
)

Fig. 5: Replication degree of domain names according to their rank.

Denoting with R the replication degree of the most popular domain (r(1) = R),
and since r(N) = 1, Equation 13 becomes the following:

ρMAX =
f(1)/R

f(N)
=

H−1/R

N−sH−1
=
Ns

R
(14)

All other domains should be replicated in order not to increase this ratio further.
From this requirement, we obtain the following bound ∀k.

Pr(K = k | K ∈ P)
Pr(K = N | K ∈ P)

≤ ρMAX (15)

=⇒ f(k)/r(k)

f(N)/r(N)
=
k−sH−1/r(k)

N−sH−1
=

Ns

ksr(k)
≤ Ns

R
(16)

=⇒ r(k) ≥ R

ks
(17)

We derived the bound in Equation 17 for the worst case of the page containing
both the most and the least popular domains, so by applying it generally to the
replication for all k-s we ensure that on no page there will be two domains for
which the ratio of their identification probabilities (Equation 11) exceeds ρMAX .
Furthermore, with the approximation that the denominator in Equation 12,∑

k∈P f(k)/r(k), has the same value for all pages, the bound in Equation 17
actually guarantees the following for any two pages P, P ′:

∀k ∈ P,∀k′ ∈ P ′ Pr(K = k | K ∈ P)
Pr(K = k′ | K ∈ P ′)

≤ ρMAX (18)

Since we desire to minimize the cost of replication, we try to match the bound
of Equation 17 as closely as possible (rounding it to the nearest integer), with
the additional constraint that replication of any domain be at least 1. Thus the
replication function we use is the following:

r(k) = max{1, round(Rk−s)} (19)

In Figure 5 we plot the function. Note how only the most popular domains with
rank from 1 to k∗ are replicated: these will all have approximately (because of
rounding) the same identification probability, while for less popular domains the
probability will be lower. We also point out that in our scenario R ≤ m, where
m is the number of pages, and that the best (lowest) probabilities are obtained
for the equality: in this case, we have the most popular domain replicated on all
pages. For realistic values (m = 10, 000 and s = 0.91), we obtain k∗ ' 200, 000.

B Page-Size Variance

We can think of the size of a page P as the sum of N random variables Xk, each
assuming value 1 if the k-th domain is assigned by the hash function to page
P , and value 0 otherwise. The size of page P is thus X =

∑N
k=1Xk. Assuming

that the hash function behaves as a random function, and considering a set of m
pages, we can easily compute the expected value of the size of the generic page
P as follows:

µ = E [X] =

N∑
k=1

E [Xk] =

N∑
k=1

1

m
=
N

m
(20)

Since X is the sum of independent random variables with values in the set
{0, 1}, we can apply the multiplicative Chernoff bound to estimate the prob-
ability that the size of a specific page will deviate from the expected value µ
by a certain factor (1 − δ) (we aim to find a lower bound). The bound has the
following form.

Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ
2 (21)

Considering for the parameters the values N = 109 and m = 105, as we have
done throughout the paper, we obtain from Equation 20 that µ = 104. Setting
δ = 0.1 for a deviation of at least 10% from the mean, Equation 21 yields the
following bound:

Pr(X ≤ 0.9µ) ≤ e− 10−2104

2 = e−50 ' 2 · 10−22 (22)

We see from these numbers that the probability of having pages significantly
smaller than the average is clearly negligible. Another Chernoff bound can be
used to find similar limitations for the probability of pages to be 10% larger than
the average.

Replicas distribution. To determine the distribution of the number of replicas
per page, we find that Chernoff bounds are not effective, as they do not allow
us to rule out extreme cases such as having only 2 or 3 replicas on some page.
Instead, we use a simulation over 106 pages, and find that the median is 25
records per page, though it can be as low as 7 in exceptional cases.

	A Paged Domain Name System for Query Privacy

