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Abstract

The prevalence of malware such as keyloggers and screen

scrapers has made the prospect of providing sensitive infor-

mation via web pages disconcerting for security-conscious

users. We present Bumpy, a system to exclude the legacy

operating system and applications from the trusted com-

puting base for sensitive input, without requiring a hyper-

visor or VMM. Bumpy allows the user to specify strings of

input as sensitive when she enters them, and ensures that

these inputs reach the desired endpoint in a protected state.

The inputs are processed in an isolated code module on the

user’s system, where they can be encrypted or otherwise

processed for a remote webserver. We present a prototype

implementation of Bumpy.

1 Introduction

Today, a security-conscious user who wants to verify

that her input is not observed by malicious code during a

sensitive online financial transaction faces an impasse. Key-

loggers can capture a user’s typed input and screen scrapers

can process the content displayed to the user to obtain sen-

sitive information such as credit card numbers.

These malware exploit the vulnerabilities that are en-

demic to the huge computing base that is trusted to secure

our private information. Today’s popular operating systems

employ monolithic kernels, meaning that a vulnerability in

any part of the OS renders users’ sensitive data insecure re-

gardless of what application they may be running. On top

of this untrustworthy OS sits a complex and monolithic web

browser, which faces protection and assurance challenges

similar to those of the OS. It is not surprising that trusting
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this software stack for the protection of private data in web

transactions often leads to data compromise.

We present Bumpy, a system for protecting a user’s sen-

sitive input intended for a webserver from a compromised

client OS or compromised web browser. We consider a

user who desires to provide strings of information (e.g., a

credit card number or mailing address) to a remote web-

server (e.g., her bank) by entering it via her web browser.

We focus on user input to web pages, although our tech-

niques can also be applied to local applications. Bumpy is

able to protect this sensitive user input by reducing the req-

uisite trusted computing base to exclude the legacy OS and

applications without requiring a hypervisor or VMM.

Bumpy employs two primary mechanisms. First, the ini-

tial handling of all keystrokes is performed in a special-

purpose code module that is isolated from the legacy OS

using the Flicker [18] system. Second, we establish the con-

vention that sensitive input begin with the secure attention

sequence @@, so that a user can indicate to this module that

the data she is about to type is sensitive. These sensitive

inputs are released to the legacy platform only after being

encrypted for the end webserver or otherwise processed to

protect user privacy [10, 11, 25].

Bumpy allows the remote webserver to configure the na-

ture of the processing performed on user input before it is

transmitted to the webserver, and automatically isolates the

configurations and data-handling for mutually distrusting

webservers. The webserver for which the user’s current in-

put will be processed can receive a TCG-style attestation

that the desired input protections are in-place, potentially

allowing the webserver to offer additional services to users

with improved input security.

In order for the user to determine the website for which

her input will be encrypted, she requires some trusted dis-

play to which the input-handling module can send this in-

formation. Since the client computer display cannot be

trusted in our threat model, we explore the use of a sepa-

rate user device, or TrustedMonitor, that receives such indi-

cators from the input-handling module, authenticates them

(using digital signatures) and displays them to the user.

Our prototype implementation of Bumpy demonstrates

both the practicality of our approach and the fact that com-



modity hardware already offers nearly the full set of func-

tionality needed to achieve these protections. In fact, the

only compromise we make in our implementation is us-

ing an embedded Linux system as an encrypting USB In-

terposer, as we have been unable to locate keyboards or

mice offering programmable encryption. We also leverage

a smartphone as a Trusted Monitor for the user. However,

we emphasize that the emergence of encrypting keyboards

and far simpler devices to serve as a Trusted Monitor would

suffice to remove any bloat from Bumpy’s TCB. Bumpy is

achievable without any client-side trusted software of com-

plexity even close to that of a general-purpose OS, VMM,

or hypervisor.

2 Related Work

We discuss prior work on trusted devices for sensitive

user actions, split application architectures, trusted window

managers, password processing, and TCB minimization.

The most closely related work is our prior work called

Bump1 in the Ether (BitE) [21]. BitE circumvents the

legacy input path by leveraging encryption by user input

devices (e.g., an encrypting keyboard), just as Bumpy does.

However, BitE retains the legacy OS and Window Manager

in its TCB, is tailored to local applications, and performs

attestations to its correct functioning based on a static root

of trust. In contrast, Bumpy dramatically reduces the TCB

for input by leveraging a dynamic root of trust for each in-

put event, works for sensitive input to websites, and sup-

ports secure post-processing of sensitive input (e.g., pass-

word hashing).

Borders and Prakash propose a Trusted Input Proxy

(TIP) as a module in a virtual machine architecture where

users can indicate data as sensitive using a keyboard escape

sequence [5]. Users are presented with a special dialog box

where they can enter their sensitive data, after which it is

injected into the SSL session by the TIP. Again, however,

the TCB of TIP includes a VMM and OS, whereas Bumpy’s

TCB includes neither.

The Zone Trusted Information Channel (ZTIC [12]) is

a recently-announced device with a dedicated display and

the ability to perform cryptographic operations. Its purpose

is to confirm online banking transactions in isolation from

malware on the user’s computer. This device is appropriate

for use as a Trusted Monitor in Bumpy.

Bumpy separates the process of accepting user input into

trusted and untrusted parts, and thus can be viewed as im-

plementing a type of privilege separation [28]. Several

variations of this theme have been explored in the litera-

ture. Balfanz and Felten [2] describe the need for “splitting

trust” and argue that hand-held computers can make effec-

tive smart cards since they have a distinct user interface

1We derive the name Bumpy from Bump in the Ether.

that is not subject to malware on the user’s host computer.

Sharp et al. explore an architecture where applications run

on a trusted platform and export both a trusted and an un-

trusted display [31]. They also consider split web applica-

tions where all sensitive operations are confirmed on a mo-

bile device [30], and where the mobile device serves as the

trusted portion of a physically separate, but logically com-

posed browsing experience [29]. Bumpy optionally uses

the separate Trusted Monitor as a verifier and indicator for

the input framework, rather than as a platform for execution

of portions of a split application or as an input device. But

perhaps more importantly, the TCB of Bumpy is far smaller

than in these other works, and in fact Bumpy can be viewed

as extreme in this respect.

Trusted window managers have also been proposed as a

solution to sensitive input and screen content. A compelling

recent example is Nitpicker [9], but it currently requires

changing operating systems and porting existing legacy ap-

plications. Bumpy remains compatible with existing legacy

operating systems, to the extent that they meet the require-

ments for Flicker [18] (i.e., it may be necessary to install a

kernel module or driver).

Ross et al. developed PwdHash, an extension for the

Firefox web browser that hashes users’ typed passwords in

combination with the domain serving the page to produce a

unique password for every domain [25]. The PwdHash al-

gorithm adapts earlier work by Gabber et al. on protecting

users’ privacy while browsing the web [10,11]. Chiasson et

al. identify usability problems with PwdHash, specifically,

that it provides insufficient feedback to the user regarding

the status of protections [7]. We extend this work in two

ways. First, we implement the PwdHash algorithm as one

possible transformation of sensitive data in Bumpy, with a

much smaller TCB than the web browser and OS that must

be trusted with PwdHash. Second, we leverage a Trusted

Monitor to provide feedback to the user regarding the sta-

tus of her input. Validating the efficacy of our feedback

mechanisms with a user study remains the subject of future

work; this paper presents the design and implementation.

Bumpy builds on Flicker, an architecture that leverages

the Trusted Computing concept ofDynamic Root of Trust to

enable execution of a special-purpose code module (called

a Piece of Application Logic, or PAL) while including only

a few hundred lines of additional code in its TCB [18]. Re-

mote attestation technology based on the Trusted Platform

Module (TPM [34]) can be used to convince a remote party

that precisely this code module and nothing else executed

during a Flicker session. Flicker supports protocols for es-

tablishing authentic communication between a PAL and a

remote entity, and it is architected such that the code that

generates attestations need not be trusted. Additional back-

ground information on the underlying Trusted Computing

technologies can be found in Appendix A.
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Figure 1. Logical flow through the major components of the Bumpy system. The OS, web browser,
and browser extension are untrusted.

3 Overview

We detail our goals and assumptions, introduce the user

experience, and provide an overview of our design and the

major system components of Bumpy (Figure 1).

3.1 Goals and Assumptions

Goals. Our goals are to protect keystrokes from a poten-

tially malicious legacy input system while retaining a seam-

less user experience, and to offer assurance to both the re-

mote webserver and the user herself that input is protected.

To the remote webserver, we provide an attestation that the

user’s input was protected with Bumpy, including the pres-

ence of encryption-capable input devices. To the user, we

provide an indicator of whether it is safe to enter sensitive

input. Bumpy achieves this without breaking compatibil-

ity with existing operating systems and without requiring a

hypervisor or VMM.

Assumptions and Threat Model. We consider the user’s

OS and applications (including the web browser and its ex-

tensions) to be malicious. We assume the user has a trust-

worthy mobile device to serve as a Trusted Monitor and

input devices (keyboard and mouse) capable of encryption.

We also assume the remote webserver to which the user

wishes to direct her input is uncompromised, and that the

certificate authority (CA) that issues the webserver’s SSL

certificate is similarly uncompromised.

We leverage the Flicker system to protect sensitive code

executing on the user’s computer [18]. As such, the user’s

computer must meet the hardware requirements for Flicker:

a version 1.2 TPM, and a CPU and chipset capable of estab-

lishing a Dynamic Root of Trust, also known as late launch.

Appendix A provides additional background on the relevant

technologies, which are widely available today.

3.2 User Experience

We are striving to make Bumpy usable by non-experts to

protect sensitive input. Our mechanism employs a conven-

tion for entering sensitive information, and a trustworthy in-

dication of the destination for that information. This indica-

tion is conveyed via an external display, called the Trusted

Monitor (Figure 1). It is our intention that the Trusted Mon-

itor will help to alleviate some of the usability problems

(e.g., a lack of feedback) identified for password managers

such as PwdHash [7], although we leave a formal usability

study as future work.

In the common case, the user experience with Bumpy

follows this sequence:

1. The user signals that she is about to enter sensitive

information by pressing @@. Note that this can be

thought of as a convention, e.g., “my passwords should

always start with @@.”

2. The Trusted Monitor beeps to acknowledge the recep-

tion of @@ in the PreP, and updates its display to show

the destination of the user’s upcoming sensitive input.

3. The user types her sensitive data. Bumpy does not

change this step from the user’s perspective.

4. The user performs an action that signals the end of sen-

sitive input (e.g., presses Tab or Enter, or clicks the

mouse). Bumpy does not change this step from the

user’s perspective.



While users are accustomed to typing their passwords

without seeing the actual characters on-screen (e.g., the

characters appear as asterisks), most other sensitive data is

displayed following entry. Given our desire to remove the

legacy OS from the input TCB and the threat of malicious

screen scrapers, this echoing to the main display must be

prevented by Bumpy. The usability of entering relatively

short sequences of characters (e.g., credit card numbers)

under these conditions may remain acceptable to concerned

users, but it is not ideal. We perceive this as the price one

must pay for secure input with an untrusted OS.

For those users employing a Trusted Monitor of suffi-

cient capability, sensitive keystrokes can be echoed there

for validation by the user. While this partially eliminates

the challenge of entering input “blind,” a minimal Trusted

Monitor would still make it impractical to compose lengthy

messages.

3.3 Technical Overview

We now summarize the main components of Bumpy.

In Figure 1, solid arrows represent logical communica-

tion through encrypted tunnels. Bumpy is built around

encryption-capable input devices sending input events di-

rectly into a Pre-Processor (PreP) protected by the Flicker

system on the user’s computer. Bumpy allows the remote

webserver to control (within certain limits) how users’ sen-

sitive input is processed after it is entered with Bumpy. We

term this Post-Processing, and enable it by allowing the

webserver to provide a post-processor (PoPr) along with

web content. Bumpy tracks and isolates PoPrs from differ-

ent webservers, as well as supports standardized PoPrs that

may be used across many websites. Leveraging the Flicker

system [18], the PreP and PoPrs execute in isolation from

each other and from the legacy OS.

Encryption and password-hashing are two desirable

forms of post-processing of user input. Site-specific hash-

ing of passwords (as in PwdHash [25]) can provide pass-

word diversity across multiple websites, and prevent the

webserver from ever having to handle the user’s true pass-

word. Dedicated post-processing with server-supplied code

can resolve issues with the PwdHash [25] algorithm pro-

ducing unacceptable passwords (e.g., passwords without

any punctuation characters that violate the site’s password

requirements) or passwords from a reduced namespace,

since the webserver itself provides the algorithm. Encrypt-

ing input directly within the Bumpy environment to the re-

mote webserver dramatically reduces the client-side TCB

for sensitive user input.

4 Identifying and Isolating Sensitive Input

In this section, we focus on acquiring input from the

user in the PreP, and storing sensitive input such that it

is protected from the legacy OS. Section 5 treats the post-

processing and delivery of this input to approved remote

servers. We identify three requirements for protecting user

input against a potentially malicious legacy OS:

R1 All input must be captured and isolated.

R2 Sensitive input must be distinguishable from non-

sensitive input.

R3 The final destination for sensitive input must be iden-

tifiable.

Requirement R1 for protecting user input is to acquire

the input without exposing it to the legacy OS. The chal-

lenge here is that we wish to avoid dependence on a VMM

or hypervisor and retain the OS in charge of device I/O.

We propose to use encryption-capable input devices to

send opaque input events through the untrusted OS to a

special-purpose Piece of Application Logic (PAL) that is

protected by the Flicker [18] system (Steps 1–4 in Figure 2).

This PAL is architected in two components. The first is

specifically designed to Pre-Process encrypted input events

from the input devices, and we call it the PreP. The PreP

achieves requirement R2 by monitoring the user’s input

stream for the secure attention sequence “@@” introduced in

Section 3.2, and then taking appropriate action (which af-

fects what input event is released in Step 5 of Figure 2). The

PreP serves as the source of input events for post-processing

by a destination-specific Post-Processor (PoPr). The pro-

cess of authenticating a PoPr serves to identify the final

destination for sensitive input (requirement R3). The PoPr

encrypts or otherwise processes the received input for the

remote server (Steps 6–8 in Figure 2).

These components are separated so that the PreP’s sensi-

tive state information can be kept isolated from the PoPr, as

Bumpy supports multiple, mutually distrusting PoPrs that

accept input events from the same PreP. The PreP’s state in-

formation includes the cryptographic state associated with

the encrypting input devices, the currently active PoPr, and

a queue of buffered input events. The PreP’s state is pro-

tected by encrypting it under a master key that is maintained

on the user’s TPM chip. The properties of Flicker [18] guar-

antee that no code other than the exact PreP can access it.

For the following sections we encourage readers not inti-

mately familiar with trusted computing technology to read

Appendix A before proceeding.

We defer discussion of the one-time setup of the crypto-

graphic state associated with the encrypting input device(s)

until Section 4.2. We proceed assuming that the setup has

already been completed.

4.1 Steady­State User Input Protection

We describe the actions taken by the PreP in response

to user input events and events from the web browser. The

state machine in Figure 3 summarizes these actions.
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Every event e is processed in a distinct Flicker session,

i.e., the PreP only accepts a single event as an input parame-

ter. We design Bumpy this way out of necessity, due to two

conflicting desires. The first is to avoid trusting the OS, and

the second is to remain responsive to the user as she pro-

vides input to her system. One consequence of this design

is that every Flicker session (i.e., PreP invocation) begins

and ends with the decryption and encryption of the PreP’s

sensitive state information, respectively.

The legacy OS provides arguments for each invocation

of the PreP: the event e to be processed, the SSL certificate

for the active website, the PoPr associated with the active

website, and the PreP’s encrypted state. Each event e can

be an encrypted keystroke or mouse click, or it can be a fo-

cus event2 from the browser. All other event types from the

browser are ignored. The PreP maintains in its state the nec-

essary cryptographic information to decrypt and integrity-

check input events from the input device(s). The master

keys used to protect the secrecy and integrity of the PreP’s

state are TPM-protected based on the identity of the PreP.

We describe these protocols in greater detail as part of our

implementation in Section 8.

During each run of the PreP (i.e., during each Flicker

session in Step 4 of Figure 2), the state machine (Figure 3)

begins in PreP Initialization and transitions to the state

where the previous PreP invocation ended (maintained as

State.Prev in Figure 3), where the current event then causes

a single transition. Actions listed in a state are performed

2A focus event is an event in the web browser’s graphical user interface

where a new component such as an HTML text input field becomes active.

This generally follows a blur event caused by the previously focused com-

ponent becoming inactive. These events fire in response to user actions,

such as clicking the mouse.

when an event causes arrival into that state (as opposed

to returning to a state because of the value of State.Prev).

If there is no action for a particular event in a particular

state, then that event is ignored. For example, browser fo-

cus events are ignored in the Second @, Enqueue Input, and

Invoke PoPr states.

PreP Initialization. Regardless of the previous state of

the PreP, it always performs an initialization step. The

PreP first decrypts and integrity-checks its own long-term

state, verifies that the provided SSL certificate is valid us-

ing its own list of trusted certificate authorities (which we

define as being part of the PreP itself), and verifies that the

provided PoPr is signed by the provided SSL certificate.

(If any of these verification steps fail, the current event is

dropped.) Next, the incoming event e is processed. If it is

an encrypted input event from the input device(s), then it is

decrypted, integrity-checked, and verified to be in-sequence

(using cryptographic keys and a sequence number main-

tained in the PreP’s state). If any of the steps involving syn-

chronization with the input device(s) fail, then input events

can no longer be received. We discuss options for recovery

in Section 8.2.3.

The PreP then transitions to State.Prev where e will

cause one additional state transition. During the very first

invocation of a PreP, it transitions to Pass Input Unmodi-

fied. The following paragraphs describe the actions taken

upon entry to a state caused by an event, not by State.Prev.

At the end of each of these states, the PreP’s sensitive long-

term state is sealed3 using the TPM-protected master key,

3Sealed means that the state is encrypted and integrity-protected (by

computing a MAC) for subsequent decryption and integrity-verification.

This use of sealed is consistent with the TPM’s sealed storage facility,
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and then cleared (set to zero) before the PreP terminates and

produces output. Untrusted code running on the OS main-

tains the ciphertext that makes up the PreP’s sealed state

and provides it as input to the PreP’s next invocation.

Pass Input Unmodified. The common case for user input

is that it is non-sensitive, and does not require special pro-

tection by the PreP. Any existing queue of sensitive events

is discarded upon entry to this state. Unless e is a browser

which we describe in Appendix A.

focus event, State.Prev is set to remain in the Pass Input

Unmodified state. The current input event is not considered

sensitive, and it is provided as an output when the PreP ex-

its. The legacy OS then interprets this input event just as it

does today.

Focused. A browser focus event contains the name of the

field that has just received focus (e.Field). The PreP saves

the cryptographic hash of the current PoPr and its SSL cer-

tificate (which was validated during PreP Initialization) as

the PoPrID . It is necessary to track the PoPrID to ensure

that the PoPr is not maliciously exchanged while the user

is typing sensitive input. When invoked with a keystroke,

a PreP in the Focused state checks whether the keystroke

is the @ character. If so, the PreP transitions to the First @

state. Otherwise, the PreP transitions back to the Pass Input

Unmodified state. The keystroke is output to the legacy OS

for processing. Note that the @ keystroke is not secret; it

serves only to signify that the user may be about to enter

something she considers sensitive.

First @. We have defined the secure attention sequence

for Bumpy to be @@ in the input stream immediately follow-

ing a browser focus event. This state serves to keep track

of the @ characters that the user enters. It is possible that

the user is in the process of initiating sensitive input. When

invoked with a keystroke that is the @ character, the system

transitions to the Second @ state. Otherwise, the system

transitions back to the Pass Input Unmodified state. The

keystroke is output to the legacy OS.

Second @. When in the Second @ state, the user has suc-

cessfully indicated that she is about to provide some sensi-

tive input using Bumpy. From this point forward, the only

way for the user to terminate the process of entering sen-

sitive input is to perform an action that will cause a blur

event in the current input field. A blur event is an event in

the graphical user interface that indicates that a particular

component is becoming inactive, generally because the fo-

cus is now elsewhere. Relevant actions include clicking the

mouse or pressing Tab, Shift+Tab, Alt+Tab, or Enter. Note

that we explicitly do not listen for blur events from the web

browser, as a malicious browser would be able to terminate

secure input prematurely. If the user’s input does not repre-

sent a blur event, then the system transitions to the Enqueue

Input state.

Enqueue Input. For each PreP invocation in the Enqueue

Input state, the decrypted keystroke is filtered before being

appended to State.Queue. The filter identifies and drops

illegal password characters that would not cause a blur

event (e.g., meta-characters used for editing, such as ar-

rows, Backspace, and Delete). We discuss editable sensitive



input in Section 10. This process continues until the user

causes a blur event, e.g., presses Tab, Shift+Tab, Alt+Tab,

Enter, or clicks the mouse. A decoy input event is released

to the legacy OS: an asterisk. From the perspective of the

legacy OS, when the user types her sensitive input, she ap-

pears to be typing asterisks. This has the convenient prop-

erty of mimicking the usual functionality of input to pass-

word fields even if the current field is a normal text field:

all keystrokes appear as asterisks. Note that these asterisks

will eventually be discarded, as the PoPr provides the re-

mote webserver with the true input for the protected fields.

When the user causes a blur event, the system transitions to

the Invoke PoPr state.

Invoke PoPr. When the PreP state machine transitions to

the Invoke PoPr state, it means that the user successfully di-

rected the web browser’s focus to a particular field, entered

@@ to signal the start of sensitive input, provided some sen-

sitive input, and then caused a blur event that signals the

end of sensitive input. This input will now be handed to the

PoPr for destination-specific processing (Section 5). First,

however, it is necessary to check that the PoPr provided as

an input to the PreP during the current Flicker session is the

same PoPr that was provided during the focus event that ini-

tiated this sensitive input. If the PoPr is changed, malicious

code may be trying to fool the user. In this case, the system

transitions directly back to Pass Input Unmodified where

the queue of sensitive input events is discarded. If the PoPr

is confirmed to be the same, it is invoked. The PoPr also

runs with Flicker’s protections, but it is less trusted than the

PreP. Thus, PreP state is sealed and cleared before invoking

the PoPr with the queue of input events. This is essential, as

the PreP state includes the cryptographic secrets involved in

communication with the user’s physical input device(s). If

a PoPr could compromise this information, it might be able

to collude with a malicious OS and capture all subsequent

input on the user’s platform. Once the PoPr has executed,

its output is handed to the web browser via the legacy OS

for submission to the webserver from which the PoPr origi-

nated. If the PoPr considers these input events to be secret,

then they should be encrypted such that the legacy OS will

be unable to learn their values.

4.2 Associating the PreP and Input Device(s)

Bumpy depends on input devices capable of encrypting

input events generated by the user, so that the legacy OS can

pass the opaque events to the PreP without learning their

value. We now describe the process of establishing the nec-

essary cryptographic keys when input device(s) and a PreP

are first associated.

The PreP is invoked with the command to establish a

new association with an input device. During this process,

the PreP:

1. Generates symmetric encryption and MAC keys

for the protection of its own long-term state,

Klt enc ,Klt mac , if they do not already exist.

2. Generates an asymmetric keypair, Kinput ,K
−1

input , for

bootstrapping communication with the encrypting in-

put device, and adds the private key to its long-term

state. Note that no other software (not even a PoPr)

will ever be allowed to accessK−1

input .

The public key Kinput is then conveyed to the input de-

vice. Given the complexity of equipping input devices with

root CA keys to verify certificates, we use a trust-on-first-

use model where the input device simply accepts Kinput

and then prevents it from changing unexpectedly. Since

encryption-capable input devices like we require do not cur-

rently exist, we specify how the input device enters a state

where it is willing to accept a public encryption key. The

greatest challenge is to prevent key re-establishment from

being initiated in the presence of malicious code, whether

through a design or implementation failure or a social en-

gineering attack. One promising design may be a physi-

cal switch that must be placed into the “Establish Keys”

position before key establishment can commence. This

way, most users will establish keys once and forget about

it. Another alternative is to use a location-limited chan-

nel [3, 20, 33]. We describe input device key establishment

for our USB Interposer implementation in Section 8.

In the future, more sophisticated input devices may ver-

ify an attestation that the public key came from a known-

good PreP. Another promising alternative is that input de-

vice manufacturers imprint their devices with a certificate

establishing them as approved encrypting input devices,

though it can be challenging to establish that a certificate

corresponds to a particular physical device [22]. The PreP

can then verify the origin of input events as trustworthy,

provided that the PreP’s list of trusted CAs covers manu-

facturers’ signing keys.

Irrespective of the method of public-key exchange, sym-

metric keys for encryption and integrity protection should

be established to maximize performance. Additionally, we

require the use of sequence numbers so that the PreP can

detect if any keystrokes are dropped or reordered by the

legacy OS.

4.3 PreP State Freshness

The PreP must have the ability to protect its own state

when the legacy OS has control (i.e., across Flicker ses-

sions). The secrecy and integrity of the PreP’s state is en-

sured by encrypting it under a symmetric master key kept

in PCR-protected non-volatile RAM on the TPM chip. It is

PCR-protected under the measurement of the PreP itself, so

that no other code can ever unseal the master key. However,

protecting the freshness of the PCR-protected state is more



challenging. The risk is a state roll-back or replay attack

where, e.g., an attacker may try to keep the PreP in the Pass

Input Unmodified (Figure 3) state by perpetually providing

the same ciphertext of the PreP’s state as an input to the

PreP. The standard solution to this problem is to employ a

secure counter or other versioning scheme that can track the

latest version of the PreP’s state. While the TPM does im-

plement a monotonic counter [34], its specification dictates

that the counter need only support incrementing every five

seconds. This is clearly insufficient to keep up with per-

keystroke events. Our solution is to leverage the sequence

numbers associated with input events coming from the in-

put devices (Section 8.2.3).

5 Input Post-Processing and Attestation

We now detail the actions taken by the PoPr to Post-

Process sensitive input events enqueued by the PreP (Step 6

in Figure 2). Then, we describe the attestation process em-

ployed to convince the remote webserver (which is the PoPr

provider) that it is receiving inputs protected by Bumpy.

5.1 Post­Processing Sensitive Input

The final destination for sensitive input protected by

Bumpy is the webserver from which the current web page

originated. In Section 4.1, we describe how the PoPr is in-

voked by the PreP when the user has completed entering

sensitive input for a particular field. The PoPr is provided

by the webserver hosting the current web page in the user’s

browser. The sensitive input is tagged with the name of

the field that had focus when the input was entered, and

this {inputString, tag} pair is what the PoPr receives. The
PoPr can perform arbitrary, site-specific transformations on

the sensitive input before handing the (potentially opaque)

result to the web browser for transmission to the remote

webserver when the page is submitted.

5.1.1 Example Forms of Post-Processing

We consider two example forms of post-processing that we

believe to be widely useful on the web today, though there

may be many others. The first is encryption of user in-

put such that only the webserver can process the raw in-

put, and the second is destination-specific hashing (with the

PwdHash algorithm [25]) so that, e.g., passwords cannot be

reused at multiple websites.

End-to-End Encryption. Encrypting sensitive inputs for

the webserver completely removes the web browser and

OS from the TCB of the input path for the field accepting

the sensitive input, though it requires the webserver to be

Bumpy-aware. This capability is achieved on the user’s sys-

tem by embedding a webserver-generated public encryption

key in the PoPr. The PreP will automatically check that the

PoPr (and hence its encryption key) is certified by the web-

server from which it originated.

Note that it may seem tempting to have the input device

encrypt the user’s input all the way to the remote webserver,

removing the need for the PreP or PoPr. We prefer the flex-

ibility afforded by the Flicker architecture to process input

in a PoPr on the user’s system in whatever way is appro-

priate for a given application or remote system. It is not

the duty of the input device manufacturer to foresee all of

these possible applications. Indeed, incorporating too much

programmability into the input device itself is sure to make

it a promising target for attack. Rather, the input device is

tasked solely with getting keystrokes securely to the PreP,

and websites concerned about the size of the input TCB can

supply their own minimized PoPr.

Destination-Specific Hashing with PwdHash. A second

form of post-processing – contained entirely within the

user’s system – is to perform a site-specific transformation

of certain fields before they are released to the web browser

for transmission to the webserver. For example, usernames

or passwords can be hashed along with the webserver’s do-

main name, thereby providing the user with additional pro-

tection when she employs the same username or password

at multiple websites. The domain name is obtained from the

webserver’s SSL certificate, which is verified by the PreP

before the PoPr begins executing. In Section 8, we describe

our implementation of the PwdHash [10, 11, 25] algorithm

within Bumpy.

5.1.2 Activating a PoPr

It is possible that malicious browser or OS code will in-

tentionally load the wrong PoPr for the current site. If the

PoPr is well-behaved (i.e., provided by a reputable web-

server), then it is unlikely to expose the user’s sensitive in-

put. However, attackers may intentionally use a PoPr from

a compromised server with a valid SSL certificate. In this

case, our defense is the Trusted Monitor, as it will display

the domain name and favicon4 of the website that has cer-

tified the current PoPr. It is the user’s responsibility to see

that the information on the Trusted Monitor corresponds to

the web page that she is browsing. We explain the detailed

operation of the Trusted Monitor, including the users’ re-

sponsibilities, and how secure communication between the

PreP and the Trusted Monitor is established, in Section 6.

4A favicon is an image associated with a particular website or web

page, installed by the web designer. It is commonly displayed alongside

the address bar and alongside a tab’s title for browsers that support tabs.



5.2 Attestation and Verifying Input Protections

Flicker enables the computer using Bumpy to attest to

the PreP and PoPr that have run most recently. This attesta-

tion can be verified by a remote entity to ascertain whether

the user’s input received the intended protection. Though

there are no technical limitations governing which device

(or devices) perform the verification, we proceed from the

perspective of the remote webserver as the verifier. Insti-

tutions such as banks employ professional administrators

who are better suited than the average consumer to make

trust decisions in response to which PreP and PoPr are in

operation on the user’s computer. For certain types of trans-

actions (e.g., online banking), the webserver may be willing

to expose more services to a user whose computer can pro-

vide this assurance that the user’s input is being protected.

However, the user still must behave responsibly.

If verification by the remote webserver succeeds, then

the requested web page can be served normally. However, if

verification fails, then the software state of the user’s system

cannot be trusted, and the webserver should prevent access

to sensitive services. One option is to serve a web page with

an explanation of the error, though there is no guarantee that

the malicious (or unknown) software will display the error.

We discuss an extension to create a trusted path between

the Trusted Monitor and webserver for conveyance of such

error notifications in Section 10.

5.2.1 Establishing Platform Identity

TPM-based remote attestation is used to convince the web-

server that the user’s input is protected with Bumpy. How-

ever, the remote webserver must first have a notion of the

identity of the user’s computer system. We use an Attesta-

tion Identity Key (AIK) generated by the TPM in the user’s

computer. Appendix A discusses known techniques for cer-

tifying an AIK, any of which can be applied to Bumpy.

Here, Bumpy benefits from the property of the Flicker [18]

system that causes attestations to cover only the PreP and

PoPr code that was executed, and no other software at all.

5.2.2 The Attestation Protocol

Here, we describe the protocol between a user’s system

with Bumpy and a Bumpy-aware webserver when they con-

nect for the first time. As an example, we consider a user

who is trying to login to a webserver’s SSL-protected login

page. The user’s browser sends a normal HTTPS request

for the login page.

In response, the webserver participates in an SSL con-

nection and delivers the login page. Embedded within the

page (e.g., in a hidden input element) are several Bumpy-

specific pieces of information, which must be signed by the

webserver’s private SSL key:

• nonce – A nonce to provide replay protection for the

ensuing attestation.

• hash – The cryptographic hash of the PoPr. The PoPr

itself can be obtained with another HTTP request and

verified to match this hash.

• favicon – The favicon corresponding to the webserver.

• Certws enc – A public encryption key signed by the

webserver’s private SSL key.

A well-behaved browser then passes the newly received

PoPr, embedded information, and the webserver’s public

SSL certificate to the untrusted code module that manages

the invocation of Flicker sessions with the PreP. During

subsequent Flicker sessions, these data are provided as in-

put to the PreP. The PreP verifies the webserver’s SSL cer-

tificate using its own list of trusted CAs, and verifies that

the other input parameters are properly signed.

If all verifications succeed, an output message is pre-

pared for the webserver. This message requires the gen-

eration of an asymmetric keypair within the PoPr that will

serve to authenticate future encrypted strings of completed

input as having originated within this PoPr. This key is

generated and its private component is protected in ac-

cordance with the Flicker external communication proto-

col [19]. Only this PoPr will ever be able to access the

private key.

When key generation completes, the newly generated

public signing key (KPoPr sig ) is extended into a TPM

Platform Configuration Register (PCR) and output from the

PoPr. Untrusted code running on the legacy OS then passes

this key back to the web browser, along with the user’s sys-

tem’s public identity (e.g., an Attestation Identity Key, or

the set of Endorsement Key, Platform, and Conformance

Credentials) and a TPM attestation covering the relevant

PCRs. These tasks can be left to untrusted code because the

properties of the PCRs in the TPM chip prevent untrusted

code from undetectably tampering with their values.

In steady-state, the PoPr will encrypt user input using the

public key in the webserver-provided Certws enc , and sign

it withK−1

PoPr sig to authenticate that it came from the PoPr

running on the user’s computer. There is no need to per-

form an attestation during future communication between

this PoPr and webserver.

5.2.3 Processing Attestation Results

Remote entities need to have knowledge that a set of at-

tested measurements represents a PreP and PoPr that keep

the user’s input and PreP state safe (encrypted when un-

trusted code runs, which may include Flicker sessions with

other, distrusted PALs). Prominent institutions (e.g., banks)

may develop and provide their own PoPrs for protecting

user input to their websites. In these cases, the institution’s



webserver can easily be configured with the expected PoPr

measurements, since it provided the PoPr in the first place.

If one PoPr proves to be sufficient for a wide variety of web-

sites, then its measurement may become a standard which

can be widely deployed.

The webserver must also have knowledge of existing

PrePs in order to make a trust decision based on the attes-

tation result. We expect the number of PrePs to be reason-

ably small in practice, as most input devices adhere to a

well-known (and simple) protocol.

6 The Trusted Monitor

Bumpy’s input protections by themselves are of limited

value unless the user can ascertain whether the protections

are active when she enters sensitive data. The primary us-

ability criticism [7] of PwdHash [25] is that it provides in-

sufficient feedback to the user as to the state of input pro-

tections. Thus, it is of utmost importance that the user is

aware of the transition between protected and unprotected

input. With Bumpy, the Trusted Monitor serves as a trusted

output device that provides feedback to the user concerning

the state of input protections on her computer.

6.1 Feedback for the User

When input protections are active, the Trusted Moni-

tor displays the final destination (e.g., website) whose PoPr

will receive her next sensitive input. We represent this us-

ing the domain name and favicon of the currently active

PoPr, as reported by the PreP. When input protections are

disabled, the Trusted Monitor displays a warning that in-

put is unprotected and that users should use @@ to initiate

sensitive input. Figure 4 shows screenshots from our im-

plementation. In addition to changing the information on

its display, the Trusted Monitor uses distinctive beeps to

signal when protections become enabled or disabled.

The Trusted Monitor works in concert with the proper-

ties of the PreP’s Second @ and Enqueue Input states (Fig-

ure 3): when in these states, the PoPr is locked in and can-

not change until after the sensitive input to a single field is

processed by this PoPr (in the Invoke PoPr state). As such,

the PoPr represented by the domain name and favicon that

are displayed by the Trusted Monitor will remain the ac-

tive PoPr until input to the current field is complete. Thus,

there is no need for the user to worry about a malicious PoPr

change in the middle of a string of sensitive input. However,

the user must be diligent between fields. She must ensure

that the Trusted Monitor responds to each unique @@ se-

quence that she types (i.e., that the Trusted Monitor beeps

and shows that protection is enabled) before proceeding to

input her sensitive data. This is because the untrusted OS

may affect the delivery of encrypted keystrokes to the PreP

and PreP messages to the Trusted Monitor.

The risk is that malicious code may try to confuse the

user such that she misinterprets the Trusted Monitor’s dis-

play for one input field as indicating that her input is secure

for additional input fields. One such attack works as fol-

lows. Malcode allows keystrokes and Trusted Monitor up-

dates to proceed normally until the user begins typing sen-

sitive input for one input field on a web page. The Trusted

Monitor beeps and updates its display to indicate that pro-

tections are active. At this point, the malcode begins to

suppress Trusted Monitor updates, but the Trusted Moni-

tor cannot immediately distinguish between suppressed up-

dates and a distracted user who has turned away from her

computer. A user who finishes typing this secret and then

transitions to another input field and proceeds to enter an-

other secret — even after entering @@ and glancing at the

Trusted Monitor, but without waiting for confirmation of

the receipt of the new @@ by the PreP— renders the second

secret vulnerable to disclosure. To expose this secret, the

malicious OS plays the user’s encrypted inputs to the PreP

after the user is finished typing the second secret, but pro-

vides a malicious PoPr to the PreP when transitioning to the

Focused and Invoke PoPr states for the second input. That

is, the user provided the second secret presuming it was

protected in the same way as the first, but since she did not

confirm that the second @@ was received by the PreP before

she typed the second secret, it is vulnerable to disclosure to

a malicious PoPr.

To help users avoid such pitfalls, it may be desirable for

the Trusted Monitor to emit an audible “tick” per sensitive

keystroke received by the PreP, in addition to the preceding

beep when the @@ is received. This way, the absence of

ticks might be another warning to the user.

6.2 Protocol Details

To facilitate the exchange of information regarding the

active PoPr, a cryptographic association is needed between

the PreP and the Trusted Monitor. To establish this associ-

ation, the Trusted Monitor engages in a one-time initializa-

tion protocol with the PreP, whereby cryptographic keys are

established for secure (authentic) communication between

the PreP and the Trusted Monitor. The protocol is quite

similar to that used between the PreP and input device(s) in

Section 4.2.

The initialization process for PreP-to-Trusted Monitor

communication is an infrequent event (i.e., only when the

user gets a new Trusted Monitor or input device). Thus, a

trust-on-first-use approach is reasonable, where the Trusted

Monitor simply accepts the public key claimed for the PreP.

Any of a range of more secure (but more manual or more

infrastructure-dependent) approaches can be employed, in-

cluding ones that allow the Trusted Monitor to validate an

attestation from the TPM on the user’s computer as to the

correct operation of the PreP and to the value of its pub-



lic key (a capability offered by Flicker [18]). The PreP can

save its private key in PCR-protected storage on the user’s

computer, and so will be available only to this PreP in the

future (as in Section 4).

The Trusted Monitor need not be a very complex de-

vice. Its responsibilities are to receive notifications from the

user’s computer via wired or wireless communication, and

to authenticate and display those notifications. While our

implementation employs a smartphone for a Trusted Mon-

itor (Section 8), this is far more capable than is necessary

(and more capable than we would recommend).

With a smartphone serving as the Trusted Monitor, there

is no reason why the user’s Trusted Monitor cannot per-

form the full gamut of verification tasks we have described

as being in the webserver’s purview. In fact, technically

savvy and privacy-conscious users may prefer this model

of operation, and it becomes significantly easier to adopt

if a small number of PrePs and PoPrs become standardized

across many websites. These users can learn that their input

is being handled by precisely the PreP and PoPr that they

have configured for their system, and that opaque third-

party code is never invoked with their input.

7 Security Analysis

We discuss Bumpy’s TCB, the implications of a com-

promised web browser, phishing attacks, and usability.

7.1 Trusted Computing Base

One of the primary strengths of Bumpy is the reduction

in the TCB to which input is exposed on the user’s com-

puter. Always in the TCB are the encrypting input device

and the PreP that decrypts and processes the encrypted in-

put events on the user’s computer. The PoPr associated with

each website is also in the TCB for the user’s interaction

with that website, but the PreP isolates each PoPr from both

the PreP’s sensitive state and the OS (thereby preventing a

malicious PoPr from harming a well-behaved OS). The en-

crypting input device is a dedicated, special-purpose hard-

ware device, and the PreP is a dedicated, special-purpose

software module that executes with Flicker’s isolation [18].

A compromise of either of these components is fatal for

Bumpy, but their small size dramatically reduces their at-

tack surface with respect to alternatives available today, and

may make them amenable to formal verification. The PoPr

may be specific to the destination website, and may be con-

sidered a local extension of the remote server. It does not

make sense to send protected input to a remote server that

the user is unwilling to trust. Additionally, the PoPr’s func-

tionality is well-defined, leading to small code size.

Also in the TCB is the Trusted Monitor that displays au-

thenticated status updates from the PreP, i.e., the domain

name and favicon for the active PoPr. The Trusted Monitor

never handles the user’s sensitive input, so compromising it

alone is insufficient to obtain the user’s input. However, if

the Trusted Monitor indicates that all is well when in fact it

is not, then a phishing attack may be possible (Section 7.3).

7.2 Compromised Browser

If the user’s browser or OS is compromised, then mali-

cious code can invoke the PreP with input of its choosing.

Bumpy can still keep the user’s sensitive input safe pro-

vided that she adheres to the convention of starting sensitive

input with @@ and pays attention to the security indicator on

her Trusted Monitor.

The cryptographic tunnel between the input device and

PreP prevents malicious code from directly reading any

keystrokes, and prevents the malicious code from injecting

spurious keystrokes. Thus, a compromised browser’s op-

tions are restricted to providing spurious inputs to the PreP,

including SSL certificates, PoPrs, and browser focus events.

None of these are sufficient to violate the security properties

of Bumpy, but they can put the user’s diligence in referring

to the Trusted Monitor to the test.

Malicious SSL Certificates. The PreP is equipped with

a list of trusted certificate authorities (CAs). Any SSL cer-

tificate that cannot be verified is rejected, causing sensitive

keystrokes to be dropped. Thus, an attacker’s best option

is to compromise an existing site’s SSL certificate (thereby

reducing the incentive to attack the user’s computer), or to

employ a phishing attack by registering a similar domain

name to that which the user expects (e.g., hotmai1.com, in-

stead of hotmail.com) and using an identical favicon.

Malicious PoPr. The PreP will not accept a PoPr unless

it can be verified with the current SSL certificate, thereby

reducing this attack to an attack on the SSL certificate (as

described in the previous paragraph) or webserver.

Malicious Browser Focus Events. A malicious browser

may generate spurious or modified focus events in an at-

tempt to confuse the PreP with respect to which field is

currently active. However, regardless of which field is ac-

tive, the user controls whether the current input events are

considered sensitive. When they are sensitive, input to a

field is always encrypted and tagged with the field’s name

before being released to the PoPr. A malicious focus event

may only cause ciphertext to be tagged with the wrong field

name, thereby impacting availability. However, we already

consider an adversary which controls the OS on the user’s

computer, and is thus already in total control of availability.



7.3 Phishing

If a user is fooled by a phishing attack (e.g., she confuses

similar-looking domains), she may be using Bumpy’s pro-

tections to enter her sensitive data directly into a phishing

website. Defeating phishing attacks is not our focus here,

though Bumpy should be compatible with a wide range of

phishing defenses [14]. As a simple measure, Bumpy pro-

vides an indicator on the Trusted Monitor that includes the

domain name and favicon of the current website. Though

we have not solved some of the intrinsic problems with cer-

tificate authorities and SSL, the PreP can enforce policies

such as: only PoPrs from white-listed webservers are eligi-

ble to receive a user’s input; PoPrs from blacklisted web-

servers can never receive a user’s input; and self-signed

certificates are never acceptable. These policies are en-

forceable in the PreP, and require the user to have a Trusted

Monitor only to provide feedback to improve usability.

With a PoPr implementing PwdHash, only the hashed

password is returned to the web browser. If a user is fooled

into entering her password into a phishing site with a dif-

ferent domain name, the phishing site captures only a hash

of the user’s password, and must successfully perform an

offline dictionary attack before any useful information is

obtained about the user’s password at other sites. Addi-

tionally, in the case where a user ignores the indicator but

has established the habit of starting her password with @@,

hashing of the user’s password can restrict the impact of the

user’s being phished on one website to that website alone.

With a compromised OS, malware on the user’s system can

observe the hashed password when it is released to the web

browser, but this password is only valid at a single website.

7.4 Usability

Confusion. If users do not understand the Bumpy system,

or their mental model of the system is inaccurate, then they

may be fooled by a malicious web page. For example, a

prompt such as the following may trick the user into believ-

ing that there is no need to prefix her password with @@ on

the current web page:

Input your password: @@

The user may also become confused if she makes a ty-

pographical error entering @@, and tries to use backspace

to correct it. Bumpy will not offer protections in this case,

until the user changes to another input field and then comes

back to the current field (i.e., causes a blur event and then

a new focus event). The Trusted Monitor does indicate that

protections are disabled, but it may not be obvious to the

user why this is the case. We discuss editable sensitive in-

put in Section 10.1.

Only a formal user study can ascertain the level of risk

associated with this kind of attack, which we plan to pursue

in future work.

ExtraMouse Clicks. When a user clicks in an input field,

a focus event is generated for the field and conveyed to the

PreP. The user’s next mouse click is interpreted by the PreP

as a blur event for the current input field, disabling input

protection. An attack may be possible if the user clicks

the mouse in an input field after already typing part of her

input into the field. This click could be interpreted as a

blur event, and cause the rest of the user’s keystrokes to

be sent unencrypted. This may arise when, e.g., the user

forgot her credit card number after entering the first few

digits from memory, and needs to go lookup the remainder.

The Trusted Monitor will beep and update its display to

indicate that input protections are disabled when this blur

event happens, but this may be a source of user confusion.

8 Implementation

Our implementation of Bumpy supports verification by

the remote webserver with a smartphone as Trusted Mon-

itor to provide feedback to the user. We implement two

PoPrs: one encrypts sensitive input as-is for transmission

to a Bumpy-aware webserver, and the other hashes pass-

words with the PwdHash algorithm [25] for transmission to

an unmodified webserver.

We have been unable to find any commercially avail-

able keyboards or mice that enable programmable en-

crypted communication. However, myriad wireless key-

boards do implement encrypted communication with their

host adapter (e.g., encrypted Bluetooth packets are de-

crypted in the Bluetooth adapter’s firmware, and not in

software). Thus, the problem is not technical, but rather

a reflection of the market’s condition. Indeed, Microsoft’s

NGSCB was originally architected to depend on USB key-

boards capable of encryption [8,23]. In our system, we have

developed a USB Interposer using a low-power system-on-

a-chip. Our USB Interposer supports a USB keyboard and

mouse and manages encryption for use with Bumpy.

We have implemented Bumpy using an HP dc5750 with

an AMD Athlon64 X2 at 2.2 GHz and a Broadcom v1.2

TPM as the user’s computer, with a USB-powered Bea-

gleBoard [4] containing a 600 MHz ARM CPU running

embedded Linux serving as the USB Interposer. We use

a Nokia E51 smartphone running Symbian OS v9.2 as the

Trusted Monitor. Our USB Interposer supports encryption

of all keyboard events, and mouse click events. Mouse

movement events (i.e., X and Y delta information) are not

encrypted, since only mouse clicks trigger blur events in

the web browser GUI.

8.1 Bumpy Components

Our implementation includes the PreP and two PoPrs

that run with Flicker’s protections on the user’s computer,

the USB Interposer (BeagleBoard), the Trusted Monitor



running on a smartphone, and an untrusted web browser

extension and Perl script. We begin by describing the com-

ponents that are in Bumpy’s TCB, and then treat the addi-

tional untrusted components that are required for availabil-

ity (which we are forced to surrender since we consider the

OS as untrusted).

PreP and PoPrs. We implemented the PreP as a Piece

of Application Logic that runs with the protection of the

Flicker system [18] and (1) receives encrypted keystroke

events from the encrypting input device (i.e., the USB

Interposer), (2) invokes one of our PoPrs to process the

encrypted keystrokes for the webserver, either by re-

encrypting them or performing the PwdHash [25] opera-

tion on passwords, and (3) sends encrypted messages to the

Trusted Monitor that provide the favicon and domain of the

active web page and PoPr. In our implementation, the PreP

and both PoPrs are all part of the same PAL that runs using

Flicker. An input parameter controls which PoPr is active.

USB Interposer. Our USB Interposer is built using a

BeagleBoard featuring an OMAP3530 processor imple-

menting the ARM Cortex-A8 instruction set [4], and a Pro-

lific PL-25A1 USB-to-USB bridge [24]. We currently run

embedded Debian Linux to benefit from the Linux kernel’s

mature support for both USB host and client operation.

While this adds considerable code-size to our TCB, the in-

terposer executes in relative isolation with a very specific

purpose. We implement a small Linux application that re-

ceives all keyboard and mouse events (using the kernel’s

evdev interface), and encrypts all keyboard and mouse

click events, letting mouse movement information pass in

the clear. We describe the cryptographic protocol details in

Section 8.2.

(a) Protection enabled visiting

SunTrust bank.

(b) Protection disabled.

Figure 4. Screenshots of the Trusted Monitor.

Trusted Monitor. We implemented a Symbian C++ ap-

plication that runs on the Nokia E51 smartphone and serves

as the Trusted Monitor. The Trusted Monitor updates its

display in response to authenticated messages from the

PreP, as described in Section 6. Figure 4 shows screen shots

of the Trusted Monitor in action. When a session is active

between the Trusted Monitor and PreP, the Trusted Moni-

tor displays the domain name and favicon of the active web

page’s PoPr. It also displays a green keyboard (Figure 4(a))

as a unified indicator that protections are enabled. When

input protections are disabled, it displays a warning mes-

sage that input is unprotected and that @@ should be used

for sensitive input (Figure 4(b)). The Trusted Monitor uses

distinctive beeps whenever input protections transition be-

tween enabled and disabled.

Note that after the initial configuration of the Trusted

Monitor and PreP (Section 8.2), no further configuration is

necessary during subsequent input sessions. The long-term

symmetric keys encrypted under the master key that is kept

in PCR-protected TPM NV-RAMwill only be accessible to

the correct PreP. Thus, only the PreP will be able to send

authentic messages to the Trusted Monitor.

Untrusted Components. We developed an untrusted

Firefox Browser Extension that communicates a web page’s

SSL certificate and embedded PoPr, and all focus events to

the PreP. An untrusted Perl script facilitates communication

between all components, manages the invocation of Flicker

sessions, injects decrypted keystrokes into the OS using the

Linux kernel’s Uinput driver, and provides TPM Quotes in

response to attestation requests. Note that the Flicker archi-

tecture provides the property that the code requesting the

attestation from the TPM chip need not be trusted [18]. To

convey encrypted data from the PreP to the USB Interposer,

Trusted Monitor, or browser extension, the PreP must exit

and release the ciphertext to the Perl script.

8.2 Secure Communication with the PreP

Both the USB Interposer and the Trusted Monitor re-

quire the ability to exchange secret, integrity-protected

messages with the PreP. We implement the Flicker external

communication protocol for both, with a trust-on-first-use

model for accepting the respective public keys created in

the PreP. Neither the USB Interposer nor the Trusted Mon-

itor is pre-configured with knowledge of the identity of the

TPM in the user’s computer or the identity of the PreP in-

stalled on the user’s computer.

We program a dedicated button on the USB Interposer

to bootstrap association with a PreP, whereas the Trusted

Monitor exposes a menu option to the user to connect to her

computer to perform the initial configuration. The USB In-

terposer communicates with the user’s computer via USB,

and we use the AT&T 3G cellular network or WiFi to con-



nect the Trusted Monitor to the user’s computer using a

standard TCP/IP connection. An untrusted Perl script run-

ning on the user’s computer handles reception of these mes-

sages and invokes Flicker sessions with the PreP so that the

messages can be processed.

Both the USB Interposer and Trusted Monitor send a re-

quest to initiate an association with the PreP, passing in

the command to bootstrap Flicker’s external communica-

tion protocol [19], as well as a nonce for the subsequent

attestation. The PreP then uses TPM-provided random-

ness to generate a 1024-bit RSA keypair. In accordance

with Flicker’s external communication protocol, the PreP

extends PCR 17 with the measurement of its newly gener-

ated public key. The public key is then output from the PreP

to be sent to the Trusted Monitor, and PCR 17 is capped

(extended with a random value) to indicate the end of the

Flicker session. At this point, PCR 17 on the user’s com-

puter contains an immutable record of the PreP executed

and public key generated during execution.

8.2.1 PreP Authentication

Our use of a trust-on-first-use model to accept the PreP’s

public key dictates that no further verification of the ex-

changed keys is necessary. However, rigorous security

goals may require the USB Interposer or Trusted Moni-

tor to verify that the user’s computer is running an ap-

proved PreP. In our current prototype, the USB Interposer

and Trusted Monitor request a TPM attestation from the

user’s computer to ascertain the machine’s public Attesta-

tion Identity Key (AIK) that it uses to sign attestations (TPM

Quotes [34]), and the measurement (SHA-1 hash) of the

PreP that will process input events. On subsequent connec-

tions, any change in the AIK or PreP measurement is an

error. This way, it is readily extensible to allow application

vendors to distribute signed lists of expected measurements,

to leverage a PKI, or to a community-driven system simi-

lar in spirit to that of Wendlandt et al. (Perspectives [35]),

and thus enable the USB Interposer and Trusted Monitor to

validate the identity of the PreP themselves.

The USB Interposer and Trusted Monitor include a

nonce with their initial connection requests, and expect

a response that includes a TPM Quote over the nonce

and PCR 17. The measurements extended into PCR 175

are expected to be the measurement of the PreP it-

self, the command to bootstrap external communication

(ExtCommCmd), and the measurement of the public RSA

key produced by the PreP:

PCR17 ← SHA1(SHA1(SHA1(0
160||SHA1(PreP))

||SHA1(ExtCommCmd))||SHA1(PubKey)).
The USB Interposer and Trusted Monitor perform the

same hash operations themselves using the measurement of

5This example is specific to an AMD system. The measurements ex-

tended by Intel systems are similar.

the PreP, value of ExtCommCmd, and hash of the received

public key. They then verify that the resulting hash matches

the value of PCR 17 included in the TPM Quote.

8.2.2 Symmetric Key Generation for Communication

with the PreP

We bootstrap secret and integrity-protected communica-

tion between the PreP and the USB Interposer or Trusted

Monitor using the PreP’s relevant public key to establish

a shared master key KM1 . Separate symmetric encryption

and MAC keys are derived for each direction of commu-

nication. We use AES with 128-bit keys in cipher-block

chaining mode (AES-CBC) and HMAC-SHA-1 to protect

the secrecy and integrity of all subsequent communication

between the Trusted Monitor and the PreP. These keys form

a part of the long-term state maintained by both endpoints.

Kaes1 ← HMAC-SHA1(KM1,‘aes128.1’)
128

Khmac1 ← HMAC-SHA1(KM1,‘hmac-sha1.1’)

Kaes2 ← HMAC-SHA1(KM1,‘aes128.2’)
128

Khmac2 ← HMAC-SHA1(KM1,‘hmac-sha1.2’)

8.2.3 Long-Term State Protection

The PreP must protect its state from the untrusted legacy

OS while Flicker is not active. To facilitate this, the PreP

generates a 20-byte master key KM2 using TPM-provided

randomness. This master key is kept in PCR-protected

non-volatile RAM (NV-RAM) on the TPM chip itself. We

choose TPM NV-RAM instead of TPM Sealed Storage be-

cause of a significant performance advantage. The PCR 17

value required for access to the master key is that which is

populated by the execution of the PreP using Flicker:

PCR17 ← SHA1(0
160||SHA1(PreP)).

Flicker ensures that no code other than the precise PreP

that created the master key will be able to access it [19]. Our

PreP uses AES-CBC and HMAC-SHA-1 to protect the se-

crecy and integrity of the PreP’s state while the (untrusted)

legacy OS runs and stores the ciphertext. The necessary

keys are derived as follows:

Kaes ← HMAC-SHA1(KM2,‘aes128’)
128,

Khmac ← HMAC-SHA1(KM2,‘hmac-sha1’).

This is sufficient to detect malicious changes to the saved

state and to protect the state’s secrecy. However, a counter

is still needed to protect the freshness of the state and pre-

vent roll-back or replay attacks. The TPM does include a

monotonic counter facility [34], but it is only required to

support updating once every five seconds. This is insuffi-

cient to keep up with user input. Instead, we leverage the se-

quence numbers used to order encrypted input events com-

ing from the USB Interposer. The PreP is constructed such

that a sequence number error causes the PreP to fall back

to a challenge-response protocol with the USB Interposer,

where the PreP ensures that it is receiving fresh events from

the USB Interposer and reinitializes its sequence numbers.



Any sensitive input events that have been enqueued when a

sequence number error takes place are discarded. Note that

this should only happen when the system is under attack.

The USB Interposer and Trusted Monitor run on devices

with ample non-volatile storage available.

8.3 The Life of a Keystroke

Here, we detail the path taken by keystrokes for a sin-

gle sensitive web form field. It may be useful to refer back

to Figures 2 and 3. At this point, symmetric cryptographic

keys are established for bidirectional, secret, authenticated

PreP-USB Interposer and PreP-Trusted Monitor communi-

cation. We now detail the process that handles keystroke

events as the user provides input to a web page.

The user begins by directing focus to the relevant field,

e.g., via a click of the mouse. On a well-behaved system,

our browser extension initiates a Flicker session with the

PreP, providing the name of the field, and the webserver’s

SSL certificate, PoPr (which includes the encryption key

certificate Certws enc), nonce, and favicon as arguments.

The PreP verifies the SSL certificate using its CA list and

verifies that the PoPr, nonce, and favicon are signed by the

same SSL certificate. The user then types @@ to indicate

that the following input should be regarded as sensitive.

The user’s keystrokes travel from the keyboard to the USB

Interposer, where they are encrypted for the PreP, and trans-

mitted to the Perl script on the user’s computer (Steps 1–3

in Figure 2). The script then initiates other Flicker sessions

with the PreP, this time providing the encrypted keystrokes

as input (Step 4 in Figure 2). The PreP decrypts these

keystrokes and recognizes @@ (Figure 3) as the sequence

to indicate the start of sensitive input. The PreP outputs

the @ characters in plaintext and prepares a message for the

Trusted Monitor to indicate the domain name and favicon

of the current website and PoPr. The Trusted Monitor re-

ceives this message, beeps, and updates its display with the

domain name and favicon.

Subsequent keystrokes are added to a buffer maintained

as part of the PreP’s long-term state. Dummy keystrokes

(asterisks) are output for delivery to the legacy operating

system (Step 5 in Figure 2) using the Uinput facility of the

Linux kernel (which is also used when cleartext mouse and

keyboard input events need to be injected). This enables

the browser to maintain the same operational semantics and

avoid unnecessary user confusion (e.g., by fewer asterisks

appearing than characters that she has typed).

In the common case (after the long-term cryptographic

keys are established), TPM-related overhead for one

keystroke is limited to the TPM extend operations to initi-

ate the Flicker session, and a 20-byte read fromNV-RAM to

obtain the master key protecting the sealed state. All other

cryptographic operations are symmetric and performed by

the main CPU. Section 9 offers a performance analysis.

When the user finishes entering sensitive input into a

particular field, she switches the focus to another field. The

PreP catches the relevant input event (a Blur in Figure 3) on

the input stream, and prepares the sensitive input for hand-

off to the PoPr (Step 6 in Figure 2). We have implemented

two PoPrs: encryption directly to the webserver, and Pwd-

Hash [25]. The PreP will then receive a focus event from the

browser, indicating that focus has moved to another field.

Note that form submission is a non-sensitive input event, so

no special handling is required.

Encryption for Webserver. A widely useful PoPr en-

crypts the sensitive input for the remote webserver exactly

as entered by the user (Steps 6–8 in Figure 2). This is ac-

complished using a public encryption key that is certified

by the webserver’s private SSL key. We use RSA encryp-

tion with PKCS#1v15 padding [15] to encrypt symmetric

AES-CBC and HMAC-SHA-1 keys, which are used to en-

crypt and MAC the actual input with its corresponding field

tags. The public encryption key is embedded in the PoPr.

Post-Processing as PwdHash. Another useful PoPr per-

forms a site-specific transformation of data before submis-

sion to the webserver. We have implemented the Pwd-

Hash [25] algorithm in our PoPr. When this PoPr is active,

the remote webserver need not be aware that Bumpy is in

use, since the hashed password is output to the web browser

as if it were the user’s typed input. The PoPr manages the

transformation from the user’s sensitive password to a site-

specific hash of the password, based on the domain name

of the remote webserver.

8.4 The Webserver’s Perspective

We now describe the process of acquiring sensitive input

from the perspective of a Bumpy-enabled webserver. Prior

to handling any requests, the webserver generates an asym-

metric encryption keypair and signs the public key using

its private SSL key (using calls to OpenSSL), resulting in

Certws enc . Certws enc can be used for multiple clients.

Our implementation consists of a Perl CGI script. When

a request arrives at the webserver for a page that accepts

user input, our CGI script is invoked to bundle Certws enc

with a freshly generated nonce (for the upcoming attesta-

tion from the user’s computer) and the hash and URL of the

binary image of our direct-encryption PoPr. The ensuing

bundle is then embedded into a hidden input field on the re-

sulting web page. The hash and URL of the PoPr prevents

wasting bandwidth on transferring the full PoPr unless it is

the user’s computer’s first time employing this PoPr.

When the user submits the resulting page, the webserver

expects to receive an attestation from the user’s computer

covering the PreP, the provided PoPr and nonce, and a pub-

lic signing key (KPoPr sig ) newly generated by the PoPr



on the user’s computer. Currently, we employ trust-on-

first-use to accept the Attestation Identity Key (AIK) that

the user’s computer’s TPM used to sign the PCR register

values. We have manually configured the webserver with

the expected measurement of the PreP and PoPrs, as they

are part of the same binary in our implementation. If the

measurements in the attestation match the expected values,

then KPoPr sig is associated with K−1

ws enc (and the user’s

computer’s TPM’s AIK) to enable decryption and authenti-

cation of subsequent strings of sensitive input encrypted by

the PoPr.

9 Evaluation

We discuss the size of the trusted computing base (TCB)

for our implementation, the performance impact on ordi-

nary typing, webserver overhead, and the impact of network

latency on the refresh rate of the Trusted Monitor’s display.

Code Size. Bumpy provides strong security properties in

part due to its small trusted computing base (TCB). Fig-

ure 5 shows the code size for our PreP and PoPrs, USB In-

terposer, webserver CGI script, and Trusted Monitor. Note

that the TCB for the PreP and PoPrs includes no additional

code beyond the listed Flicker libraries thanks to the prop-

erties of Flicker. Our current USB Interposer runs as a

Linux application on a BeagleBoard; however, its only in-

terface is the USB bridge to the user’s computer, and its

only function is to transmit encrypted keyboard and mouse

events. Our Trusted Monitor includes Symbian OS in its

TCB, as it runs as a normal smartphone application. We

emphasize that the inclusion of Linux in the TCB of our

USB Interposer and Symbian OS in the TCB of our Trusted

Monitor is an artifact of our prototype implementation, and

not a necessary consequence of our architecture.

Typing Overhead with USB Interposer. We measured

the round-trip-time between reception of a keypress on

the USB Interposer (from the physical keyboard) and re-

ception of an acknowledgement from the user’s computer.

This includes the time to encrypt and HMAC the key-

press in the USB Interposer, send it to the user’s com-

puter via the USB-to-USB bridge, invoke the Flicker ses-

sion on the user’s computer with the PreP (unseal PreP

state using the master key kept in PCR-protected TPMNon-

Volatile RAM, decrypt and authenticate the newly arrived

keypress, reseal PreP state, and release the new keypress

to the OS), and send the acknowledgement back over the

USB-to-USB bridge. In 500 trials, we experienced over-

head of 141±15 ms (Figure 6). This is mildly noticeable
during very fast typing, similar to an SSH session to a far-

away host. It is noteworthy that the overhead consumed

by Flicker (i.e., by the PreP) is 66±0.1 ms per keystroke,

PreP and PoPrs

Func. Lang. SLOC

Main .c 1044

PwdHash .c 99

PwdHash .h 4

Total .c, .h 1147

Flicker libraries

Func. Lang. SLOC

Crypto .c 3980

Crypto .h 471

TPM .c 1210

TPM .h 252

Util .c 518

Util .h 251

Util .S 161

Total .c, .h, .S 6854

USB Interposer

Func. Lang. SLOC

Decode, Encrypt & TX .c 489

Webserver CGI

Func. Lang. SLOC

Embed & Verify .pl 167

Trusted Monitor

Func. Lang. SLOC

Protocol .cpp 979

Protocol .h 286

UI .cpp 539

UI .h 160

Util .cpp 50

Util .h 34

Total .cpp, .h 2048

Figure 5. Lines of code for trusted
Bumpy components obtained using SLOC­

Count [36]. The PreP and PoPrs include only
the Flicker libraries in their software TCB. The
USB Interposer, webserver, and Trusted Mon­

itor also include their respective operating
systems.

suggesting that more than half of the latency in our current

prototype may be an artifact of the untrusted Perl script in

our implementation. Indeed, the contribution of the Uin-

put driver used to inject keystrokes (42±8 ms) is unchar-
acteristically large, and grows over time. Writing to the

driver from our Perl script presently involves the creation

of a child process and a new virtual input device for every

keystroke. The virtual input device driver was not designed
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Figure 6. Latencies for 500 individual

keystrokes. The PreP and Uinput latencies
are components of the Keystroke latencies.

to scale so far. Our script should be modified to employ

the same virtual input device throughout. Ample opportu-

nities remain for optimization, which we plan to pursue in

the course of future work in preparation for a user study.

Webserver Overhead with Encryption PoPr. With our

direct-encryption PoPr enabled, the webserver must embed

Certws enc , a newly generated nonce, the hash of the de-

sired PoPr, the URL at which the client system can obtain

the PoPr, and a signature covering the favicon and all of

these items into each page that may accept sensitive input.

Our webserver is a Dell PowerEdge 2650 with two Intel

Xeon 2.4 GHz CPUs running the Debian Linux flavor of

Apache 2.2.3. In 25 trials, our CGI script induces a page-

load latency of 17.0±0.4 ms, which is primarily composed
of reading the cryptographic keys from disk (8.2±0.0 ms)
and signing the nonce and metadata (8.6±0.5 ms). When
the user submits the completed page, the webserver must

verify an attestation from her platform. In 25 trials, our

CGI script induces a form-submission latency of less than

2 ms to verify the signature on the attestation. Note that

symmetric keys can be established that reduce the need

for the signature-verification operation to a one-time over-

heads. Though we have not yet implemented this optimiza-

tion, the only cost is a few tens of bytes of long-term state

maintained on the user’s computer and the webserver.

Trusted Monitor Network Latency. Our Trusted Mon-

itor uses a TCP connection between the Nokia E51 smart-

phone and the user’s computer. If there is significant net-

work latency, then the Trusted Monitor may not be display-

ing the correct URL and favicon when the user looks at

it. The smartphone can access the Internet using either its

3G/3.5G cellular radio, or using standard 802.11b/g wire-

less access points. To evaluate the latency impact of using

these networks, we performed a simple echo experiment

with an established TCP connection, where the E51 sends

a series of 4-byte requests and receives 24-byte responses

(excluding TCP/IP headers) from the HP workstation. We

observed an average round-trip time (RTT) of 102±82 ms
using the 802.11 network, and 211±25 ms using AT&T’s
3.5G network. In our experience, these latencies are imper-

ceptible to the user as she turns her head to look away from

her primary display and towards the Trusted Monitor.

10 Discussion

We discuss design alternatives and other interesting fea-

tures that Bumpy might be extended to offer.

10.1 Bumpy Design Alternatives

@@ at Any Time. As presented, the secure attention se-

quence for Bumpy is the @@ sequence immediately follow-

ing a focus event from the web browser GUI. There are no

technical limitations to enabling a secure attention sequence

at any time, regardless of where in a field the cursor may be.

However, we anticipate significant usability challenges for

all but the most savvy users. This may prove to be an inter-

esting direction for future work.

Editing Bumpy-Protected Input. As presented (Sec-

tion 4.1), Bumpy ignores non-display characters that do

not cause a blur event in the web browser GUI while the

user is entering sensitive data. Examples of such characters

are backspace and the arrow keys. Here too, there are no

technical limitations to enabling the user to edit her opaque

(from the browser’s perspective) data. However, we are

concerned about a malicious browser tampering with the

cursor and confusing the user. Additional investigation is

warranted to determine whether this attack amounts to any-

thing beyond a denial-of-service attack (e.g., to get better

data for a keystroke timing attack [32]).

Trusted Path Between Trusted Monitor and Webserver.

There are many circumstances where the lack of a trusted

path from a remote server to a user with a compromised

computer can lead to the user’s loss of sensitive informa-

tion. For example, when a remote server checks an attes-

tation from the user’s computer and finds known malware

installed, it is desirable to inform the user that her system is

compromised. Other researchers have considered the use of

PDAs or smartphones in such roles (e.g., Balfanz et al. [2]),

but we consider this enhancement to Bumpy to be beyond

the scope of the current paper.



PreP as Password Store. The direct-encryption PoPr

breaks the web browser’s ability to remember passwords on

behalf of the user. This feature can be reenabled using the

PreP or PoPr as a password store, and the Trusted Monitor

as the interface to select a stored password.

10.2 Other Interesting Features

Password Leak Detection. A compelling feature that can

readily be added to a PreP is to look for the user’s pass-

word(s) in the input stream and detect whether it appears

when input protections are not enabled. This may allow the

system to issue a warning if, e.g., the user is about to fall

victim to a phishing attack.

Hardware Keyloggers. Resistance to physical attacks is

not an explicit goal of Bumpy; however, the issue warrants

discussion. Bumpy’s resilience to hardware keyloggers de-

pends on the model used for associating new input devices

with the user’s computer. If a simple plug-and-play archi-

tecture is allowed, then a hardware keylogger inserted be-

tween the input device and the user’s computer can appear

as a new input device to the computer, and a new computer

to the input device. One alternative is for input devices

to require manufacturer certification before the user’s com-

puter will associate with them. However, this may prove to

be impractical, as users may perceive all certification errors

as indicative of a broken device. The core research chal-

lenge here is the problem of key establishment between de-

vices with no prior context [3, 20, 33].

11 Conclusion and Future Work

We have described Bumpy, a system that protects users’

sensitive input from keyloggers and screen scrapers by ex-

cluding the legacy OS and software stack from the TCB for

input. Bumpy allows users to dictate which input is consid-

ered sensitive, thus introducing the possibility of protecting

much more than just passwords. Bumpy allows webservers

to define how input that their users deem sensitive is han-

dled, and further allows users’ systems to generate attesta-

tions that input protections are in place. With a separate

local device, Bumpy can provide the user with a positive

indicator that her input is protected. We have implemented

Bumpy and show that it is efficient and compatible with ex-

isting legacy software.

We intend to continue the pursuit of a usable solution for

protecting more sizeable input, e.g., composing a sensitive

letter. We also plan to evaluate the current Bumpy architec-

ture with a formal user study.
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A TCG-Style Attestation and Sealed Storage

The v1.2 Trusted Platform Module (TPM) chip contains

an array of 24 or more Platform Configuration Registers

(PCRs), each capable of storing a 160-bit hash. These PCRs

can be Extended with a Measurement (cryptographic hash)

of data, such as a program binary. Given a measurement m

← SHA1(data), the extend process works as follows:

PCRnew ← SHA1(PCRold ||m).
TPMs include two kinds of PCRs: static and dynamic.

Static PCRs reset to 0160 when the TPM itself resets (gen-

erally during a full platform reset or power-cycle, although

physical TPM-reset attacks have been demonstrated [16,17,

26]), and can only have their value updated via an Extend

operation. These PCRs can be used to keep a record of mea-

surements for all software loaded since the last reboot, as in

IBM’s Integrity Measurement Architecture [27].

Dynamic PCRs are present in v1.2 TPMs, and are rel-

evant when the platform supports Dynamic Root of Trust,

e.g., Intel TXT [13] or AMD SVM [1]. Dynamic PCRs re-

set to 1160 during full platform reset, and can additionally

be reset to 0160 via a Late Launch, thereby establishing a

Dynamic Root of Trust. In addition to resetting the dynamic

PCRs, Late Launch resets the CPU to a known trusted state

without rebooting the rest of the system. This includes con-

figuring the system’s memory controller to prevent access

to the launching code from DMA-capable devices. One of

the newly reset dynamic PCRs is then automatically ex-

tended with a measurement of the software that will get

control following the Late Launch [1]. This enables soft-

ware to bootstrap without including the BIOS or any system

peripherals in the TCB. The Open Secure LOader (OSLO)

performs a Late Launch on AMD systems to remove the

BIOS from the TCB of a Linux system [16]. Trusted Boot6

6http://sourceforge.net/projects/tboot



from Intel performs similarly for Intel hardware, though it

adds the ability to enforce a Launch Control Policy. The

Flicker system uses Late Launch to briefly interrupt the ex-

ecution of a legacy OS and execute a special-purpose code

module in isolation from all other software and devices on

the platform, before returning control to the legacy OS [18].

Once measurements have accumulated in the PCRs, they

can be attested to a remote party to demonstrate what soft-

ware has been loaded on the platform. They can also be

used to seal data to a particular platform configuration. We

discuss each of these in turn.

Attestation. The attestation process involves a challenge-

response protocol, where the challenger sends a crypto-

graphic nonce (for replay protection) and a list of PCR

indexes, and requests a TPM Quote over the listed PCRs.

A Quote is a digital signature computed over an aggregate

of the listed PCRs using an Attestation Identity Key (AIK).

An AIK is an asymmetric signing keypair generated on the

TPM. We discuss certification of AIKs shortly. The mes-

sages exchanged between a challenger C and an untrusted

system U to perform an attestation are:

C → U: nonce, PCRindexes

U → C: PCRvals, {PCRvals, nonce}AIK−1

Once the challenger receives the attestation response,

it must (1) verify its nonce is part of the reply, (2) check

the signature with the public AIK obtained via an authen-

tic channel, (3) verify that the list of PCR values received

corresponds to those in the digital signature, and (4) ver-

ify that the PCR values themselves represent an acceptable

set of loaded software. Note that since the sensitive opera-

tions for a TPM Quote take place entirely within the TPM

chip, the TPM Quote operation can safely be invoked from

untrusted software. The only attack available to malicious

software is denial-of-service. In the context of the Flicker

system, this removes the code that causes the TPM Quote

to be generated from the system’s TCB.

Certifying Platform Identity. The Attestation Identity

Keypair (AIK) used to perform the TPM Quote effectively

represents the identity of the attesting host. We discuss op-

tions for certifying this keypair (i.e., obtaining an authentic

copy of the public AIK for a particular physical host).

Multiple credentials are provided by TPM and host man-

ufacturers that are intended to convince a remote party that

they are communicating with a valid TPM installed in a host

in conformance with the relevant specifications [34]. These

are the TPM’s Endorsement Key (EK) Credential, Platform

Credential, and Conformance Credential. One option is to

use these credentials directly as the host’s identity, but the

user’s privacy may be violated. Motivated by privacy con-

cerns, the Trusted Computing Group (TCG) has specified

Privacy Certificate Authorities (Privacy CAs). Privacy CAs

are responsible for certifying that an AIK generated by a
TPM comes from a TPM and host with valid Endorsement

Key, Platform, and Conformance Credentials.

To the best of our knowledge, there are no commercial

Privacy CAs in operation today. Thus, we must either pro-

vide all of the credentials corresponding to the untrusted

host to the challenger (compromising privacy), or the chal-

lenger must blindly accept the AIK without performing any

verification (compromising host identity, and adopting the

trust-on-first-use model). Trust-on-first-use models have

been deployed successfully, e.g., for the Secure Shell (SSH)

protocol. Thus, we believe the choice of which host identity

mechanism to use is application-dependent. For communi-

cation with a bank or established online merchant, where

an honest user almost always provides her true identity, it is

not clear that there is any loss of privacy by providing the

full set of TPM and host credentials.

Direct Anonymous Attestation (DAA) has also been pro-

posed as an alternative to Privacy CAs for protecting plat-

form identity [6]. To the best of our knowledge, no systems

are available today that include TPMs supporting DAA.

Sealed Storage. TPM-protected sealed storage is a mech-

anism by which an asymmetric encryption keypair can be

bound to certain PCR values. Data encrypted under this

keypair then becomes unavailable unless the PCR values

match those specified when the data was sealed. This is a

relatively slow process since the asymmetric cryptographic

operations are performed by the low-cost CPU inside the

TPM. An alternative is to use the TPM’s Non-Volatile RAM

(NV-RAM) facility. NV-RAM can be configured with simi-

lar properties to sealed storage, in that a region of NV-RAM

can be made inaccessible unless the PCR values match

those specified when the region was defined. NV-RAM has

a limited number of write cycles during the TPM’s lifetime,

but the use of a symmetric master key that is only read from

NV-RAM in the common case can greatly extend its life.

Flicker can use TPM sealed storage or NV-RAM to protect

long-term state that is manipulated during Flicker sessions.


