
Minimal TCB Code Execution (Extended Abstract)∗
Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and Arvind Seshadri

Carnegie Mellon University

Abstract

We propose an architecture that allows code to ex-
ecute in complete isolation from other software while
trusting only a tiny software base that is orders of mag-
nitude smaller than even minimalist virtual machine
monitors. Our technique also enables more meaningful
attestation than previous proposals, since only measure-
ments of the security-sensitive portions of an applica-
tion need to be included. We achieve these guarantees
by leveraging hardware support provided by commodity
processors from AMD and Intel that are shipping today.

1 Introduction

The large size and huge complexity of modern op-
erating systems makes them difficult to analyze and
vulnerable to attack. The Linux kernel currently (as
of version 2.6) consists of nearly 5 million lines of
code [23], while Microsoft’s Windows Vista includes
over 50 million lines of code. Even Virtual Machine
Monitors (VMMs), often touted as smaller and more
secure than commodity operating systems, include sub-
stantial amounts of code that tend to grow over time. For
example, the initial implementation of the Xen VMM
required 42K lines of code [4] and within a few years al-
most doubled to approximately 83K lines [13]. Applica-
tion code depends on all of this code for its security, thus
swelling the size of its Trusted Computing Base (TCB)
far beyond the application code itself. As a result, even
security-conscious application developers can make few
guarantees about the security their applications provide.
As we discuss in more detail in Section 6, such a large
TCB also prevents current proposals for system-wide
code attestation [2, 14, 18] from providing meaningful
security information.

∗This research was supported in part by CyLab at Carnegie Mel-
lon under grant DAAD19-02-1-0389 from the Army Research Office,
and grants CT-0433540 and CCF-0424422 from the National Science
Foundation, by the iCAST project, National Science Council, Taiwan
under the Grants No. (NSC95-main) and No. (NSC95-org), and by a
gift from AMD. Bryan Parno is supported in part by an NDSEG Fel-
lowship, which is sponsored by the Department of Defense. The views
and conclusions contained here are those of the authors and should not
be interpreted as necessarily representing the official policies or en-
dorsements, either express or implied, of AMD, ARO, CMU, NSF, or
the U.S. Government or any of its agencies.

In this work, we describe a Secure Execution Archi-
tecture (SEA) that allows security-sensitive code to ex-
ecute in complete isolation from all other software (in-
cluding the operating system and VMM, if present) and
hardware devices. This dramatic reduction in the size of
the TCB for an application (see Figure 1) enables mean-
ingful software attestation and facilitates formal security
analysis of the software remaining in the TCB. Our SEA
provides these guarantees without requiring a reboot.

Our architecture leverages hardware support for se-
cure virtualization provided by AMD’s Secure Virtual
Machine (SVM) architecture [1] or Intel’s Trusted Exe-
cution Technology (TXT) [10]. These technologies pro-
vide a hardware-based dynamic root of trust, as well as
new forms of memory protection. They are designed
to atomically measure and launch a VMM or security
kernel (SK) without requiring a reboot [1, 9]. In con-
trast, we propose using this technology to securely exe-
cute sensitive application code in complete isolation and
then return to the user’s legacy operating system. By
doing so, we eliminate the OS from the application’s
TCB. Furthermore, our architecture can be deployed to-
day, and need not await the development of a perfectly
secure VMM. SVM- and TXT-equipped processors are
currently shipping in commodity servers and PCs.

Many security-sensitive applications can benefit from
our architecture. For example, when users log in to a
server using SSH, their passwords are transmitted to the
server over an encrypted and authenticated channel. At
the server, however, the passwords are decrypted and ex-
ist “in the clear” in the SSH server’s memory, where a
malicious root user, OS, kernel module, or device can
readily obtain them. By encrypting the user’s password
so that only code executed with our SEA can decrypt
it, the user can safely transmit a password to the server
without worrying about the security of the server’s op-
erating system or any other software the server might be
executing. The server can use attestation to convince the
client system (and hence, the user) that these additional
protections are in place without revealing any additional
information about the configuration of the server itself.

Likewise, a server could use SEA to improve the se-
curity of its SSL keys. Our architecture can also help
secure e-commerce applications, e-voting, online auc-
tions, or medical databases, for example. It is particu-
larly well-suited to handling sensitive data such as cryp-
tographic keys.

0-7695-2848-1/07 $25.00 © 2007 IEEE 267

CPU / Hardware

Legacy
OS SLB

TPM

App
1

App
n...

C

CPU / Hardware TPM

App
1 ... App

n
C

Legacy
OS

Figure 1. The figure on the left illustrates a tradi-
tional architecture, with an application that executes
a segment of sensitive code (C). The figure on the
right demonstrates the use of our architecture to exe-
cute the sensitive code. The shaded portions represent
the components that must be trusted in each scenario.
The secure loader block (SLB) consists of the security-
sensitive code plus a tiny amount of shim code.

2 Background
Our architecture requires hardware security features

which have recently come to market. We provide a brief
introduction to the relevant hardware features.

2.1 Late Launch

Processors with AMD’s SVM or Intel’s TXT include
the ability to use a late launch command to create a
dynamic root of trust. In this work, we will focus on
AMD’s SVM technology, but Intel’s TXT-enabled pro-
cessors behave similarly. SVM includes a processor
instruction, SKINIT , that takes a secure loader block
(SLB) defined by a physical start address and a length
up to 64KB as an argument. The SKINIT instruction
enables various hardware-level protections for the SLB,
transmits a copy of the SLB to the system’s TPM so that
it can be measured (hashed) into PCR 17, and then be-
gins to execute the SLB [1]. The hardware protections
disable interrupts, prevent DMA access to the SLB, and
even prohibit access by hardware debuggers attached to
the motherboard.

2.2 Resettable PCRs and TPM v1.2

The specification for version 1.2 TPMs [21] includes
several new features. The most important feature for
our work is the inclusion of dynamically resettable plat-
form configuration registers (PCRs). On v1.1b TPMs,
the value in a PCR can be reset only by rebooting the
computer. With v1.2 TPMs, certain registers (currently
PCRs 17–22) can be reset under carefully controlled cir-
cumstances. For example, the SKINIT instruction will
reset the value of PCR 17 to zero before extending it
with the measurement of the SLB. Note that PCR 17 as-
sumes a default value of twenty bytes of 0xff when a

system first boots. This allows a remote verifier to dis-
tinguish between code run using SKINIT and code run
immediately after a reboot, which is necessary since any
code that can access the TPM can extend PCRs. Thus,
a system using a v1.2 TPM can attest to the fact that the
SKINIT instruction was executed with a particular SLB.

2.3 Attestation

Systems equipped with a TPM can generate attesta-
tions, which are digitally signed aggregates of a TPM’s
PCR values. The TPM uses a private Attestation Identity
Key (AIK) to produce signatures, which remote parties
can verify using the corresponding public AIK.

3 Problem Definition

In this section, we summarize the goals for our archi-
tecture and describe the adversaries we seek to thwart.

3.1 Goals

Below, we enumerate the goals for our architecture:
• Isolation. Isolate security-sensitive code execution

from all other code and devices on the system, in-
cluding the operating system.

• Provable Protection. Convince a remote party that
the security-sensitive code executed with the proper
protections.

• Meaningful Attestation. Provide meaningful at-
testations that include measurements of exactly the
security-sensitive code and its inputs and outputs,
and nothing else. This provides the dual advan-
tages of giving the verifier a tractable verifica-
tion task (in the sense of actually deriving mean-
ing from the measurements, as opposed to learning
only that millions of lines of code were executed),
and leaking as little information as possible about
the remaining software state on the attesting system
(since it is not security-relevant).

• Minimal Mandatory TCB. Minimize the amount
of software that must be trusted. While a partic-
ular application may need additional functionality
added to its TCB, e.g., to display an image on the
screen, the amount of code that every application
must include in its TCB should be minimized.

The original design for AMD and Intel’s new tech-
nology called for the initiation of a “secure” VMM fol-
lowing the SKINIT instruction [9]. While this approach
achieves our first two goals, it only partially achieves the
goal of Meaningful Attestation, and it fails to provide a
Minimal Mandatory TCB. All applications must com-
pletely trust the VMM which increases the size of the
TCB and reduces the usefulness of software attestation.

0-7695-2848-1/07 $25.00 © 2007 IEEE 268

3.2 Adversary Model

In designing our architecture, we allow the adversary
the ability to run arbitrary code on the targeted com-
puter. The adversary can control the operating system,
devices that use DMA (direct memory access), and in-
voke SKINIT on SLBs of its choosing. Like the Trusted
Computing Group’s specification for the TPM [21], we
allow the adversary to launch simple hardware attacks,
such as power cycling the machine at arbitrary times,
but we assume she cannot use highly sophisticated at-
tacks, e.g., monitoring and modifying communications
on the high-speed bus between the CPU and main mem-
ory. Note that the comparatively low-speed bus between
the CPU and the TPM employs a special protocol de-
signed to thwart snooping [21].

4 Secure Execution Architecture

Below, we describe the design for our architecture.
Due to space constraints, we limit the discussion to a
high-level overview. We also describe various exten-
sions that can enhance the basic functionality.

4.1 High-level Design

Using AMD SVM and a v1.2 TPM, we show how to
execute a small piece of code, which we call a Piece
of Application Logic (PAL). The PAL is executed
with much stronger isolation guarantees than modern
operating systems can provide, while minimizing the
amount of additional code that must be trusted. The
PAL is protected from all software running on the sys-
tem, from all of the peripherals installed on the PC, and
even from hardware debuggers attached directly to the
motherboard. At present, the application programmer
must provide all of the code that will compose the PAL,
though, as we discuss in Section 6, a variety of tech-
niques exist to automate this process. The operating sys-
tem must carefully consider which PALs it wishes to ex-
ecute (for example, by performing its own measurement
before invoking SKINIT), since by default a PAL has
considerable power. We discuss techniques for limiting
this power in Section 6.

In our system, instead of using the SKINIT instruc-
tion to launch a new VMM or SK and wipe out all previ-
ous execution state (cf., Sec. 15.26.6 of [1]), we preserve
the current execution environment, invoke the SKINIT
instruction with the PAL as a parameter, and then re-
sume the legacy OS once the PAL terminates. Below,
we describe this process in more detail.
Invoking the PAL. In order to execute a PAL with
our enhanced protection guarantees, code operating at
ring 0 (e.g., a kernel module) must first save the state
of the current execution environment to a well-known

location. This includes the base address of the page ta-
bles, global and local descriptor tables (if present), in-
terrupt descriptor tables, the task register contents, ex-
tended features register (EFER) contents, and certain
bits in the EFLAGS register. On a multi-CPU system,
SKINIT must be executed by the bootstrap processor
(BSP). First, however, the OS must deschedule all ap-
plication processors (APs) and send each one an INIT
inter-processor-interrupt (IPI) so that they enter a halted
state [1]. The binary for the PAL is then passed as a
parameter to the invocation of the SKINIT instruction.
Note that although the OS invokes the PAL, the OS need
not be trusted for the PAL to execute securely. Once the
PAL starts to execute, the OS cannot tamper with the ex-
ecution environment or monitor it in any way. The CPU
and TPM guarantee that a legitimate PAL’s secrets can-
not be read by a modified PAL.
The Secure Execution Environment. The invoca-
tion of the SKINIT instruction automatically resets the
TPM’s PCRs 17–22 and extends PCR 17 with the hash
of the PAL. A tiny shim layer of system code (con-
sisting of a few hundred lines of code) extends PCR 18
with the input parameters to the PAL and jumps to the
beginning of the PAL. Note that the PAL and the shim
combine to form the SLB, and thus both are included
in the measurement performed by the SKINIT instruc-
tion. While the PAL executes, it enjoys all of the pro-
tections described in Section 2.1: protection from DMA,
protection from software executing on other processors,
and even protection from hardware debuggers. When
the PAL terminates, it jumps back to the tiny code shim
to begin resuming the OS.
Resuming the OS. After the execution of the PAL

completes, the tiny shim of code erases all traces of the
PAL’s execution. It overwrites any memory used, clears
values stored in the registers and flushes the processor’s
caches. The shim also extends PCR 18 with the out-
put values from the PAL, and then extends both PCR
17 and 18 with a known public value to signal the ter-
mination of the PAL in subsequent attestations. This
prevents untrusted code from claiming that any values it
extends into PCRs 17 or 18 were actually generated by
the PAL. The shim then restores the state of the origi-
nal OS from the standard location at which it was stored
before the invocation of SKINIT . Finally, it resumes ex-
ecution of the original OS. On a multi-CPU system, the
OS sends each application processor (AP) a Startup IPI
and reschedules it.

4.2 Extensions

While we have described the basic processes for
achieving strong isolation, we also suggest a number of
extensions to this basic functionality.

0-7695-2848-1/07 $25.00 © 2007 IEEE 269

Attestation. In many scenarios, the computer (or
attestor) performing the security-sensitive operations
would like to convince a remote verifier that the opera-
tion was performed using our SEA. For example, in our
SSH-password example, the server would like to con-
vince the client that her password will be handled by a
specific piece of trusted code executing with the protec-
tions offered by our architecture.

To provide such an attestation, the attestor executes
the PAL as described above. When the legacy OS re-
sumes, it can request a quote of PCRs 17 and 18 from the
TPM. It must also provide the TPM with a nonce from
the verifier, which provides freshness and replay preven-
tion. The TPM will produce a signature over the nonce
and the values stored in the PCRs. Using the TPM’s
AIK (Attestation Identity Key), the verifier can check
the authenticity of the quote, and use its knowledge of
the PAL and its inputs and outputs to verify that the val-
ues in PCRs 17 and 18 correspond to their expected val-
ues. Thus, the verifier can be satisfied that the PAL ran
with the appropriate protections, even though the quote
itself was requested from the TPM by the untrusted OS.
Multiple Invocations. While some PALs may only re-
quire one invocation (e.g., generating a user’s SSH key-
pair), many applications may require multiple invoca-
tions. For example, an SSL server might wish to use
a PAL that creates a public keypair and then on future
invocations uses that keypair to establish an SSL con-
nection. Multiple invocations can also be used to break
a long-running PAL into shorter pieces, thus achieving
a rough form of cooperative multi-tasking with the OS.

A PAL can secure data between invocations by using
the TPM to seal its data under the value of PCR 17 (en-
suring the data will be available only when PCR 17 con-
tains this value). Since PCR 17 is reset by the SKINIT
instruction and then immediately extended with the hash
of the PAL, only a future invocation of the same PAL

using SKINIT can produce the same value for PCR 17.
Thus, no other PALs will be able to access its secrets.

A PAL can even choose to seal its secrets so that
a different PAL can access them. For instance, a key-
generation PAL might seal the resulting keys so that a
separate key-usage PAL could access them. This can
be accomplished by having the first PAL seal its secrets
under the value of PCR 17 that would result from reset-
ting the PCR and then extending it with a measurement
(hash) of the second PAL.
Secure Communication. Remote parties may wish to
communicate securely with a PAL executing on another
machine. By creating a secure channel between the PAL

and the remote party, the secrecy and integrity of infor-
mation passed between them can be protected, even if all
of the other software on the host has been compromised.

We need not include communication software (such as
network drivers) in the PAL’s TCB, since we can use
multiple invocations of a PAL to process data from the
remote party while letting the untrusted OS manage the
encrypted network packets.

Figure 2 illustrates a protocol for securely conveying
a public key from the PAL to a remote party. This proto-
col is similar to one developed at IBM for linking remote
attestation to secure tunnel endpoints [8]. The PAL gen-
erates a keypair {KPAL,K−1

PAL
} within its secure exe-

cution environment. It seals the private key K−1

PAL
un-

der the value of PCR 17 so that only the identical PAL

invoked in the secure execution environment can ac-
cess it. Note that the PAL developer may extend other
application-dependent data into PCR 17 before sealing
the private key. This ensures the key will be released
only if that application-dependent data is present.

The nonce value sent by the remote party for the TPM
quote operation is also provided as an input to the PAL

for extension into PCR 18. This provides the remote
party with a different freshness guarantee: that the PAL

was invoked in response to the remote party’s request.
Otherwise, a malicious OS may be able to fool multiple
remote parties into accepting the same public key.

As with all output parameters, the public key KPAL

is extended into PCR 18 before it is output to the ap-
plication running on the untrusted host. The application
generates a TPM quote over PCRs 17 and 18 based on
the nonce from the remote party. The quote allows the
remote party to determine that the public key was indeed
generated by a PAL running in the secure execution en-
vironment. The remote party can use the public key to
create a secure channel to future invocations of the PAL.

5 Open Problems

While our architecture meets the goals from Sec-
tion 3.1, a number of challenges remain.
Malicious or Malfunctioning PALs. In this work,
we have primarily focused on a scenario in which the
PAL is trusted, but the OS or other applications may
be subverted. However, a malicious (or malfunction-
ing) PAL poses a threat to a legitimate OS, since by
default, the PAL has access to the entire memory con-
tents of the system and need not return control to the OS.
Thus, without further protections in place, a legitimate
OS should launch only PALs it trusts.

Several methods exist by which a legitimate OS could
gain confidence in the trustworthiness of a PAL. For
example, since each PAL should be relatively small, it
may be possible to apply various formal analysis tech-
niques [6] to gain confidence in it. Alternately, the OS
could require each PAL to be accompanied by a proof
of its safety [15].

0-7695-2848-1/07 $25.00 © 2007 IEEE 270

Remote has AIKserver ,
Party (RP): expected hash(PAL || shim) = Ĥ
RP: generate nonce
RP → App: nonce
App → PAL: nonce
PAL: extend(PCR18,nonce)

generate {KPAL, K−1
PAL}

extend(PCR18, h(KPAL))
seal(PCR17, K−1

PAL)
extend(PCR17,⊥)
extend(PCR18,⊥)

PAL → App: KPAL

App: q ← quote(nonce, {17, 18})

App → RP: q, KPAL

RP: if (¬Verify(AIKserver, q,nonce)
∨ q.PCR17 %= h(h(0||Ĥ)||⊥)
∨ q.PCR18 %=
h(h(h(0||nonce)||h(KPAL))||⊥)

) then abort
RP: has authentic KPAL

knows server ran SEA

Figure 2. Protocol to generate and convey the public
key KPAL to a remote party (RP). Note that the mes-
sages between the application (App) and the PAL can
safely travel through the untrusted portion of the appli-
cation and the OS kernel. ⊥ denotes a well-known value
which signals the end of extensions performed within
the SEA.

At the cost of a slight expansion in the TCB, we could
implement protections to constrain a PAL dynamically
and limit the damage it can cause. These controls might
take the form of running the PAL in CPU privilege ring
3 (only the shim would execute in ring 0) and using seg-
mentation and/or page table permissions to constrain its
memory accesses or employing various forms of soft-
ware fault isolation [22].

Of course, a malicious PAL could be invoked by
an already-compromised OS, potentially bypassing the
protections described above. However, since the SKINIT
instruction is privileged, only code operating at ring 0
can launch a PAL. Since code at that level already con-
trols the entire system, malicious code at ring 0 need not
launch a malicious PAL to conduct an attack.
Slow PALs. While we envision PALs as small pieces
of code that rapidly execute and return, one can imagine
the need for longer running PALs. Since we leave the
OS suspended while the PAL executes, a long-running
PAL may cause the OS to miss large chunks of time.
While we have not yet determined all of the effects
this might have, it could potentially interfere with I/O
or scheduling code in the OS. As discussed in Sec-

tion 4.2, using multiple SKINIT invocations to break a
long-running PAL into several shorter PALs may alle-
viate this problem. Determining the modifications nec-
essary to allow the OS to adapt to long-running PALs is
a direction for future work.
Program Separation. Ideally, the PAL should consist
of the minimal amount of code necessary to carry out a
security-sensitive task. Rather than including an entire
application in the PAL, we would like to separate out
only the security-sensitive portion. In the SSH example,
we would include the password handling routines, but
exclude the portions that encrypt and decrypt network
packets. Such program separation can be performed
manually [11, 12, 14, 16, 20], but researchers have also
developed techniques for automatically decomposing a
program into a security-sensitive portion and a less sen-
sitive remainder [3,5,25]. Fortunately, security-sensitive
code often involves cryptographic computation that does
not rely on sophisticated operating system services and
hence it can easily be packaged into a PAL.
User Interaction. While much of our early design
focuses on a scenario in which a server uses SEA to
perform security-sensitive operations with a client com-
puter serving as a remote verifier, SEA could also sig-
nificantly improve the security of client computers. For
example, our architecture would enable an application
that allows a user to securely enter her password regard-
less of what other software or malware might be resident
on the PC. However, secure entry is not enough; the user
must also be careful not to enter her password into an in-
secure application. For example, malware might try to
convince the user that the secure password application
had been launched and thereby capture her password.
Thus, we plan to explore techniques for constructing a
secure path from a PAL to the user, i.e., convince the
user to enter her password or other sensitive information
if and only if the secure password application is running.

6 Related Work

Researchers previously achieved some of the proper-
ties provided by our architecture using specialized se-
cure coprocessors [11, 24]. While our work does not
achieve the same level of physical tamper-resistance,
it provides the same strong software guarantees using
modern commodity hardware.

Early schemes for attesting to a platform’s software
state include the entire software stack (e.g., BIOS, boot-
loader, OS) [2, 14, 18], making it difficult to extract
meaningful guarantees from the resulting attestations.
Property-based attestation has been proposed [17] as a
mechanism for providing meaningful attestations; un-
fortunately, evaluating software for the various proper-
ties of interest remains an open problem.

0-7695-2848-1/07 $25.00 © 2007 IEEE 271

Other researchers have leveraged VMMs to execute
security-sensitive code in isolation [19, 20]. Garriss
et al. employ the new SKINIT instruction to eliminate
the BIOS and the bootloader from their attestations and
TCB [7], but as suggested in the original design [9], af-
ter the SKINIT , they launch a standard OS or VMM.
Thus, application security depends on these large layers
of code.

7 Conclusion and Future Work
In this work, we propose a Secure Execution Archi-

tecture (SEA) for executing code with strong hardware-
based isolation guarantees. We also describe how to
convince a remote party that protected execution oc-
curred and how to construct secure communication
channels to the security-sensitive code, but various inter-
esting questions remain open. Compared with modern
operating systems (or even VMMs), our approach adds a
minuscule amount of code to an application’s TCB, pro-
vides fine-grained, meaningful attestations, and allows
application writers to focus on the security of their own
code instead of worrying about the safety of the many
layers of code beneath them.

We are continuing to explore the open problems de-
scribed above, and we are in the final stages of imple-
menting SEA and employing it for various applications.

Acknowledgments
The authors would like to thank Mark Luk, Leendert

van Doorn, and Elsie Wahlig for their generous support
and helpful suggestions. Michael Abd-El-Malek, Scott
Garriss, James Newsome, and Diana Parno provided in-
valuable editing assistance. The feedback and comments
from Michael Steiner and our anonymous reviewer were
much appreciated.

References
[1] Advanced Micro Devices. AMD64 architecture programmer’s

manual: Volume 2: System programming. AMD Publication no.
24594 rev. 3.11, Dec. 2005.

[2] W. Arbaugh, D. Farber, and J. Smith. A reliable bootstrap archi-
tecture. In Proceedings of the IEEE Symposium on Research in
Security and Privacy, May 1997.

[3] D. Balfanz. Access Control for Ad-hoc Collaboration. PhD the-
sis, Princeton University, 2001.

[4] P. R. Barham, B. Dragovic, K. A. Fraser, S. M. Hand, T. L. Har-
ris, A. C. Ho, E. Kotsovinos, A. V. Madhavapeddy, R. Neuge-
bauer, I. A. Pratt, and A. K. Warfield. Xen 2002. Technical Re-
port UCAM-CL-TR-553, University of Cambridge, Jan. 2003.

[5] D. Brumley and D. Song. Privtrans: Automatically partitioning
programs for privilege separation. In Proceedings of the USENIX
Security Symposium, Aug. 2004.

[6] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C. IEEE Transactions on
Software Engineering, 30(6), 2004.

[7] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and
X. Zhang. Towards trustworthy kiosk computing. In Workshop
on Mobile Computing Systems and Applications, Feb. 2006.

[8] K. Goldman, R. Perez, and R. Sailer. Linking remote attestation
to secure tunnel endpoints. Technical Report RC23982, IBM,
June 2006.

[9] D. Grawrock. The Intel Safer Computing Initiative: Building
Blocks for Trusted Computing. Intel Press, 2006.

[10] Intel Corporation. LaGrande technology preliminary architec-
ture specification. Intel Publication no. D52212, May 2006.

[11] S. Jiang, S. Smith, and K. Minami. Securing web servers against
insider attack. In Proceedings of the IEEE Computer Security
Applications Conference, 2001.

[12] D. Kilpatrick. Privman: A library for partitioning applications.
In USENIX Annual Technical Conference, 2003.

[13] D. Magenheimer. Xen/IA64 code size stats. Xen devel-
oper’s mailing list: http://lists.xensource.com/,
Sept. 2005.

[14] J. Marchesini, S. W. Smith, O. Wild, J. Stabiner, and
A. Barsamian. Open-source applications of TCPA hardware. In
the IEEE Computer Security Applications Conference, 2004.

[15] G. C. Necula and P. Lee. Safe kernel extensions without run-time
checking. In Proceedings of OSDI, Oct. 1996.

[16] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege
escalation. In the USENIX Security Symposium, Aug. 2003.

[17] A.-R. Sadeghi and C. Stüble. Property-based attestation for com-
puting platforms: caring about properties, not mechanisms. In
the Workshop on New Security Paradigms, Sept. 2004.

[18] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a TCG-based integrity measurement architec-
ture. In Proceedings of the USENIX Security Symposium, 2004.

[19] L. Singaravelu, C. Pu, H. Haertig, and C. Helmuth. Reducing
TCB complexity for security-sensitive applications: Three case
studies. In Proceedings of ACM EuroSys, 2006.

[20] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making
trust between applications and operating systems configurable.
In Proceedings of OSDI, Nov. 2006.

[21] Trusted Computing Group. Trusted platform module main spec-
ification. http://www.trustedcomputinggroup.org,
Mar. 2006. Version 1.2, Revision 94.

[22] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient
software-based fault isolation. In SOSP, Dec. 1993.

[23] D. A. Wheeler. Linux kernel 2.6: It’s worth more!
Available at: http://www.dwheeler.com/essays/
linux-kernel-cost.html, Oct. 2004.

[24] B. S. Yee. Using Secure Coprocessors. PhD thesis, Carnegie
Mellon University, 1994.

[25] S. Zdancewic, L. Zheng, N. Nystrom, and A. Myers. Secure
program partitioning. ACM Transactions on Computer Systems,
20(3):283–328, Aug. 2002.

0-7695-2848-1/07 $25.00 © 2007 IEEE 272

