
Seven Cardinal Properties of
Sensor Network Broadcast Authentication∗

Mark Luk Adrian Perrig Bram Whillock
Carnegie Mellon University

ABSTRACT
We investigate the design space of sensor network broadcast au-
thentication. We show that prior approaches can be organized based
on a taxonomy of seven fundamental proprieties, such that each ap-
proach can satisfy at most six of the seven proprieties. An empirical
study of the design space reveals possibilities of new approaches,
which we present in the following two new authentication proto-
cols: RPT and LEA. Based on this taxonomy, we offer guidance in
selecting the most appropriate protocol based on an application’s
desired proprieties. Finally, we pose the open challenge for the re-
search community to devise a protocol simultaneously providing
all seven properties.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General–Security
and protection; K.6.5 [Security and Protection]: Security and
Protection –Authentication

General Terms
Security, Design

Keywords
Broadcast Authentication, Taxnonomy, Sensor Network

1. INTRODUCTION
Due to the nature of wireless communication in sensor networks,

attackers can easily inject malicious data messages or alter the con-
tent of legitimate messages during multihop forwarding. Sensor
network applications thus need to rely on authentication mecha-
nisms to ensure that data from a valid source was not altered in
transit. Authentication is thus arguably the most important secu-

∗This research was supported in part by CyLab at Carnegie Mellon un-
der grant DAAD19-02-1-0389 from the Army Research Office, andgrant
CNS-0347807 from the National Science Foundation, and by a gift from
Bosch. The views and conclusions contained here are those ofthe authors
and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either express or implied, of ARO, Bosch, Carnegie
Mellon University, NSF, or the U.S. Government or any of its agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SASN’06,October 30, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-554-1/06/0010 ...$5.00.

rity primitive in sensor network communication.Source authen-
tication ensures a receiver that the message originates from the
claimed sender, anddata authenticationensures that the data from
that sender was unchanged (thus also providingmessage integrity).
When we use the termauthenticationwe mean both source and
data authentication.

Authentication of broadcast data is a challenging problem. Fur-
thermore, it is of central importance as broadcasts are used in many
applications. For example, routing tree construction, network query,
software updates, time synchronization, and network management
functions all rely on broadcast. Without an efficient broadcast au-
thentication algorithm, the base station would have to resort to per-
node unicast messages, which does not scale to large networks. The
practicality of many secure sensor network applications thus hinges
on the presence of an efficient algorithm for broadcast authentica-
tion.

In point-to-point authentication, authentication can be achieved
through purely symmetric means: the sender and receiver would
share a secret key used to compute a cryptographic message au-
thentication code (MAC) over each message [15,23]. When a mes-
sage with a valid MAC is received, the receiver can be assured that
the message originated from the sender. Researchers showed that
MACs can be efficiently implemented on resource-constrained sen-
sor network nodes [31], and find that computing a MAC function
requires on the order of 1ms on the computation-constrained Berke-
ley mote platform [11,14].

Authentication of broadcast messages in sensor networks is much
harder than point-to-point authentication [1]. The symmetric ap-
proach used in point-to-point authentication is not secure in broad-
cast settings, where receivers are mutually untrusted. If all nodes
share one secret key, any compromised receiver can forge messages
from the sender.

In fact, authenticated broadcast requires an asymmetric mech-
anism [1]. The traditional approach for asymmetric mechanisms
is to use digital signatures, for example the RSA signature [34].
Unfortunately, asymmetric cryptographic mechanisms have high
computation, communication, and storage overhead, making their
usage on resource-constrained devices impractical for many appli-
cations.

The property we need is asymmetry, and many approaches had
been suggested for sensor network broadcast authentication. How-
ever, objectively comparing such approaches and selecting the most
appropriate one for a given application is a non-trivial process, es-
pecially for an engineer not specialized in security. The goal of
this work is to provide guidance for sensor network broadcast au-
thentication by presenting a systematic investigation of the design
space. We arrive at a taxonomy of seven fundamental properties,
and present protocols that satisfy all but one property. The list of

1

the desired properties is:

1. Resistance against node compromise,

2. Low computation overhead,

3. Low communication overhead,

4. Robustness to packet loss,

5. Immediate authentication,

6. Messages sent at irregular times,

7. High message entropy.

If we removeany oneof the above requirements, a viable proto-
col exists. Table 1 gives an overview of the seven approaches for
addressing each case. We show that existing protocols, or small
modifications thereof, make up for five of the seven possible cases.
We also introduce novel approaches for addressing the final two
cases: the RPT protocol to authenticate messages sent at regular
times, and the LEA protocol to authenticate low-entropy messages.
Finally, we pose the open challenge to the research community to
design a broadcast authentication mechanism that satisfies all seven
properties.

Outline. The paper is organized as follows. We introduce the
taxonomy of seven properties and discuss how current approaches
can be organized based on our taxonomy in Section 2. Section 3 de-
scribes theµTESLA broadcast authentication protocol and presents
several extensions to increase its efficiency and robustness to DoS
attacks. In Section 3.3, we introduce RPT, a novel protocol that
authenticates synchronous messages. In Section 4, we introduce
LEA, a novel protocol for efficient network broadcast authentica-
tion for low-entropy messages. Implementation and evaluation is
discussed in Section 5. Finally, we present related work in Sec-
tion 6 and our conclusions and future work in Section 7.

2. TAXONOMY OF EXISTING PROTOCOLS
In this section, we discuss the seven properties of broadcast au-

thentication and describe possible approaches if we were to leave
out one of the seven requirements.

Node Compromise. Since sensor nodes are not equipped with
tamper-proof or tamper-resistant hardware, any physical attacker
would be able to physically compromise a node and obtain its cryp-
tographic keys [5]. Since it is unlikely that tamper-proof hardware
will be deployed on sensor motes in the near future, secure sensor
network protocols need to be resilient against compromised nodes.
However, if the nodes are deployed in a physically secured area
(such as an attended army base), or if the application itself is re-
silient against malicious nodes, node compromise might not be an
issue.

If we assume no compromised nodes, all parties could maintain a
network-wide key that is used to generate and verify a single Mes-
sage Authentication Code (MAC) per message. If instead one can
assume a low number of compromised nodes, a simple approach
exists which uses a different key for each receiver and adds one
MAC per receiver to each message. Unfortunately, this approach
does not scale to large networks since a 10-byte MACs per receiver
would result in prohibitively large messages. To trade off commu-
nication overhead with security, researchers propose a multi-MAC
approach [3]. In their scheme, the sender chooses some number of
random MAC keys, and distributes a subset of keys to each node.
Every message carries one MAC with each key (assuming 10 bytes

per MAC),1 which adds a substantial overhead. If an attacker com-
promises a node, it can only forge a subset of MACs, thus with
high probability, other nodes will be able to detect the forgery with
their subset of keys. A variant of this approach was used to prevent
malicious injection of messages in sensor networks [36,37].

Computation Overhead. Sensor nodes have limited computation
resources, so an ideal protocol would have low computation over-
head for both sender and receiver. However, there exist scenarios
where computation might not be a particularly critical issue. For
example, it is conceivable that certain applications would only re-
quire authenticated broadcasts for a small number of packets. In
such a case, the application engineer might be willing to allow for
a small number of intensive computations.

If we admit a high computation overhead, we can use digital sig-
natures. RSA today requires at least a 1024-bit modulus to achieve
a reasonable level of security, and a 2048-bit modulus for a high
level of security [18]. ECC can offer the same level of security
using 160-bit keys and 224-bit keys, respectively. Recent advance-
ment in ECC signature schemes on embedded processors can per-
form signature verification using 160-bit ECC keys in about 1 sec-
ond [10]. Although this represents a dramatic improvement over
earlier public key cryptographic schemes [2, 4, 21], signature ver-
ification is still 3 orders of magnitude slower than MAC verifica-
tion, while signature generation is 4 orders of magnitude slower.
While we expect future sensor nodes to have more powerful proces-
sors, the energy constraints dictated by the limited battery resources
will always favor the use of more efficient symmetric cryptographic
primitives.

Communication Overhead. Energy is an extremely scarce re-
source on sensor nodes, and as a result, heavily influences the de-
sign of sensor network protocols. In particular, radio communica-
tion consumes the most amount of energy, and thus protocols with
high communication overhead are avoided if possible. However, in
some settings (e.g., powered nodes) energy consumption is not an
issue. Thus an authentication protocol that requires high commu-
nication overhead would be acceptable.

If we admit a high communication overhead, we can leverage
efficient one-time signature constructions that are fast to compute
on sensor nodes, but require on the order of 100–200 bytes per sig-
nature. Examples include the Merkle-Winternitz (MW) signature
which requires 230 bytes per signature [25, 26, 35] (we describe
the MW signature in detail in Section 4.1), or the HORS signature,
which requires around 100 bytes per signature [33]. The MW sig-
nature requires around 200 one-way function computations to ver-
ify a signature (which corresponds to roughly 200 ms computation
time on a sensor node), while the HORS signature only requires 11
one-way function computations. The disadvantage of the HORS
signature is that the public key is about 10 Kbytes,2 whereas the
public key for the MW signature is only 10 bytes. Signature gener-
ation is very efficient for both mechanisms, and can be reduced to
a single hash function computation assuming a lookup table for the
cryptographic values. We leverage the MW signature to construct
the LEA broadcast authentication mechanism, which we present in
Section 4.

Message Reliability. Our fourth property is message reliability.
Reliable message delivery is the property of a network such that
valid messages are not dropped. Ultimately, message reliability is
an applications issue - some applications require message reliabil-

1An 80-bit MAC value achieves security comparable to a 1024-bit
RSA signature [18].
2This is prohibitively large, since each public key of a one-time
signature can be used to authenticate only a single message.

2

Desired property Approach if property is relaxed

Resistance to node compromise Network-wide key
Low computation overhead Digital signatures
Low communication overhead One-time signatures
Robustness to packet loss HORS + chaining of public keys
Immediate authentication µTESLA
Messages sent at irregular times RPT, described in Section 3.3
High message entropy LEA, described in Section 4.2

Table 1: Overview of desired properties of broadcast authentication and approaches. The left column presents the desired property,
and the right column presents the approach that achieves all properties but relaxes the property in its left column. The text describes
each approach in more detail.

ity, while others do not.
If we have perfect message reliability, we can achieve efficient

and immediate authentication by using the HORS signature in a
special construction that combines multiple public keys [28]. In
this construction, a public key is still 10 Kbytes, but a single public
key can be used to authenticate almost arbitrarily many messages,
as the public values are incrementally updated as signed messages
are sent. The communication and computation costs are the same
as for the HORS signature: 1 ms for signature generation, 11 ms
for signature verification, and 100 bytes for the signature. Note that
in such a scheme, an attacker can start forging HORS signatures if
many packets are dropped.

Authentication Delay. Depending on the application, authenti-
cation delay may influence the design of the sensor network pro-
tocol. For time-critical messages such as fire alarms, the receiver
would most likely need to authenticate the message immediately.
However, authentication delay is typically acceptable for non-time-
critical messages.

If we admit an authentication delay and assume that the receivers
are loosely time synchronized with the sender, theµTESLA broad-
cast authentication protocol only adds a 10 byte MAC and an op-
tional 10 byte key to each message [31]. We review theµTESLA
protocol in detail in Section 3.1. To achieve a low computation
overhead in the case of infrequent messages sent at unpredictable
times, we need to extend theµTESLA protocol to enable fast au-
thentication of the keys in the one-way key chain. In Section 3.2
we present a more efficient key chain construction that enables ef-
ficient authentication in this case. Simultaneously, our approach
protectsµTESLA against denial-of-service attacks by sending bo-
gus key chain values.

Synchronous Messages. Some applications send synchronous
messages at regular and predictable times. For example, a key re-
vocation list might be sent to the entire network everyday at noon.

We extend theµTESLA protocol to provide efficient and imme-
diate authentication for synchronous messages sent at regular and
predictable times. We name the protocol RPT (Regular-Predictable
Tesla), and we present its details in Section 3.3.

Message Entropy. So far, all schemes we describe authenticate
unpredictable messages with high entropy. However, in practice,
many protocols might only communicate with low-entropy mes-
sages. For example, in many applications, there are only a handful
of valid commands that a base station can send to a sensor node.
Therefore, these command packets could be considered as low-
entropy messages.

If we can assure a low upper bound on message entropy, we can
leverage one-time signatures in constructions that provide message
recovery, where the message is not hashed but directly encoded in
the signature. We describe our new LEA protocol in Section 4.

For messages with merely a single bit of entropy, we could em-
ploy the following optimization using two hash chains. One hash
chain would correspond to messages of ’1’, while another would
correspond to messages of ’0’. The sender first sends the last value
of both chains to the receivers in an authenticated manner (e.g., us-
ing one-time signatures or digital signatures). Next, whenever the
sender wishes to send a ’0’, it would reveal the next value in the
hash chain corresponding to ’0’. The same is done for the hash
chain corresponding to ’1’. The receiver needs to keep state of the
most recent value it received for each hash chain. Consequently, the
receiver can easily verify the authenticity of new values by hashing
them and comparing them against the most recent value of each
hash chain.

3. BROADCAST AUTHENTICATION WITH
THE µTESLA PROTOCOL

In this section, we first present a brief overview of theµTESLA
protocol [29], the recommended broadcast authentication proto-
col if immediate authentication is not required. We improve the
µTESLA broadcast authentication protocol to provide efficient au-
thentication for infrequent messages sent at unpredictable times
(Section 3.2). In Section 3.3, we describe RPT, further modifi-
cation ofµTESLA that provides immediate authentication for syn-
chronous messages sent at regular and predictable times.

3.1 µTESLA Overview
The TESLA protocol provides efficient broadcast authentication

over the Internet which can scale to millions of users, tolerate packet
loss, and support real time applications [30]. Currently, TESLA is
in the process of being standardized in the MSEC working group
of the IETF for multicast authentication.

TESLA has been adapted for broadcast authentication in sensor
networks, the resulting protocol is called theµTESLA broadcast
authentication protocol [30,31].µTESLA is used to secure routing
information [17], data aggregation messages [12,32], etc.

We now overview theµTESLA protocol, a detailed description
is available in our earlier paper [31]. Broadcast authentication re-
quires a source of asymmetry, such that the receivers can only ver-
ify the authentication information, but not generate valid authenti-
cation information.µTESLA uses time for asymmetry.µTESLA
assumes that receivers are all loosely time synchronized with the
sender – up to some time synchronization error∆, all parties agree
on the current time. Recent research in sensor network time syn-
chronization protocols has made significant progress, resulting in
time synchronization accuracy in the range ofµs [6, 7], which is
much more accurate than the loose time synchronization required
by µTESLA. By using only symmetric cryptographic primitives,
µTESLA is very efficient and provides practical solutions for resource-
constrained sensor networks. Figure 1 shows an example ofµTESLA

3

M j M j+1 M j+2 M j+3 M j+4 M j+5 M j+6

Ki−1 Ki Ki+1 Ki+2

F(Ki) F(Ki+1) F(Ki+2) F(Ki+3)

Interval i−1 Intervali Interval i +1 Intervali +2 time

Figure 1: At the top of the figure is the one-way key chain (using theone-way functionF). Time advances left-to-right. At the bottom
of the figure, we can see the messages that the sender sends in each time interval. For each message, the sender uses the current time
interval key to compute the MAC of the message.

authentication, and here is a sketch of the basic approach:

• The sender splits up the time into time intervals of uniform
duration. Next, the sender forms a one-way chain of self-
authenticating keys, by selecting keyKN of intervalN at ran-
dom, and by repeatedly applying a one-way hash functionF
to derive earlier keys. A cryptographic hash function, such
as SHA-1 [27], offers the required properties. The sender
assigns keys sequentially to time intervals (one key per time
interval). The one-way chain is used in the reverse order of
generation, so any key of a time interval can be used to de-
rive keys of previous time intervals. For example, assuming
a disclosure delay of 2 time intervals, keyKi will be used to
compute MACs of broadcast messages sent during time in-
terval i, but disclosed during time intervali +2. The sender
defines a disclosure delay for keys, usually on the order of a
few time intervals. The sender publishes the keys after the
disclosure time.

• The sender attaches a MAC to each message, computed over
the data, using the key for the current time interval. Along
with the message, the sender also sends the most recent key
that it can disclose. In the example of Figure 1, the sender
uses keyKi+1 to compute the MAC of messageM j+3, and
publishes keyKi−1 assuming a key disclosure delay of two
time intervals.

• Each receiver that receives the message performs the follow-
ing operation. It knows the schedule for disclosing keys and,
since the clocks are loosely synchronized, can check that the
key used to compute the MAC is still secret by determining
that the sender could not have yet reached the time interval
for disclosing it. If the MAC key is still secret, then the re-
ceiver buffers the message. In the example of Figure 1, when
the receiver gets messageM j+3, it needs to verify that the
sender did not yet publish keyKi+1, by using the loose time
synchronization and the maximum time synchronization er-
ror ∆. If the receiver is certain that the sender did not yet
reach intervali +3, it knows that keyKi+1 is still secret, and
it can buffer the packet for later verification.

• Each receiver also checks that the disclosed key is correct
(using self-authentication and previously released keys) and
then checks the correctness of the MAC of buffered mes-
sages that were sent in the time interval of the disclosed key.
Assuming the receiver knows the authentic keyKi−2, it can
verify the authenticity of keyKi−1 by checking thatF(Ki−1)
equalsKi−2. If Ki−1 is authentic, the receiver can verify
the authenticity of buffered packets sent during time inter-
val i − 1, since they were authenticated using keyKi−1 to
compute the MAC.

One-way chains have the property that if intermediate keys are
lost, they can be recomputed using later keys. So, even if some
disclosed keys are lost due to packet loss or jamming attacks, a
receiver can recover the key from keys disclosed later and check
the authenticity of earlier messages.

Along with each messageMi , the sender broadcasts theµTESLA
authentication information. The broadcast channel may be lossy,
but the sender would need to retransmit with an updated MAC key.
Despite loss, each receiver can authenticate all the messages it re-
ceives.

3.2 Reducing Verification Overhead ofµTESLA
Even thoughµTESLA provides a viable solution for broadcast

authentication in sensor networks, many challenges still remain.
We describe the remaining challenges below and propose exten-
sions and new approaches to address these challenges.

Some applications broadcast messages infrequently at unpredict-
able times and the receivers may need to authenticate messages
immediately. For example, a fire alarm event is infrequent and
needs to be quickly distributed and authenticated. Unfortunately,
when messages are infrequent, due to the one-way chain approach
to verify the authenticity of keys, a receiver may need to compute
a long chain of hash values in order to authenticate the key which
could take several tens of seconds for verification. Such verification
delays the message authentication significantly and may consume
significant computation and energy resources. This approach also
introduces a Denial-of-Service (DoS) attack: an attacker sends a
bogus key to a receiver, and the receiver spends several thousands
of one-way function computations (and several seconds) to finally
notice that the sent key was incorrect.

One approach is to periodically releaseµTESLA keys and hence
the work for verification of an infrequent message would be dis-
tributed over time. However, this approach wastes energy for pe-
riodic broadcast ofµTESLA keys. In the same vein, a sender can
publish several keys in a packet to reduce the effect of DoS at-
tacks by requiring a receiver to perform a small number of one-way
function computations to incrementally authenticate each key of the
one-way chain. An advantage of this approach is that it makes the
DoS attack described above less attractive to an attacker, as a re-
ceiver would need to follow the one-way chain for a short interval
only to detect a bogus key.

Another approach to counteract the slow and expensive verifica-
tion problem is to use a Merkle hash tree [24] instead of a one-way
chain to authenticateµTESLA keys. This approach has been sug-
gested in another context [13]. ForN keys, the tree has height
d = log2(N) and along with each message, the sender sendsd val-
ues to verify the key. Despite the logarithmic communication cost,
this is still too large for most sensor networks: consider a network
where we switch to a different hash tree every day, and we need a

4

k2 k5 k8 k11 k14 k17 k20 k23

k1 k4 k7 k10 k13 k16 k19 k22

k0 k3 k6 k9 k12 k15 k18 k21

F

v0−7 = F(v0−3 || v4−7)

v0−3 v4−7

v01 v23 v45 v67

v0 v1 v2 v3 v4 v5 v6 v7

Figure 2: Hash tree constructed over one-way chains ofµTESLA keys.

key resolution of 1 second. The 86,400 keys that we need in one
day require a tree of height 17. Assuming a hash output of 10 bytes,
the sender would need to consequently add 170 bytes to each mes-
sage for authentication (17 nodes at 10 bytes each). This is far too
much for most sensor networks, where nodes typically communi-
cate with messages shorter than 100 bytes. Splitting the load up into
two messages is not a viable approach, because of the usually high
packet loss rates in sensor networks. The receiver would only need
to computeO(log(N)) operations for verification, 17 hash function
computations in our example which requires around 17ms on cur-
rent sensor nodes.

To reduce the bandwidth overhead, we design a different ap-
proach that achieves lower message size at the cost of higher veri-
fication computation. our approach is to combine one-way chains
with hash trees. Consider the structure that Figure 2 shows. We
construct a hash tree over short one-way chains. If each one-way
chain has a length ofk, the verification cost is expected to bek/2+
log(N/k) (it is at mostk+ log(N/k)), and the communication cost
is log(N/k). For a given upper bound on the verification time, we
can thus minimize the communication overhead. Consider an up-
per bound on the verification time of approximately 500ms. We can
setk = 29 = 512, thus the hash tree will have 8 levels, requiring 80
bytes per packet, making this an attractive approach for many ap-
plications.

An alternative approach would be to construct a hash tree over
the one-way key chain, where the everyk’th key will be a leaf node
of the hash tree (for example, in Figure 2, the valuek0 would be
derived from the previous leaf nodek0 = F(v1)). The advantage
of this approach is that a sender would not need to send the hash
tree values along with a message, as a value can be authenticated
by following the one-way chain to the last known value. However,
if the sender did not send out any message during an extended time
period, that authentication would be computationally expensive and
thus the sender can choose to also send the hash tree nodes along
for fast verification. This approach would also prevent DoS attacks
since the verification is very efficient.

M′
i Mi

Ki−1 Ki Ki+1

F(Ki) F(Ki+1)

Interval i−1 Intervali time
Ti−1 Ti Ti+1

Figure 3: This figure shows authentication of one message in
the RPT protocol. MessageM′

i = 〈MACKi (Mi)〉, and message
Mi = 〈Mi ,Ki〉.

3.3 RPT: Authenticating Messages Sent at Reg-
ular and Predictable Times

As described in our taxonomy in Section 2, one additional prop-
erty in the design space of broadcast authentication is to authen-
ticate asynchronous messages sent at irregular and unpredictable
times. All protocols described so far can achieve this property.
However, if we were to remove this requirement, new possible ap-
proaches exist that can only authenticate messages sent at regular
and predictable times, yet satisfy all of the other cardinal properties
defined in our taxonomy. In this section, we introduce our design
of one such protocol called RPT, a modification of theµTESLA
protocol.

In practice, many protocols send synchronous messages at regu-
lar and predictable times. The plaintext of these messages are often
known by the sender a priori. In particular, messages containing
meta-data are especially well-suited for this type of communica-
tion. For example, a base-station often performs key update or time
re-synchronization at a preset time of day. In these examples, the
sender knows exactly what message needs to be sent at a particular
time, but the protocol dictates that such messages cannot be sent
until a pre-specified time.

Consider an application that broadcasts a message every day at
noon to all nodes. If we use standardµTESLA with one key per

5

day, it would take one day to authenticate the message, since the
receivers would need to wait for the disclosed key one day later.
On the other hand, if we use many keys, for example, one key per
second, it would require 86,400 keys per day (not using the opti-
mization we presented in the previous section), and a sensor node
would require an expected time of 43 seconds to verify the authen-
ticity of the key. Hence, if messages are sent at very regular time
intervals, we can streamlineµTESLA to immediately authenticate
these messages.

The RPT protocol (Regular-Predictable TESLA) achieves imme-
diate authentication for messages sent at regular and predictable
times. Consider a message that needs to be sent at timesTi =
T0 + i ·D. The sender creates a one-way key chain, and assigns
one key to each time interval of durationD. We assume that the
sender knows the content of the messageMi to be broadcast at time
Ti by timeTi −δ, whereδ is the maximum network broadcast prop-
agation delay plus the maximum time synchronization error. At
time Ti − δ, the sender broadcasts message〈MACKi (Mi)〉, and at
time Ti the sender broadcasts〈Mi ,Ki〉. As soon as the receiver re-
ceives the first message, it needs to verify the safety condition that
key Ki is still secret, given its current time and the maximum time
synchronization error. When receiving the second message, the re-
ceiver first verifies the keyKi . If the key is correct it verifies the
MAC, and if the MAC is correct it is assured thatMi is authentic.
Note that this approach does not exhibit any authentication delay,
as the receiver can immediately authenticateMi immediately after
reception.

At first glance, it may appear that RPT is susceptible to a denial-
of-broadcast attack, where an attacker sends a large number of
forged MACs around the time the legitimate is sent out. This prob-
lem had been studied and addressed in previous work [16]. How-
ever, it is not easy to evaluate how well this works in practice.

4. BROADCAST AUTHENTICATION WITH
ONE-TIME SIGNATURES

Another way to achieve asymmetric authentication is through the
use of one-time signatures. A one-time signature is much faster to
generate and verify than general purpose signatures, but the private
key associated with the signature can be used to sign only a sin-
gle message, otherwise the security degrades and an attacker could
forge signatures. UnlikeµTESLA, time synchronization is not nec-
essary and authentication is immediate. Moreover, one-time signa-
tures achieve non-repudiation in addition to authentication, which
enables a node to buffer a message and retransmit it later. The re-
ceiver of the retransmitted message can still authenticate the mes-
sage.

One-time signatures are advantageous in applications with infre-
quent messages at unpredictable times, as they do not add com-
putation to the receiver based upon the time at which the message
is received. This makes them resilient to many forms of DoS at-
tacks. We now present an overview of one-time signatures, and
then present our LEA broadcast authentication protocol for authen-
tication of low-entropy messages in Section 4.2.

4.1 One-Time Signatures Overview
The Merkle-Winternitz signature was first drafted by Merkle [25,

26], and was later also used by Even, Goldreich, and Micali [8],
and more recently also by Rohatgi for efficient stream authentica-
tion [35]. We briefly describe the basic principle of the Merkle-
Winternitz signature.

A Merkle-Winternitz signature relies on efficient one-way func-
tions to construct a DAG (directed acyclic graph) to encode a sig-

nature. Each edge between two vertices (v1 → v2) in the graph
represents an application of the one-way function, where the value
of the end node is the result of the one-way function applied to the
beginning node (v2 = F(v1), whereF represents the one-way func-
tion). End nodes with multiple incoming edges take on the value
of the hash of the concatenation of predecessor nodes. The initial
values of the graph represent the private key, and the final value
represents the public key.

To achieve a secure one-time signature, the property of the sig-
nature encoding is that an attacker would have to invert at least one
one-way function to sign any other value (i.e., forge a signature).

We now discuss an example of a signature graph and signature
encoding. Figure 4(a) depicts the one-time signature. A one-way
hash chain of length 4 can be used to encode the values 0−3. For
this signature chain, we will use the convention that the 1st value
s3 in the chain encodes the value 3, the second 2, etc.

The signer derives the values3 from a randomly generated pri-
vate keyKpriv by using a Pseudo-Random Function (PRF), e.g.,
s3 = PRFKpriv(0).3 To prevent signature forgery (as we will ex-
plain later), the sender also creates achecksum chain c0 . . .c3, de-
riving value c0 also from the private key, e.g.,c0 = PRFKpriv(1),
and again using the one-way function to derive the other values,
e.g.,c1 = F(c0). The application of the one-way function ons0
andc3 forms the public key:Kpub = F(s0 || c3). To sign valuei,
where 0≤ i ≤ 3, the signer uses valuessi andci as the signature.

To verify the signaturesi andci , the receiver follows the one-way
chains and recomputes the public key as follows, withF0(x) = x:

Kpub = F(F i(si) || F3−i(ci))

A signature is correct if the recomputed value matches the public
key For example, consider a signature on value 2:s2 andc2. To
verify, the receiver checks thatKpub = F(F(F(s2)) || F(c2)).

An attacker who wishes to forge a signature is forced to invert at
least one one-way function (since the indices of the checksum chain
run in direction opposite to the signature chain). Assuming the one-
way function is secure, an attacker cannot invert the function to
forge a signature, hence, the signature is secure. In practice, we can
use a secure cryptographic hash function for our one-way function,
but for increased efficiency we use a block cipher in hash mode, for
example the commonly used Matyas-Meyer-Oseas mode [22].

Using two chains achieves a secure one-time signature, but does
not scale well to sign a large number of bits. If we use two chains,
a signature on 32 bits would require a chain 232 values long, which
has a very high overhead to generate and verify. Instead, if more
than one chain is used, each chain can encode some number of bits
of the signature. For example, one could encode an 8 bit number by
using four chains of length 4 to encode two bits in each chain. The
public key is derived from the last value on all the chains. However,
in this scheme, we would still need an additional 4 chains of length
4 to encode the values in the opposite direction to prevent forgeries.

The Merkle-Winternitz signature reduces the number of check-
sum chains, in that the redundant checksum chains do not encode
the actual value, but instead encode the sum of the values on the sig-
nature chains. As explained in detail by Merkle [25,26], the check-
sum chain encodes the sum of all values in the signature chains.
Assumingk signature chains that signm bits each, the maximum
sum would bek · (2m−1), thus the checksum chains would encode

3We use a block cipher to implement the PRF efficiently. A block
cipher is a good PRF as long as we do not use the PRF to compute
more thanO(

√
2n) operations with the same key, wheren is the

blocksize in bits. Since we only perform a few operations, the block
cipher is a secure and efficient PRF.

6

Kpriv

Kpub

s0

s1

s2

s3

c3

c2

c1

c0

(a) Simple one-time signature to sign 2 bits.

F

Kpriv

Kpub

s0,0

s0,1

s0,2

s0,3

s1,0

s1,1

s1,2

s1,3

s2,0

s2,1

s2,2

s2,3

s3,0

s3,1

s3,2

s3,3

c0,3

c0,2

c0,1

c0,0

c1,3

c1,2

c1,1

c1,0

(b) Merkle-Winternitz one-time signature.
This construction can sign 8 bits.

Figure 4: This figure illustrates the Merkle-Winternitz one-time signature.

log2⌈k · (2m−1)⌉ bits, providing for a significant savings. This ap-
proach still ensures that an attacker would have to invert at least
one one-way function to forge a signature.

Using signature chains with 4 values, a signature onn bits will
then requiren/2 signature chains. Since each chain encodes up to
the value 3, the checksum chain at most needs to encode the value
(n/2) ∗3 as the total sum; thus, the checksum chains need to sign
log2(n/2∗3) bits. If we also use checksum chains with 4 values,
each checksum chain can again sign 2 bits and we need⌈log2(n/2∗
3)/2⌉ checksum chains. Figure 4(b) shows an example of such a
signature for signing 8 bits. Since the four signature chains can
at most encode the number 3, the total sum is at most 4∗3 = 12.
Thus we only need 2 additional checksum chains to encode the 4
bits. Again, the indices in the checksum chain run opposite to the
indices in the signature chain, to ensure that an attacker would have
to invert at least one one-way function to forge a different signature.

For the specific case of signing 80 bits, researchers suggest using
chains of length 16 to encode 4 bits per chain [35]. Thus, we need
20= 80/4 signature chains, and the checksum chains would need
to encode at most values 0. . .300(= 20·15), which will require 9
bits, which again requires 3 checksum chains (where the third chain
only requires 2 values to sign a single bit).4

We now compute the computation overhead of signature verifi-
cation. On average, signature verification requires following half
the signature chains, which requires 8 one-way function compu-
tations. In the case of signing 80 bits with 20 signature chains,
this will result in 160 one-way function computations. On average,
the checksum chains require 16 one-way function computations,
adding up to a total of 176 computations.

4.2 LEA: Authentication of Low-Entropy Mes-
sages

If messages have high entropy, the one-time signature is still
quite large in size. For example, if messages have 80 bits or more
of entropy, the signer can hash the message before signing it. Using

4We could also use 2 signature chains with 18 values each, as 182 =
324, saving one checksum chain.

the construction we discussed in Section 4.1, signing an 80-bit hash
value would yield a 230 bytes signature (or 184 bytes if we assume
8 byte long hash chain values). Unfortunately, this is still too large
for current sensor networks.

However, for messages with lower entropy, one-time signatures
can be very effective. We thus present the LEA (Low-Entropy
Authentication) protocol. The LEA protocol is based on Merkle-
Winternitz one-time signatures, and periodically pre-distributes one-
time public keys to receivers, and the sender uses the corresponding
private keys to sign messages.

The Merkle-Winternitz one-time signature is efficient for signing
small numbers of bits. For example, assuming chains of length 16,
to sign a message ofn bits, we would needn/4 signature chains.
Thus we need to encode log2(n/4∗15) bits in the checksum chains,
hence requiring⌈log2(n/4∗ 15)/4⌉ additional checksum chains.
For signing 8 bits, the signature would require 2 signature chains
and 2 additional checksum chains to encode the sum ranging from
0. . .30, which would require 32 bytes assuming 8 byte values.
Since communication cost is a premium, we could use a single
checksum chain of length 30 to encode the checksum, thus sav-
ing 8 bytes. Hence, the total size of the authentication information
would be 24 bytes.

Since the size of the signature depends on the number of bits
being signed, this method is preferable for situations where the
message is a simple time critical command, such as an alarm, or
a preset command. For example, to sign 128 different commands,
we would only need one signature chain with 16 values, one signa-
ture chain with 8 values, and one checksum chain with 22 values.
Assuming 8 byte values, the total signature length is 24 bytes.

In some applications it may be possible to use a lossy compres-
sion algorithm to compress and quantize the data for the signature.
This would allow the message to contain uncompressed data, but
the attacher would only be able to change the message to a small
degree. This could be helpful in commands which set the sensi-
tivity of a motion sensor and the administrator is willing to allow
a small error in the sensitivity which is actually received on the
device.

One of the main challenges of using one-time signatures is to dis-

7

tribute one authentic public key for each signature to the receivers.
Without an authentic public key an attacker could inject it’s own
public key and one-time signatures. This problem is easier than
the original problem of general broadcast authentication because
the public keys can be distributed far ahead of time at a predictable
time.

There are several methods by which this may be achieved. The
simplest would be to distribute a set ofk public keys to each re-
ceiver at bootstrap and these keys would be usable for the firstk
messages. If the lifetime of the devices compared tok is small,
then the devices will not have to be re-bootstrapped.

In general, the number of total messages is unknown. Thus, we
design a mechanism to efficiently replenish authentic public keys
after their use. We leverage the RPT protocol for this purpose.
Nodes store a number of authentic public keys. The sender uses up
one one-time signature (or one private key) per message it broad-
casts. With this approach, all receivers can immediately authenti-
cate the message. Periodically, the sender sends a RPT message at
a regular time with new one-time public keys to replenish the used-
up public keys at receivers. Since each public key is only 10 bytes
long, this is an efficient approach.

4.3 Chaining Merkle-Winternitz Public Keys
The above scheme illustrates an effective way to useµTESLA in

conjunction with Merkle-Winternitz signatures to provide fast and
efficient authentication. The only drawback of using the Merkle-
Winternitz one-time signature is that the public key can only be
used once. Therefore when aµTESLA authenticated message is
sent at the beginning of the day authenticatingk Merkle-Winternitz
public keys, the sender and receiver are limited to only being able
to authenticatek messages that day. The tradeoff is that choosing a
largek uses up receiver memory resources.

To circumvent this problem, rather than sending a fixed number
of messages per interval, the public keys can be chained together
in such a way that if more messages are needed they can be sent to
the receiver and authenticated immediately.

In this approach, the sender generates a large number of public
and private keys for one-time signatures, labeling the public keys
P0,P1, . . . ,Pn. These public keys are then combined, such that ver-
ification of one signature will automatically authenticate the public
key of the next signature:
V0 = P0
V1 = H(P1 || V0)
...
Vi = H(Pi || Vi−1)
...
Vn = H(Pn || Vn−1)

In this approach, the sender only needs to send the valueVn au-
thenticated withµTESLA. The sender subsequently uses the private
key that corresponds to the public keyPn to sign a message, and
sends valueVn−1 along with the message. From the signature, the
receiver can compute the public keyPn, and together with the value
Vn−1 the receiver can authenticate the public key andVn−1 based
on the trusted valueVn. Now that the receiver trusts valueVn−1, the
next public keyPn−1 can be authenticated in the same way.

This approach has the drawback that the message to be authen-
ticated also needs to carry the valueVn−1 increasing the message
size by 8–10 bytes, and that message loss prevents later messages
to be authenticated. We propose to use a hybrid approach: sendk
public keys authenticated with RPT each day, along with one value
Vn. If the sender needs to send more thank authenticated messages,
it can then use the chained public keys after the firstk messages.

0uA

500uA

1000uA

1500uA

2000uA

22 23 24 25 26

97 bits

60 bits

32 bits

Power consumed (uA) vs. chain lengths

Figure 5: The power consumption for an MSP430 sensor
node receiving and validating Merkle-Winternitz signatures for
varying signature chain lengths.

5. IMPLEMENTATION AND PERFORMANCE
EVALUATION

Figure 5 illustrates the amount of energy required for using a
Merkle-Winternitz signature for signing 32 bits, 60 bits, and 97
bits. In this example, the sensor is an 16-bit TI MSP430 processor
running at 1 MHz, which can compute an 8-byte hash in approx-
imately 5ms using RC5. This processor uses up 0.28µA per ms,
and 3.8µA per byte received. Shown are the overall power con-
sumption for five different chain lengths, 22, 23, 24, 25, 26, and
27. Table 2 shows the power consumption, validation times, and
communication overhead for signing 60 bits with varying length
chains.

We implemented the PRF using the Helix stream cipher [9].
Unlike RC5, this cipher is not patented. It also features an effi-
cient MAC construction which we use in our implementation of
µTESLA. The PRF is computed by using the input to the PRF as
the key in encryption mode, and using the keystream as the output
of the PRF. In this implementation, it takes about 8 ms to compute
an 8-byte PRF. Since the signature generation requires comparable
amount of computation as verification, generation of a 64-bit signa-
ture takes about 1.2 seconds and verification takes about 1 second
in our un-optimized implementation. However, in this scheme, the
public keys are generated in advance, so the sender must compute
twice as many hashes because it must recompute the hashes when
he wishes to actually compute a signature instead of simply gener-
ating the public key. This still makes it feasible for a sensor-node
to act as the base station in our implementation, but generating a
large amount of public keys becomes costly. The implementation
is about 4k in size, 2k for the Helix assembly code, and 2k for the
Merkle-Winternitz code (with code for both generation and valida-
tion).

6. RELATED WORK
The µTESLA protocol is a viable mechanism for broadcast au-

thentication in sensor networks [31]. Unfortunately, this approach
introduces an authentication delay and thus does not provide imme-
diate authentication of messages which is necessary in applications

8

22 23 24 25 26 27

Power-cons (µA) 1126.7 823.1 707.2 717.5 858.3 1163.2
Auth-time (ms) 332.5 442.5 680.0 1042.5 1762.5 2960.0
Overhead (bytes) 272 184 136 112 96 88

Table 2: Efficiency for signing a 60 bit value using Merkle-Winternitz one-time signature.

with real-time requirements. Moreover, theµTESLA approach has
some denial-of-service vulnerabilities, which we address in this pa-
per.

Liu and Ning subsequently improved the efficiency of bootstrap-
ping new clients, using multiple levels of one-way key chains [20].
This work also discussed the DoS attack explained in Section 3.2.
Liu et al. also outlines a potential approach to authenticate commit-
ment messages with Merkle hash trees [19].

Several researchers have investigated the use of asymmetric cryp-
tographic techniques in sensor networks. Unfortunately, the over-
head is too high to warrant use of such techniques for per-packet
broadcast authentication. Such schemes were discussed in Sec-
tion 2 in the context of protocols with high computation overhead.

7. CONCLUSION
We have studied viable and efficient solutions for efficient broad-

cast authentication in sensor networks. This problem is challenging
due to the highly constrained nature of the devices and the unpre-
dictable nature of communication in many environments. Since the
authentication of broadcast messages is one of the most important
security properties in sensor networks, we need to study viable ap-
proaches for a variety of settings. We establish a set of properties
of broadcast authentication: security against compromised nodes,
low computation and communication cost, immediate authentica-
tion (with no receiver delay), authentication of unpredictable mes-
sages with high entropy, and robustness to packet loss. We present
a viable protocol for each case where we relax one property, and
pose the open challenge to find a protocol that satisfies all proper-
ties.

8. REFERENCES

[1] D. Boneh, G. Durfee, and M. Franklin. Lower bounds for
multicast message authentication. InAdvances in Cryptology
— EUROCRYPT ’01, pages 434–450, 2001.

[2] M. Brown, D. Cheung, D. Hankerson, J. Lopez Hernandez,
M. Kirkup, and A. Menezes. PGP in constrained wireless
devices. InProceedings of USENIX Security Symposium,
August 2000.

[3] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas. Multicast security: A taxonomy and some
efficient constructions. InINFOCOMM’99, pages 708–716,
March 1999.

[4] J. Deng, R. Han, and S. Mishra. A performance evaluation of
intrusion-tolerant routing in wireless sensor networks. In
Proceedings of IEEE Workshop on Information Processing in
Sensor Networks (IPSN), April 2003.

[5] J. Deng, C. Hartung, R. Han, and S. Mishra. A practical
study of transitory master key establishment for wireless
sensor networks. InProceedings of the First IEEE/CreateNet
Conference on Security and Privacy for Emerging Areas in
Communication Networks (SecureComm), 2005.

[6] Jeremy Elson, Lewis Girod, and Deborah Estrin.
Fine-grained network time synchronization using reference

broadcasts. InProceedings of Symposium on Operating
Systems Design and Implementation (OSDI), December
2002.

[7] Jeremy Elson and Kay R̈omer. Wireless sensor networks: A
new regime for time synchronization. InProceedings of
Workshop on Hot Topics In Networks (HotNets-I), October
2002.

[8] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital
signatures. InAdvances in Cryptology — CRYPTO ’89,
volume 435, pages 263–277, 1990.

[9] Niels Ferguson, Doug Whiting, Bruce Schneier, John Kelsey,
Stefan Lucks, and Tadayoshi Kohno. Helix: Fast encryption
and authentication in a single cryptographic primitive. In
Proceedings of the International Workshop on Fast Software
Encryption (FSE 2003), 2003.

[10] V. Gupta, M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle,
and S. C. Shantz. Sizzle: A standards-based end-to-end
security architecture for the embedded internet. In
Proceedings of the Third IEEE International Conference on
Pervasive Computing and Communication (PerCom), 2005.

[11] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David E. Culler, and Kristofer S. J. Pister. System
architecture directions for networked sensors. InProceedings
of Architectural Support for Programming Languages and
Operating Systems (ASPLOS IX), pages 93–104, 2000.

[12] Lingxuan Hu and David Evans. Secure aggregation for
wireless networks. InWorkshop on Security and Assurance
in Ad hoc Networks, January 2003.

[13] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Packet
leashes: A defense against wormhole attacks in wireless
networks. InProceedings of IEEE INFOCOM, April 2003.

[14] J. M. Kahn, R. H. Katz, and K. S. Pister. Mobile networking
for smart dust. InProceedings of ACM/IEEE Conference on
Mobile Computing and Networking (MobiCom), August
1999.

[15] C. Karlof, N. Sastry, and D. Wagner. TinySec: A link layer
security architecture for wireless sensor networks. InACM
SenSys, November 2004.

[16] Chris Karlof, Naveen Sastry, Yaping Li, Adrian Perrig, and
J. D. Tygar. Distillation codes and applications to dos
resistant multicast authentication. InProceedings of the
Symposium on Network and Distributed Systems Security
(NDSS), November 2004.

[17] Chris Karlof and David Wagner. Secure routing in wireless
sensor networks: Attacks and countermeasures. In
Proceedings of First IEEE International Workshop on Sensor
Network Protocols and Applications, May 2003.

[18] A. Lenstra and E. Verheul. Selecting cryptographic key sizes.
Journal of Cryptology, 14(4):255–293, 2001.

[19] D. Liu, P. Ning, S. Zhu, and S. Jajodia. Practical broadcast
authentication in sensor networks. InProceedings of The 2nd
Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services, November 2005.

[20] Donggang Liu and Peng Ning. Efficient distribution of key

9

chain commitments for broadcast authentication in
distributed sensor networks. InProceedings of Network and
Distributed System Security Symposium (NDSS), pages
263–276, February 2003.

[21] David Malan, Matt Welsh, and Michael Smith. A public-key
infrastructure for key distribution in TinyOS based on elliptic
curve cryptography. InProceedings of IEEE International
Conference on Sensor and Ad hoc Communications and
Networks (SECON), October 2004.

[22] S. Matyas, C. Meyer, and J. Oseas. Generating strong
one-way functions with cryptographic algorithm.IBM
Technical Disclosure Bulletin, 27:5658–5659, 1985.

[23] A. Menezes, P. van Oorschot, and S. Vanstone.Handbook of
Applied Cryptography. CRC Press, 1997.

[24] R. Merkle. Protocols for public key cryptosystems. In
Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 122–134, April 1980.

[25] R. Merkle. A digital signature based on a conventional
encryption function. InAdvances in Cryptology — CRYPTO
’87, pages 369–378, 1988.

[26] R. Merkle. A certified digital signature. InAdvances in
Cryptology — CRYPTO ’89, pages 218–238, 1990.

[27] National Institute of Standards and Technology (NIST),
Computer Systems Laboratory. Secure Hash Standard.
Federal Information Processing Standards Publication (FIPS
PUB) 180-2, February 2004.

[28] A. Perrig. The BiBa one-time signature and broadcast
authentication protocol. InProceedings of ACM Conference
on Computer and Communications Security (CCS), pages
28–37, November 2001.

[29] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. Efficient
authentication and signature of multicast streams over lossy
channels. InProceedings of the IEEE Symposium on
Research in Security and Privacy, pages 56–73, May 2000.

[30] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The TESLA
broadcast authentication protocol.RSA CryptoBytes,
5(Summer), 2002.

[31] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler,
and J. D. Tygar. SPINS: Security protocols for sensor
networks. InProceedings of ACM Conference on Mobile
Computing and Networks (MobiCom), pages 189–199, 2001.

[32] Bartosz Przydatek, Dawn Song, and Adrian Perrig. SIA:
Secure information aggregation in sensor networks. In
Proceedings of the First ACM International Conference on
Embedded Networked Sensor Systems (SenSys 2003), pages
255–265, November 2003.

[33] Leonid Reyzin and Natan Reyzin. Better than BiBa: Short
one-time signatures with fast signing and verifying. In
Proceedings of Conference on Information Security and
Privacy (ACISP), July 2002.

[34] R. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, February
1978.

[35] P. Rohatgi. A compact and fast hybrid signature scheme for
multicast packet. InProceedings of the 6th ACM Conference
on Computer and Communications Security, pages 93–100.
ACM Press, November 1999.

[36] F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route
filtering of injected false data in sensor networks. In
Proceedings of IEEE INFOCOM, March 2004.

[37] S. Zhu, S. Setia, S. Jajodia, and P. Ning. An interleaved
hop-by-hop authentication scheme for filtering false data in
sensor networks. InProceedings of IEEE Symposium on
Security and Privacy, pages 259–271, May 2004.

10

