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ABSTRACT
Secure sensor network communication protocols need to provide
three basic properties: data secrecy, authentication, and replay pro-
tection. Secure sensor network link layer protocols such as Tiny-
Sec [10] and ZigBee [24] enjoy significant attention in the com-
munity. However, TinySec achieves low energy consumption by
reducing the level of security provided. In contrast, ZigBee enjoys
high security, but suffers from high energy consumption.

MiniSec is a secure network layer that obtains the best of both
worlds: low energy consumption and high security. MiniSec has
two operating modes, one tailored for single-source communica-
tion, and another tailored for multi-source broadcast communica-
tion. The latter does not require per-sender state for replay pro-
tection and thus scales to large networks. We present a publicly
available implementation of MiniSec for the Telos platform, and
experimental results demonstrate our low energy utilization.
Categories and Subject Descriptors: D.4.4 [Communications
Management]: Network communication; D.4.6 [Security and Pro-
tection]: Cryptographic controls.
General Terms: Security, Design.
Keywords: Sensor network security, secure communication archi-
tecture.

1. INTRODUCTION
Considerable attention had been paid to developing secure sensor

network communication protocols. Unfortunately, existing tech-
nologies, such as TinySec and ZigBee, are unable to achieve low
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energy consumption while simultaneously providing the three im-
portant properties of secure communication: secrecy, authentica-
tion, and message replay protection.

TinySec, a popular secure link layer protocol, achieves low en-
ergy consumption and memory usage. Unfortunately, it also sac-
rifices on the level of security. For example, it employs a single
network-wide key, such that every node in the network can mas-
querade as any other node. Second, TinySec does not attempt to
protect against replay attacks.

ZigBee provides a higher level of security than TinySec since it
is not restricted to a network-wide key. By keeping a per-message
counter as the Initialization Vector (IV), ZigBee protects against
message replay attacks. However, ZigBee is an expensive protocol.
First, ZigBee sends the entire 8-byte IV with each packet, resulting
in high communication overhead and high energy consumption by
the radio. Also, ZigBee requires per-sender state, which consumes
a large amount of memory as the number of participants increases.

In this paper, we present MiniSec, a secure network layer pro-
tocol for wireless sensor networks. We achieve the best of both
worlds: lower energy consumption than TinySec, and a high level
of security like ZigBee. We accomplish this by leveraging three
techniques. First, we employ a block cipher mode of operation
that provides both secrecy and authenticity in only one pass over
the message data. Second, we send only a few bits of the IV,
while retaining the security of a full-length IV per packet. In con-
trast, previous approaches require two passes over the plaintext
(one for encryption and one for authentication) and transmission
of the full-length IV. Third, we exploit the fundamental distinc-
tions between unicast and broadcast communication, providing two
energy-optimized communication modes. In unicast mode, we re-
duce the radio’s energy consumption by using synchronized coun-
ters and performing extra computation. Although radically differ-
ent from conventional networking protocols, such a scheme is de-
sirable in this setting because of the stringent energy constraints
of sensor networks. In broadcast mode, we employ a Bloom-filter
based replay protection mechanism that avoids per-sender state.

MiniSec’s improvement in energy consumption comes at the cost
of a modest increase in memory size, which is a desirable tradeoff
in sensor nodes. Note that TinySec had been developed for the
Mica2 motes in 2003, when memory constraints were much more
stringent than they are today. The current trend in mote develop-
ment reveals that memory size has been consistently increasing,
while energy constraints remain as stringent as ever. Thus, the de-
sign tradeoffs in MiniSec make it well-suited for current state-of-
the-art sensor devices.

We present MiniSec as a complete solution to secure sensor net-
work communication, and implement the protocol for the Telos
motes [18]. To the best of our knowledge, MiniSec is the first gen-



eral purpose security protocol available for this popular platform.
Furthermore, MiniSec’s source code is publicly available 1, and it
can be easily ported to other platforms.

We evaluate MiniSec’s performance against TinySec [10]. Our
results show that under most circumstances, our energy consump-
tion of security related tasks is about 1

3 of the energy consumption
TinySec, yet we are still able to provide a higher level of security.

The main contributions of this paper are s follows.

• We introduce MiniSec, the first fully-implemented general
purpose security protocol for the Telos sensor motes.

• MiniSec simultaneously achieves low energy overhead and
a high level of security (data secrecy, authentication, and re-
play protection). This is the first protocol to achieve replay
protection in the sensor network broadcast setting.

• We measure the performance of MiniSec and show that, un-
der most real-world scenarios, MiniSec outperforms other
comparable systems.

• The source code of MiniSec is publicly available. We pro-
vide a turnkey system for sensor network developers that
seamlessly integrates into TinyOS applications.

2. BACKGROUND
Several encryption modes exist that achieve secrecy and authen-

tication. We select OCB [20] as our encryption mode since it is
especially well-suited for the stringent energy constraints of sensor
nodes. In addition to OCB, MiniSec also uses Bloom filters [4] and
loose time synchronization to minimize energy consumption. In
concert, Bloom filters and loose time synchronization can be used
to provide efficient replay protection in broadcast communication.

In this section, we briefly review OCB and Bloom filters.
OCB. OCB, or Offset CodeBook, is a block-cipher mode of op-
eration that features authenticated encryption. Given a plaintext of
arbitrary length, OCB generates a ciphertext that simultaneously
provides authenticity and data secrecy. OCB is provably secure,
and is parameterized on a block cipher of blocksize n and a tag of
length τ . τ is defined such that an adversary is able to forge a valid
ciphertext with probability of 2−τ .

OCB operates as follows. Let M be an arbitrary length message
that needs to be encrypted and authenticated, H be an optional mes-
sage header that only requires authentication, K be the encryption
key (which is the key used by the underlying block cipher), and N
be a non-repeating nonce. First, OCB takes in M, K, and N, and
generates the ciphertext core C. Concurrently, using the plaintext
M, ciphertext C, and H, OCB generates tag of length τ . The final
output of OCBK(N,M,H) is the tuple (C,tag). To decrypt a ci-
phertext (C,tag), the receiver performs the reverse process on C to
arrive at plaintext M. Then, the receiver ensures that the tag is as
expected. If the receiver computes a different tag than the one in
the ciphertext, the ciphertext is considered to be invalid.

OCB is especially well suited for sensor nodes. First, OCB
avoids ciphertext expansion. Given an arbitrary length messages M,
OCB generates ciphertext with length of |M|+ τ . Disregarding the
tag, the ciphertext core has the same length as the plaintext. Sec-
ond, OCB has superior performance, since it provides secrecy and
authenticity in one pass of the block cipher. TinySec and ZigBee
provide the same security guarantees, but requires two passes of the
block cipher: one pass achieves secrecy with CBC-encryption, and
another pass achieves authenticity with CBC-MAC. Consequently,
1http://www.ece.cmu.edu/˜mluk

since TinySec and SNEP almost doubles the amount of computa-
tion, the energy consumption also doubles. By comparing the num-
ber of block cipher calls, OCB only requires d

|M|
n e block cipher

calls [20], while CBC-encryption and CBC-MAC together take be-
tween 2d |M|

n e+1 to 2d |M|+1
n e+4 block cipher calls, depending on

padding (recall that |M| is the message length, and n is the block-
size).
Bloom filter. The Bloom filter is a space-efficient data structure
used for fast probabilistic membership tests [4]. It features two
functions: membership addition and membership query. It is possi-
ble to have false positives, where a query returns true even though
the element is not in the set. However, false negatives, where a
query returns false when the element is in fact a member of the set,
is not possible.

A Bloom filter requires an array of m bits and k hash functions.
The array is first initialized to all zeros. Each hash function maps
an element to one of the m array positions. To add an element,
the element is hashed by all k hash functions, and the k subsequent
array positions are set to one. To query for an element, we use the
k hash functions to arrive at the k bit positions. If any of them were
zero, then the element is not in the set. If all bits were set to one,
then either the element is indeed in the set, or all k bits were set to
one by insertion of other elements. The latter demonstrates a false
positive. The more elements are added to a Bloom filter, the higher
the probability of a false positive.

Bloom filters are well suited in the severe resource-constrained
environment of sensor nodes because of space and time advantages.
The space advantage is apparent, since it only requires O(n logn)
bits to store a fingerprint of n messages. Bloom filters also exhibit
the desirable property that adding and querying an element occurs
in constant time.

3. PROBLEM DEFINITION
3.1 Assumptions

We assume that symmetric keys are already established between
each sender and its receivers. We recommend a different key for
each sender, but our protocol is by no means restricted to such a
setup. We also assume a secure routing protocol that can success-
fully route packets to the intended destination with non-zero prob-
ability.

A list of sensor network keying and routing protocols can be
found in Section 9. The goal of MiniSec is to leverage such exist-
ing primitives to provide for secure node-to-node communication
at low energy cost.

3.2 Attacker Model
Sensor nodes rely on radio broadcasts for communication. We

thus adopt the Dolev-Yao attacker model, where an attacker can
overhear, intercept, alter, or inject any messages into the radio com-
munication channel.

We do not restrict attackers to computationally bounded motes.
By using sufficiently long symmetric keys (i.e., 80 bits), we can
defend against brute force attacks by a powerful adversary [13].

3.3 Desired Properties
We now present the desired properties of a secure sensor network

communication architecture.
Data Authentication. Data authentication empowers legitimate
nodes to verify whether a message indeed originated from another
legitimate node (i.e., a node with which it shares a secret key) and
was unchanged during transmission. As a result, illegitimate nodes



should not be able to participate in the network, either by injecting
their own messages or by modifying legitimate messages.

Data authentication is one of the basic building blocks of a secure
system. For example, nodes need to verify commands from the
base station, and a base station needs to authenticate whether the
data readings indeed originate from valid nodes.

Typically, data authentication is achieved by the sender comput-
ing a message-authentication code (MAC) over the payload and ap-
pending that to the message. Upon reception, the packet is consid-
ered to be valid if the receiver recomputes the MAC and it matches
with the received MAC. ZigBee, TinySec and SNEP provide data
authentication by using the CBC-MAC function, using Skipjack or
RC5 as the block cipher.
Data Secrecy. Data secrecy, another basic requirement of any se-
cure communication system, prevents unauthorized parties from
discovering the plaintext. It is typically accomplished by setting
up an encrypted communication channel.

Encryption schemes or modes can be evaluated based on differ-
ent criteria. A strong level of security is the notion of semantic
security [3, 9]. The Handbook of Applied Cryptography defines
semantic security such that “a passive adversary with polynomi-
ally bounded computational resources can learn nothing about the
plaintext from the cipher text” [1]. Semantic security implies that
an eavesdropper cannot gain any information about the plaintext,
even after observing many encryptions of the same plaintext.

In secure communication protocols, data secrecy is provided by
a cryptographic encryption scheme. To guarantee semantic secu-
rity, we typically require a probabilistic encryption scheme and an
unique initialization vector (or IV) for each encryption to add vari-
ation to the ciphertext.

TinySec uses CBC-encryption, while SNEP and ZigBee employ
counter-mode encryption. MiniSec provides both authentication
and secrecy using OCB-encryption with a non-repeating counter.
Replay Protection. A replay attack is when attackers record en-
tire packets and replay them at a later time. TinySec is not resilient
to such an attack, while SNEP provides protection using a counter.
Sections 5 and 6 demonstrate how MiniSec provides replay protec-
tion in the unicast and broadcast setting, respectively.
Freshness. Since sensor nodes often stream time-varying mea-
surements, providing guarantee of message freshness is an impor-
tant property. There are two types of freshness: strong freshness
and weak freshness. MiniSec provides a mechanism to guarantee
weak freshness, where a receiver can determine a partial ordering
over received messages without a local reference time point. Note
that both ZigBee and SNEP provide weak freshness, while TinySec
does not provide any form of freshness.
Low Energy Overhead. Energy is an extremely scarce resource
in sensor nodes. Thus, it is of paramount importance for the secu-
rity protocol to retain a low energy overhead. In particular, radio
communication consumes the most amount of energy. On the Te-
los platform, sending a single byte is equivalent to executing about
4720 instructions. Thus, to reduce energy consumption, it is imper-
ative to minimize communication overhead.

Although public key cryptography had enjoyed major advance-
ment recently, it is still 3–4 orders of magnitude more expensive
than symmetric cryptography in typical sensor nodes. Because it
requires less energy consumed by the processor, security protocols
that only employ symmetric cryptography are preferred in sensor
network applications.
Resilient to Lost Messages. The relatively high occurrence of
dropped packets in wireless sensor networks requires a design that
can tolerate high message loss rates.

4. MINISEC OVERVIEW
We present MiniSec, a secure network layer that satisfies all the

security properties outlined in Section 3. MiniSec has two operat-
ing modes: unicast and broadcast, henceforth known as MiniSec-U
and MiniSec-B. Both schemes employ the OCB-encryption scheme
to provide for data secrecy and authentication (see Section 2), while
using a counter as a nonce. The two modes differ in the way
they manage the counters. In MiniSec-U, we employ synchronized
counters, which require the receiver to keep a local counter for each
sender. MiniSec-B has no such requirement for per-sender state.
Instead, meta-data to prevent replay attacks is stored in a Bloom
Filter. Both schemes will be explained in detail in Sections 5 and 6,
respectively.
Notation. We use the following notation to describe our protocol
and cryptographic operations:

A,B Communicating nodes.
KAB OCB Encryption key used for communi-

cation channel from A to B. Note that
key KBA would be used to encrypt data
from B to A.

CAB Monotonically increasing counter
corresponding to KAB.

(C,tag) = Authenticated encryption under OCB,
OCBK(N,M,H) where M is the plaintext message, H is

an optimal message header that only
needs to be authenticated, N is a 64-bit
nonce, and K is the OCB encryption key.

NA A nonce generated by device A.

5. MINISEC-U: UNICAST COMMUNICA-
TION

5.1 Motivation
Both TinySec and SNEP have developed solutions for provid-

ing secure communication in the unicast setting, where we have
one sender A and one receiver B. Although both protocols attempt
to minimize energy consumption, there are aspects of both that
demonstrate inefficient energy usage. TinySec uses an encrypted
counter as its IV. This counter is appended to each message, result-
ing in a 2-byte overhead per packet. SNEP also uses a counter as
the IV. However, SNEP conserves radio energy consumption by not
sending the counter with each packet. Instead, the counter is kept
as internal state by both sender A and receiver B. However, dropped
packets would cause the counters to become inconsistent, in which
case both parties need to participate in an expensive counter resyn-
chronization protocol.

TinySec and SNEP represent two extremes: sending the entire
counter as opposed to not sending the counter at all. The key insight
behind MiniSec-U is that optimal energy usage can be achieved by
combining the best of both approaches. Similar to SNEP, MiniSec-
U maintains a synchronized monotonically increasing counter CAB
between a sender A and a receiver B as the IV. However, MiniSec-U
includes the last x bits of the counter along with each packet. We
call this the LB (Last Bits) Optimization, and the last x bits of the
counter is called the LB value. By keeping x low, the radio’s energy
consumption is almost as low as not sending the counter at all.

The LB optimization addresses one of the main drawbacks of
SNEP, which is running the expensive counter resynchronization
protocol when packets are dropped. Instead, the LB optimiza-
tion allows resynchronization to occur “implicitly.” Since sender
A sends the last x bits of the counter, receiver B can compare the
last x bits of its local counter CAB to the LB value appended to the
packet. As long as there are fewer then 2x dropped packets since



the last successfully received packet, the receiver can immediately
increment his counter such that the final x bits match the LB value.
For example, let x be 3, and the counter CAB be synchronized on
both parties at 0. Sender A sends six packets, but the first five pack-
ets were dropped. Receiver B successfully receives the 6th packet,
which was sent using CAB of 5. B would thus immediately incre-
ment hits counter CAB to 5 and attempt decryption.

The LB optimization is useful even if more than 2x packets were
dropped, since the receiver could simply continue to increment CAB
by 2x and reattempt decryption. In practice, the receiver B would
set a maximum such that after y consecutive failed decryptions, B
would run the expensive counter resynchronization protocol.

Lastly, by specifying the parameter x, we could arbitrary lower
the probability of reverting to the resynchronization protocol. By
monitoring the quality of the channel, it is possible to analytically
solve for the optimal values of x and y such that energy consump-
tion is minimized. We demonstrate this in Section 5.3.

5.2 Protocol Description
In this section, we describe the mechanics of MiniSec-U, in the

context of sender A and receiver B. In MiniSec-U, each pair of
sender and receiver share two keys, KAB to protect communication
from A to B, and KBA to protect communication from B to A. Fur-
thermore, a monotonically increasing counter is assigned to each
key as the IV (CAB used to for key KAB), and is kept as internal
state by both sender and receiver.

We employ OCB-encryption with the packet payload as M, packet
header as H, counter CAB as the nonce, and KAB as the encryption
key. We selected Skipjack to be the underlying block cipher with a
blocksize of 64 bits. Since OCB requires the nonce to be the same
length as the block size, counter CAB can also be 64 bits. Alterna-
tively, the counter could be of shorter length, and be padded out to
64-bits when requested by the OCB encryption function. The sec-
ond parameter of OCB is the tag length, which we set to 32 bits, a
length suitable for security in retail banking [20]. Finally, receiver
B needs to maintain counter CAB. Upon receiving and decrypting a
valid packet, B would increment its local copy of CAB accordingly
so that it remains consistent with A.

Since OCB is probabilistic, a strictly monotonically increasing
counter CAB guarantees semantic security. Even if the sender A re-
peatedly sends the same message, each ciphertext is different since
a different counter value is used. Also, once a receiver observes
a counter value CAB, it rejects packets with an equal or smaller
counter value. Therefore, an attacker cannot replay any packet that
the receiver has previously received.

There are four interesting issues about using counter CAB as the
IV. First, because of the nature of OCB encryption, the counter
itself is not a secret. Even if an attacker knows the counter, the
specified security properties are not compromised. This contrasts
to CBC encryption used by TinySec, which requires a random and
unpredictable nonce as the IV. Second, in order to provide seman-
tic security, the counter cannot wrap around. A longer counter
achieves higher level of security, yet adds additional overhead to
each packet. Since we do not append the entire counter to each
packet, MiniSec enjoys the security benefits of a longer counter
without paying the communication cost. This allows us to use a 32-
bit or longer counter while TinySec uses a 16-bit counter. Third, de-
spite the LB optimization, large number of dropped packets could
still cause the counters to be desynchronized. Appendix A presents
a counter resynchronization protocol similar to one used in SNEP.
Finally, a different counter is needed to be instantiated per key.
Thus, if we rekey, the counter can be reset to zero.

5.3 Energy Analysis
Let x be the number of lowest counter bits to append to the

packet, and y be the maximum number of trial decryptions the re-
ceiver performs as explained above. Let random variable I repre-
sent the time at which the node is able to decrypt the message (if
the node successfully decrypts the message), where 1 ≤ I ≤ y. The
goal of this section is to determine the parameters x and y.

Generally, a receiver would perform i decryptions, if there were
at least (i− 1)2x and at most i2x − 1 dropped packets. Thus, the
probability that exactly i decryptions occur is (where Pgar is the
probability that a message is garbled in transmission, and pr is the
probability that the message is received):

P(I = i) = (1−Pgar)
i2x−1
∑

k=(i−1)2x
(1− pr)

k pr

= (1−Pgar)(1− pr)
(i−1)2x [1− (1− pr)

2x]

Thus, the expectation of I is:

E(I) =
y

∑
i=1

iP(I = i)

=
[

1− (1− pr)
2x]

y

∑
i=1

i
[

(1− pr)
2x ]i−1

=
[

1− (1− pr)
2x] 1− (y+1)(1− pr)y2x

+ y(1− pr)(y+1)2x

[

1− (1− pr)2x ]2

=
1+(1− pr)y2x

[

1+ y
[

1− (1− pr)2x]
]

1− (1− pr)2x

The expected energy consumed is the sum of the expected energy
spent when an event happens times the probability of this event to
occur plus the energy required for receiving x bits. At the reception
of a message, two scenarios are possible for the receiver: (1) the
receiver is able to decrypt the message at the i-th trial decryption.
This event occurs with probability P(I = i) and its cost is E(i ∗
EOCB) = E(I)EOCB, where EOCB represents the cost of an OCB
decryption. (2) The receiver is unable to decrypt the message even
after trying y times. This happens either because more than y2x

packets were lost consecutively, or because the packet that was just
received is garbled due to a transmission error (an unlikely event).

Thus, let Erec be the energy for receiving one bit, Eresync be
the energy required to execute the counter resynchronization pro-
tocol, and E(I) be as described above, then the expected energy
consumption per packet EEnergy is:

EEnergy = E(I)EOCB(1−Pgar)+
[

yEOCB +Eresync
][

Pgar +(1−Pgar)(1−Pr)y2x]
+ xErec

We need to find the ideal x and y for a given environment. A
lossy channel with high packet loss requires larger values for x and
y. In Section 8 we discuss how to select x and y in practice.

6. MINISEC-B: BROADCAST
COMMUNICATION

MiniSec-U cannot be directly used to secure broadcast commu-
nication. First, it would be too expensive to run the counter resyn-
chronization protocol among many receivers. Also, if a node B
were to simultaneously receive packets from a large group of send-
ing nodes (A1,A2, . . . ,An), B would need to maintain a counter for
each sender, resulting in high memory overhead.

Similar to MiniSec-U, MiniSec-B uses OCB encryption to se-
cure broadcast communication. Simply encrypting each packet



with OCB provides secrecy and authenticity, while an increasing
counter can still be used as the IV to provide for partial ordering
of messages. However, without synchronized counters, there is no
defense against replay attacks. In fact, defending against replay at-
tacks in a broadcast setting without per-sender state is currently an
open challenge in the sensor network community.

This section describes two related mechanisms used in MiniSec-
B to provide replay protection. First, we present a sliding-windows
approach that defends against replay attacks with a certain vulner-
ability window; replayed packets outside the sliding-window are
always dropped. Next, we discuss a Bloom Filter-based approach
which defends against attacks within the window.

6.1 Sliding-windows Approach
We define an epoch to be a finite time te, and we segment time

into a series of te-length epochs {E1,E2,E3, . . .}. Leveraging loose
time synchronization [8,21], each node agrees on the current epoch
Ei. The maximum time synchronization error between any pair of
nodes is ∆T . Finally, let ∆N be the maximum network latency.

Simply using the current epoch number as the nonce for OCB-
encryption defends against replay attacks from older epochs. Un-
fortunately, because of time synchronization error and network la-
tency, such a scheme experiences high false positives at epoch tran-
sitions, as legitimate packets sent from the previous epoch will be
discarded.

The solution is to simply perform decryption with two possible
candidate epoch values for the nonce. First, we define epoch length
te to be 2∆T + ∆N . Let Ei be the current epoch number, and ti
be the time at the start of Ei. If one receives a packet within (ti,
ti + ∆T + ∆N), the two candidate values for the nonce are Ei and
Ei−1. If one receives a packet within (ti + ∆T + ∆N , ti+1), the two
candidate values are Ei and Ei+1. This threshold is depicted in
Figure 1 as the dotted line.

The intuition is as follows. First, we define tsi to be the local time
recorded by the sender when packet i is sent, and tri to be the local
time experienced by receiver when packet i is received. Further,
let δn be the actual network latency such that 0 < δn < ∆N , and
δt be actual time synchronization error such that −∆T < δt < ∆T .
Note that a positive δt indicates that the sender’s clock is behind the
receiver’s clock, while a negative δt indicates the opposite. Thus,
we have

tsi +δn +δt = tri

In the first case, as illustrated in Figure 1, we deal with packets
that are received within the range of tr1 and tr2 , where tr1 = ti + ε ,
and tr2 = ti +∆T +∆N −ε . To show that such traffic must originate
from either epoch Ei−1 or Ei, the receiver needs to determine the
earliest possible value of ts1 and the latest possible value of ts2 .
Since ts1 = tr1 − δt − δn, the earliest value of ts1 is tr1 −∆T −∆N ,
which falls within Ei−1. Similarly, since ts2 = tr2 − δt − δn, the
latest value of ts2 is tr2 +∆T , which falls within epoch Ei.

In the second case (not illustrated), we deal with packets received
within the range of tr3 and tr4 , where tr3 = ti + ∆T + ∆N + ε and
tr4 = ti+1 − ε . Again, the receiver needs to determine the earliest
possible value of ts3 and latest possible value of ts4 . Using similar
logic, we find that earliest value of ts3 is tr3 −∆T −∆N , which falls
within epoch Ei. Latest value of ts4 is tr4 + ∆T , which is within
Ei+1.

Based on this technique, there are only two candidate epochs for
any incoming packet. However, if a valid packet had been sent at
the beginning of an epoch, an attacker can replay that packet for the
remainder of the epoch as well as δt +δn into the next epoch. Thus,
the maximum window of vulnerability for replay is 3δt +2δn.

PSfrag replacements

∆T∆T∆T∆T ∆N∆N

Vulnerability window

ti ti+1

tr1 tr2ts1 ts2

Ei−1 Ei

Threshold time

Figure 1: Timeline. ∆T is the maximum time synchronization
error between sensor nodes. ∆N is the maximum network latency.
Ei is the current epoch. This figure shows that a packet received at
tr1 could not have been sent earlier than ts2 , and a packet received
at tr2 could have been sent after ts2 .

6.2 Bloom Filter-based Approach
As stated above, the sliding-windows based approach has the

drawback of a window of vulnerability for replay packets. This
problem could be easily avoided by simply storing all packets re-
ceived within this window. Unfortunately, this solution is not prac-
tical for sensor nodes because of limited storage. Thus, we augment
the sliding-windows approach with a counter maintained as inter-
nal state by the sender, and two alternating Bloom Filters stored
by all nodes. In concert, they provide replay protection within the
vulnerability window using constant storage.

Similar to the counter used in MiniSec-U, counter CA is kept as
internal state by sender A and is incremented each time it sends a
packet. The only difference is that the sender resets the counter at
the beginning of each epoch, so that the counter itself can be short
enough to be transmitted with each packet. If we can bound the
number of broadcast messages sent by a node in each epoch to k,
the length of the counter can be bounded to log2(k).

Unlike MiniSec-U where simply the counter is used as the nonce
for OCB encryption, the nonce in this case is the concatenation of
the sender’s nodeID A, CA, and current epoch number Ei. Thus, the
cipher-text sent is (C,tag) = OCBKA(nodeID||CA||Ei,M,H)). Note
that this nonce is never reused for a given key epoch numbers do
not wrap around during a sender’s lifetime.

Receiver B maintains its Bloom Filters in the following manner.
A Bloom Filter BFi is assigned to each epoch Ei. All valid packets
corresponding to epoch Ei are stored in BFi, using (CA||sourceID)
as the Bloom Filter key. At all times, each node keeps a Bloom
Filter BFi for the current epoch Ei, and either BFi−1 for the previous
epoch Ei−1, or BFi+1 for the next epoch Ei+1. For example, starting
at the beginning of epoch Ei until ∆T +∆N into the epoch, the node
maintains Bloom Filters BFi and BFi−1. After δt + δn, all packets
from the epoch Ei−1 will be dropped, while packets from the next
epoch Ei+1 will be accepted. Thus, BFi−1 is reset and reused as
BFi+1.

In the previous section, we concluded that only two candidate
epochs exist for any incoming packet. Since we have one Bloom
filter assigned to each epoch, a valid packet must correspond to one
of the active two Bloom filters.

When receiver B receives a packet, it needs to perform two checks:
1) determine whether the packet is a valid packet encrypted under
OCB, and 2) determine whether the packet has been replayed. To
verify if it is a valid packet, the receiver performs OCB decryp-



tion. Since the counter and the source address are included in the
packet as plaintext, the only portion of the nonce that is missing
is the epoch number. The receiver can recover the epoch number
easily, since there only exists two candidate epoch number for any
received packet. Hence, the receiver attempts OCB decryption with
both. If both decryption fail, the packet is dropped.

Next, the receiver needs to determine whether the packet has
been replayed. Since the epoch number is known, B queries the
corresponding Bloom Filter for this packet. If the query returns
true, the packet is considered to be a replay and is consequently
dropped. If the Bloom Filter declares that this packet is fresh, the
packet is considered to be a non-replayed packet. It is consequently
accepted and added into the Bloom Filter.

Using such a counter provides for semantic security since send-
ing the same message never results in the same cipher-text. Also,
this scheme provides for replay protection. If receiver B were to re-
ceive a replay packet, hashing the source ID and counter CA, would
result in a match in all the corresponding bits in the Bloom Filter.
Therefore, B would suspect a replay attack and reject the packet.

Note that such a replay policy would detect all replayed attacks,
resulting a 0% false negative rate. However, because Bloom Filters
may cause false positives; a fresh packet may be deemed to be a re-
played packet. There are various trivial solutions to lowering false
positives. For example, by selecting the size of the Bloom Filter m
and duration of an epoch, the probability of false positives can be
lowered arbitrarily [4].

7. SECURITY ANALYSIS
In this section, we provide an analysis on the level of security

promised by both MiniSec-U and MiniSec-B. First, we discuss
properties that are common across both protocols. Next, we dis-
cuss how these protocols are different.
Authentication. Both MiniSec-U and MiniSec-B use OCB en-
cryption to provide for data authentication over the payload and
packet header. The security of OCB’s authentication scheme is di-
rectly related to τ , the length of the tag. By setting τ to be 32
bits, an adversary has a 1 in 232 chance of forging a correct tag
for a particular message. This suffices for the majority of practical
applications.
Secrecy and Semantic Security. Semantic security requires that
nonces do not repeat. (Also note that since the sender uses a strictly
monotonic counter as the nonce, each ciphertext would be different
even if the plaintext were the same.) Avoiding repetition of nonce
is easy. In MiniSec-U, the counter is kept as internal state, and
thus can be made arbitrarily long. We choose 8 bytes, which means
that the nonce would not repeat until after sending 264 messages.
In MiniSec-B, the nonce is the concatenation of sourceID, epoch
number e, and a counter. By using all three variables, two messages
in the network would never share the same nonce.
Weak Freshness. In MiniSec-U, the receiver can arrive at the
counter value used for each packet by verifying the validity of OCB
decryption. While in MiniSec-B, the counter value is included in
the packet as plaintext. In both cases, the receiver can use the
counter value of two messages to enforce message ordering, thus
providing weak freshness.

MiniSec-U and MiniSec-B exhibit different behavior in replay
protection.
Replay Protection in MiniSec-U. Each sender and receiver keeps
a synchronized counter that is used as the nonce in OCB encryp-
tion. The receiver would only accept messages with higher counter
values than the those maintained in the node state. Thus, replayed

packets will all be rejected.
Replay Protection in MiniSec-B. The entire network lifetime is
segmented into epochs. MiniSec-B leverages loose time synchro-
nization to prevent replayed packets from previous epochs. Next,
each receiver uses a Bloom Filter to track packet history for each
epoch. Thus, MiniSec-B achieves protection against replay attacks.

8. IMPLEMENTATION

8.1 System Architecture
We have developed MiniSec for the Moteiv Telos motes - a pop-

ular architecture in the sensor network research community. It fea-
tures the 8MHz TI MSP430 micro-controller, a 16-bit RISC proces-
sor that is well known for its low energy consumption. Although
we implemented MiniSec on the Telos motes, our design principles
are general enough such that porting MiniSec to different sensor
platforms should yield similar performance results.

To implement MiniSec, we rewrote part of the TinyOS network
stack. Specifically, we created GenericCommMiniSec based on
GenericComm, a “generic” TinyOS network stack. Instead of using
the interface AMStandard for Active Message transmission,
GenericCommMiniSec directs all messages to AMStandardMiniSec,
a custom-made ActiveMessage layer that encrypts outgoing mes-
sages and decrypts received packets. To use MiniSec, a developer
simply needs to replace GenericComm with GenericCommMiniSec in
the application’s configuration file.
Packet Format. We base MiniSec’s packet format on the current
TinyOS packet header for Telos mote’s CC2420 radio. The Telos
mote is one of the first wireless sensor devices to be equipped with
an IEEE 802.15.4 radio. Figure 2 shows the packet format for plain
TinyOS, TinySec, and MiniSec.

The fields that MiniSec share with original TinyOS are: length,
Frame Control Field, data sequence number, destination PAN ad-
dress, destination address, and the AM number. MiniSec replaces
the 2-byte CRC with a 4-byte tag, since the tag already protects the
packet from tampering. In the original TinyOS, the 1-byte groupID
serves as a crude form of access control. Each set of communi-
cating nodes share a different group-ID, and messages with for-
eign group-IDs are dropped. This field is no longer necessary in
MiniSec because access control is achieved through the use of dif-
ferent cryptographic keys. Finally, similar to TinySec, MiniSec
requires a 2-byte source address, which is absent in a standard
TinyOS packet. The net overhead of a MiniSec packet is 3-byte
increase over a standard TinyOS packet.

8.2 MiniSec-U Implementation
MiniSec-U uses two security primitives: OCB encryption and

Skipjack. We selected Skipjack to be the block-cipher because of
efficient computation and low memory footprint [12]. To make
encryption as flexible as possible, we set Skipjack’s block size to 64
bits. Furthermore, we use 80-bit symmetric keys, since Lenstra and
Verheul recommended that such keys are considered to be secure
until 2012, even against resourceful adversaries [13]. When 80-bit
keys become insecure, we would use 128-bit AES keys, which is
secure for at least the next 20 years.

OCB implementation is ported from Rogaway’s original OCB
library2 to the nesC interface. Similarly, the Skipjack implemen-
tation is ported to nesC from Yee Wei Law’s implementation [12].
In total, MiniSec-U requires about 4000 lines of nesC code, and

2http://www.cs.ucdavis.edu/rogaway/ocb/code-2.0.htm, accessed
June 26, 2006
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Figure 2: Packet Format. The size of each field is indicated in bytes. The packet format is based on the TinyOS packet for CC2420 radio. The diagonally
hashed regions are authenticated; the checkered regions are encrypted; the gray region represents where we overload the corresponding field with the counter.

consumes 874 bytes of RAM and 16 KB of code memory.
Packet Format. MiniSec-U uses the LB optimization by sending
the last x bits of the sender’s counter along with each packet. Since
TinyOS payloads are never greater than 29 bytes, we can safely
overload the first 3 bits of the length field to store these bits, as
shown in Figure 2(c). This is a significant advantage since we do
not suffer any communication overhead for sending the last x bits
of the counter.

Our empirical results show that by using the last 3 bits of the
counter, even under high packet drop rate, the counter resynchro-
nization protocol was rarely executed. Because of the above rea-
sons, we use the default value of x = 3 for the remainder of the
paper.

8.3 MiniSec-B Implementation
In addition to the security primitives in MiniSec-U, MiniSec-B

utilizes loose time synchronization and Bloom filters. Here, we
discuss practical issues in selecting epoch duration te and Bloom
filter configurations.
Time Synchronization. As discussed in Section 6, epoch length
te must be at least 2δt + δn. Recent advancement in secure sensor
network time synchronization [8, 21] enables pairwise time syn-
chronization with error of mere µs. Transmission delay between
neighboring nodes are on the order of ms. Even under extreme pes-
simistic conditions, epoch length of 1 second is longer than neces-
sary according to the needs of MiniSec-B. For the remainder of our
analysis, we will use epoch duration te = 1s.
Bloom filter configurations. A Bloom filter is defined by two
configurations: size of the Bloom filter m, and number of hash func-
tions h. We will show that under rather pessimistic assumptions of
the hardware and network activity, we can achieve a 1% false posi-
tive rate by using te = 1s, m = 18 bytes, and h = 8 hash functions.

We also show how the sensor network administrator can calculate
custom values of m and h appropriate for a particular network pa-
rameterized on the network activity and underlying hardware.

The false positive rate of a Bloom filter can be calculated based
on number of stored items. Thus, we first upper bound pµ , the
average number of packets received in one epoch of length te. If
this is known a priori (e.g., regular heartbeats), the sensor network
administrator can directly configure the Bloom filter accordingly.
Else, we make the following argument.

Let tl be a realistic lower bound of a node’s lifetime, Ec be energy
capacity of the node’s battery, and Ep be energy consumption for
receiving one packet. In the worse case, all energy provided by the
battery will be used for packet reception. Hence, maximum possi-
ble packets received over the entire lifetime of the node is Ec/Ep.
The number of packets received in one epoch, pµ , can be calculated
as follows.

pµ =
Ecte
Eptl

In our calculations, we set tl to 12 months, Ec to 2850 mAH
(AA Duracell Coppertop alkaline battery3), and Ep to 0.0441mAS
(receiving a TinyOS packet on CC2420 radio [18]). Average packet
reception rate pu is 7.48 packets per second.

Each packet adds one item into our Bloom filter. In traditional
networking fashion, we model packet reception as a Poisson pro-
cess. Thus, the number of packets received within an epoch can
be approximated by a Poisson distribution with mean of pµ . This
model allows us to bound the maximum number of received pack-
ets in an epoch with high probability. The cumulative distribution
function of a Poisson process is Γ(k+1,λ )

k! , where k is number of
occurrences, λ is the Poisson mean pµ , and Γ is the incomplete

3http://www.duracell.com/oem/Pdf/others/ATB-full.pdf



Table 1: Overhead. Table comparing packet size, communication overhead, and total energy spent in transmitting one TinyOS packet. Our
of all three security protocols, MiniSec achieves the lowest communication overhead with respect to a standard TinyOS network stack.

Payload Packet Security Total Energy Increase
(B) Overhead (B) Overhead (B) Size (B) (mAs) over TinyOS

TinyOS 24 12 – 36 0.034 –
TinySec 24 17 5 41 0.0387 13.9%
SNEP 24 20 8 44 0.0415 22.2%
MiniSec 24 15 3 39 0.0368 8.3%

gamma function. By setting the CDF of the Poisson distribution
to an arbitrarily high probability p and solving for k, we conclude
that one would not receive more than k packets in one epoch with
probability p. In our case, we set p to 0.99, and arrived at k = 14.
In other words, with probability of 0.99, we would never add more
than 14 items to our Bloom filter during an epoch.

Given this information, we can set a particular false positive rate
and solve for appropriate configurations for the Bloom filter size m
and number of hash functions h. This problem had been previously
studied by Almeida et al.’s work on Summary Cache, where they
evaluated the statistics behind Bloom filters [11]. The probability
of a false positive after inserting n elements is

(

1−
(

1− 1
m

)kn
)k

Thus, with the worst case of of n = 14 elements, we can achieve
a 1% false positive rate with m = 18 bytes and h = 8 hash functions.

Note that this bound is extremely pessimistic, as the false posi-
tive rate should be significantly lower in practice. There are several
factors:

• False positive rate increases as more packets are added into
the Bloom filter. However, our calculation is based on the
false positive rate at the end of the epoch, which corresponds
to the highest possible false positive rate. For example, we
stated that we achieve a 1% false positive rate with our Bloom
filter configuration. However, if we were in the middle of an
epoch, our calculation actually shows a 0.014% false positive
rate.

• We make the pessimistic assumption that all energy is con-
sumed by the radio for packet reception. In practice, energy
is consumed for sending packets, controlling other devices
(LEDs, sensors), and computation.

• We model the packet reception as a Poisson process. How-
ever, we don’t use the mean packet arrival rate for false posi-
tive calculation. Instead, we use the 99th percentile based on
the CDF of the Poisson distribution. Thus, with probability
of 0.99, we would have a false positive of at most 1%. As
a matter of fact, using the same Bloom filter configuration,
false positive rate would not exceed 0.0001% with probabil-
ity of 0.5.

• We assume ideal conditions for batteries (constant current
draw, constant temperature, no self-discharge prior to de-
ployment). In practical settings, such ideal conditions are
impossible to achieve. Thus, battery capacity and number of
received packets are significantly lower.

Packet Format Figure 2(d) shows the packet header for MiniSec-
B where the sender sends the entire counter with each packet. The
default counter is 8 bits long, which we claim to be sufficient in
most networks based on the following reasoning. First, since the
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Figure 3: Optimal y. Max number of decryption attempts before counter
resynchronization. Also shows aggregate energy consumption of all secu-
rity related features.

counter is reset at the beginning of each epoch, the length of the
counter can be bounded by log2 (k), where k is the maximum num-
bers of packets sent in each epoch. Next, it is unlikely for k to be
large, since such resource-constrained nodes are unlikely to contin-
ually broadcast large amounts of data. An 8-bit counter is already
extremely generous since it allows for 255 packets per epoch of one
second.

This 8-bit counter could be declared as an addition field. How-
ever, based on the TinyOS packet format, we propose an optimiza-
tion that overloads this counter with existing headers. First, 3 bits
of this counter may be overloaded in the length field. Next, the re-
maining 5 bits of the counter may be embedded in the destination
address, since the destination field is 2 bytes and it is unlikely for
a network to have more than 2048 broadcasting participants. Fur-
thermore, unlike unicasts, the destination address is generally not
needed for routing in broadcasts.

8.4 Evaluation
To analytically evaluate the cost of security, we consider both the

communication overhead on each packet as well as computational
overhead from packet processing. Longer packets are extremely
costly because of the extra energy consumption by the radio. Even
sending one additional byte per packet would require significant
amount of energy. As shown in Table 1, MiniSec was able to de-
crease a security overhead of 5 bytes by TinySec to 3 bytes. In ad-
dition, MiniSec employs OCB, which provides for authentication
and secrecy with fewer block cipher calls than its cryptographic
counterpart in TinySec.
MiniSec-U. MiniSec-U was able to save on packet header size by
using synchronized counters between sender and receiver. First, as
specified above, the LB optimization has the default value of x = 3.
Using the expected energy equation from Section 5.3, it is possible
to solve for the the optimal y, or max number of decryption attempts
before counter resynchronization. Consequently, given the optimal
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y, one can solve for the expected energy consumed by all security
related features.

Figure 3 illustrates our findings given different packet drop rates
based on analysis in Section 5.3. The aggregate energy consumed
by TinySec is constant, as the energy overhead of security is al-
ways the amount of energy consumed by receiving 5 extra bytes
in the header, computing CBC-MAC, and decrypting the packet.
MiniSec-U, on the other hand, behaves differently based on envi-
ronmental conditions. Given a packet drop rate, a higher y value
exhibits lower energy consumption, since it reduces the probability
of running the counter resynchronization protocol. However, in-
creasing y exhibits diminishing marginal benefits, since the energy
consumption of counter resynchronization becomes less and less of
a factor in total energy consumption.
MiniSec-B. Figure 4 illustrates energy consumption between Tiny-
Sec, MiniSec-B, and MiniSec-U using an optimal value y, while
varying packet drop rate. The energy consumption of MiniSec-U
is computed by first solving for the optimal y. Using this value, we
were able to calculate the expected energy of security. MiniSec-B
consumes a constant amount of energy, as its performance is not
effected by lossiness of the communication channel. By leveraging
an 8-bit counter and loose time synchronization, the receiver never
needs to run any counter resynchronization protocol. Once the re-
ceiver successfully receives a packet, only two OCB decryptions
and 8 hash functions needs to be performed.

Under normal circumstances, MiniSec consumes about 1
3 amount

of energy of TinySec. As packet drop rate increases beyond 0.9,
TinySec is more efficient than MiniSec-U because of the high num-
ber of counter resynchronizations. Such a scenario represents an
extremely rare case. On the other hand, since MiniSec-B’s perfor-
mance does not depend on the drop rate, MiniSec-B always outper-
forms TinySec.

Finally, we note that nothing prevents the use of MiniSec-B in
unicasts. Since the energy consumption of MiniSec-B and MiniSec-
U are comparable under normal conditions, while MiniSec-B far
outperforms MiniSec-U under high packet loss, MiniSec-B is a
much more robust protocol. If loose time synchronization is avail-
able, simply running MiniSec-B for all communication is an attrac-
tive solution.

9. RELATED WORK
Key establishment and management are considered to be pre-

requisites in secure sensor network communication, and have been
extensively studied in the research community. There are numer-

ous candidate solutions, such as Random Key Predistribution [5–7,
14, 19], Key Infection [2], and LEAP [23]. Asymmetric schemes
based on elliptic curve cryptography [15] and Diffie-Hellman [22].
have also been proposed

Secure routing is another requirement for secure communication,
such that packets would be successfully routed with non-zero prob-
ability as long as a path of non-compromised exists between the
sender and receiver. In practice, a sensor network deployer can use
one of the following routing techniques, such as INSENS [?, ?],
ARRIVE [?], JAM [?], and Secure Sensor Routing: A Clean Slate
Approach [16].

The body of work most closely related to MiniSec consists of
other secure communication protocols such as TinySec [10], Zig-
Bee [24], and SNEP [17]. SNEP, part of the SPINS protocol suite,
is one of the first attempts at a secure link layer protocol. It achieves
low energy consumption by keeping a consistent counter between
the sender and receiver, such that an IV is not required to be ap-
pended to each packet. However, packet loss would cause the
counters to become inconsistent. Consequently, SNEP would have
to execute a counter resynchronization protocol that is slow and
expensive in terms of energy consumption. Inspired by SNEP,
MiniSec makes various improvements to lower energy consump-
tion. One such optimization is to reduce the probability that the
resynchronization protocol needs to be executed.

TinySec is a link layer protocol designed by Karlof et al. [10].
It achieves low energy consumption by reusing part of the packet
header as the IV. Thus, they were able to arrive at an 8-byte IV,
but only adding a 2-byte counter overhead per packet. However,
more serious drawbacks of TinySec are that (1) it only provides
for authentication and data secrecy, but not replay protection; (2) it
uses a single network-wide key, which is vulnerable to single node
compromise.

ZigBee is a set of security standards proposed by a consortium
interested in promoting embedded wireless technology. The secu-
rity protocol is very similar to SNEP. However, the entire 8-byte
counter is sent in the clear instead of being kept as consistent state
between sender and receiver. Thus, ZigBee consumes significantly
more energy than the other two protocols.

10. CONCLUSIONS
Battery energy is the main resource to conserve in current wire-

less sensor networks. Researchers have proposed several approaches
for securing communication that optimize either for high level of
security or for low energy utilization. Our secure sensor network
communication package, MiniSec, offers a high level of security
while requiring much less energy than previous approaches. We
have implemented MiniSec on Telos motes and the source code is
freely distributed under an open-source license.
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APPENDIX
A. MINISEC-U COUNTER

RESYNCHRONIZATION
Reliable Unicast. If the message type is a reliable unicast, this
implies there exists some type of acknowledgment protocol. Thus,
the sender could use the presence of ACKs to determine if the pack-
ets had been received and authenticated successfully, which implies
whether the counter is consistent between sender and receiver.

However, MiniSec is intended to be a network layer protocol.
Since reliable messaging is typically implemented at a higher layer,
this approach might not be appropriate. Nevertheless, we note that
if reliable messaging is used, cooperation between the transport
layer and MiniSec would be a viable solution.
Best Effort Unicast. Without support for reliable message deliv-
ery, TinyOS packets are best effort. In the case of unicast messages,
where there only exists one receiver B, B can directly query sender
A for the counter. Note that we use a nonce NB to guarantee strong
freshness.

B → A : 〈NB, MACK′
AB

(NB)〉

A → B : 〈CA, MACK′
AB

(CA||NB)〉 (1)

Since neither the nonce NB nor the counter CA are secrets, they
can be sent in the clear. However, NB needs to be authenticated to
prevent a DOS attack, and CA needs to be authenticated to prevent
an attacker from injecting incorrect counter values. Any generic
MAC function would be sufficient. Furthermore, we assume an-
other pre-existing secret K′

AB, and there are numerous methods of
bootstrapping this secret from the OCB encryption key.


