
cTPM: A Cloud TPM for Cross-Device Trusted Applications
Chen Chen†, Himanshu Raj, Stefan Saroiu, and Alec Wolman

Microsoft Research and †CMU

Current Trusted Platform Modules (TPMs) are ill-
suited for use in mobile services because they hinder
sharing data across multiple devices seamlessly, they
lack access to a trusted real-time clock, and their non-
volatile storage performs poorly. This paper presents
cloud TPM (cTPM), an extension of the TPM’s design
to address these problems. cTPM includes two features:
1) a cloud seed shared between the TPM and the cloud;
and 2) remote storage in addition to the on-chip stor-
age. cTPM allows the cloud to create and share TPM-
protected keys across multiple devices, to manage a por-
tion of a mobile device’s TPM storage, and to provide
each TPM with a trusted real-time clock and with high-
performance non-volatile storage.

Introduction
People are increasingly relying on more than one mo-

bile device. Recent news reports estimate that: the
average US consumer owns 1.57 mobile devices; Sin-
gapore has 7.8 million mobile devices, which trans-
lates to 150% mobile penetration; and the average Aus-
tralian will own five mobile devices by 2040. Given
this trend, mobile platforms are recognizing the need for
“cross-device” functionality that automatically synchro-
nizes photos, videos, apps, data, and even games across
all devices owned by a single user.

Mobile platforms, such as laptops, smartphones, and
tablets are increasingly incorporating trusted comput-
ing hardware. For example, Google’s Chromebooks use
TPM to prevent firmware rollbacks and to store and at-
test user’s data encryption keys. Windows 8 (on tablets
and phones) offers BitLocker full-disk encryption and
virtual smart cards using TPMs. Recent research lever-
ages TPMs to build new trusted mobile services [3, 7],
trusted cloud services [8], and operating systems [9].

Unfortunately, these two trends may be at odds:
trusted hardware, such as the TPM, does not provide
good support for cross-device functionality. Specifically,
we have identified three limitations in the TPM design
which hamper building cross-device trusted applications.

Limitation 1: Cross-Device Data Sharing. Current
TPM abstractions offer guarantees about one single com-
puter, and TPM’s hardware protection mechanisms do
not extend across devices. For example, TPMs owner do-
main provides an isolation mechanism for only a single
TPM. When a new owner takes ownership of the TPM,
they cannot access the previous owner’s TPM-protected

secrets. When the same user owns two different TPMs
(on two different devices), the owner domains of each
TPM remain isolated and cannot jointly offer hardware-
based protection of the user’s keys and data. Thus, mo-
bile services cannot rely on TPMs alone to enable secure
data sharing across devices. While, in theory, migrat-
ing a TPM-protected key from one TPM to another is
possible, in practice, it requires using secure execution
mode (SEM), such as Intel’s TXT and AMD’s SEM, and
trusting a third-party PKI. Such requirements are very
challenging. Our NSDI submission [2] describes in more
depth the nature of these challenges.

Limitation 2: Trusted Clock. Today’s TPMs do
not offer a trusted real-time clock. Instead, the TPM
combines a trusted timer with a secure, volatile counter,
which is periodically persisted to the TPM’s NV storage.
However, this mechanism can keep track of time only
when the TPM is running (and not when the platform
is powered off). Moreover, upon a unclean reboot, the
timer is rolled back to the last persisted counter value
violating monotonicity. The TPM’s timer mechanism
solely guarantees that as long as the platform does not
reboot, the timer will move forward. As such, it can pro-
vide an approximate time-since-boot.

This mechanism is inadequate for offering real-time
guarantees that would be useful for offline content ac-
cess. For example, movie studios already charge a pre-
mium to make a movie available on home theaters on
the day of release. Although TPMs can provide offline
access securely, they cannot offer making the following
movie available for watching next Friday at midnight.

Limitation 3: Non-volatile (NV) Storage. The
TPM’s NV storage is inadequate for applications that re-
quire frequent writes or require large amounts of trusted
storage. For example, previous work [3] has shown that
a trusted module offering a monotonic counter and a
key solves several problems in distributed systems that
stem from participants’ ability to equivocate. Unfortu-
nately, even though TPMs offer this functionality, their
implementation of NV storage cannot meet the write fre-
quency requirements of distributed systems protocols.
The TPM specification dictates the inclusion of mono-
tonic counters, but the spec requires only the ability
to increment these counters at a very slow place (e.g.,
once every five seconds), which is insufficient for high-
event applications such as networked games [3]. Simi-
larly, although the TPM specification mandates access-

controlled, non-volatile storage, most implementations
provide only 1,280 bytes of NVRAM [7]. These limi-
tations have led researchers to seek alternative designs
for trusted devices [3].

Overcoming these limitations requires altering the
TPM design, which raises the following question: Can
a small-scale TPM design change overcome these limi-
tations? While a clean-slate TPM re-design could pro-
vide a variety of additional security properties, there are
two pragmatic reasons why a smaller change is prefer-
able. First, TPMs have undergone a decade of API and
implementation revisions to reduce the likelihood of vul-
nerabilities. A clean-slate re-design would demand con-
siderable time and effort to provide a mature codebase.
Second, TPM manufacturers would more willingly adopt
smaller and simpler changes.

To address these limitations, we propose a single, sim-
ple modification to the TPM design, called cTPM: equip-
ping the TPM with one primary seed that is shared with
the cloud. Sharing the seed with the cloud allows both
cTPM and the cloud to generate the same cloud root key.
Combining the cloud root key with remote storage lets
cTPM: 1) share data via the cloud, 2) have access to a
trusted real-time clock, and 3) have access to remote NV
storage that supports a large quantity of storage, and high
frequency writes.

cTPM’s design facilitates data sharing. The pre-
shared primary seed lets the cloud effectively act as a
PKI. The cloud and the device’s TPM can use this shared
secret to encrypt and authenticate their messages to each
other. The identity problem has now been “pushed” to
ensuring that the cloud primary seed is shared securely
between cTPM and the cloud. This initial sharing step
should be done at cTPM manufacturing time when the
cTPM’s three other primary seeds are provisioned.

The pre-shared primary seed also equips cTPM with
a trusted clock using a protocol similar to the Time Pro-
tocol described in RFC 868. Once the clock value is ob-
tained from the cloud, cTPM uses its local timer to ad-
vance the clock. It has a global variable that dictates how
often it should re-synchronize the clock; the TPM owner
sets this variable whose value default is one day.

Finally, cTPM uses the cloud for additional NV stor-
age to overcome TPM NV storage limitations. There are
no limits on how much additional NV storage the cloud
can provide to a single cTPM. A portion of the physi-
cal cTPM chip’s RAM is thus allocated as a local cache
for the cloud-backed NV storage. The performance of
cTPM cloud-backed NV storage exceeds that of the TPM
because TPM NV accesses are no longer needed.

Background

TPM Primer. At manufacturing time, TPM chips are
provisioned with a couple of public/private key-pairs for
cryptography (i.e., digital signatures and asymmetric en-
cryption). The TPM design guarantees that the private
keys of these root key-pairs never leave the TPM, thereby
reducing the possibility of compromise. TPMs can also
generate public/private key-pairs with private keys stored
in the TPM’s NV storage. However, TPMs have limited
NV storage and thus cannot store many such key-pairs.

The TPM specification also mentions that a certificate
demonstrating the authenticity of the TPM’s embedded
key pairs may be provided by the TPM’s hardware man-
ufacturer. In our experience, many TPMs (though not all)
lack this certificate. The absence of this certificate makes
it impossible for a third-party to determine whether a
signed statement (e.g., a software attestation) is produced
by a valid TPM or by an impersonating entity.

TPMs are equipped with a set of “extend-only” plat-
form configuration registers (PCRs) guaranteed to be re-
set upon a computer reboot. PCRs are primarily used
to store fingerprints of a portion of the booting software
(e.g., the BIOS, firmware, and OS bootloader); Chrome-
books and BitLocker use PCRs in this way.

TPMs can perform cryptographic algorithms for en-
crypting, authenticating, and attesting data. Implement-
ing functionality beyond that offered by TPMs in a
trustworthy manner can be done using secure execu-
tion mode, a form of hardware protection offered by
x86 CPUs. Intel’s secure execution architecture, called
Trusted Execution Technology (TXT), offers a runtime
environment strongly isolated from other software run-
ning on the computer. When invoked, the CPU disables
interrupts (to ensure no other software is running) and
a small bootloader starts executing. The bootloader then
jumps to an address specified by the caller to execute any
additional code. Flicker is an earlier project that demon-
strated the use of secure execution mode [5].

The TPM spec does not provide minimum perfor-
mance requirements, and, as a result, today’s commodity
TPMs are slow and inefficient. TPM vendors have little
incentive to use faster but more expensive internal parts
when building their TPM chips. This performance hand-
icap has limited the use of TPMs to scenarios that do not
require fast or frequent operations. However, no tech-
nological constraints prevents a hardware vendor from
building a high-performance TPM.

TPM 2.0. The Trusted Computing Group (TCG) is
currently defining the specification for TPM version 2.0,
the next version of the TPM. TPM 2.0 offers several im-
provements, including cryptographic algorithms agility.
For example, SHA-2 and elliptic curve cryptography

(ECC) in addition to SHA-1 and RSA are offered by
TPM 2.0. TPM 2.0 also provides more PCRs and sup-
ports more flexible authorization policies that control
access to TPM-protected data. Finally, TPM 2.0 pro-
vides a reference implementation, while TPM 1.2 pro-
vides only an open-source implementation developed by
a third party.

In TPM 2.0, three entities can control the TPM’s re-
sources: the platform manufacturer, the owner, and the
privacy administrator. The TPM 2.0 spec control do-
main refers to the specific resources that each entity con-
trols. The platform firmware control domain overseen
by the platform manufacturer updates the TPM firmware
as needed. The owner control domain protects keys and
data on behalf of users and applications. The privacy ad-
ministrator control domain safeguards privacy-sensitive
TPM data. Each TPM 2.0 control domain has a primary
seed, which is a large, random value permanently stored
in the TPM. Primary seeds are used to generate symmet-
ric/asymmetric keys and proofs for each control domain.

Trust Assumptions and Threat Model
Trusting the Cloud

All the new cTPM functionality associated with the
cloud domain assumes the cloud is trustworthy and
not compromised by malware. While everyone may
not agree with this assumption, cloud providers have
more incentives and resources to monitor and eliminate
malware than average users. Security-conscious cloud
providers could use secure hypervisors with a small
TCB [4], narrow interfaces [6], or increased protection
against cloud administrators [10].

Whether using a TPM or not, a cloud compromise
would already affect the security of a mobile service re-
lying on the cloud for its functionality. However, even
if the cloud were compromised, all secrets protected by
the TPM-specific control domains other than the cloud
domain would remain secure. For example, all device-
specific secrets protected in the owner’s control domain
(i.e., using TPM’s SRK) would remain uncompromised.

Threat Model
Our threat model resembles that of traditional TPMs:

all software attacks are in scope (including side-channel
attacks) because cTPM is isolated from the host plat-
form and can therefore provide its security guarantees
even if the host were compromised (e.g., infected with
malware). However, physical attacks and DoS attacks in
which the (untrusted) operating system or applications
deny access to the cTPM or to the cloud are out of scope.

Another class of attacks specific to the cTPM stems
from our use of remote cloud storage. The (untrusted)
OS could drop, corrupt, or re-order messages from the

cloud. Even worse, it could delay messages from the
cloud in an effort to serve stale data to the TPM. All
such attacks are in scope and addressed by cTPM; for
example, to ensure freshness, cTPM uses a local timer to
timeout any pending requests not yet serviced.

cTPM High-Level Design
The cTPM design extends the TPM 2.0 by adding:

the ability to share a primary seed with the cloud, and
the ability to access cloud-hosted non-volatile storage.
This section describes the high-level design and the chal-
lenges we encountered when implementing these fea-
tures. While our description is TPM 2.0-specific, our
changes could be equally applied to TPM 1.2.

Cross-Device Usage Model
Each device has a unique cTPM with a unique pri-

mary seed shared with the cloud and used to derive addi-
tional keys. All devices registered with the same owner
have their keys tied to the owner’s credentials. The cloud
could then offer cTPM services that create a shared key
across all devices owned by the same user. For example,
when “bob@hotmail.com” calls this service, a shared
key is automatically provisioned to the cTPM on each
of Bob’s devices. This shared key can bootstrap the data
sharing scenarios described by this paper.

Architecture
cTPM consists of two different components, one run-

ning on the device and the other in the cloud. Both com-
ponents implement the full TPM 2.0 software stack with
the additional cTPM features. This ensures that all cloud
operations made to the cTPM strictly follow TPM se-
mantics, and thus we do not need to re-verify their secu-
rity properties. On the device-side, the cTPM software
stack runs in the TPM chip, whereas the cloud runs the
cTPM software inside a VM. On the cloud-side, the NV
storage is regular cloud storage, and the timer offers a
real-time clock function. The cloud-side cTPM software
reads the local time upon every initialization and uses
NTP to synchronize with a reference clock. When run-
ning in the cloud, cTPM resources (e.g., storage, clock)
need not be encapsulated in hardware because the OS
running in the VM is assumed to be trusted. In contrast,
the device’s OS is untrusted, and thus the cTPM chip
itself must be able to offer these resources in isolation
from the OS. Figure 1 illustrates the high-level architec-
ture of the cTPM.

Shared Cloud Primary Seed
Upon starting, the local cTPM checks whether a

shared cloud primary seed is present. If not, it disables
its new cTPM functionality and all commands associated

crypto

cTPM chip

NV
storage

µcontroller

RAM

timer

cTPM chip on mobile device

OS cTPM VM

NV
storage

crypto

CPU

RAM

clock

cTPM software running in VM

Figure 1. cTPM High-level Architecture.

with it. A cTPM is provisioned with a cloud primary
seed via a proprietary interface available only to the de-
vice manufacturer.

The cTPM uses the cloud primary seed to generate an
asymmetric storage root key, called the cloud root key
(CRK), and a symmetric communication key, called the
cloud communication key (CCK). Both keys are derived
from the cloud primary seed based on use of an approved
key derivation function (KDF). These key derivations oc-
cur twice: once on the device-side and once on the cloud-
side of the cTPM. Because the key derivations are de-
terministic, both the device and the cloud end up with
identical key copies. The CRK’s semantics are identical
to those of the storage root key (SRK) controlled by the
TPM’s owner domain. The CRK encrypts all objects pro-
tected within the cloud control domain (similar to how
SRK encrypts all objects within the owner domain). The
CCK is specific to the cloud domain, and it protects all
data exchanged with the cloud.

Secure Asynchronous Communication.

cTPM cannot directly communicate with the cloud.
Instead, it must rely on the OS for all its communica-
tion needs. Since the OS is untrusted, cTPM must pro-
tect the integrity and confidentiality of all data exchanged
between the cTPM and the cloud-backed storage, as well
as protect against rollback attacks. The OS is regarded
merely as an insecure channel that forwards information
to and from the cloud.

In addition to ensuring security, cTPM must support
asynchronous communication between the local cTPM
and the cloud. Today, the TPM is single-threaded, and all
TPM commands are synchronous. When a command ar-
rives, the caller blocks and the TPM cannot process any
other commands until the command terminates. Mak-
ing cTPM cloud communication synchronous would lead
to unacceptable performance. For example, consider is-
suing a cTPM command that increments a counter in
cloud-backed NV storage. This command would make
the TPM unresponsive and block until the increment up-
date propagates all the way to the cloud and the response
returns to the local device.

Instead, we chose to make cloud communication
asynchronous. Whenever a command that needs access
to remote NV is received, cTPM returns to the caller an

TPM Caller cTPM Caller Cloud

Figure 2. The sequence of steps for issuing a syn-
chronous command (left) versus an asynchronous
command (right). The cTPM remains responsive to
other commands while the caller relays the blob to the
cloud.

encrypted blob that needs to be sent remotely. The caller
must send this blob to the cloud; if the cloud accepts
the blob, it returns another encrypted blob reply to the
caller. The caller then passes this reply to the cTPM, at
which point the command completes. cTPM remains re-
sponsive to all other commands during this asynchronous
communication with the cloud. Figure 2 illustrates these
steps and contrasts them with a traditional simple TPM
command. All cTPM commands that do not require ac-
cess to remote NV storage remain synchronous, similar
to TPMs today.

Dealing with Connectivity Loss. Loss of connectivity
is transparent to the cTPM because all network signal-
ing and communication is done by the operating sys-
tem. However, the two-step nature of asynchronous
commands requires the cTPM to maintain in-memory
state between the steps. This introduces another poten-
tial resource allocation denial-of-service attack: a mali-
cious OS could issue many asynchronous commands that
cause the cTPM to fill up its RAM. Also, as mentioned in
our threat model, an attacker could launch a staleness at-
tack whereby artificial delays are introduced in the com-
munication with the cloud.

To protect against these attacks, cTPM maintains a
global route timeout (GRT) value. Whenever an asyn-
chronous request is issued, cTPM starts a timer set to
the GRT. Additionally, to free up RAM, cTPM scans all
outstanding asynchronous commands and discards those
whose timers have expired. The GRT can be set by the
cTPM’s owner and has a default value of 5 minutes.

Cloud-backed NV Storage
At a high level, the cloud-backed NV storage is just

a key-value store whose keys are NV indices. Access-
ing the remote NV index entries requires the OS to as-
sist with the communication between the cTPM and the
cloud. These operations are thus asynchronous and fol-
low the same two-step model described in Figure 2.
However, the remote nature of these NV indices raises

additional design challenges.

Local NV Storage Cache. Remote NV entries can be
cached locally in the cTPM’s RAM. To do so, we add
a time-to-live (TTL) to locally cached NV entries. The
TTL specifies how long (in seconds) the cTPM can cache
an NV entry in its local RAM. Once the TTL expires, the
NV index is deleted from RAM and must be re-loaded
from the remote cloud NV storage with a fresh, up-to-
date copy. The TTL controls the trade-off between per-
formance and staleness for each NV index entry. Fur-
thermore, the local storage cache is not persistent – it is
fully erased each time the computer reboots.

For writes, the local cache’s policy is write back, and
it relies on the caller to propagate the write to the cloud
NV storage. A cTPM NV write command updates the
cache first and returns an error code that indicates the
write back to the NV storage is pending. The caller must
initiate a write protocol to the cloud NV. If the caller fails
to complete the write back, the write remains volatile,
and the cTPM makes no guarantees about its persistence.

Trusted Clock. In cTPM, the trusted clock is an NV en-
try (with a pre-assigned NV index) that only the cloud
can update. The local device can read the trusted clock
simply by issuing an NV read command for this remote
entry. Reading the entry is subject to a timeout much
stricter than the regular global route timeout (GRT),
called the global clock timeout (GCT). The trusted clock
NV entry is cached in the on-chip RAM. In this way, the
cTPM always has access to the current time by adding
the current timer tick count to the synchronization times-
tamp (ST) of the clock NV entry.

Detailed Design and Implementation
This section provides more detail on the cTPM’s de-

sign and implementation. We describe how the cTPM
shares TPM-protected keys between the cloud and the
device, and we present the changes made to support NV
reads and writes. We also describe the cloud/device syn-
chronization protocol, and the new TPM commands we
added to implement synchronization.

Sharing TPM-protected Keys
The TPM 2.0 API facilitates the sharing of TPM-

protected keys by decoupling key creation from key us-
age. TPM2 Create(), a TPM 2.0 command, creates a
symmetric key or asymmetric key-pair. The TPM cre-
ates the key internally and encrypts any private (or sym-
metric) keys with its storage key before returning them
to the caller. To use the key, the caller must issue a
TPM2 Load() command, which passes in the public
storage key and the encrypted private (or symmetric) key.
The TPM decrypts the private key, loads it in RAM, and
can begin to encrypt or decrypt using the key.

This separation lets cTPM use cloud-created keys on
the local device to gain two benefits. First, key sharing
between devices becomes trivial. The cloud can perform
the key sharing protocol between two cTPM VMs. Un-
like TPM 2.0, this protocol does not need to use a PKI,
nor does it need to run in a SEM. Once a shared key is
created, both mobile devices can load the key in their
chips separately by issuing TPM2 Load() commands.
Second, key creation can be performed even when the
mobile device is offline greatly simplifying creating a
shared key.

Accessing Cloud NV Storage

The cTPM maintains a local cache of all reads and
writes made to the cloud NV storage. A read returns a
cache entry, and a write updates a cache entry only. The
cTPM does not itself update remote cloud NV storage;
instead the caller must synchronize the on-chip RAM
cache with the cloud NV storage. This is done using a
synchronization protocol.

Read Cloud NV. Upon an NV read command, the cor-
responding NV entry is returned from the local cache. If
not found, cTPM returns an error code. The caller must
now check the remote NV; to do so, it needs to initiate
a pull synchronization operation (described in the next
section) to update the local cache. After synchronization
completes, the caller must reissue the read TPM com-
mand, which will now be answered successfully from the
cache.

Write Cloud NV. An NV write command first updates
the cache and returns an error code that indicates the
write back to the remote NV storage is pending. The
caller must initiate a push synchronization operation to
the cloud NV (see the next section). If the caller fails to
complete the write back, the write remains volatile, and
cTPM makes no guarantees about its persistence.

Synchronization Protocol

The synchronization protocol serves to: (1) update
the local cache with entries from the cloud-backed NV
storage for NV reads) and (2) write updated cache en-
tries back to the cloud-backed NV storage (for NV
writes). On the device side, the caller performs the proto-
col using two new commands, TPM2 Sync Begin() and
TPM2 Sync End(). These commands take a parameter
called direction, which can be set to either a pull or push
to distinguish between reads and writes. All messages
are encrypted with the cloud communication key (CCK),
a symmetric key.

Pull from Cloud-backed NV Storage. The cTPM first
records the value of its internal timer and sends a mes-
sage that includes the requested NV index and a nonce.

𝑇𝑆1: 𝑛𝑜𝑛𝑐𝑒, 𝑁𝑉_𝑅𝐸𝐴𝐷, 𝑁𝑉_𝐼𝑑𝑥 𝐶𝐶𝑅

If 𝑇𝑆2 − 𝑇𝑆1 > GRT , read is not fresh.

9

𝑇𝑆2: 𝑛𝑜𝑛𝑐𝑒, 𝑅𝐶_𝑆𝑈𝐶𝐶𝐸𝑆𝑆, 𝑁𝑉𝑠 𝐶𝐶𝑅

Figure 3. Synchronization protocol: pull NV entry
from cloud-backed NV storage.

The nonce checks for freshness of the response and pro-
tect against replay attacks. Upon receipt, the cloud de-
crypts the message and checks its integrity. In response,
the cloud sends back the nonce together with the value
corresponding to the NV index requested. The cTPM
decrypts the message, checks its integrity, and verifies
the nonce. If these checks are successful, cTPM per-
forms one last check to verify that the response’s delay
did not exceed its global read timeout (GRT) value. If
all checks pass, cTPM processes the read successfully.
Figure 3 shows the precise messages exchanged between
the cTPM and the cloud to read the remote NV.

Push to Cloud-backed NV Storage. The protocol for
writing back an NV entry is more complex because it
must also handle the possibility that an attacker may try
to reorder write operations. For example, a malicious
OS or application can save an older write and attempt
to reapply it later, effectively overwriting the up-to-date
value. To overcome this, the protocol relies on a secure
monotonic counter maintained by the cloud. Each write
operation must present the current value of the counter to
be applied; thus, stale writes cannot be replayed. cTPM
can read the current value of the secure counter using the
previously described pull protocol. Figure 4 shows the
precise messages exchanged between the cTPM and the
cloud to write a remote NV entry. Note that reading the
secure counter need not be done on each write because
the local cTPM caches the up-to-date value in RAM.

Protocol Verification We verified our protocols’
correctness using an automated theorem prover,
ProVerif [1], which supports the specification of security
protocols for distributed systems in concurrent process
calculus (pi-calculus). We specified our synchronization
protocol, both pull and push, in 98 lines of pi-calculus
code. ProVerif verified the security of our protocols in
the presence of an attacker with unrestricted access to
the OS, applications, or network. The attacker could
intercept, modify, replay and inject new messages into
the network (similar to the Dolev-Yao model).

Conclusions
To summarize, the traditional TPM design fails to

meet the requirement of today’s cross-device trusted

𝑇𝑆1: 𝑛𝑜𝑛𝑐𝑒, 𝑐𝑡𝑟, 𝑁𝑉_𝑊𝑅𝐼𝑇𝐸, 𝑁𝑉_𝑆𝑒𝑙, 𝑁𝑉𝑠 𝐶𝐶𝑅

11

𝑇𝑆2: 𝑛𝑜𝑛𝑐𝑒, 𝑐𝑡𝑟, 𝑅𝐶_𝑆𝑈𝐶𝐶𝐸𝑆𝑆, 𝑁𝑉𝑠 𝐶𝐶𝑅

Figure 4. Synchronization protocol: push NV entry
to cloud-backed NV storage.

applications. This paper introduced cTPM, a cloud-
enhanced design change to the traditional TPM design
that enables: 1) sharing cryptographic keys and data
across a user’s many devices, 2) a trusted clock synced
with the cloud, and 3) high-performance NV storage of
unlimited size. cTPM accomplished these goals by only
adding a cloud seed shared between the device and the
cloud. Together with the asynchronous communication
channel set up, the seed allows cTPM to interact with the
cloud to provide better support for cross-device trusted
applications.

References
[1] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based

on Prolog Rules. In Proc. of CSFW, Cape Breton, NS, 2001.
[2] C. Chen, H. Raj, S. Saroiu, and A. Wolman. ctpm: a cloud tpm

for cross-device trusted applications. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Imple-
mentation, pages 187–201. USENIX Association, 2014.

[3] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. TrInc:
Small trusted hardware for large distributed systems. In Proc. of
NSDI, Boston, MA, 2009.

[4] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. TrustVisor: Efficient TCB Reduction and Attestation.
In Proc. of IEEE Symposium on Security and Privacy, Oakland,
CA, May 2010.

[5] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An Execution Infrastructure for TCB Minimization. In
Proc. of EuroSys, Glasgow, UK, 2008.

[6] A. Nguyen, H. Raj, S. Rayanchu, S. Saroiu, and A. Wolman.
Delusional Boot: Securing Cloud Hypervisors without Massive
Re-engineering. In Proc. of EuroSys, Bern, Switzerland, April
2012.

[7] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. Mc-
Cune. Memoir: Practical State Continuity for Protected Modules.
In Proc. of IEEE Symposium on Security and Privacy, Oakland,
CA, 2011.

[8] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-
Sealed Data: A New Abstraction for Building Trusted Cloud Ser-
vices. In Proc. of the 21st USENIX Security Symposium, Belle-
vue, WA, 2012.

[9] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, , and F. B. Schneider. Logical Attestation: An Au-
thorization Architecture For Trustworthy Computing. In Proc. of
SOSP, Cascais, Portugal, 2011.

[10] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-tenant Cloud
with Nested Virtualization. In Proc. of SOSP, Cascais, Portugal,
2011.

