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Abstract

One-way chains are an important cryptographic primitive in many security applications. As one-way chains are very efficient to
verify, they recently became increasingly popular for designing security protocols for resource-constrained mobile devices and
sensor networks, as their low-powered processors can compute a one-way function within milliseconds, but would require tens
of seconds or up to minutes to generate or verify a traditional digital signature [6]. Recent sensor network security protocols
thus extensively use one-way chains to design protocols that scale down to resource-constrained sensors [20, 28]. Recently,
researchers also proposed a variety of improvements to one-way hash chains to make storage and access more efficient [9, 17,
32], or to make setup and verification more efficient [16, 20].

In this paper we present two new constructions for one-way hash chains, which significantly improve the efficiency of one-
way chains. Our first construction, the Sandwich-chain, provides a smaller bandwidth overhead for one-way chain values, and
enables efficient verification of one-way chain values if the trusted one-way chain value is far away. Our second construction,
Comb Skipchain, features a new lower bound for one-way chains in terms of storage and traversal overhead. In fact previously,
researchers [9] cite a lower bound of log?(n) for the product of per-value traversal overhead and memory requirements for
one-dimensional chains. We show that one can achieve a lower bound by considering multi-dimensional chains. In particular,
our two-dimensional construction requires O(log(n)) memory and O(1) traversal overhead, thereby improving on the one-
dimensional bound. In addition, the setup cost for the one-way chain is in contrast only O(n/ log(n)). Other benefits for both
constructions include a faster verification step than the traditional hash chains provide; a verifier can “catch up” efficiently, after
having missed some number of previously released hash values (for the Sandwich-chain); and resistance against DoS attacks on
authentication values. Moreover, we describe fractal traversal schemes for our proposed structures, bringing down the traversal
costs for our structure to the same as those of the simpler “traditional” hash chain.

Our new construction is orthogonal to most previously proposed techniques, and can be used in conjunction with techniques
for efficient setup or verification of one-way chains.
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1 Introduction

One-way chains are a widely deployed cryptographic primitive. Lamport first proposed to use one-way chains for efficient
authentication of one-time passwords [19], which Haller later refined to the S/KEY standard [12]. Since Lamport’s work,
many researchers proposed to use one-way chains as a basic building block for a variety of applications, for example for digital
cash [2, 14, 26, 30], for extending the lifetime of digital certificates [1, 24], for constructing one-time signatures [10, 22, 23, 31],
for authenticating link-state routing updates [8, 13, 33], or for efficient packet authentication [27].

Despite the computational efficiency of one-way functions, one-way chains are still challenging to use in resource-constrained
environments, such as on small mobile devices or sensor networks. Especially some of the proposed sensor networks have sig-
nificant resource limitations, as they use minimal hardware to lower the energy consumption [18]. In these resource-challenged
environments the setup, traversal, verification, and storage of long one-way chains is a major challenge.

Recently, researchers proposed a variety of improvements to one-way hash chains to make setup, traversal, and storage
more efficient. A good metric for one-way chain efficiency is the product of the per-value traversal overhead and the memory
requirements.® For example, simply storing each value of a one-way chain with length » would result in a cost of O(n), as
storage requires O(n) memory and traversal is O(1) (no computation necessary, the one-way chain values are simply stored
in an array). Another straightforward approach is to only store the seed of the chain, and derive each value on the fly, with an
O(n) efficiency again, as storage costs are O(1) and traversal costs O(n). Jakobsson [17], Coppersmith and Jakobsson [9],
and Sella [32] propose new techniques that make traversal and storage more efficient, and apply these techniques to traditional

1Thetraversal cost can be zero when the entire chain is stored, which would result that the product would be zero as well. We could deal with this by also
accounting for memory accesses, or by adding 1 to the number of one-way function computations for the traversal cost. Both techniques result in a non-zero
positive traversal cost.



one-way chains. All of these techniques allow the computation of consecutive values in the hash chain at a cost of only
O(log(n)) one-way function computations (traversal cost), while also requiring O(log(n)) storage, resulting in an efficiency of
O(log®(n)). Given that the traversal techniques are applied to standard hash chains, the verification cost is not affected by the
manner in which the values are represented and computed, making the verification cost O(n). This is also the computational
cost of the setup phase, in which the value at the endpoint is computed given a randomly selected seed; this computation may
be performed by a powerful and trusted device, as opposed to the resource constrained device that performs the traversal.

Hu et al. propose a new structure for one-way chains, in which more than one level of chains are used [16]. The main
benefit of their structure is that it allows for more efficient verification: a verifier would only have to compute the sequence of
hash function evaluations corresponding to a small portion of the total number of traversed values. We review their approach in
Section 4 and refine their construction to design a new one-way chain that only requires O(1) traversal overhead and O(log(n))
storage. The resulting efficiency of O(log(n)) is significantly better than previous bounds.

Liu and Ning propose a two-level one-way chain, where the chains of the second level are derived from values of the first
level [20]. Their scheme provides a linear speedup for setup and verification, and thus still requires O(n) setup, storage, and
verification overhead.

This paper makes the following contributions:

e Framework. We introduce a framework for comparing one-way chain techniques, considering setup, traversal, verifica-
tion, storage, and communication overheads.

e New two-dimensional chains. We propose a new technique for authenticating chains below the first level of the hierar-
chy, producing three clear advantages in comparison to the related approach of [20]: First, it avoids jamming-based DoS
attacks that focus on disrupting the transmission of the sensitive authentication values for secondary chains. Second, it
allows users to store and forward the new authentication values for the benefit of other users, who did not receive them
when first transmitted. This approach does not require users to trust one another. Note that we obtain this benefit without
the use of digital signatures or other heavy-weight constructions; in fact, our approach has the same low computational
demands as the approach taken in [20]. Third and finally, it allows a user who has missed some (potentially large) number
of authentication values to “catch up” with a computational effort that is a fraction of number of transmitted authentica-
tion values missed by the user. This feature, which is not present in other proposals (whether those using traditional or
hierarchical chains) may prove particularly beneficial in settings where nodes are mobile.

e Light chains. We propose the notion of light one-way chains to lower the communication overhead. These are relatively
short hash chains whose values are shorter than what is normally needed to avoid attacks based on inverting or finding
collisions; we show how to use these in a way that avoid attacks. Using known hash indexing techniques, we further make
our proposal resistant against birthday attacks, that would otherwise reduce the security of the structure as its number of
elements grows.

More specifically, we present two new one-way chain constructions: Sandwich-chain and Comb Skipchain. Sandwich-
chain is a new hash chain structure with a fractal traversal algorithm requiring only O(log(n)) computation and storage; a
reduction of the bandwidth requirements; and a substantially reduced verification effort. The exact verification effort depends
on parameter choices, and will be described in detail. Comb Skipchain is a new hash chain featuring only O(n/log(n)) cost
for setup, O(log(n)) storage, and O(1) cost for traversal. This construction is substantially more efficient than the lower bound
for one-dimensional one-way chains. Like the new structures of [16, 20], our construction is not compatible with all previous
uses of hash chains. However, and as will become evident, there are many common uses of traditional hash chains that can
easily be adapted to use our structure.

The outline of the paper is as follows. Section 2 presents one-way chain basics and our evaluation framework. Section 3
introduces our Sandwich-chain, and Section 4 presents our Comb Skipchain construction. We describe the use of light chains
in 5. Section 6 discusses different deployment scenarios and analyzes which one-way chain technique is most appropriate.

2 Background and Evaluation Framewor k

We present a framework for evaluating and comparing one-way chain proposals, comparing setup, traversal, verification, stor-
age, and communication costs. Our constructions, like those of [20], are based on a hierarchy of chains, where values of some
chains (which we refer to as primary chains) are used as roots for other chains (so-called secondary chains.)
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Figure 1: Standard one-level one-way chain.

One-Way Chain Setup. A one-way chain (V; ... Vy) is a collection of values such that each value V; (except the last value
V) is a one-way function of the next value V; ;. In particular, we have that V; = H(V;41), for0 < ¢ < N. Here, H is a
one-way function, and is often selected as a cryptographic hash function, which is why the structure is often also called a hash
chain. For setup of the one-way chain, the generator chooses at random the root or seed of the chain, i.e., the value V, and
derives all previous values V; by iteratively applying the hash function H as described above. The value Vj, which we refer to
as the end-value, is normally made public, and potentially linked to the identity of the user possessing the corresponding root
value. An example of a standard hash chain is shown in Figure 1.

Verification of One-Way Chain Values. We assume that the verifier knows an authentic value of the generator’s one-way
chain, usually the end-value Vj. To verify an input value V; of a chain, the verifier iteratively applies the one-way function H ¢
times and compares the result to the trusted value Vg, i.e., verify that H¢(V;) equals V;. If the computed and known values are
equal, then the input value is said to be authentic. Note that if another value Vi, for & < 1, is already known, then it suffices to
iteratively apply the one-way function some i — k times to the input value, and compare the result to this intermediate value.

One-way Chain Traversal. When the generator discloses successive values of the one-way chain, we call this one-way chain
traversal. In the introduction, we mentioned two simple traversal techniques: in one the generator stores all values of the one-
way chain in memory, and in the other the generator recomputes each value from the seed value. In so-called fractal traversal
techniques the set of values that is stored is modified over time in a manner that reduces the (storage-times-computation)
complexity.

One-way Chain Advantages and Disadvantages. Traditional one-way chains have many advantages. First of all, given only
a trusted value V; of the chain, it is intractable to find a value V;, where j > 4, such that H7~%(V;) = V; (assuming that H
is a secure one-way function and that the output of H is sufficiently large, we further discuss the security of one-way chains
below). However, it is easy to assess the validity of a value V;, where j > i, by verifying that H7~*(V;) = V; (assuming that
H provides weak collision resistance, also called second pre-image collision resistance).

A drawback of traditional one-way chains is that the verifier has to perform j — 7 operations to validate V; given V;,
which can be expensive if j — i is large. Finally, the repeated disclosure of one-way chain values carries a cost related to the
transmission of these values. The required bandwidth may be a burden to senders, especially in highly resource-constrained
environments, such as in sensor networks.

Hierarchical One-Way Chains. A hierarchical one-way chain consists of two or more levels of chains, where values of a
first-level (“primary”) chain act as roots of a set of second-level (“secondary”) chains. We refer to the secondary chain rooted
in the ith value of the primary chain as the ith secondary chain. Here, all the values of the ith secondary chain are released
before any of the values of the 7 + 1st chain is released; the primary chain value V; is released in between. Figure 2 shows an
example of such a structure.

As will be described later, different one-way functions may be used for primary and secondary chains, with the aim of
lowering the communication costs.

To set up the hierarchical chain, the generator picks V at random and computes the primary chain Vy_1,...,Vy. The
generator computes the secondary chain on the fly. A clear advantage is the very efficient setup, as only N/K operations are
needed to compute Vy, where K is the length of the secondary chain.

To use this one-way chain, the generator traverses all the secondary chains in sequence (e.9., voo, Y01, Y02s U205 - - - s UNOs UN1, UN2)
and discloses the values of the primary one-way chain when possible.

A disadvantage of the hierarchical chain is the authentication of end-values of secondary chain. This hierarchical chain was
proposed by Liu and Ning [20]. Liu and Ning propose to use the TESLA authentication protocol [27] using the primary chain
to authenticate the end-values of the secondary chain. This approach has the shortcoming that the hierarchical chain can only
be used in conjunction with the TESLA authentication protocol, as they propose to authenticate the end-values of the secondary
chain with the TESLA authentication protocol using the primary chain. The disadvantage of that approach is that the loss
of the authentication message prevents the verifier to authenticate secondary chain values until the next value of the primary
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Figure 2: Hierarchical one-way chain, where Vy ... Vj are values on the one-way primary chain, and the values v . . . v;2 are
values of a secondary light chain. There is no subchain under Vj since it serves as the verification value.

chain is disclosed.? Another shortcoming of their approach is that the authentication is staged, as the generator can only send
authentication values at transitions of the primary chain. The tradeoff is clear, on one hand we would like to have infrequent
transitions in the primary chain, but on the other hand we prefer a short authentication delay.

Note that the all end-values need to be authenticated — both that of the primary chain and those of all secondary chains. As
we discuss above, the authentication mechanism by Liu and Ning has several shortcomings. To overcome these shortcomings,
we propose the Sandwich-chain, enabling efficient authentication of the end-values of the secondary chain at any moment,
without assuming any additional authentication protocols.

Light Chains. To lower the communication overhead, we introduce the notion of the light chain. This is a sequence of values
derived from their respective predecessors by means of a one-way function that results in a relatively short output. In contrast,
we may refer to standard one-way chains as heavy chains. This permits us to refer to a chain consisting of both light and heavy
components plainly as a one-way chain, or more specifically, a hash chain. The way we combine light and heavy chains is to
use a heavy chain as a primary chain, and let each value of the heavy chain be the root of a light secondary chain.

As described below, we select the hash function used for a particular light chain from a large family of potential functions,
disclosing what function was used not long before the disclosure of values of the light chain begins — two different light chains
would use two different functions. This way, we avoid the threat of pre-computation attacks, since an attacker would not be
able to begin building an input-output dictionary until the selection of the function is disclosed. Still, it is clear that the shorter
the values of the light chains are, the smaller the effort will be for an attacker to find collisions, or to invert the function. This
presents us with a tradeoff between the savings in communication cost (related to the size of individual values of the light chain)
and the time a particular light chain can be used. The latter, in turn, puts constraints on the maximum length of the light chain,
given a known rate at which this is traversed and its values disclosed.

Choice of One-Way Functions. As mentioned before, different one-way functions may be used for the primary respectively
secondary chains. (Moreover, different one-way functions may be used for different segments of the secondary chain, but for
simplicity, we do not consider that option here.)

The basic security requirement for the generating function of a one-way chain is one-wayness, preventing an attacker from
deriving the following value V;,; of the chain when knowing V;. In addition, the generating function also needs to provide
second preimage collision resistance, which is also known as weak collision resistance. Weak collision resistance prevents an
attacker from finding another V;/, , after the generator disclosed V;, 1, which also satisfies V; = H(V;, ;) and Vi1 # V.
This would enable the attacker to forge one value of the one-way chain, and prevent the verifier from verifying subsequent
values of the one-way chain, as almost certainly V;/_ ; # H (V).

Candidate one-way functions are based on cryptographic hash functions, such as SHA-1 [25] or MD5 [29]. Here, the one-
way function used to compute the values of the primary chain is denoted H, and the one-way function used to derive the values
of the ith secondary chain is referred to as h;. We derive the salts using a third one-way function, which we refer to as H,. We

2They propose to send redundant messages to achieve higher robustness against packet loss, however, this approach increases the communication overhead.



let H(-) = Hs(-) = hash(-) and h;(-) = trunc(hash(salt;,-)), where trunc denotes a function that truncates the input to the
desired length.

Another construction that also provides the required security properties are pseudo-random functions (PRF) [11]. A PRF
F has a key K and is often used in the following construction to provide one-wayness and weak collision resistance: V; =
Fy,,,(0), where 0 denotes a constant string of zero bits. Note that the value V; is used as the key to the PRF. A commonly
used instantiation of a PRF is to use a message authentication code (MAC), for example HMAC is a popular choice [4]. A
pseudo-random permutation (PRP) (e.g., a block cipher) can also be used as a PRF, if the PRP is only used as many times as the
birthday bound allows [3]. This construction though often has the disadvantage that the generator has to run key setup function
for the block cipher for each one-way chain value, which is often inefficient.

Resistance against Birthday Attacks. All previous proposals involving hash chains appear vulnerable to birthday attacks.
More specifically, if an attacker selects a random seed and computes a hash chain from this, the chances for a collision between
any one of the computed values and a value in an existing chain C' increase with the length of C. This can be avoided by
using a well-known technique® in which all hash functions used are indexed by their position in the chain. In other words, in
order to compute the image V; of a value V.1, one would compute the hash of V;; || ¢ + 1 (where || denotes concatenation),
as opposed to only the one-way chain value, as is commonly done. For simplicity of notation, we do not make this indexing
explicit in the descriptions onwards. For a one-way chain value of m bits, the expected cost for an attacker to find a pre-image
or even a second pre-image is 2™~ ! one-way function computations.

Taxonomy of Hash Chain Usage. Though many proposed protocols use hash chains, we categorize these protocols into three
categories: those which use every element (e.g. [19, 12]), those in which skipping elements is rare (e.g. [8, 13, 33]), and those
in which skipping elements is common (e.g. [27]). In all protocols, fast traversal at the generator is desirable. In addition, when
skipping elements is common, faster verification is desirable, especially when hash chain elements are used quickly. In some
cases, such as wireless network protocols, network partitioning can force a node to perform a large number of hash functions
to “catch up;” in these cases, faster verification can significantly improve protocol responsiveness.

Evaluation Metrics. We use the following five metrics to measure the efficiency of one-way chain techniques: setup, traver-
sal, verification, storage, and communication cost. We describe each cost in more detail. The setup cost is measured by the
number of hash function computations to derive the end-value of the one-way chain. The traversal cost is the average number of
hash function computations that the generator performs to derive each one-way chain value, assuming that each chain value is
consecutively disclosed. For real-time constrained environments, an upper bound on the traversal cost is desirable. The recently
proposed efficient one-way chain schemes provide an upper bound of O(log(n)) for the traversal cost [9, 17]. The verification
cost is measured in the number of one-way function computations that the verifier performs to verify a one-way chain value.
The verification cost is usually O(1) if the verifier receives all one-way chain values, however, a more interesting metric is the
verification overhead in case the verifier needs to “catch up” because it missed many one-way chain values or started receiving
values late, i.e., the verifier may need to traverse a large part of the one-way chain to verify. Advanced one-way chains feature
efficient mechanisms to “catch up”. The storage cost is measured as the amount of memory that the generator needs to traverse
the one-way chain. The communication cost measures the bandwidth overhead for distributing one-way chain values. We
introduce the notion of light chains to lower the communication cost.

Requirements for Offline Verification. The chains we describe can be verified offline; that is, without communicating with
the chain generator. However, this offline verification sometimes requires either reliable delivery or loose time synchronization.
Of the chains we describe, the Sandwich-chain and light chains (Sections 3 and 5) require either reliable delivery or loose
time synchronization to allow offline verification. On the other hand, Comb Skipchains (Section 4) do not have any special
requirements for offline verification.

3 The Sandwich-chain Construction

We previously mentioned why the primary and secondary chains (as Figure 2 shows) have a significant disadvantage over the
simple one-way chain: if the commitment to the end-value of the secondary chain is lost, the verifier has to wait until the
generating value of the secondary chain (i.e., the value of the primary chain) is disclosed.

3Thistechnique is attributed to Micali and Leighton, who in an unpublished manuscript propose the use of this technique to avoid birthday attacks in Merkle
trees.



We now describe the Sandwich-chain, a new construction which removes this drawback, and which has several nice prop-
erties. Figure 3 shows an example of a Sandwich-chain.
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Figure 3: A sandwich chain. The upper horizontal chain is the primary chain; the diagonal chains are secondary chains; and
the lower horizontal chain is used for verification of end-points of secondary chains. The dotted arrows correspond to salt
derivation, which is used in the computation of the diagonal chains only.

The Sandwich-chain is a combination of a hierarchical one-way chain and another one-way chain Wy ... W, used for
verification of the end-values of the light chain. We now describe how the Sandwich-chain is generated, used, and how verifiers
can authenticate values.

Sandwich-chain Setup. The generator picks Vy and W at random and computes Vy _1, ..., Vo, where V; = H(V; 1) . For
each V;, the generator derives the associated secondary chain v; g, .. ., v; ¢ as follows: v; x = hs(V;) (where V;_; is used as
the salt s), and v; ; = hy(v; j+1). Finally, the generator derives the TW-value as follows: W;_y = H(W;||viol||Vi—1). Figure 3
graphically represents these derivations.

Sandwich-chain Traversal. Similar to the hierarchical chains described above, the generator uses the values of the light
chains one after another, e.g.,
1,0, V1,15---,V1,K,V20,---,UN,0,UN,15---,UN,K

. The V-values are disclosed after all the secondary chain values are published, for example after disclosing v; g, the generator
can send V;, which is needed for the salt of V;’s secondary chain and also to authenticate 1W;. W -values are disclosed as
necessary, they are not secret, their use is only to authenticate the end-values of the secondary chain. The Sandwich-chain is
traversed using fractal traversal [17, 9, 32].

Sandwich-chain Value Authentication. Initially, the verifier receives V, and W, over an authentic channel, and uses these
values to authenticate all subsequent values. Using the trusted values V, and Wy, the verifier can easily authenticate the first
value of the one-way chain vy o by checking that H (W1 ||v1 ]| Vo) equals Wy (this assumes that the verifier also received 7).

We now describe how the verifier authenticates the end-value v; o of a general secondary chain, assuming that the verifier
always kept up with receiving and verifying the chain, thus trusting values V;_; and W;_;. (In Section 3.2, we describe an
efficient verification technique if the receiver did not keep up with the verification.) In the light chain spanned by V;, the
verifier needs to know W; to verify the end-value v; . The verifier first computes H (W;||v; o||Vi—1) and checks that it matches
the stored W;_, in which case both W; and v; ¢ are authentic. Since value W; is not secret, the generator can retransmit it
periodically. The value V;_, is used as the salt in the secondary chain v; ;, thus V;_; also needs to be transmitted periodically,
and can easily be authenticated. As additional measure to authenticate the secondary chain values, the verifier can also check
that v; , = hs(V;) after V; is disclosed.



3.1 Efficient Authentication Using One-Way Functions

We describe a novel mechanism to authenticate arbitrary values, without using a MAC function. We assume a secure weak col-
lision resistant one-way function ' (to derive the one-way chain), and a secure one-way function G (to produce commitments).
The generator then generates a one-way chain Vy, . .., Vp, where V; = F(V;41). We assume that the generator and verifiers are
loosely time synchronized, with a maximum synchronization error of T'A. The generator specifies a regular disclosure schedule
for values of the the one-way chain, disclosing V; at time T; = Ty + i x Ty, where Ty is the time delay between the disclosure
of two values, and T, is the time of disclosure of value V;. To authenticate a value r, the generator publishes ' = H(V;]|r),
where V; is a value that will be disclosed in the future. When a verifier gets =, 7/, j at time ¢, it verifies that the generator did
not yet disclose V; by checking that ¢ + TA < T}. If this condition holds, it accepts ' and waits for the disclosure of V; to
authenticate r. The verifier first verifies the authenticity of V;, by following the one-way chain to the last authentic value. If V;
is authentic then r is authentic if " = H(V}||r). This authentication is similar in nature to the TESLA authentication protocol,
but it does not require a MAC computation.

3.2 Sandwich-chain Using our Efficient Authentication Technique

Our Sandwich-chain is especially constructed to also enable efficient authentication of the end-values of the light chain using
the authentication technique described in Section 3.1. This has the advantage that a client who receives authentic values of
the Sandwich-chain (i.e., ¥ and W), can efficiently authenticate secondary chain values in chain generated by V;, without
recomputing previous secondary chains. This approach thus substantially reduces the verification overhead for a new verifier
that needs to “catch up” to current values of the chain.

We assume that the primary one-way chain V5, . . ., V satisfies the requirements discussed in Section 3.1, i.e., the values
V; are disclosed after specific times T;. A verifier can use the structure of the Sandwich-chain to authenticate the values of the
W -chain without following it all the way back to the last authentic W value it trusts.

Consider a verifier that is time synchronized, who trusts value V4, and who joins the transmission at time ¢;, where T; <
t; < T;+1. The generator is thus currently traversing the values spanned by the secondary chain spanned by V;;1, as V; is
already disclosed. At this point, the verifier cannot yet authenticate values v, ; it receives, as it may be computationally too
expensive to recompute the Sandwich-chain all the way back to Wj. The generator periodically distributes 1W;,1; as long as
the verifier gets ;.1 before time T;.1 — T, the verifier can later authenticate W, after it receives V; 1, W, 2, and the
value v; 4 o. After successful authentication of value W;, 1, the verifier also knows that value T, is authentic, and can use
the values of the WW-chain to immediately authenticate end-values of the following secondary chains.

Given loosely synchronized clocks, the Sandwich-chain thus enables computation-bound verifiers to very efficiently authen-
ticate current one-way chain values (after waiting for a short time delay), without recomputing the majority of the Sandwich-
chain.

4 The Comb Skipchain Construction

In [16], Hu et al. describe the skipchain mechanism. A skipchain is composed of a signature chain and a collection of secondary
chains. A signature chain (sg . .. s;) is a chain of one-time signatures. Each value s; of the signature chain spans a one-time
signature scheme, where the one-time signature values are again reduced to a single value s;_1, thus resembling a one-way
chain. The value s; can be thought of the private key of the one-time signature, and the value s;_; is the corresponding public
(verifying) key. (Similarly, s;_; and s;_» form the next private/public key pair.) Hu et al. describe such a signature chain [16]
and propose to use the Merkle-Winternitz signature [10, 22, 31] as the one-time signature scheme.

Each value s; in the signature chain is used to derive a secondary chain V; o ...V, ,, where V; , = H(s;) and the other
values are generated as we describe in Section 3. In the same vein as the hierarchical chain construction in Section 3, these
light chains represent a single one-way chain of length (z + 1)(y + 1), where the jth value is VLyJT-lM mod y+1 and where y

is the length of the secondary chain.
In this paper, we contribute a novel parameterization and traversal scheme that provides O(1) computation, while retaining
the O(log(n)) storage requirement; a significant improvement over the previous O(log?(n)) bound [9].

Verification of Values of the Secondary Chain. Because values from the secondary chain cannot be verified through the
repeated application of a one-way function, we must have a separate way of verifying them. Comb Skipchains use a one-time
signature from each signature chain value to authenticate the end-value of each light chain. In particular, the ith one-time
signature is used to sign V; o.
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Figure 4: Comb Skipchain, where s,, . .. so are values on the signature chain, s_; represents the initial verification value, and
Vio ... Vi represent light chains. Each hexagon in the figure represents one instance of a Merkle-Winternitz signature (a
simplified version of such a signature is shown inside the first hexagon). The s denotes that each s; is used to sign each V; .

To verify this one-time signature, the verifier follows the signature chain all the way to a trusted value (in the same way as it
follows a standard one-way chain). Note that the traversal of the primary chain makes previous one-time signatures redundant.
In other words, while traversal in principle allows forgery of old one-time signatures, synchronization issues makes this a non-
issue, just like knowledge of previously released chain values in general does not pose a security threat for the applications we
consider.

Parameterization and Traversal For a chain of length n, we choose z = = and y = log(n). The important intuition that
allows us to achieve O(1) computation is that the fractal traversal of the signature chain already requires O(log(n)) storage,
so we can store an entire secondary chain of length O(log(n)) with no penalty in the asymptotic storage cost. As a result,
the traversal of the secondary chains can be achieved with constant computation; and the traversal cost of the signature chain
O(log(n)) can be amortized over an entire light chain (length O(log(n))), thus resulting in a constant computation cost per
emitted value. In particular, we perform efficient traversal on the primary (signature) chain (at cost log(x) memory, and log(x)
computation per step), but to amortize the traversal over the y steps in the secondary chain, for O(1) computation. In addition,
we can traverse the secondary chain for O(y) memory and O(1) computation by storing the entire chain. Finally, we amortize
the computation of the next light chain, which costs O(y) memory and O(1) computation. The total cost is then O(log(n))
memory and O(1) computation.

Initialization. We perform the initialization necessary for fractal traversal of the signature chain. We also compute and store
the entire first secondary chain. Finally, we prepare for the initialization of the second secondary chain.

Main routine. First, we perform a partial step in the signature chain. In particular, we follow the fractal traversal algorithm [9]
until one hash operation is performed, for a cost of 1. After %log(n) steps are performed, the next signature chain value is
ready. In particular, after V; v is emitted, ;1 becomes available.

Next, generate one more step of the next chain. In particular, when emitting V; ;, we compute V;_1 ;.

Next, set the return value to the appropriate value previously computed. For example, when emitting V;_ ;, we return the
value computed when emitting Vi1 ,—;.

Analysis In our first step, we perform only one hash operation, and a constant amount of work, so the first step requires
O(1) computation and O(log(n)) memory. Our second step performs one hash operation, so it requires O(1) computation
and O(log(n)) memory. Our third step consists of a single load, so it requires O(1) computation and O(log(n)) memory. In
fact, the memory used by the second and third step can be combined so that together they require just y + 1 hash values to be
stored. The hash and signature are also constant time operations, and hence it also requires O(1) computation. This represents
a total cost of O(1) computation and O(log(n)) memory, for a memory-times-computation complexity of O(log(n)). Our



result substantially improves the previous result which provides memory-times-computation complexity of O(log?(n)), and
establishes that as a lower bound.

Future Work Comb Skipchains provide other efficiency improvements; for example, in our scheme, the setup time is
O(%). In future work, we intend to examine the use of hierarchical Comb Skipchains, with multiple levels of signature

chains, as a mechanism for improving setup times.

5 Light Chains

In resource-constrained environments (e.g., sensor networks), communication bandwidth is at a premium, as data sending and
receiving is expensive in terms of battery energy. To reduce the communication overhead, we propose one-way chains with
reduced value size, but we need to be careful not to introduce new security vulnerabilities.

A light one-way chain (vg ... v,,) is a collection of values such that each value v; = h(v;41), for 0 < i < n, where his a
one-way function with short output. That is, while the output of standard hash functions is typically 128 or 160 bits long, the
output of A is much shorter, for example 64 bits long. Here, h is preferably a salted hash function (also referred to as a keyed
hash function), whose output is truncated to some fixed length. Thus, each chain (or segment of a chain) has a salt s associated
to it, which is appended to the input before the hash function evaluation. The effect of this is that the function 4 is selected from
a family of functions, indexed by the salt.

Similar as for standard chains, v is called the end-value, and v,, the root. The salt s of a chain (or chain segment) has to be
selected before the chain is computed from the root value, but does not have to be released until a verifier needs it to verify the
authenticity of a chain value.

Shorter sized values may introduce pre-computation attacks, such as the attack proposed by Hellman [15]. For a chain with
m-bit values, the attacker performs 2" operation to setup a graph of size 22*/3, Given the graph, the attacker performs 22/3
operations to find a pre-image of a value. To thwart this attack, we use two countermeasures: salted hash functions, as described
below; and indexed hash functions as described in Section 2 in the paragraph “Resistance against Birthday Attacks”.

Use of Salts. We have that outputs of h; may be substantially shorter than outputs of H. Thus, while inverting H will be
assumed to be computationally intractable, it may be possible to invert, or find collisions for, h; given sufficient time. Since we
want it to be infeasible to invert &; during the time period it is associated with, it is important that this time interval is shorter
than a lower estimate of the time it takes to invert the h;. Evidently, it is also crucial to prevent pre-computation attacks, which
is where the salt comes in.

The effect of salting the hash function #; is that of randomly selecting this function from a large family of such functions.
Given sufficiently long salts, this effectively makes it infeasible to compute a table of all input-output pairs of A; without
knowledge of the salt. Since the salts are not made public until just before the time period their use is associated with, this
prevents pre-computation attacks.

6 Discussion

We give two examples of instances in which our constructions are useful. Table 1 summarizes these results. In our examples,
we use light chains with 64 bits of security, and heavy chains with 80 bits of security. For the one-time signatures in Comb
Skipchain, we use the Merkle-Winternitz construction [10, 22, 31] to sign the 64 bits of the end-value of the light chain. To sign
64 bits, we use 32 signature chains of length two, and three checksum chains of length two, and one checksum chain of length
one. This construction requires 71 hash function computations to generate one signature, and on average 35 hash function
computations to verify.

Our first application is a sensor network with resource-limited sensors. In the sensor network, the nodes use the TESLA pro-
tocol to broadcast authentic data over their lifetime, which we assume to be 10 years. To achieve a relatively low authentication
delay, yet have short one-way chains, the sensors use one value of the one-way chain during one second, thus requiring a total
of 315 million values over the lifetime of the sensor network. We first study the overhead if we use the Sandwich-chain. One
of the main features of the Sandwich-chain is that it has a low communication overhead and enables fast verification of chain
values in case a receiver was absent for some time or is newly deployed. To select the length of the secondary chain (the light
chain), we say that a sensor should wait for at most 30 minutes to efficiently authenticate the chain values after deployment, thus
the light chain has a length of 30 - 60 = 1800 values. The primary chain thus has a length of 315,360, 000/1800 = 175, 200
values. The setup cost is 315, 360,000 + 175,200 + 175,200 = 315, 710, 400 hash function computations to compute V, and



Figure 5: Salt-derived light one-way chain.

Table 1: Performance of our structures as compared to a traditional hash chain. Storage is based on 3 hash computations per step
in the reverse hash chain traversal. This results in prohibitive overhead for Sandwich-chains, which have competitive storage
requirements when 5 computations can be performed in each step.

Construction | Storage | Worst-Case Verify | Network Overhead
Sensor Network (3.15 x 108 elements, 1ms per hash)
Sandwich-chain Very High < 3min < 0.1 bits/value
Comb Skipchain 1188 bytes 7.71 days 1.43 bits/value
Hash Chain 5330 bytes 219 days 0
Micropayments (1.1 x 10° elements, 1s per hash)

Comb Skipchain | 718-1246 bytes 36.8 sec 1.34 bits/value
Hash Chain 7310 bytes 18.5 min 0

Wo. Using fractal traversal [17, 9, 32], the traversal requires O(log(n)) per-value computation and storage. The verification
overhead is low, even if a sensor joins the network close to the end of its lifetime, it can verify the V-value in under three
minutes, assuming that a hash function computation requires 1ms. In contrast, traditional one-way chains would take 1800
times longer. The communication cost is very low, as the light chain values are only 64 bits long, and only two heavy chain
values of length 80 bits need to be disclosed after every 1800 values.*

To lower the traversal and setup cost at the expense of a higher communication overhead, we can use the Comb Skipchain
mechanism. In choosing the length of the light chains, we want a length that allows a the signature chain to be computed using a
single hash operation per emitted element. Since each step in the signature chain requires 71 hash operations, and since each step
in the signature chain requires a logarithmic number of applications of GG, we need at least 71 - log, (315, 360, 000) = 2004.5
elements in the light chain. Since we use Sella’s traversal [32], we can store £ elements from a chain of length @ and
provide reverse traversal with a single computation. As a result, we pick a minimum ¢ that allows us to traverse a chain of
length at least 2005. In this case, ¢ = 63, and each light chain is 2016 elements long. Our signature chains are of length
315,360,000/2016 = 156,429, and initialization requires traversing one light chain (2016 hash functions) and the entire
signature chain (156,429 - 71 = 11,106, 459 hash functions), for a total setup time of 11,108, 475. Traversal costs are 1 for
each of the current light chain, the next light chain, and the signature chain, for a total of 3 applications. To perform these
traversals, we require two sets of light chains to be stored simultaneously, for a storage cost of 63 values per chain. In addition,
log,(315,360,000/2016) < 18 values are needed for the top chain, for a total of 144 values. By contrast, Sella’s scheme

“4For robustness against packet loss, the generator may periodically publish the latest V' and W values required for authentication.
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requires 533 values to traverse the chain at a cost of three operations per element. The verification overhead is often lower than
a traditional hash chain; for example, if a sensor joins the network close to the end of its lifetime, it can verify a chain element
over 28 times faster than with a traditional hash chain. The added communication cost is fairly low; again, the light chain values
are only 64 bits long, and a 360 byte signature needs to be disclosed every 2016 values (possibly more often for robustness).
This represents roughly 1.43 additional bits per chain value.

Another example is for micropayments for Internet or peer-to-peer traffic. Such payments could be used, for example, to
pay an ISP for dialup access, in open-access wireless hotspots, or to pay for content transfer from a peer-to-peer file sharing
network. To estimate pricing for such services, we consider that cable modem pricing is around $45 for a cap of 15 GB [7],
and assume that the ISP requires revenue of $45 for 5 GB of transfer. If a micropayment provider sold in increments of $10,
then each chain will be 1.1 billion elements long. When using Comb Skipchains, we compute the length of the light chains as
above: 71 -log,(1,111,111,111) = 2133.5, so we choose ¢ = 65 and a light chains length of 2145. As a result, our signature
chains are of length 1,111,111,111/2145 = 518,001. Initialization then requires 2145 + 518,001 - 71 = 36, 780, 216 hash
functions. Again, traversal costs are 1 for each of the current light chain, the next light chain, and the signature chain, for a
total of 3 applications. To perform these traversals, we require two sets of light chains to be stored simultaneously, at a cost
of 65 hash values each (these can be stored together with just 66 values). In addition, log,(1,111,111,111/2145) < 19 hash
values are stored for top chain, for a total of 149 hash values (85 if better optimized). By contrast, Sella’s scheme requires
storage of 731 values to traverse the chain at a cost of three operations per element. The verification overhead is higher than
before; if a network node receives a micropayment close to the end of the chain, it may take 36 seconds to verify, assuming that
a hash function computation requires 1us. The communication cost is fairly low; again, the light chain values are only 64 bits
long, and a 360 byte signature needs to be disclosed every 2145 values (possibly more often for robustness). This represents
roughly 1.34 additional bits per chain value.

7 Conclusion and Future Work

Our proposed constructions for one-way chains are useful in many settings, to speed up the current setup, traversal, and ver-
ification of one-way chains. Both constructions can be used as “drop-in” replacements for many current uses of one-way
chains.

The Sandwich-chain is particularly useful in environments with low-bandwidth communication channels, and where the
verifiers are computation constrained and may need to “catch up” (i.e., verify a chain value based on a distant trusted chain
value).

The Comb Skipchain construction has a higher communication overhead than Sandwich-chain, but it provides a very ef-
ficient setup mechanism (O(n/log(n))) and a very efficient traversal (O(1)) with small storage overhead (O(log(n))). This
construction beats the previously established lower bound for the product of memory overhead and traversal overhead, which
was O(log®(n)). In contrast, our construction achieves a memory-times-computation complexity of O(log(n)). This is pos-
sible (and does not contradict the previous lower bounds) given that we move from one-dimensional to two-dimensional (or
hierarchical) chains.

Our future work includes investigating deeper hierarchies of our constructions, and to establish general bounds for the
one-way chain costs.
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