
Towards Sustainable Evolution
for the TLS Public-Key Infrastructure

Taeho Lee
ETH Zürich

kthlee@inf.ethz.ch

Christos Pappas
ETH Zürich

pappasch@inf.ethz.ch

Pawel Szalachowski
SUTD

pawel@sutd.edu.sg

Adrian Perrig
ETH Zürich

aperrig@inf.ethz.ch

ABSTRACT
Motivated by the weaknesses of today’s TLS public-key infrastruc-
ture (PKI), recent studies have proposed numerous enhancements to
fortify the PKI ecosystem. Deploying one particular enhancement is
no panacea, since each one solves only a subset of the problems. At
the same time, the high deployment barrier makes the benefit-cost
ratio tilt in the wrong direction, leading to disappointing adoption
rates for most proposals.

As a way to escape from this conundrum, we propose a frame-
work that supports the deployment of multiple PKI enhancements,
with the ability to accommodate new, yet unforeseen, enhance-
ments in the future. To enable mass adoption, we enlist the cloud
as a “centralized” location where multiple enhancements can be
accessed with high availability. Our approach is compatible with
existing protocols and networking practices, with the ambition that
a few changes will enable sustainable evolution for PKI enhance-
ments. We provide extensive evaluation to show that the approach
is scalable, cost-effective, and does not degrade communication
performance. As a use case, we implement and evaluate two PKI
enhancements.

1 INTRODUCTION
Encrypted traffic is increasing rapidly as the Transport Layer Secu-
rity (TLS) protocol is becoming ubiquitous. For instance, the “Let’s
Encrypt” project [1] acts as an open Certificate Authority (CA),
issuing free certificates for any domain; after about a year of op-
eration, it supports more than 22 million active certificates [2, 3].
Major hosting providers like Amazon and CloudFlare also offer their
clients easy and free access to TLS certificates [4, 5]. Moreover, new
mobile and Internet-of-Things (IoT) devices have functional TLS
stacks, further fueling the rapid increase of TLS clients.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5576-6/18/06. . . $15.00
https://doi.org/10.1145/3196494.3196520

Amidst its surging popularity, securing the TLS ecosystem has
become increasingly important. In recent years, multiple PKI en-
hancements (PKIEs) have been proposed that improve certain weak-
nesses of the TLS PKI. For example, to foster the transparency and
accountability of the PKI, log-based approaches suggest publicly
verifiable logs that monitor CAs [6, 7]. Building on this idea, recent
proposals additionally require multiple trusted entities to assert
the validity of a certificate [8, 9]. Revocation systems keep and
disseminate information for non-expired certificates that have been
invalidated (e.g., due to leaked private keys) [10–15]. Another recent
proposal enables domains to express security policies about their
TLS certificates and to detect misbehavior by publishing policies to
public logs [16].

Although the literature is ripe with PKIE proposals, we can
hardly say that they had much of an impact in practice. Revocation
systems are indicative examples of enhancements with disappoint-
ing deployment rates: OCSP stapling [14] has been considered a
promising revocation system, but only 3% of all certificates are
served by servers deploying it [17]. Certificate Revocation Lists
(CRLs) is the most well-established way to disseminate revocation
information, yet it is disabled in all mobile browsers and most desk-
top browsers [17]. The main reasons behind the observed stagna-
tion include the strain of updating multiple entities (clients, and/or
servers, and/or CAs), the infrastructure and management costs of
deployment, the inability of some proposals to scale to today’s
needs, and performance penalties to communication sessions.

Only recently, Google’s Certificate Transparency has moved
towards higher rates of adoption [18]. This is feasible only thanks to
Google’s unique position in the TLS ecosystem with its dominance
in the web-browser market.1 However, the fate of which PKIEs
get deployed should not lie in the hands of a few stakeholders;
this is crucial given that there is no magic bullet for all threats nor
consensus on which threats are more alarming [19].

Given today’s situation, it is hard to envision a healthy PKI
ecosystem with multiple enhancements that can be used according
to the needs of all involved parties (clients, domains, and CAs).
The need to “design for choice” [20, 21] and construct evolvable
systems [22–24] is widely accepted in the networking community,
yet it has not been applied to the PKI ecosystem.
1http://www.w3schools.com/browsers/

https://doi.org/10.1145/3196494.3196520
http://www.w3schools.com/browsers/

To escape from today’s conundrum, we propose a different ap-
proach to deploy and operate existing and future PKIEs. Our ap-
proach pushes the deployment of PKI Enhancements to the Cloud
(PEC). Deploying PKIEs as a cloud service can drive mass adoption
since they can be accessed with high availability. Furthermore, our
approach requires a one-time change for web servers, yet support
is enabled for existing and future PKIEs; a client-only deployment
model is also possible if servers are not updated. We think that
our approach hits a sweet spot in the benefit-cost ratio for PKIE
deployment and will thus help in overcoming today’s stagnation.

In summary, we make the following contributions. First, we
present PEC, a generic framework that is incrementally deploy-
able and enables the adoption of multiple PKI enhancements in
a secure, scalable, and cost-efficient way. Second, we implement
two prominent PKIEs as use cases: we optimize and improve the
security properties offered by the default deployment model of Cer-
tificate Transparency [6], and we implement a recent revocation
proposal [15].

Furthermore, we have fully implemented the cloud service that
hosts PKIEs and we have extended the OpenSSL library to support
PEC. We provide extensive evaluation of PEC, showing that it
introduces negligible performance overhead—the average latency
inflation of the TLS handshake is less than 2%. Additionally, we
show that PEC can drive mass adoption for PKIEs in a cost-effective
way, with an estimate of about $100K per month for processing all
TLS connections in the U.S.

2 LESSONS LEARNED FROM RELATEDWORK
In TLS, certificates are used by the clients to verify the identities of
servers. Certificates are issued by trusted CAs and sent to the clients
by the servers during the TLS handshake.2 Based on the certificate,
the client has to decide whether the connection is trustworthy
before sending data.

To improve the security of the TLS PKI, many PKI enhancements
(PKIEs) that try to increase the trustworthiness of certificates have
been proposed. In general, PKIEs share a common theme in that
they create verifiable assertions about certificates, and that these
assertions are inspected by the clients during the handshake. From
a deployment perspective, PKIEs differ in how these assertions
are delivered to the clients. We briefly present the design space of
deployment models and explain their main difficulties.

In server-driven deployments, the server periodically fetches
information about the status of its certificate from a PKIE provider.
Then, the server sends this information along every new TLS ses-
sion setup (e.g., as in OCSP stapling [14]). The low popularity of
the model is attributed to the reluctance of administrators to recon-
figure their servers given the uncertain benefits of deploying one
PKIE. Furthermore, administrators must reconfigure their servers
for every new enhancement.

In client-driven deployments, the client can be pre-loaded with
server information (e.g., revocations of certificates) and updated pe-
riodically to keep the information fresh. For example, browser ven-
dors supply clients with a limited revocation list (e.g., CRLSet [11]
2We focus on the most common setting in which only the server is authenticated to
the client.

and OneCRL [12]). However, this approach comes with shortcom-
ings: 1) the ever-increasing number of certificates make the PKIE
databases large and partial information introduces security holes,
and 2) hardware-constrained devices may not implement the addi-
tional functionality.

Alternately, clients can directly query the PKIE provider regard-
ing the server’s information. This model is adopted by schemes
like CRL [10], OCSP [13], notary systems [25, 26], and some log-
based systems [27, 28]. Other client-driven proposals, such as Trust-
Base [29] and CertShim [30], focus mainly on the deployment strat-
egy of new PKIEs at the client’s operating system in a way that is
transparent to legacy applications. The client-driven model may in-
troduce latency during connection setup, since the client can query
the PKIE provider only after receiving the server’s information in
the handshake. Additionally, this approach harms clients’ privacy
as they have to contact an untrusted third party and disclose the
domains that they contact.

A recent proposal, RITM, suggests to implement PKIE services
as a network functionality [15]. A middlebox is pre-loaded with
necessary PKIE information and monitors traffic for new TLS con-
nections. Based on the server’s information in the handshake, the
middlebox sends the additional PKIE information to the client. This
model does not require server reconfiguration, does not introduce
storage or processing overheads for the clients, and does not notice-
ably increase the latency of the connection. However, it introduces
substantial infrastructure costs (provisioning for peak network uti-
lization) and management costs in terms of personnel needed to
administer the middleboxes [31]. Furthermore, misconfigurations
and physical failures are common, leading to availability problems.
Finally, this model lacks the property of evolvability since it offers
a static set of PKIEs and introducing a new PKIE requires massive
upgrades.

3 PEC OVERVIEW
The health of TLS relies upon the diversity of PKIEs and their as-
sertions about domain certificates (e.g., revocation status, presence
in certificate logs, domain policies). To this end, we define a unified
framework that, once deployed, can support multiple PKIEs.

3.1 Design Choices
We outline the design decisions that we have made based on the
lessons learned from related work (Section 2).

1) Our starting point is to push the deployment location of PKIEs
to the cloud. The idea of outsourcing network functionality is not
novel [31]; it has already been used for security purposes (e.g.,
firewalls, intrusion detection systems, and VPN gateways) and
performance purposes (e.g., load balancers and WAN optimizers).
Following this trend, we build on the appealing properties of cloud
deployments: flexibility to scale up or down based on traffic needs,
pay-by-use with low personnel/management costs, and instanta-
neous updates. Furthermore, cloud deployments boost evolution by
providing flexibility for new services with low prospective costs.

2) Our approach provides flexibility to clients in that they can ex-
plicitly indicate which PKIE services they request for every connec-
tion and which cloud service they contact. We highlight two points:
i) Flexibility does not come at a higher deployment cost for servers:

1. Initiate TLS Handshake

2a. Send TLS Server Information

2b. Duplicate TLS

Server Information
4. Send Proofs 3. Generate Proofs

Client

(

Server

TTP

6. Exchange Application Data

5. Verify

Proofs

Prover Prover1 n
1 TTP n

Cloud Service

...

Verifier ,...,Verifier)1 n

Figure 1: System Model.

adopting our framework is a one-time change for servers since they
do not have to be aware of each requested PKIE. ii) Furthermore,
from a deployment perspective, PEC is deployable without requir-
ing server upgrades. However, there are additional benefits (e.g.,
lower latency) when servers also support PEC.

3) Only the server’s side of the TLS handshake is sent to the
cloud service. We observe that only the server-related information
is needed to decide if a session should (not) be accepted, thus only
this is sent to the service; application data is exchanged over the
normal client-server path. This minimizes the traffic volume sent
to the cloud.

As a consequence of our design choices, new PKIEs can be in-
troduced as a service, without the strain of updating servers many
times. At the same time, clients can choose which PKIEs they want
according to their needs. These benefits come at a minimal latency
overhead for connections (Section 6.2) and with low operational
costs (Section 6.3.2). Furthermore, clients can choose which cloud
service to trust with their domain history, thus providing flexibility
with respect to privacy. In Section 7, we describe how clients can
obtain even stronger privacy guarantees by hiding their domain
history from the cloud service.

3.2 System Model
3.2.1 Entities in PEC. We introduce the entities that are needed

for the operation of PEC.

• Trusted Third Party (TTP): Each PKIE is associated with a TTP
that manages authentic information for a certain attribute of
TLS certificates. Our goal is to relay this information securely
to clients, so that they can decide whether to establish (or not)
a new TLS session. Clients have the public key of the TTP in
order to verify the authenticity of the relayed information.

• PKIE Prover: Generates proofs about attributes of servers’
certificates based on the content provided by TTPs. Specifically,
it proves the presence or absence of an attribute of a certificate.
Provers are software components hosted by the PEC service.

• PEC Cloud Service: The service runs multiple provers, since
each PKIE has its own prover. In addition, it is responsible
to relay the information from the provers to the clients. The
client can request service from multiple provers hosted by the
service. The PEC service is running on the infrastructure of a
cloud provider; for simplicity we use the term cloud service.

• Verifier: Verifies the information generated by the prover, en-
suring that authentic information from the TTP has been re-
layed intact; we emphasize that verifiers trust TTPs and not
provers. The verifier is a software component running at the
client, and we have integrated it into the client’s TLS stack. A
client may contain multiple verifiers, one for every PKIE.

• Client/Server: A client can request service frommultiple provers
hosted by the cloud service, and contains the corresponding
verifiers, one for every PKIE. A server optionally supports
PEC; a supporting server sends the server-related information
(including the certificate) to the cloud service.

3.2.2 Requirements for PKIEs. In order to be compatible with
PEC, supported PKIEs must enable provers to produce complete
and fresh information about the queried attribute, i.e., a positive or
negative proof, indicating whether at the given time the attribute
is satisfied or not. The notion of freshness for the provided infor-
mation is defined by the TTP; freshness is necessary to mitigate
replay attacks (Section 7).

Furthermore, the produced proofs must be efficient in terms of
generation-verification time and size. Generation and verification
times must be sufficiently low to not increase the latency of the con-
nection setup. The size of the proof must be sufficiently low to not
impose a significant transmission delay and bandwidth overhead.

One can imagine PKIEs that would not be compatible with our
framework, but all the common PKIEs we know of are easily de-
ployable on top of it. As a use case, we have implemented two
prominent PKIEs (Section 5), and we provide examples of other
PKIEs that are compatible with PEC in Appendix C.

3.2.3 Communication Flow. In PEC, we extend the TLS hand-
shake to support cloud-hosted PKIEs. The handshake is extended
from a bilateral procedure between the client and the server, to a
trilateral one that involves also the cloud service: provers running
at the cloud service, feed the client (verifier) with proofs about at-
tributes of the server’s certificate. The client proceeds with exchang-
ing application data once it successfully verifies the information
received from the cloud service.

Figure 1 describes the system model with the extended TLS
handshake. Provers load and periodically update information from
the corresponding TTPs. The client initiates the TLS connection to
the server (ClientHello message), as in standard TLS (Step 1). In
its ClientHello message, the client indicates which PKIE services
it requires for the handshake. The server proceeds with the TLS
handshake by sending its information (ServerHello, Certificate,
ServerHelloDone) to the client as usual (Step 2a); for brevity, we
will refer to all three messages from the server as the ServerHello.
In addition, the server sends the ServerHello to the cloud service
together with the PEC parameters indicated by the client (Step
2b). The prover (of one or more PKIEs depending on the client’s
parameters) generates the corresponding proofs (Step 3). Then,
the cloud service sends the proofs to the client (Step 4) for the
handshake to complete. The verifier, implemented in the TLS stack
of the client, verifies the proofs (Step 5) and based on the result it
decides whether it is safe to proceed and exchange application data
with the server (Step 6).

3.2.4 Threat Model. The goal of the adversary is to convince
clients to accept a rogue certificate (e.g., a revoked certificate or a
certificate absent from the CT log), or to deny a valid certificate. The
adversary can compromise the provers, the cloud service, and the
communication between any of the involved entities; the adversary
can delay, drop, modify, and inject traffic between all communicat-
ing entities. We assume that TLS and the cryptographic primitives
we use are secure. Clients and servers are trusted to follow the
operations of our protocols.

4 PROTOCOL DETAILS
We provide more details about the modifications to the TLS protocol
(Section 4.1) and the operations performed by the cloud service
(Section 4.2).

4.1 Extending TLS
In order to implement our protocol in a backwards-compatible way,
we introduce the PEC TLS extension. The TLS stack of clients and
servers can advertise additional functionality they support through
TLS extensions [32]: the client advertises supported extensions in
the ClientHello message, by indicating the extension type and
other extension-related information. The server responds with the
same extension type and its own information in the ServerHello
message. If the server does not recognize the extension, it drops it
from the ServerHello, informing the client it does not support the
functionality. We start with the case where both the client and the
server recognize the extension; then, we describe the client-only
deployment case.

Client-Server Deployment. The client initiates the handshake
with the PEC TLS extension that contains the required information
about itself and about the requested PKIEs. The information is the
following:

(1) Client Identifier: An identifier used by the cloud service to
support multiple clients behind Network Address Translation
(NAT) devices that share a single public address (Section 4.2.2).

(2) Requested PKIEs: A list of PKIEs that the client requests for
the TLS handshake. To guarantee support for multiple PKIEs,
the client provides a list of PKIE identifiers that are used to
distinguish among PKIEs; such identifiers can be assigned by
the IETF. The list of PKIEs is encoded in the Type-Length-Value
(TLV) format with the type field being the PKIE identifier; the
value field includes additional data that the client passes to the
PKIE, and the length field indicates the size of the value field.

(3) Location of the cloud service: Address of the cloud’s point-of-
presence (PoP) to which the server should send its Server-
Hello message. This enables clients to choose a location that
is close to them.

This information is preceded by a type code and a length field
for the PEC extension, since TLS extensions are also encoded in the
TLV format.

Figure 2a describes the exchange of TLS handshake messages
between the client, the server, and the cloud service. The client
sends out the ClientHello with the PEC extension (Step 1) and

waits for the reply from the server. The server receives the Client-
Hello from the client and replies with the ServerHello (Step 2a).
In addition, based on the client’s information in the PEC exten-
sion, the server forwards the ServerHello to the cloud’s PoP
(Step 2b). Once the client receives the ServerHello (including the
Certificate, ServerKeyExchange, and ServerHelloDone mes-
sages), it proceeds as usual by sending out the ClientKeyExchange
and ChangeCipherSpec (CCS)messages (Step 3); then, it waits for
the server’s CCS message. During the handshake’s message ex-
change, the client waits for the proof from the cloud service. If the
proof has not arrived, the client halts the connection after receiving
the server’s CCS message (Step 4). Once the proof arrives (Step 5),
the client validates it and decides if it is safe to proceed and typically
starts exchanging application data with the server (Step 6).

Halting the connection until the proof from the cloud arrives,
guarantees security at the cost of a potential latency inflation. If
the client would proceed to exchanging application data while
waiting for the proof (and deciding later if the connection is safe), it
would introduce an attack window that an adversary could exploit
by delaying the proof. Therefore, the connection halts until the
verification arrives. Note that it is possible for the proof to arrive
(Step 5) chronologically before Step 4 or even Step 2a; the figure
shows the worst case in which there is an additional latency for
the connection setup.

Our goal is to minimize the additional latency, since the use of
TLS already has a perceptible latency impact on clients [33]. There-
fore, our modifications to the TLS state machine halt the connection
(if necessary) at the latest possible point prior to data exchange.
The server sends its information to the cloud service after receiving
the ClientHello. The client verifies the server’s certificate, but it
is unlikely that the proof has arrived in the meantime due to the ad-
ditional network and processing latency overheads. Thus, the client
proceeds with the connection (Step 3) and halts before exchanging
data. Our evaluation verifies that this approach introduces minimal
latency for the TLS handshake (Sections 6.2 and 6.3.1).

Client-only Deployment.We have assumed that servers recog-
nize the PEC extension and send their information to the cloud
service. However, at an early deployment stage, servers will proba-
bly not be aware of PEC.

Figure 2b describes the connection setup for the client-only
deployment case. The client initiates the connection (Step 1) and
the server responds with its information as usual (Step 2). Once the
client receives the server’s message, it sends the ServerHello to
the cloud service for processing (Step 3) and waits for a response,
similar to the client-server deployment scenario. The connection
halts after the server’s CCS message arrives (Step 5), if the proof
has not arrived.

This approach introduces a potential latency inflation that is
higher than in the client-server deployment case. Specifically, the
server’s information is sent to the cloud service once it is received
by the client, i.e., half a client-to-server round-trip-time (RTT) later,
compared to when the server is PEC compliant. The latency in-
flation in this case depends on the client-server and client-cloud
latency difference.

Client Server
1. ClientHello + PEC ext.

2a. ServerHello,

 S
erverKeyExchange

3. ClientKeyExchange, CCS

4. CCS

Latency

Inflation

6. Application Data

Cloud Service

2b. ServerHello

5. PKIE Proof

(a) Client-Server Deployment.

Client Server
1. ClientHello + PEC ext.

2. ServerHello,

 ServerKeyExchange

4. ClientKeyExchange, CCS

5. CCS

Latency

Inflation

7. Application Data

Cloud Service

3. ServerHello

6. PKIE Proof

(b) Client-only Deployment.
Figure 2: The steps of the TLS handshake in PEC.

TTP TTP TTP

Client

Module

Client

DB

Server

Module

PKIE Service

Handler

Prover Prover Prover

Middleware

Application

...

...

Cloud Service

1 2 n

1 2 n

Clients

(Verifiers)

Servers

Figure 3: Architecture of the cloud service.
4.2 Cloud Operations
Our handshake deviates from the traditional bilateral handshake in
that both the client and the server communicate with the cloud. This
requires functionalities at the cloud service and protocols between
the client and the cloud, and between the server and the cloud.

4.2.1 Cloud-Service Architecture. Wedescribe the required cloud-
service components to support multiple PKIEs. In order to support
multiple provers as a single service, there is common functionality
shared among the provers. This functionality is implemented by a
middleware application.

Figure 3 shows the architecture of the cloud service. Specifically,
the middleware maintains client information in a database and
handles all communication with clients through the client mod-
ule (Section 4.2.2). The server module receives the ServerHello
messages from the servers and passes them to the PKIE Service
Handler; for a client-only deployment, the server’s information is
received by the client module.

The handler reconstructs incoming packets into flows and parses
the TLS messages they carry. Then, it calls the required provers
based on the list of PKIE services indicated by the client. It collects
the generated proofs and calls the client module to send the proofs
to the clients.

Multiple provers can operate on top of the middleware applica-
tion. Each prover periodically fetches information from its corre-
sponding TTP. We highlight that operations in the cloud service
are not trusted; only the information produced by TTPs.

4.2.2 Client-Cloud Protocol. The TLS stack of the client is lis-
tening for incoming proofs from the cloud service. Once the PKIE
provers have processed the server’s information and generated the
corresponding proof(s), they are sent to the clients through the
client module in the middleware.

The communication between the client and the cloud is imple-
mented using UDP with a lightweight reliability protocol to handle
packet loss. This reliability is necessary since packet loss would
lead to a deadlock as the client is waiting for proof from the cloud
before sending data. We discuss the tradeoff between performance
and reliability in Section 8.1.

There is one complication in the client-cloud protocol: for clients
behinds NATs, their address information is opaque to the cloud.
Our protocol implements a client-identification mechanism with
hole punching to traverse the NAT and to demultiplex multiple
clients behind one public IP address.

Before opening a TLS session, the client initiates a client-registration
process with the cloud service: the client sends a client registration
request to the cloud service. The client module responds with a
randomly generated 4-byte identifier that the client will use in the
PEC extension of outgoing connections. Together with the client
identifier, the client module also registers the source port observed
in the registration request; it will be used as the destination port in
future messages from the cloud to the client. Henceforth, the client
will send periodic keepalive messages to the cloud (using the same
source port) to maintain the NAT state up to date.

For the client-cloud communication, we considered the alterna-
tive approach of conducting the whole TLS handshake over the
cloud: the server sends its information only to the cloud—not to
the client—and the cloud forwards it to the client along with the
corresponding proofs piggybacked: the message from the cloud
would look as if it was sent from the server. We abandoned this
approach due to practical limitations: 1) The cloud would have to
spoof the server’s address, which may lead to packet dropping, if
ingress filtering is deployed [34]. 2) It may increase latency, since
the ServerHello is redirected to the client through the cloud.3

3This statement is not entirely correct, since latency may also decrease if the cloud
provider has a well-provisioned internal network with PoPs close to the client and the
server.

4.2.3 Server-Cloud Protocol. The communication procedure be-
tween the server and the cloud is straightforward: the server encap-
sulates its information (Step 2b in Figure 2a) in a separate packet
and sends it to the cloud. The IP destination address and the desti-
nation port are the ones specified by the client in the ClientHello
extension. For the communication, a lightweight reliable commu-
nication based on UDP is used to counter packet loss, as for the
client-cloud communication (Section 8.1).

5 CASE STUDIES
Existing PKIEs can be directly deployed on PEC, or can be easily
modified to be compatible with PEC. As use cases, we consider
two PKIEs: an improved version of Certificate Transparency (Sec-
tion 5.1) and RITM (Section 5.2). We highlight that PEC is a generic
deployment solution that is not restricted to the two use cases, but
it can support multiple other PKIEs (Section 2).

5.1 Certificate Transparency
Certificate Transparency (CT) [6] is the most prominent log-based
PKIE. Its main goal is to make the PKIE ecosystemmore transparent
by logging all certificates issued by CAs. The CT log is implemented
with a hash tree [35] as its main data structure. This log construction
is efficient in proving that a given leaf (certificate), is part of the
tree (presence proof) with a processing complexity proportional to
the logarithm of the number of logged certificates.

We improve CT in two ways: 1) We introduce absence proofs [8,
27], i.e., proving that a certificate is not part of the CT tree. 2) We
reduce CT’s storage overhead and fit the CT tree in memory, en-
abling efficient generation of proofs. PEC can support CT as it is
used today, but our improvements are standalone contributions
that improve CT’s performance overall (whether it is used as a
cloud-based PKIE or not).

We augment CT with a hash tree in which leaf nodes are lexi-
cographically sorted hashes of issued certificates. We call this tree
a sorted tree and it is reconstructed at every log’s update (if new
certificates were added). In every update, the root of the sorted tree
is timestamped and signed, and is also appended as the last element
of the original CT tree; we call this resulting tree the extended tree.
For every update, provers contact the log to obtain the current root
of the sorted tree and to obtain hashes of recently issued certificates;
this information suffices to build the latest version of the tree.

The described modification provides two benefits: 1) It ensures
that our improvement is compatible with other CT-related sys-
tems [36, 37] since the extended tree is consistent with the content
of the original CT tree. 2) It enables the decoupling of the sorted
tree from the extended tree in order to take advantage of its reduced
size; this is possible as the root of the sorted tree is timestamped
and signed.

Figure 4 shows the extended CT tree. The tree on top appends
certificates (c1, . . . , c7) in chronological order of issuance and has
as its last leaf the root of the sorted tree (r1). The sorted tree at
the bottom has only hashes of certificates as leaf nodes, in lexi-
cographical order. Note that the log maintains the extended tree,
while provers maintain only the sorted tree.

h12345678

h5678

h78

h8

r1

h7

c7

h56

h6

c6

h5

c5

h1234

h34

h4

c4

h3

c3

h12

h2

c2

h1

c1

ex
te
nd

ed
tr
ee

sorted
tree

h352

h2h35

h5h3

h6147

h47

h7h4

h61

h1h6

Figure 4: Example of the extended CT data structure. The
logmaintains the extended treewhile proversmaintain only
the sorted tree.

The proofs produced from the sorted tree are sufficient to con-
clude that a certificate is (not) logged. For the example in Figure 4,
to prove that the certificate c6 is logged, a prover shows to a verifier
the nodes h1,h47,h352 and the signed r1 with its timestamp. During
the TLS handshake in PEC, the verifier (client) receives these nodes
and the certificate c6 with its signed certificate timestamp (SCT).
First, it verifies the certificate and the SCT; then, from the proof it
reconstructs the root of the sorted tree (r1) and verifies its signature
and freshness. The new session is established if: (a) the presence
proof is provided, or (b) the absence proof is provided but the SCT
is not older than the maximum merge delay (MMD).

Our extension provides a stronger security property than pure
CT, as the client can provably examine whether a certificate is (not)
logged. Furthermore, the log cannot misbehave by issuing an SCT
and not adding the certificate to the tree.

5.2 Revocation
Revocation is a fundamental process for PKI, as it is needed when
non-expired certificates have to be invalidated. Revocation sys-
tems [10–15] are complementary to CT, since CT is an append-only
log of issued certificates; there is no information about the revoca-
tion status of the certificate.

We have implemented RITM [15] that uses a trusted revocation
log. The revocation log is implemented as a hash tree where leaves
are the lexicographically sorted serial numbers4 of revoked certifi-
cates. Thus, to prove that a certificate is not revoked, the prover
produces an absence proof for the certificate’s serial number. A
client accepts a certificate if it is successfully verified and there is
an absence proof for the certificate’s serial number.

6 EVALUATION
We have implemented all required functionality for a working
prototype. Specifically, we have augmented the OpenSSL library to
accommodate the PEC TLS extension, the communication modules
with the cloud, and the TTPs, provers, and verifiers for CT and
4Serial number is a unique integer assigned by the CA to each issued certificate.

Presence Proofs Absence Proofs
Max. Min. Avg. Max. Min. Avg.

Gener. (µs) 135 51 60 200 81 92
Verif. (µs) 396 181 189 465 227 237
Size (bytes) 1018 1018 1018 1466 1070 1146

Table 1: Processing times and proof sizes for the improved
version of CT.

RITM. In addition, we have implemented the required cloud service,
i.e., the client/server modules, the handler, and the provers for CT
and revocation.

6.1 Microbenchmarks
We conduct microbenchmarks for the operations of the PKIEs that
we have implemented. Our implementation uses SHA-256 [38] as
the default hash function (with 32-byte long hashes), Ed25519 [39]
as the digital signature scheme (with 64-byte long signatures), and
4-byte long Unix timestamps. All operations are executed on the
Intel(R) Core(TM) i7-4790 CPU.

6.1.1 Certificate Transparency. To test the integration of CT
with PEC, we use the following experimental setup. For the CT log,
we use Symantec’s log5 that contains 2,129,920 certificates with a
storage footprint of 12.5 GB (including metadata). Based on this log,
we construct a sorted tree requiring only 68 MB of storage—more
than a 180-fold decrease in storage requirements. To keep the sorted
tree in memory, about 293 MB of RAM is needed.

We investigate the processing time required for proof generation
by the prover and proof verification by the verifier; these operations
are performed for every TLS connection. The obtained times are
presented for both presence and absence proofs, with presence
proofs being the common case for CT. We also present the length of
presence and absence proofs. Each result is obtained after running
1000 random samples. Table 1 shows the results.

As the results show, provers need on average 60 and 92 µs for
generation of a presence and absence proof, respectively. The aver-
age verification time is 189 and 237 µs correspondingly. The sum
of the generation and verification times is the entire processing
overhead for the TLS connection setup using CT, and the numbers
indicate that it is negligible compared to the network latency even
for hosts close to each other. Moreover, the proof size is relatively
short (about 1 KB on average), which indicates that the transmis-
sion latency will be low as well. We emphasize that by using the
hash tree, the proof generation and verification times, as well as the
proof size, increase logarithmically with the number of leaf nodes
in the tree.

6.1.2 Revocation. We perform the same benchmarks for the
revocation system described in Section 5.2. For revocation data,
we consider Comodo’s largest revocation list that contains 53,164
revoked serial numbers and requires 1.9 MB of storage.6 The storage
overhead for the provers is the same and the corresponding hash
tree with the revocations requires about 8.2 MB of RAM.
5ct.ws.symantec.com
6http://bit.ly/294UNVr

Presence Proofs Absence Proofs
Max. Min. Avg. Max. Min. Avg.

Gener. (µs) 83 38 39 90 61 65
Verif. (µs) 277 165 167 233 202 207
Size (bytes) 800 798 799 1282 848 919

Table 2: Processing times and proof sizes for the imple-
mented revocation system.

Table 2 shows the performance results for our implementation
(each operation was executed 1000 times). Provers need 39 and 65 µs
on average to generate a presence and an absence proof respectively,
with absence proofs being the common case. To verify a presence
and an absence proof, verifiers need on average 167 and 207 µs
respectively. The length of a presence proof is on average 799 bytes
and of an absence proof 919 bytes.

Similar to CT, the results indicate that the processing and band-
width overhead of the revocation PKIE is not a notable concern for
the performance of a connection setup.

6.2 Amazon Deployment
We analyze the impact of PEC on the connection setup latency,
using Amazon EC2. We create a virtual machine (VM) at each of
the 14 different data centers (spread across four continents). On
each VM, we install our modified TLS stack and the cloud service so
that each VM can function as a client/server and as a cloud service.

First, we evaluate the impact of PEC on the latency of the TLS
handshake. We select 3 out of the 14 VMs to operate as the client,
the server, and the cloud service, using two different selection
strategies: 1) We choose all 3 VMs randomly; we refer to this as the
random selection model. We have experimented with 700 different
combinations for the random model. 2) We first randomly choose
two VMs that serve as the client and the server, and then choose
the cloud VM based on the lowest latency from the client; we call
this the smart selection model. This model provides a more realistic
scenario, since clients are most likely to choose a PoP nearby. We
experimented with more than 150 different combinations for the
smart selection model.

For each selection model and configuration we take three mea-
surements: 1) Latency of the TLS handshake without our frame-
work; this serves as the baseline measurement. 2) Latency when
the client and server deploy PEC, which we call the client-server
deployment model. 3) Latency when only the client deploys PEC,
which we call the client-only deployment model. To reduce noise
and improve accuracy, each measurement is performed 20 times
and the average is used as the latency value.

To put the latency data into perspective, we compute the relative
latency inflation: we normalize the additional latency due to PEC
based on the baseline latency without PEC. Figure 5 shows the
relative inflation as a cumulative distribution function (CDFs) for
the four cases: the combination of the two selectionmodels (random,
smart) with the two deployment cases (client-server, client-only).
The shape of the markers (‘o’ or ‘x’) is used to distinguish the
selection models and the style of the line (solid or dashed) is used
to distinguish the deployment cases.

We make the following four observations based on Figure 5. First,
the latency inflation is higher for the client-only deployment case

ct.ws.symantec.com
http://bit.ly/294UNVr

0 20 40 60 80 100
Relative Latency Inflation (%)

0.0

0.2

0.4

0.6

0.8

1.0
C
D
F

[Random] Client-Server

[Random] Client-only

[Smart] Client-Server

[Smart] Client-only

Figure 5: Latency Inflation of the TLS Handshake for the
Amazon Deployment.

(comparison of solid lines to dashed lines). This is expected since
the ServerHello is sent to the cloud at a later stage, once the client
has received it from the server (see Figure 2a and Figure 2b).

Second, the latency inflation is significantly higher for the ran-
dom selection model compared to that of the smart model. This is
due to the higher probability of choosing a combination of 3 VMs
where the client-cloud latency or the server-cloud latency is much
higher than the client-server latency. For instance, the latency in-
flation is more than 130% when the client and server are located in
East Asia (e.g., Korea and Japan), but the cloud VM is located in the
U.S. East Coast (e.g., Ohio).

Third, for some experiments there is a latency deflation up to
5% (note that the x-axis does not start at 0). Such a deflation is not
possible for our protocol, since the TLS connection setup does not
complete until the client receives the CCS message from the server,
even if the client receives the proof from the cloud in the meantime.
We observe the small deflation rate because of measurement noise
due to changes in network conditions.

Finally, for the smart model the latency inflation is less than 1%
for 85% of the measurements in the client-only deployment and for
91% of the client-server deployment case. This result suggests that
the latency overhead due to PEC is negligible for the majority of
TLS connections.

6.3 Large-Scale Simulation
We try to simulate a large-scale deployment scenario by measuring
the connection setup latency and by estimating the operational
costs to the cloud provider.

6.3.1 Latency. In Section 6.2, we have shown that the latency
inflation due to PEC is less than 2% in over 90% of cases, as long as
the cloud is located close to the client. In this section, we evaluate
latency inflation for a wider geographical distribution of clients and
servers. Additionally, we analyze how the footprint of the cloud
provider, i.e., the number and distribution of its PoPs, influences
the latency inflation.

For this experiment, we use RIPE Atlas7 for a more realistic
distribution of clients and servers. Atlas provides a testbed with
more than 9,000 nodes (probes and anchors) across 180 countries.
We randomly choose 400 probes to simulate clients, and we choose
all 245 anchors to simulate servers. We use anchors to simulate
the servers since they are typically installed in better provisioned
7https://atlas.ripe.net/

networks that are more amenable to incoming measurement traffic
(e.g., ICMP ping requests).

We also evaluate the impact of the cloud provider’s footprint. We
use Amazon (based on the 14 VMs we have allocated) and Akamai’s
CDN network as cloud providers with a small and a large footprint
respectively; for Akamai, we assume that computing facilities are
collocated with the CDN edge servers.

For this experiment, we face the following two constraints. First,
we cannot run our modified OpenSSL library on Atlas nodes, since
they allow only few types of measurements (e.g., ping, traceroute,
DNS queries). To overcome this limitation and compute the latency
inflation, we base our analysis on latency measurements. This ap-
proach ignores the processing overhead of PEC, but this overhead
is negligible compared to network latencies (Section 6.1). Thus, we
use ping measurements to estimate the latency between two enti-
ties, assuming that the one-way latency is half the RTT. Then, we
project the latency measurements to the number of RTTs required
to complete the connection setup.

Second, to simulate a deployment based on Akamai’s CDN, we
need to determine the edge servers that are closest to the clients. To
this end, we leverage Akamai’s DNS-based solution: we generate
DNS queries from the RIPE probes that simulate the location of the
clients. The DNS responses contain the addresses of the Akamai
servers that are closest to the clients and we use them as the cloud’s
PoPs.

Figure 6 shows the relative latency inflation for the four cases:
combination of two deployment models (client-server, client-only)
for the two different cloud providers (Akamai, Amazon). The shape
of the markers (‘o’ or ‘x’) is used to distinguish the cloud providers
and the style of the line (solid or dashed) is used to distinguish the
deployment cases. Only the upper 20% of the CDF is shown in the
Figure.

We make four observations: 1) Overall, latency inflation due to
PEC is less than 0.5% for 90% of the cases. This result is similar
to the result for the Amazon deployment with smart selection
(Section 6.2). 2) Latency inflation is lower when the cloud has a
larger footprint (comparison of lines with ‘x’ markers against ‘o’
markers). 3) Latency inflation is lower when both client and server
deploy, similar to what we have seen in Section 6.2 (comparison of
solid lines to dashed lines). 4) The client-server deployment model
on a smaller cloud footprint has a lower latency inflation than the
client-only deployment model on a larger cloud footprint. This
suggests that the deployment model is more important than the
cloud footprint in minimizing latency inflation.

6.3.2 Cost Estimation. We estimate the operational costs to the
cloud provider for a large-scale deployment of PEC. Due to the
difficulty of obtaining accurate statistics about traffic patterns, we
use conservative estimates in order to compute upper bounds. We
assume an Amazon cloud deployment and we use Amazon stan-
dard pricing, but for large deployments much lower prices would be
negotiated. To compute the monthly cost, we need the inbound and
outbound traffic volume and the number of computing resources

https://atlas.ripe.net/

Data In (TB/day) Data Out (TB/day) Data Cost Computing Cost Total Cost

Iceland 0.163 0.071 $194 $15 $209
Spain 18.57 8.15 $17,760 $390 $18,150
U.S. 140.7 61.77 $104,888 $2970 $107,858

Global 1740.66 764.18 $1,211,236 $36,615 $1,247,851
Table 3: Estimated monthly operational costs (traffic volume, computing resources, and their sum) to the cloud provider.

0 1 2 3 4 5 6
Relative Latency Inflation (%)

0.80

0.85

0.90

0.95

1.00

C
D
F

[Akamai] Client-Server

[Akamai] Client-only

[Amazon] Client-Server

[Amazon] Client-only

Figure 6: Latency Inflation of the TLS Handshake for the
Large-Scale Simulation.

to support the TLS connection rate.8 We assume that all TLS con-
nections obtain service from both our implemented PKIEs (CT and
RITM).

TLS Traffic Patterns.We analyze a private 24-hour trace of actual
HTTPS traffic from SWITCH, a major educational ISP in Switzer-
land.9 The data contains more than 1.2 million unique IPs and more
than 74 million HTTPS entries. We compute the HTTPS connection
setup rate per client and consider the maximum rate we observe.
Then, we project the computed traffic rate to larger client bases in
order to get intuition about large-scale deployments.

For the inbound traffic, the cloud receives ServerHello mes-
sages encapsulated in UDP packets. To estimate the traffic volume,
we conduct TLS handshakes with Alexa’s top 1000 domains and we
compute an average ServerHello message length of 4553 bytes.
For the outbound traffic, the length of each message is constant as
we use the sum of the maximum size of CT and revocation proofs
from our microbenchmarks (Section 6.1).

Computing Resources. In order to estimate the processing costs,
we compute the number of Amazon server instances required to
process a given load. We use Amazon’s t2.medium instances,10
which are capable of hosting the data structures needed for CT
and RITM in their RAM. We conduct a throughput experiment and
measure that one machine can serve 1900 connections per second
for the common case, i.e., certificates that exist in the CT log and
are not revoked.

Case Studies.We compute the operational costs for three different
countries, ranging from small to large populations of active Internet
users (Iceland, Spain, and the U.S.). We get the active Internet users
for a country through the country’s population and the Internet
penetration percentage [40]. Moreover, we compute global opera-
tional costs based on the global number of Internet users (approx.
3.55 billion users) [41]. Note that by projecting the connection rate
8Inbound traffic in Amazon is not charged, but we provide it for completeness.
9https://www.switch.ch
10Two virtual CPUs and 4GB memory for $15 per month.

that we observed to a larger population, we obtain an upper bound
for the aggregate traffic rate: the estimated rate per user is based
on unique IP addresses, not based on individual users. Since we
consider multiple users behind a NAT as a single user, the actual
rate per user is lower than the rate per IP address.

Table 3 shows the estimated operational costs per month. Specif-
ically, it shows the daily inbound and outbound data, the monthly
traffic charges based on the outbound data, and the monthly com-
puting costs required for PKIE processing. Our estimations provide
some insight about the order of magnitude of the costs: the cost for
a small country can easily be covered even by the smallest insti-
tutions, whereas the cost for larger countries and even the global
traffic is well within reach of big corporations interested in securing
the PKI (e.g., coalition of content providers or CAs).

7 SECURITY CONSIDERATIONS

Privacy Enhancements. Our framework provides flexibility to
users with respect to privacy: users can choose which cloud service
to use and thus to which entity they disclose contacted domains.
For example, an enterprise may deploy its own PKIE cloud service
so that it does not disclose contacted domains to an untrusted cloud
service (e.g., one operated by Google). This model provides higher
flexibility compared to CRL or OCSP, in which contacted domains
are revealed to the certificate’s CA.

In addition, we design a privacy extension that provides even
stronger privacy guarantees by preventing a third entity from link-
ing contacted domains to the corresponding users. We start with
the following observations: i) Clients’ privacy suffers because their
IP addresses and the domain information is disclosed to the same
entity, i.e., the cloud service. ii) The client’s IP and the domain’s
information are used for two orthogonal tasks: the latter is used to
generate proofs for the domain’s certificate and the former is used
to send the proofs to the client.

Our privacy extension decouples the proof generation from send-
ing the proofs so that the client’s address and the domain is not
disclosed to a single entity at the same time. To this end, we define
a new entity—the forwarder—that sends the proofs to the clients.
Furthermore, splitting the functionalities between the cloud service
and the forwarder must satisfy the constraint that each entity must
have access only to the information that is necessary to perform
its functionality: client addresses must be hidden from the cloud
service and generated proofs must be hidden from the forwarders.

We achieve this information unlinkability bymaking three changes
to the PEC TLS extension (Figure 7). First, the address of a forwarder
is added so that the cloud can forward generated proofs to the
forwarder; our design enables the client to choose the forwarder.
Second, the client generates a symmetric key per connection and
sends it to the server in plaintext. The key is forwarded to the

https://www.switch.ch

Cloud ServiceForwarder

EphID Proofs
EphID Proofs

EphID ServerHello

EphIDClientHello

1. Initiate TLS Handshake

2. Forward Information to

 the Cloud Service

3. Generate &

 Encrypt Proofs

6. Forward Encrypted

 Proofs to Client

4. Send Encrypted

 Proofs to Forwarder5. Obtain ClientID

 from EphID

Figure 7: Communication flow with the privacy enhancement.

cloud service and it is then used to encrypt the proofs. Third, we
substitute the client identifier with an ephemeral identifier (EphID)
that is used by the forwarder to identify the client.

The ephemeral identifier is issued by the forwarder to its clients
and can be linked to the client only by the forwarder. This pre-
vents the cloud from linking the client to its contacted domains.
Specifically, the forwarder issues multiple ephemeral identifiers,
and clients use a different one for each TLS connection. Clients
prefetch multiple ephemeral identifiers to avoid additional latency
during connection establishment. Equation 1 shows how ephemeral
client identifiers are generated: k is a local secret key known only
to the forwarder, and Ek () is a CCA-secure encryption scheme (e.g.,
AES-GCM). This construction enables stateless and efficient map-
pings between a client identifier and the corresponding ephemeral
identifier.

EphID = Ek (ClientID) (1)

The cloud service is also modified to handle the privacy exten-
sion. It encrypts generated proofs using the symmetric key that is
generated by the client and is included in the PEC TLS extension.
Then, it sends the encrypted proofs with the ephemeral identifier
to the forwarder. However, the symmetric key is not included in
the message so that the proofs remain hidden from the forwarder.

Upon reception of encrypted proofs, the forwarder decrypts the
ephemeral identifier (with key k) and obtains the client identifier.
Then, the forwarder sends the encrypted proofs to the client to-
gether with the ephemeral identifier. The ephemeral identifier is
used by the client to look up the one-time symmetric key that was
used by the cloud service to encrypt the proofs.

We highlight two points about the privacy enhancement: i) It
is not used by default, thus the additional overhead is paid only
by users that select it. ii) It involves only efficient symmetric-key
operations to keep the latency and performance overhead low.

Downgrade Attacks. To prevent a client from receiving PKIE ser-
vices, an adversary may tamper with ClientHello and/or Server-
Hellomessages by removing the PEC extension header. Regardless
of which message has been affected, the client assumes that the
server does not deploy PEC and then contacts directly the cloud (as
in the client-only deployment scenario, Section 4.1). Additionally,
the downgrade will be detected either by the client or the server
(depending on which message was changed) after exchanging the
TLS Finished messages that contain hashes over all previously
exchanged messages.

Alternately, an adversary may block the communication channel
between the client and the cloud in an attempt to force an insecure
connection. In this case, the client does not proceed with the con-
nection setup without proof from the cloud service and drops the
connection.

Replay Attacks. An adversary may replay older proofs so that
clients make their decision based on outdated information. For
instance, an adversary may replay a revocation absence proof for
a certificate that was only recently revoked, forcing the client to
establish an insecure connection.

We emphasize that a replay attack is not an attack against the
cloud service, but an attack against a PKIE: the prover nor the cloud
service should be trusted to perform replay prevention; they could
as well be the adversaries that perform replay attacks.

Thus, we argue that the TTP should prevent replay attacks by in-
cluding signed freshness statements in the content that is provided
to the prover. A freshness statement could include information
such as a timestamp and an expiration time, which is passed to
the verifier from the prover, and enables the verifier to judge the
validity of the proof. For example, in CT the log signs with its
private key the root of the tree together with a timestamp. Based
on the trusted timestamp and the MMD, the verifier can decide
whether the information is stale or not. This approach does not
completely eliminate replay attacks, since there exists an attack
window for replaying proofs, but the attack window is confined by
the frequency of the freshness statements.

Reflection Attacks. A malicious client can use PEC to launch a
reflection attack against a victim host. Specifically, the malicious
client generates a ClientHello message with the address of its
victim as the cloud address in the PKIE TLS extension and sends
the ClientHello message to the server. Then, the server reflects
the ServerHello message to the victim.

However, this reflection attack is harder to launch and less effec-
tive than typical reflection attacks (e.g., DNS or NTP based attacks).
Unlike other reflection attacks, the client must make a TCP connec-
tion to the server, creating additional burden for the client compared
to other attacks that typically leverage UDP-based services. Yet, it
is less effective since the reflection attack using PEC has a smaller
amplification factor. Specifically, the amplification factor is approxi-
mately 10 since an average ClientHello message with a PKIE TLS
extension is about 400 bytes, and an average ServerHellomessage
is 4553 bytes (Section 6.3.2). However, reflection attacks based on

DNS can have an amplification factor of 28 and attacks based on
NTP up to 550.11

8 PRACTICAL CONSIDERATIONS
In this section, we discuss practical considerations of PEC from a
technical perspective. We discuss other practical considerations,
such as business models in the appendix.

8.1 System Reliability
Our framework introduces an additional entity and a modified
communication flow that may affect the reliability establishing TLS
sessions. Namely, reliability can be affected by the availability of
the cloud service, packet loss for traffic to/from the cloud, and UDP
traffic that is blocked. We describe how we deal with each issue.

Cloud-service Availability.We leverage cloud deployments for
their high availability, yet an outage is a credible possibility [42].

In order to track the availability of the cloud service, we rely
on the keepalive messages sent by clients to the cloud service.
Keepalive messages have a dual role, as i) they maintain the NAT
state up to date, and ii) they trigger a response from the cloud
indicating that the service is running. If the cloud stops responding
to the periodic keepalive messages, clients get promptly informed
and switch to another cloud service, similar to falling back to a
secondary DNS server.

In case of the privacy extension, users track the availability
both of the cloud service and the forwarder. Note that users can
track directly the availability of the cloud service, since they do not
disclose any other information about contacted domains.

Packet Loss. We have chosen UDP as the transport protocol be-
tween the client-cloud and server-cloud communication. This de-
sign decision favors connection performance due to the reduced
latency (no round-trip for connection setup). As a consequence, we
must explicitly handle packet loss, since it would lead to a deadlock
if traffic is dropped at any of the two communication segments.

To counter packet loss, we use a lightweight reliability protocol
on top of UDP. We use per-packet sequence numbers and timers
to detect loss and reordered packets, and we use the standard TCP
mechanism to update the retransmission timeout [43]. Specifically,
we leverage loss recovery as implemented in QUIC [44], but without
the functionalities for flow control and congestion control since
only a few number of packets is sent.

Blocked UDP traffic. The use of UDP raises connectivity concerns
since users are often behind middleboxes that block UDP traffic;
this would cause availability problems for the client-cloud commu-
nication. Studies performed before the design of QUIC demonstrate
that over 90% of clients can successfully create outbound UDP con-
nections [45]. In case clients cannot connect to the cloud over UDP,
they fallback to TCP as is done in Chrome when QUIC cannot be
used [46]. Furthermore, to avoid the latency overhead of TCP, the
client starts a TCP connection with the cloud and sends periodic
keepalive messages (packets with null data). Whenever the cloud
service generates proofs for a connection of the client it sends them
over the active TCP connection.
11https://www.us-cert.gov/ncas/alerts/TA14-017A

On top of our reliability mechanisms, we envision that browser
vendors will build in additional fallback solutions when proofs are
not delivered. Browser vendors are reluctant to implement solutions
that sacrifice availability for security and therefore they usually
provide warnings to the clients. A similar approach can apply also
for our framework, so that clients will receive appropriate warning
messages, if proofs from the cloud service are not delivered.

8.2 Deployment

Client-Side Middleboxes. Our solution favors a client-centric
approach since it has proven easier to update clients than servers.
However, there are cases in which it is difficult to update clients
(e.g., hardware-constrained devices like in IoT settings). For such
clients, PKIE middleboxes can be deployed in clients’ networks to
offer the PKIE functionality. Furthermore, ISPs can push the PKIE
functionality as updates to home routers that are distributed by
them to the customers, even eliminating the necessity of deploying
new hardware for PKIE middleboxes.

A PKIE middlebox keeps state per TLS session and implements
common middlebox operations: 1) Using deep-packet-inspection,
it intercepts TLS handshakes and redirects the server’s certificate
to the cloud. 2) It halts the server’s CCS message until the proof
arrives from the cloud. 3) It forwards the server’s CCS message if
the verification is successful. The latency inflation of this approach
is similar to the client-only deployment, since the middlebox is
placed in the client’s network.

However, the increase in latency may affect the TCP state ma-
chine of the server: if the proof is delayed, the server will start
retransmitting its CCS message since no acknowledgment from the
client has been received. Our evaluation (Section 6.3.1) shows how
it is possible to minimize the latency inflation if the cloud has a
large footprint with PoPs close to the Internet edge.

Browser Updates. Clients need to be updated to support PEC.
Specifically, this can be achieved by updating the TLS libraries of
browsers. However, we do not have to rely on browser vendors
to implement verifiers. Instead, entities that offer PKIE provers
can develop the corresponding verifiers and offer them as browser
plugins. If a PKIE becomes popular, it can then be integrated into
the core browser application.

9 OTHER RELATEDWORK
APLOMB [31] is an enterprise-focused solution to outsource mid-
dlebox processing to the cloud. The authors show that enterprises
can transfer most of their in-house middleboxes to highly available
cloud services and benefit from reduced costs for infrastructure,
personnel, and management. We apply this principle for a different
purpose—to enable mass adoption of multiple PKIEs at a location
where they can be accessed universally. Additionally, our evaluation
confirms the cost-effectiveness of cloud deployments.

TLSDeputy [47] is a cloud-based system that supports residential
clients (e.g., IoT devices) to perform TLS operations (e.g., certifi-
cate validation). The proposal builds on OpenFlow-enabled residen-
tial switches and cloud-based controllers and middleboxes. This
approach introduces substantial latency for all flows due to the
switch-controller communication (especially because the controller

is placed in the cloud). Furthermore, outsourcing the actual deci-
sion for connection acceptance to the cloud implies a weak and
impractical threat model: the controller, the middlebox, the switch,
and the communication channels between them must be trusted.

10 CONCLUSIONS
We believe that sustainable evolution is the key to a healthy TLS PKI.
To this end, we have proposed a framework that leverages elastic
and highly available computing resources in the cloud to deploy
PKI enhancements. We have shown that our solution introduces
little overhead to TLS handshakes—less than 2% on average—and
that it is cost-effective; the operational costs are well within reach
for interested corporations. Given a viable deployment path for
new enhancements, we would be intrigued to see how the PKI
ecosystem will evolve in the future.

11 ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their insightful
feedback. The research leading to these results has received funding
from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013)/ERC grant agree-
ment 617605; from the IITP grant funded by the Korean government
(MSIT) (No.2016-0-00157, Development of self-certifying ID based
trustworthy networking technology); and, from SUTD SRG ISTD
2017 128 grant. We also gratefully acknowledge support by ETH
Zürich and the Zürich Information Security Center (ZISC).

REFERENCES

[1] “Let’s Encrypt!” "https://letsencrypt.org/".
[2] A. Manousis, R. Ragsdale, B. Draffin, A. Agrawal, and V. Sekar, “Shedding Light

on the Adoption of Let’s Encrypt,” arXiv preprint arXiv:1611.00469, 2016.
[3] M. Aertsen, M. Korczyński, G. Moura, S. Tajalizadehkhoob, and J. v. d. Berg, “No

domain left behind: is Let’s Encrypt democratizing encryption?” arXiv preprint
arXiv:1612.03005, 2016.

[4] “AWS Certificate Manager Pricing,” "http://amzn.to/2k7NyO0".
[5] “Introducing Universal SSL,” "http://bit.ly/1rvItNz".
[6] B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,” Tech. Rep., 2013.
[7] EFF, “Sovereign Keys: A Proposal to Make HTTPS and Email More Secure,”

"http://bit.ly/2jSH9Jd", 2011.
[8] T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and V. Gligor, “Accountable Key

Infrastructure (AKI): A Proposal for a Public-key Validation Infrastructure,” in
Proc. of the ACM International Conference on World Wide Web (WWW), 2013.

[9] D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig, R. Sasse, and P. Szalachowski,
“ARPKI: Attack Resilient Public-Key Infrastructure,” in Proc. of the ACM
Conference on Computer and Communications Security (CCS), 2014.

[10] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile,” RFC 5280, IETF, 2008.

[11] A. Langley, “Revocation Checking and Chrome’s CRL,” "http://bit.ly/2k7DCE9",
2015.

[12] “Mozilla’s Revocation Plan,” "https://wiki.mozilla.org/CA:RevocationPlan".
[13] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams,

“X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP,” RFC 6960, IETF, 2013.

[14] Y. Pettersen, “The Transport Layer Security (TLS) Multiple Certificate Status
Request Extension,” RFC 6961, IETF, 2013.

[15] P. Szalachowski, L. Chuat, T. Lee, and A. Perrig, “RITM: Revocation in the
Middle,” in Proc. of the IEEE International Conference on Distributed Computing
Systems (ICDCS), 2016.

[16] P. Szalachowski, S. Matsumoto, and A. Perrig, “PoliCert: Secure and Flexible
TLS Certificate Management,” in Proc. of the ACM Conference on Computer and
Communications Security (CCS), 2014.

[17] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs, A. Mislove,
A. Schulman, and C. Wilson, “An End-to-End Measurement of Certificate
Revocation in the Web’s PKI,” in Proc. of the ACM Internet Measurements
Conference (IMC), 2015.

[18] “Certificate Transparency Will Be Mandatory in Chrome,” "http://ibm.co/
2eGf9SC".

[19] H. Tschofenig and T. Gondrom, “Standardizing the Next Generation Public Key
Infrastructure,” in Proc. of the Workshop on Improving Trust in the Online Market-
place, 2013.

[20] T. Wolf, J. Griffioen, K. L. Calvert, R. Dutta, G. N. Rouskas, I. Baldine, and
A. Nagurney, “Choice As a Principle in Network Architecture,” in Proc. of the
ACM SIGCOMM Conference, 2012.

[21] X. Yang, D. Clark, and A. W. Berger, “NIRA: A New Inter-domain Routing
Architecture,” IEEE/ACM Trans. Netw., 2007.

[22] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan, W. Wu,
A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and P. Steenkiste, “XIA: Efficient
Support for Evolvable Internetworking,” in Proc. of the USENIX Conference on
Networked Systems Design and Implementation (NSDI), 2012.

[23] R. R. Sambasivan, D. Tran-Lam, A. Akella, and P. Steenkiste, “Bootstrapping
Evolvability for Inter-Domain Routing,” in Proc. of the ACM Workshop on Hot
Topics in Networks (HotNets), 2015.

[24] S. Ratnasamy, S. Shenker, and S. McCanne, “Towards an Evolvable Internet
Architecture,” in Proc. of the ACM SIGCOMM Conference, 2005.

[25] D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives: Improving ssh-style
host authentication with multi-path probing.” in Proc. of the USENIX Annual
Technical Conference (ATC), 2008.

[26] M. Marlinspike, “Convergence,” http:// convergence.io, 2011.
[27] M. D. Ryan, “Enhanced Certificate Transparency and End-to-End EncryptedMail,”

in Proc. of the Network and Distributed System Security Symposium (NDSS), 2014.
[28] V. Cheval, M. Ryan, and J. Yu, “DTKI: a new formalized PKI with no trusted

parties,” arXiv preprint arXiv:1408.1023, 2014.
[29] M. O’Neill, S. Heidbrink, S. Ruoti, J. Whitehead, D. Bunker, L. Dickinson, T. Hen-

dershot, J. Reynolds, K. Seamons, and D. Zappala, “TrustBase: An Architecture to
Repair and Strengthen Certificate-based Authentication,” in Proc. of the USENIX
Security Symposium (USENIX Security), 2017.

[30] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, D. Tian, K. R. Butler, and A. Alkhe-
laifi, “Securing SSL Certificate Verification Through Dynamic Linking,” in Proc.
of the ACM Conference on Computer and Communications Security (CCS), 2014.

[31] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar,
“Making Middleboxes Someone else’s Problem: Network Proc.ssing As a Cloud
Service,” in Proc. of the ACM SIGCOMM Conference, 2012.

[32] D. E. 3rd, “Transport Layer Security (TLS) Extensions: Extension Definitions,”
RFC 6066, IETF, 2011.

[33] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, M. Munafò,
K. Papagiannaki, and P. Steenkiste, “The Cost of the "S" in HTTPS,” in Proc.
of the ACM Conference on Emerging Networking Experiments and Technologies
(CoNEXT), 2014.

[34] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating Denial of Service
Attacks which Employ IP Source Address Spoofing,” RFC 2827, IETF, 2000.

[35] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption Function,”
in Proc.edings of Advances in Cryptology, 1988.

[36] L. Nordberg, D. Gillmor, and T. Ritter, “Gossiping in CT,” Internet-Draft draft-
linus-trans-gossip-ct-04, 2017.

[37] M. Chase and S. Meiklejohn, “Transparency Overlays and Applications,” in Proc.
of the ACM Conference on Computer and Communications Security (CCS), 2016.

[38] NIST, “FIPS 180-4, Secure Hash Standard,” http://bit.ly/1nIPyYX, 2012.
[39] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed High-

security Signatures,” Journal of Cryptographic Engineering, 2012.
[40] “Internet Users by Country,” "http://bit.ly/1ywyEl8", 2016.
[41] “Internet Users,” "http://bit.ly/RdZ6QH".
[42] AWS, “Summary of the Amazon S3 Service Disruption in the Northern Virginia,”

"https://aws.amazon.com/message/41926/", 2017.
[43] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s Retransmission

Timer,” RFC 6298, IETF, Jun. 2011.
[44] Google, “QUIC Loss Detection and Congestion Control,” "http://bit.ly/2pNN5Tw",

2011.
[45] J. Roskind, “Quick UDP Internet Connections,” "http://bit.ly/2rjBgpb", 2013.
[46] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk, “QUIC: A UDP-Based Secure and

Reliable Transport for HTTP/2,” "http://bit.ly/2qs0kMz", 2016.
[47] C. R. Taylor and C. A. Shue, “Validating security protocols with cloud-based

middleboxes,” in Proc. of the IEEE Conference on Communications and Network
Security (CNS), 2016.

[48] E. Rescorla, “The transport layer security (TLS) protocol version 1.3,” 2016.
[49] J. G. Beekman, J. L. Manferdelli, and D. Wagner, “Attestation Transparency:

Building secure Internet services for legacy clients,” in Proc. of the ACM Asia
Conference on Computer and Communications Security (AsiaCCS), 2016.

[50] D.-Y. Yu, A. Ranganathan, R. J. Masti, C. Soriente, and S. Capkun, “SALVE: Server
Authentication with Location Verification,” in Proc. of the ACM Conference on
Mobile Computing and Networking (MobiCom), 2016.

[51] A. Abdou and P. van Oorschot, “Server Location Verification and Server Location
Pinning: Augmenting TLS Authentication,” arXiv preprint arXiv:1608.03939, 2016.

https://letsencrypt.org/
http://amzn.to/2k7NyO0
http://bit.ly/1rvItNz
http://bit.ly/2jSH9Jd
http://bit.ly/2k7DCE9
https://wiki.mozilla.org/CA:RevocationPlan
http://ibm.co/2eGf9SC
http://ibm.co/2eGf9SC
http://convergence.io
http://bit.ly/1nIPyYX
http://bit.ly/1ywyEl8
http://bit.ly/RdZ6QH
https://aws.amazon.com/message/41926/
http://bit.ly/2pNN5Tw
http://bit.ly/2rjBgpb
http://bit.ly/2qs0kMz

A TLS ISSUES

Session Resumption. A client who has previously negotiated
a session with a server may perform an abbreviated handshake,
called a session resumption—an expeditedmethod to reconnect with
the server. Session resumption introduces a security implication
because the client implicitly accepts the server’s certificate, which
was received during the initial TLS handshake.

In this case, the security policy that is followed is up to the
client: the client may trust the proof that was received during the
initial handshake and proceed normally with session resumption.
Alternatively, the client may contact the cloud service for a fresh
proof before proceeding with session resumption. This approach
may incur additional latency (RTT to the cloud).

TLS 1.3. TLS 1.3 [48]—the latest version of the protocol (still work
in progress)— introduces differences to the TLS handshake in order
to reduce connection latency by one RTT. Since the connection
latency is decreased, PEC increases the relative latency inflation.

We perform the same latency evaluation as in Section 6.3.1. We
also use the same RTT measurements between RIPE Atlas and our
Amazon instances. Our simulation shows that PEC increases latency
of TLS 1.3 by 6.5% on average. Differently put: PEC reduces the
latency benefit of TLS 1.3 over TLS 1.2 by 3%, which indicates that
PEC does not cancel the latency benefits of TLS 1.3 over TLS 1.2.

B BUSINESS MODELS
Although we have specified the components of the cloud service,
we have not specified the entities that operate each component. We
believe that different business models may evolve, based on today’s
practices. In what we consider the most realistic scenario, a large
corporation that operates its own cloud infrastructure and acts as a
TTP can operate the whole system: the cloud infrastructure to the
cloud service to the TTP.

Alternately, a cloud provider can offer part of the PEC cloud
service as a service. Specifically, the cloud provider offers the basic
services that are needed (e.g., middleware application) so that third
parties can operate their provers.

Moreover, a cloud provider can simply offer its computing and
networking resources to interested parties (Infrastructure-as-a-
Service model). A coalition of entities would come together to
operate their provers and coordinate to run the middleware appli-
cation.

C OTHER PKIES
We demonstrated the operation of PEC using two PKIEs, how-
ever, there are many PKIEs that follow the model described in
Section 3.2.2.

PoliCert [16] is a log-based approach that enables domain own-
ers to specify fine-grained security policies about the use of their
certificates. Implementing a PoliCert prover on PEC can help do-
mains to make their security policies transparent and confine the
range of malicious certificates that an attack can forge. In a similar
fashion, PEC combined with Attestation Transparency [49], can
provide verifiable information to users about what services exist
and what they do.

In addition, PEC can foster the deployment of novel proposals
that leverage location verification as an additional authentication
factor in TLS [50, 51]. PEC can serve as a centralized relay of au-
thentic location information obtained from the corresponding TTP.

	Abstract
	1 Introduction
	2 Lessons Learned From Related Work
	3 PEC Overview
	3.1 Design Choices
	3.2 System Model

	4 Protocol Details
	4.1 Extending TLS
	4.2 Cloud Operations

	5 Case Studies
	5.1 Certificate Transparency
	5.2 Revocation

	6 Evaluation
	6.1 Microbenchmarks
	6.2 Amazon Deployment
	6.3 Large-Scale Simulation

	7 Security Considerations
	8 Practical Considerations
	8.1 System Reliability
	8.2 Deployment

	9 Other Related work
	10 Conclusions
	11 Acknowledgments
	References
	A TLS Issues
	B Business Models
	C Other PKIEs

