
Message-In-a-Bottle: User-Friendly and
Secure Key Deployment for Sensor Nodes∗

Cynthia Kuo Mark Luk Rohit Negi Adrian Perrig
Department of Engineering Department of Electrical Department of Electrical Department of Electrical

and Public Policy and Computer Engineering and Computer Engineering and Computer Engineering

Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

cykuo@cmu.edu mluk@cmu.edu negi@ece.cmu.edu perrig@cmu.edu

Abstract
Existing protocols for secure key establishment all rely

on an unspecified mechanism for initially deploying secrets
to sensor nodes. However, no commercially viable and se-
cure mechanism exists for initial setup. Without a guarantee
of secure key deployment, the traffic over a sensor network
cannot be presumed secure.

To address this problem, we present a user-friendly proto-
col for the secure deployment of cryptographic keys in sen-
sor networks. We propose a collection of five techniques to
prevent an attacker from eavesdropping on key deployment.
To demonstrate feasibility for real-world use, we implement
our protocol on Telos motes and conduct a user study.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security

and Protection

General Terms
Security, Human Factors

Keywords
Key deployment, sensor network, Faraday cage, wireless

communication, human error

∗ This research was supported in part by CyLab at Carnegie
Mellon under grants DAAD19-02-1-0389 and MURI W 911 NF
0710287 from the Army Research Office, and grants CNS-0347807
and CNS-0627357 from the National Science Foundation, and a
grant from Bosch. The views and conclusions contained here are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either express or
implied, of ARO, Bosch, CMU, NSF, or the U.S. Government or
any of its agencies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’07, November 6–9, 2007, Sydney, Australia.
Copyright 2007 ACM 1-59593-763-6/07/0011 ...$5.00

1 Introduction

Deploying cryptographic keys in a secure manner to sen-
sor nodes is a prerequisite for secure sensor network opera-
tion. If the cryptographic keys are compromised during key
setup, attackers can access the data transmitted – even if se-
cure data communication protocols are used.

Unfortunately, numerous protocols for secure key estab-
lishment all rely on a pre-existing shared secret. The secret
is magically loaded by an unspecified mechanism. For ex-
ample, the TinySec [14] authors state that key “distribution
is relatively simple; nodes are loaded with the shared key be-
fore deployment.” SPINS and the plethora of random key
pre-distribution papers also rely on unspecified key distri-
bution mechanisms [6, 10, 11, 18, 24]. Outside of the aca-
demic literature, the ZigBee [34] security specification pro-
vides two suggestions for loading keys onto sensor nodes.
First, cryptographic keys could be sent in the clear, “result-
ing in a brief moment of vulnerability.” Alternatively, facto-
ries could imprint keys on sensor nodes, but customers may
not trust the keys.

This paper proposes a secure mechanism for initial key
setup. Our protocol deploys cryptographic keys (either
shared secret symmetric keys or authentic public asymmetric
keys) to wireless sensor nodes. Without loss of generality,
we consider the problem of setting up a unique shared se-
cret key between the base station and each node. The unique
keys can be used to bootstrap group keys or public/private
key pairs.

Secure key deployment in sensor networks is uniquely
challenging. We designed our protocol to be easy to use
despite the demanding requirements of large-scale, secure
network deployments:

• No Physical Interfaces. Commodity wireless sensors
may not be equipped with physical interfaces, such
as USB connectors, screens, or keypads. This serves
two purposes. First, removing physical interfaces re-
duces per-node manufacturing costs. Second, it pro-
tects the nodes from environmental hazards. Sensor
nodes are ideal for deployment in extreme environmen-
tal conditions, such as on major highways or bridges,
on naval vessels, under water, and in fire-prone wilder-
ness [12, 21, 28, 32]. Therefore, key setup must take
place over the wireless communication interface.

• Secure Key Deployment, Wirelessly. Wireless com-
munication is vulnerable to eavesdropping and the in-
jection of malicious traffic. For example, suppose an
organization uses Diffie-Hellman to secure key setup.
The exchange may be compromised with an active man-
in-the-middle attack. Thus, resistance to eavesdropping
and injection attacks is critical.

• Key Deployment by Non-experts. At first glance, re-
lying on factory-installed keys is an attractive option for
key deployment. However, pre-installed keys cannot be
trusted – unless the entire distribution chain is secured,
from factory to customer. Since this is unlikely, keys
will be deployed by each customer, and non-expert per-
sonnel will be managing the installation process. The
process must be simple, secure, and tolerant of human
error.

• Batch Deployment for Multiple Nodes. Proponents of
sensor networks envision large-scale deployments for
various monitoring applications. A viable setup mech-
anism must support key deployment for multiple nodes
– and require minimal effort and time.

Our protocol, Message-In-a-Bottle (MIB), also supports
networks with less stringent requirements. However, large-
scale networks realize MIB’s greatest benefits.

Contribution. We propose Message-In-a-Bottle (MIB),
a user-friendly protocol for initial key deployment in sensor
networks. MIB is the first secure key setup protocol designed
for low-cost, commodity sensor nodes. It enables fast, secure
wireless key deployment for multiple nodes.

Outline. In the next section, we define our problem space,
assumptions, and attacker model. We then characterize MIB
for single node deployment before describing the protocol
for multiple node deployment. Section 3 introduces MIB
for single node deployment. This is followed by a security
analysis, an implementation, and a user study in Sections 4,
5, and 6, respectively. Section 7 subsequently extends MIB
for key deployment onto multiple nodes. We compare our
scheme to related work in Section 8.

2 Problem Definition, Assumptions and At-
tacker Model

2.1 Problem Definition
Consider the following problem: a customer receives a

shipment of new sensor nodes. Using wireless communica-
tion, how can a shared secret be set up between a trusted base
station and each new uninitialized node? A viable solution
provides each of the following properties:

• Key secrecy. An attacker has (at best) a negligible prob-
ability of compromising the shared secret.

• Key authenticity. A new node receives the (unaltered)
key that the base station intended for it to receive.

• Forward secrecy. Compromising the key on one node
does not compromise the keys on previously deployed
nodes.

• Demonstrative identification. Users physically ma-
nipulate devices in such a way that they are certain
which devices are communicating.

• Robust to user error. A system should be intuitive for
non-experts. It should also be difficult for the human
installer to introduce a vulnerability into the system. A
human error should result in failing to set up a key – not
in a key compromise.

• Cost effective. Secure setup of wireless sensor nodes
requires additional hardware on each node or special-
ized setup hardware. Selecting the most cost effective
approach depends on a variety of factors, such as the
cost of per-node hardware, the cost of specialized setup
hardware, and the number of nodes that will be de-
ployed. Generally, specialized hardware will become
more cost effective as the number of deployed nodes
increases.

• No public key cryptography. The implementation of
public key cryptography adds large amounts of software
code and may be prone to energy-draining Denial of
Service attacks.

2.2 Assumptions
We first assume that installation personnel are trustwor-

thy. These installers may not be security experts, but we
do assume that they can accurately follow simple directions,
such as “if the red light is lit, discard the sensor node.”

Second, we assume the trusted computing base consists of
the base station and the devices used to perform key deploy-
ment (i.e., the keying device and keying beacon introduced
in Section 3).

Finally, we assume that nodes employ secure commu-
nication protocols after the initial key setup. For exam-
ple, MiniSec [20] could be used to provide an authenticated
and/or encrypted communication channel.

2.3 Attacker Model
The goal of the attacker is to compromise the keys shared

by the base station and the sensor nodes.
We adopt the Dolev-Yao attacker model, where an at-

tacker is present in the network and can overhear, intercept,
and inject any messages into the radio communication chan-
nel. An attacker could take the form of a more powerful
device, such as a laptop equipped with a directional antenna.
The attacker is assumed to be present before, during, and af-
ter key deployment. Such an omnipotent attacker is in line
with other research in this area [2, 22].

3 Protocol for Key Deployment
MIB enables a sensor network to establish a secret with

a new node in the absence of prior shared secrets between
the two parties. MIB relies solely on the wireless communi-
cation interface, ensuring that our approach is applicable to
any commodity wireless sensor node. In the following sec-
tion, we first present an overview of MIB. This is followed
by a detailed description of our protocol.

3.1 MIB Participants
Five parties participate in MIB: a base station, a keying

device, a keying beacon, an uninitialized node, and a user.
The goal is to establish a shared secret key between the base
station and the new uninitialized node while satisfying the
properties in Section 2.1. Below, we introduce the partici-
pants in MIB and provide an intuition about how they inter-
act with one another.

Base Station. The base station, a PC-class machine that con-
trols the entire network, delegates key deployment to two
devices: the keying device and the keying beacon. The base
station is not directly involved with key deployment.
New Node. The new node can be in one of three states:
uninitialized, initialized, or rejected. When node M is first
powered on or reset, it has no prior keying information and
is uninitialized. Once the node receives a key, it is initialized.
The key is the shared secret between the base station and the
new node. If an error occurred during key deployment, the
node is rejected. Rejected nodes do not share a valid secret
key with the base station.
Keying Device. During key deployment, the keying de-
vice and the uninitialized node are placed inside a Faraday
cage. The keying device sends keying information to the
node when the Faraday cage is closed. Later, the new node
uses the keying information to derive the key.
Keying Beacon. During key deployment, the keying beacon
remains outside of the Faraday cage. The keying beacon has
three purposes: 1) detect when the Faraday cage is closed; 2)
jam the communication channel to prevent an eavesdropper
from overhearing keying information leaked from the Fara-
day cage; and 3) inform the user of the status and outcome
of the deployment.
User. The user of MIB is the person (e.g., technician) who
performs key deployment.

3.2 Overview of MIB Protocol
Initially, the keying device and keying beacon exchange

authenticated heartbeat messages. The messages are used to
determine whether the Faraday cage is open. In addition,
the heartbeat messages are also used to maintain loose time
synchronization.

To initiate deployment, the user places the keying device
and the new node inside the Faraday cage. The keying bea-
con remains outside of the Faraday cage. Once the Faraday
cage is closed, the keying device and the keying beacon can
no longer exchange heartbeat messages.

Inside the Faraday cage, the keying device begins key
deployment. The keying device sends a key to the new
node in several segments, although one segment is withheld.
We refer to messages exchanged inside the Faraday cage as
shielded messages. Meanwhile, the keying device monitors
the background noise in the Faraday cage. If the background
noise exceeds a certain threshold (which indicates that the
protocol is under attack or that the Faraday cage is faulty),
key deployment is aborted.

Outside of the Faraday cage, the keying beacon jams the
wireless frequency of the shielded messages during key de-
ployment; this overpowers any shielded messages that may
leak. After a set time period, the keying beacon indicates to
the user that key deployment has completed. The user opens
the Faraday cage. If the protocol encountered an error, the
keying device informs the keying beacon, who informs the
user. If the protocol executed as expected, the keying device
sends the following information to the keying beacon: the
last key segment, the time periods in which shielded mes-
sages were exchanged, and a random validation string. The
keying beacon uses the time periods to confirm that the jam-
ming and the key exchange occurred simultaneously. The

Each mote has three color LEDs: Red,

Green, and Blue.

You will be working with three types of

motes: Controller, Numbered Mote, Secret

Keeper.

Step 1.

Verify that all three LEDs (red, green, and

blue) on the Controller and the Secret

Keeper are blinking simultaneously.

Gently place the Numbered mote in the

container.

Step 2.

Screw the cap on the container snugly.

When no radio signals can escape the con-

tainer, the Controller’s blue LED will be lit.

Step 3.

Wait until the Controller begins to blink its

blue LED. This should take about 5 sec-

onds.

Step 4.

Open the container and remove the Num-

bered mote. Record the result on the Re-

sults page.

• If the Controller’s green LED is lit,

encryption keys were successfully

exchanged.

• If the Controller’s red LED is lit, the

key exchange process was not suc-

cessful.

• It does not matter what color (if any)

the Numbered mote is lit.

Figure 1: Instructions for Key Deployment

These are the instructions that we provided to end users. Note

that we modified the terminology for end users: the keying device

is called the Secret Keeper; the keying beacon is called the Con-

troller; and the new node is called the Numbered mote.

keying beacon then sends the last key segment to the new
node. The new node reconstructs the key using all of the
segments and computes the validation string. After the key-
ing beacon verifies the new node’s response, it informs the
user that deployment succeeded.

From a user’s perspective, the key deployment process is
simple. The directions from our user study are shown in Fig-
ure 1. Non-expert users can use MIB with little to no train-
ing. Moreover, MIB is intuitive. Placing the keying device
and the new node in the Faraday cage provides demonstrative
identification. The user knows precisely which devices are
engaged in key deployment. In addition, the Faraday cage
provides assurances that the new node receives the key that
the keying device intended for it to receive.

3.2.1 Why Is a Faraday Cage Insufficient?
A reader may object that a Faraday cage is sufficient for

secure key deployment, as suggested by Castelluccia and
Mutaf [4]. Theoretically, this may be true. However, real-
world factors introduce subtleties that must be addressed for
security purposes. In practice, a Faraday cage is imperfect; it

cannot block radio signals completely. It only attenuates sig-
nals. There are also usability issues: end users must seal the
Faraday cage completely; they must not open the Faraday
cage during key deployment; and they must reliably judge
whether key deployment succeeded. MIB addresses these
factors so that key deployment is both secure and practical.

3.2.2 Protecting Shielded Messages
Because a Faraday cage cannot block radio signals com-

pletely, MIB leverages five techniques to protect shielded
messages.

1. The Faraday cage greatly attenuates the shielded mes-
sage transmissions.

2. All shielded messages are transmitted at minimum
power.

3. The keying beacon jams the wireless frequency of the
shielded messages – at full power – outside of the Fara-
day cage. If any wireless signals leak from the Faraday
cage, the keying beacon’s stronger signal will interfere
with and overpower the shielded messages.

4. The radios of many sensor nodes transmit in spread
spectrum to achieve a high signal processing gain.
Shielded messages do not use spread spectrum.

5. The deployed secret key is a function of all the shielded
messages. In order to obtain the key, attackers need to
overhear all of the shielded messages.

3.3 Detailed Description
We use the notation in Figure 2 to describe our protocol

and cryptographic operations. Note that the ID of a node can
be used to refer to the node itself (e.g., A represents both the
node A and the ID of node A). We now describe the details
of our key deployment protocol. Figure 5 shows a timeline
of the protocol.

A→ B : 〈M〉 A sends message M to B.
S Base station.
D Keying Device.
B Keying Beacon.
M New sensor node to receive key.
XMS Master Secret known only to S.
c Counter used by the keying device to disam-

biguate between new nodes.
KD Deployment key used by keying

device D to bootstrap new keys.
KDB Encryption key between D and B

K′DB MAC key between D and B.
KM Key to deploy onto node M.
NA A nonce generated by device A.
PRFK(X) A pseudo-random function computed over ID

of node X , keyed by K.
H(X) A cryptographic hash function computed over

X.
EK(M) Encryption of message M with key K.
MACK(M) Message authentication code of message M

with key K.

Figure 2: Notation

Setup. Prior to key deployment, the base station assigns
keys to the keying device D and the keying beacon B. This

step represents the delegation of key deployment from the
base station to these two devices.

Since the keying device and the keying beacon do not
share any prior secrets with the base station, deploying keys
onto these nodes may be difficult. We suggest using special-
ized keying devices that possess physical interfaces, such as
USB connectors, for securely transmitting keys.

S : KD = PRFXMS
(D)

KDB = PRFXMS
(D||B||0)

K′DB = PRFXMS
(D||B||1)

BS→ D : 〈KD,KDB,K′DB, initial timestamp〉
BS→ B : 〈KDB,K′DB, initial timestamp〉
D : c = 0
User : User places D inside of the Faraday cage and

B outside of the Faraday cage

Figure 3: Base Station Sets Up Keying Device and Keying Bea-

con

As shown in Figure 3, the base station S derives a set of
keys for these devices using a pseudo-random function PRF ,
keyed with a master secret XMS known only to the base sta-
tion. First, the base station derives an encryption key KDB

and MAC key K′DB for communication between D and B.
Next, S derives deployment key KD for the keying device,
which is used by D to derive secret keys for the new nodes.
After each key deployment, D replaces the deployment key
with the hash of the key KD = H(KD). This creates a hash
chain of deployment keys, ensuring that a new deployment
key is used for each node. Using a hash chain provides for-
ward secrecy, since an attacker cannot recreate previously
deployed keys. Finally, D uses a counter c to track how many
times KD has been updated.

After completing the initial setup, the user places the key-
ing device inside the Faraday cage. The keying beacon re-
mains outside.

Step 1 of Key Deployment: Exchange Heartbeat Mes-
sages.

B→ D : 〈timestamp,MACK′DB
(B||timestamp)〉

D→ B : 〈MACK′DB
(D||timestamp)〉

Figure 4: Heartbeat Messages

The keying device and keying beacon exchange the au-
thenticated heartbeat messages shown in Figure 4 to deter-
mine whether the Faraday cage is closed. Heartbeat mes-
sages require strong authentication; without authentication,
an attacker can masquerade as the keying device to the key-
ing beacon.

During the setup phase, the base station sent an initial
timestamp to both devices. This established loose time syn-
chronization. The heartbeat messages in this phase maintain
time synchronization. The keying beacon sends its current
timestamp, which is a monotonically increasing counter. The
keying device adjusts its internal timer and replies immedi-
ately. Note that three rounds of communication are required
to ensure mutual authentication and freshness.

The base station initializes the

keying device and the keying

beacon.

The user powers on the new node.

The user places the new node and

the keying device in the Faraday

cage and closes it.

The keying device sends key

information to the new node.

The keying beacon notifies the

user to open the Faraday cage.

The keying device sends an

activation key k and a response to

the keying beacon.

The keying beacon sends k to the

new node.

The new node reconstructs the key,

computes a response, and sends

the response back to the keying

beacon.

The keying beacon informs the user

whether a key was successfully

deployed.

H
e

a
rt

b
e

a
t

m
e

ss
a

g
e

s
S

h
ie

ld
e

d
 m

e
ss

a
g

e
s

Ja
m

m
in

g

Figure 5: MIB Protocol Timeline

Step 2: Place New Node M inside Faraday Cage. The
user initiates the key deployment protocol by turning on new
node M and placing it inside the Faraday cage. Once the user
closes the Faraday cage, the keying device and keying bea-
con can no longer exchange authenticated heartbeats. Both
devices move to the next step in the protocol.

Step 3a: Deploy Cryptographic Keys.

After the Faraday cage is closed, the keying device D per-
forms three tasks: (1) generates key KM , which will be de-
ployed onto the uninitialized node M; (2) transmits keying
information to M, and 3) monitors background noise.

All messages exchanged in this step are shielded mes-
sages. MIB protects the shielded messages in several ways.
First, the Faraday cage greatly attenuates the signal strength
of the messages. Also, shielded messages are transmitted at
minimum power and without spread spectrum encoding.

The shielded messages are shown in Figure 6. The key-
ing device D generates key KM by computing the pseudo-
random function PRF over M, keyed with the current value
of deployment key KD. KD is then replaced by the hash of
KD. In addition, the keying device transmits the hash of KM ,

D→∗ : 〈Key Deployment Hello||D||c〉
M→ D : 〈Key Deployment Hello Ack||D||c||M〉
D : KM = PRFKD

(M)

ri
R
←{0,1}80 ∀i ∈ [1,s]

k = KM⊕ r1⊕ r2⊕ ...⊕ rs

h = H(KM)
D→M : 〈h〉
D : KD = H(KD)

c++
f or i = 1...s
D→M : 〈ri〉
D : ti = current time
M→ D : 〈H(ri)〉

Figure 6: Shielded Messages

or h, to the new node M as a commitment; M can later verify
the correctness of KM against h.

Next, the keying device generates s segments of keying
information and transmits them to the new node as follows.
First, it generates s random nonces r1,r2, ...,rs. It then re-
peatedly XORs key KM with each value of ri to generate
an activation key k. Finally, the random nonces r1,r2, ...,rs

are sent to M over s rounds of communication, along with
counter c. M uses these messages to reconstruct KM , as
KM = k⊕ r1 ⊕ r2...⊕ rs. Thus, an attacker must overhear
all s messages to compromise the key. The time periods of
these message exchanges are also recorded as (t1, t2, ..., ts).

The keying device D’s third task is to monitor the back-
ground noise to ensure that the Faraday cage is indeed
closed. If the Faraday cage is not attenuating the signals as
required in the protocol (e.g., the Faraday cage is not closed
properly), the keying device will sense the presence of the
keying beacon and abort key deployment.

D considers the key deployment to be a success as long as
M participates in the protocol as expected.

Step 3b: Outside the Faraday Cage. Meanwhile, the
keying beacon remains outside of the Faraday cage. The
keying beacon times how long the Faraday cage is closed and
jams at full power. The jamming has two purposes. First, it
prevents an eavesdropping attack, since the white noise over-
powers any leaked shielded messages. It also enables the
keying device to determine when the Faraday cage is opened
prematurely. The jamming begins at time ts and lasts for sev-
eral seconds, which is more than enough time for the keying
device to complete Step 3a. After several seconds, B notifies
the user to open the Faraday cage.

Step 4: Key Activation and Verification. After the user
opens the Faraday cage, M’s key must be activated and ver-
ified. If the keying device and keying beacon both agree
that no errors occurred in the previous steps, they activate
key KM . Finally, the keying beacon verifies that M possesses
the correct key when M responds with the correct validation
string. After verification, M considers itself as initialized.
The messages exchanged in this step are shown in Figure 7.

Key activation reveals the last segment of keying infor-
mation to the new node. First, if D considers the deployment
to be successful, it encrypts activation key k and sends it to

D : rp = MACKM
(k)

m = {k,rp, t1, ts}
D→ B : 〈EKDB

(m), MACK′DB
(EKDB

(m))〉
// If B agrees there are no errors, and it was jamming during t1 to ts

B→M : 〈k〉
M : KM = (r1⊕ r2⊕ ...⊕ rm)⊕ k

// M verifies if H(KM) == h
M→ B : 〈MACKM

(k)〉
// B verifies response. If MACKM

(k) == rp
B : signals success

Figure 7: Key Activation and Verification Messages

the keying beacon B, along with the time periods in which D
was sending protocol messages. B considers the deployment
to be successful if it was jamming during the same time pe-
riods. This comparison requires loose time synchronization,
which is established in the heartbeat messages. If B was not
jamming during the appropriate time periods, it signals an
error and aborts key deployment. Otherwise, B decrypts ac-
tivation key k and forwards k to M. Upon receiving activation
key k, new node M has all the information needed to gener-
ate KM . To verify its correctness, node M hashes KM and
compares it against the commitment h received in Step 3.

Next, B verifies that M has the correct key. If M responds
correctly with rp = MACKM

(k), B flashes a success sequence
on its LEDs, indicating to the user that key deployment suc-
ceeded.

If the keying device or the keying beacon recognized any
errors during the key deployment process, B flashes a failure
sequence on its LEDs.

After Key Deployment. When an initialized node M
needs to communicate securely to base station S using key
KM , it identifies itself with its ID M, counter c, and the
keying device’s ID D. Since the base station possesses
the master secret XMS, it can regenerate KM as follows:
KD = Hc(PRFXMS

(D)), and KM = PRFKD
(M).

Subsequently, a base station may wish to rekey the device.
To ensure that new key K′M originate from the base station,
rekey messages must be authenticated and encrypted under
the current key. This prevents attackers from masquerading
as the keying device and performing malicious rekeying. If
the current key is compromised, a manual reset of node is
necessary.

4 Security Analysis
In this section, we discuss potential security issues and

how MIB handles them.

Obtain key KM through eavesdropping. To obtain key
KM , an eavesdropping attacker must overhear all of the
shielded messages and the activation key k. However, the
five techniques proposed in Section 3.2.2 guarantee that any
device outside the Faraday cage cannot eavesdrop on all
shielded messages. A rigorous analysis of this claim, based
on radio transmission power and the attenuation factor of our
Faraday cage, is presented in Section 5.2. Because an at-
tacker cannot eavesdrop on all of the shielded messages, we
ensure that KM remains secret.

Inject a malicious key onto the new node. An attacker
may attempt to deploy his own key onto new nodes by inject-
ing malicious traffic. As a result, the attacker can accomplish
two objectives. First, the new node would be unable to com-
municate securely with the base station, resulting in a denial
of service attack. Second, the new node may mistake the at-
tacker for the base station, allowing the attacker to control
the new node.

An attacker can launch an attack before or after the new
node is placed inside the Faraday cage. When an attack oc-
curs beforehand, the attacker masquerades as the keying de-
vice and deploys his own key onto the new node. The at-
tacker also poses as the keying beacon to send a bogus ac-
tivation key to the new node. The new node then changes
from an uninitialized state to an initialized state. Once this
happens, it refuses to accept a key from the legitimate keying
device inside the Faraday cage. The keying device detects
the anomaly and notifies the user.

Alternatively, an attacker may interfere with legitimate
key deployment by sending a bogus activation key k to the
new node after the Faraday cage is opened. This simply
causes the node to compute an incorrect key. The new node
detects this attack when it compares the hash of the incorrect
key to the commitment it received in the Faraday cage. If the
hash does not match, it discards the bogus activation key k
and waits for the correct one.

Compromise the network by compromising the keying
device. If the keying device is compromised, an attacker
cannot obtain previously deployed keys. Recall that the key-
ing device D uses deployment key KD to generate a unique
key KM for new node M. Once M receives KM , the keying
device replaces KD with the cryptographic hash of KD. Since
it is computationally infeasible to invert a hash function, an
attacker who obtains KD cannot regenerate previous values
of KD. Consequently, compromising the keying device only
yields the current value of KD; all previously generated keys
remain safe.

Initiate key deployment before the Faraday cage is
closed. If an attacker leads the keying device to believe
that the Faraday cage is closed when it is not, he will be
able to eavesdrop on the (un)shielded messages. There are
two ways to achieve this attack: 1) jamming the keying de-
vice and keying beacon so that all heartbeat messages are
dropped, or 2) allowing the keying device to send its heart-
beats but induce collisions on the return heartbeat from the
keying beacon.

In the first attack, the keying beacon jams with full power
and the keying device monitors the background noise when-
ever the Faraday cage is supposedly closed. The keying de-
vice aborts key deployment if the noise level rises above a
predetermined threshold.

In the second attack, the attacker induces collisions only
on the return heartbeat. This causes the keying device to
send shielded messages before the keying beacon begins
jamming. The keying beacon would detect this inconsis-
tency when it compares the time periods it was jamming to
the time periods in which shielded messages were exchanged
(t1, t2, ..., ts).

Prevent the keying beacon from jamming during key de-
ployment. The keying beacon begins jamming when it no
longer hears the keying device’s heartbeat messages. Suc-
cessfully posing as the keying device allows an attacker to
listen for leaked shielded messages. This attack is prevented
by the challenge-response heartbeat protocol that provides
for strong one-way authentication of the keying device to the
keying beacon.

In addition, the time periods in which shielded messages
are exchanged should fall within the time periods in which
the keying beacon is jamming. Even if an attacker finds a
way to masquerade as the keying device, the time periods
will not match.

Wait for the user to make an error. A patient attacker
could wait for the user to make a mistake. However, MIB
was designed to detect user errors and fail safely.

For example, suppose the user closes the Faraday cage
improperly or opens the cage prematurely. An attacker
would like to exploit the error and eavesdrop on shielded
messages that leak from the Faraday cage. However, the
keying beacon jams during the transmission of shielded mes-
sages, and the keying device is monitors the background
noise. If the cage is not closed properly or opened prema-
turely, the keying device will observe that the background
noise exceeds a predetermined threshold. Key deployment
will be aborted.

Alternatively, the user may confuse the keying beacon and
keying device, placing the keying beacon inside the Faraday
cage instead of the keying device. We address this issue in
Section 7.

5 Implementation
This section describes our implementation of MIB on

Moteiv’s Telos motes. Telos motes feature TI MSP430
micro-controllers and ChipCon CC2420 radios. We first ex-
plain the software design and implementation, which was
written in nesC and executed on TinyOS. Next, we measured
the radio signal strength of our implementation. Using these
measurements, we present a mathematical analysis on the
likelihood of an eavesdropper obtaining the key.

5.1 Protocol Implementation

Primitives. Because of stringent energy and computation
constraints on sensor nodes, we select the following cryp-
tographic primitives. Skipjack was chosen as the block-
cipher because of efficient computation and low memory
footprint [15]. To make encryption as flexible as possible,
we set Skipjack’s block size to 64 bits. In addition, because
Skipjack makes a fine pseudo-random permutation (PRP),
we can also use Skipjack as a PRF. We use 80-bit symmet-
ric keys for Skipjack; Lenstra and Verheul recommended
that such keys are considered to be secure until 2012, even
against resourceful adversaries [16].

To meet the stringent memory constraint of sensor nodes,
we construct the encryption, MAC, and hash function with
the same block cipher. We use cipher block chaining (CBC)
to construct the encryption and MAC functions, and Matyas-
Meyer-Oseas mode to construct the hash function.

Keying beacon. The keying beacon has three purposes: 1)
detect when the Faraday cage is closed; 2) jam the communi-
cation channel to prevent an eavesdropper from overhearing
keying information leaked from the Faraday cage; and 3) in-
form the user of the status of the deployment. The keying
beacon’s state diagram is shown in Figure 8.

Error

No longer hears

heartbeats

Jams radio frequency

for 5 seconds

Receives response

from new node

R

G

B

Heartbeat Shielded

Initialized

Reset

Activation

R

G

B

Key exchange

started before

jamming or

other error

R

G

B

R

G

B

R

G

B

Receives k, key exchange

history, and response from

keying device

Sends k to new node

Figure 8: State Diagram for Keying Beacon

A fully colored box indicates that the LED is lit. A half colored box

indicates the LED is blinking.

The keying beacon starts in the Heartbeat state. In this
state, it blinks all three LEDs to indicate that it is exchanging
heartbeat messages with the keying device. Once the Fara-
day cage is closed, the keying beacon misses several con-
secutive heartbeats from the keying device. This causes the
keying beacon to transition into the Shielded state. In the
Shielded state, the keying beacon illuminates its blue LED
and jams at full power. After 5 seconds, the beacon tran-
sitions into the Activation state. It blinks its blue LED and
waits for the user to open the Faraday cage. Once it receives
the keying device’s message, it forwards the activation key
to the new node and waits for its response. A correct re-
sponse causes the keying beacon to transition into the Initial-
ized state. The successful deployment is indicated by illumi-
nating the green LED. Any error causes the keying beacon
to transition into the Error state, where the red LED is lit.

The protocol was designed with simplicity as one of the
main goals. The user only needs to monitor the LEDs on the
keying beacon.

New node. As shown in Figure 9, an uninitialized node
powers on and waits for keying information from the key-
ing device. After it receives enough keying information to
compute key KM , it responds to the keying beacon with a
validation string.

Keying device. The keying device computes and deploys
key KM onto the new node, as illustrated in Figure 10. Like
the keying beacon, the keying device starts in the Heartbeat
state. It blinks all three LEDs and exchanges heartbeats with
the keying beacon. After the user closes the Faraday cage
and the keying device no longer hears heartbeat messages, it
enters the Shielded state. In this state, the keying device lo-
cates the new node and transmits multiple rounds of keying
information to the new node. If this is successful, the key-

Uninitialized Shielded

Initialized

Hears Hello message

from keying device

Receives s rounds of

key information

from keying device

Reset

Activation

Receives k from keying

beacon; Sends response

R

G

B

R

G

B

R

G

B

R

G

B

Optional: Receives new key

K
M

’ from base station

Figure 9: State Diagram for New Node

No longer hears

heartbeats

Error
R

G

B

Heartbeat Shielded
Reset

Activation

R

G

B

R

G

B

R

G

B

Sends s rounds of

key information

to new node

Sends k, key exchange history, and

response to keying beacon

Does not hear node

or other error

Sends error to

keying beacon

Sends Hello

message

Hears keying beacon’s

heartbeat message

Figure 10: State Diagram for Keying Device

A fully colored box indicates that the LED is lit. A half colored box

indicates the LED is blinking.

Figure 11: Our Implementation Using Galvanized Steel Pipe

ing device transitions into the Activation state when the user
opens the Faraday cage. In the Activation state, the keying
device sends an activation key and a validation string to the
keying beacon. If an error occurred in the Shielded state, the
keying device transitions into the Error state instead, and an
error message is sent to the keying beacon. When the keying
beacon is reset, the keying device returns to the Heartbeat
state.

5.2 Radio Measurement
We measured the strength of the keying device’s signal

inside and outside of the Faraday cage. The data were used
to confirm that (1) the uninitialized node inside the Faraday
cage receives the keying device’s transmissions without diffi-
culty and (2) an attacker outside of the Faraday cage cannot
eavesdrop on the shielded messages. We also compare the
security implications when the keying beacon fails to jam
while shielded messages are exchanged and when the keying
beacon jams as specified.

Our assumptions follow. We assume that the keying de-
vice always broadcasts at the minimum transmit power of
Pt =−24 dBm [7] of the CC2420 chip. We also assume that
the keying beacon broadcasts Gaussian white noise in a 5
MHz bandwidth around the carrier frequency of the keying
device at a power of 5 dBm, so as to be within the maximum
power spectral density (PSD) limit specified for the 2.5 GHz
ISM band. Our measurements of the galvanized steel pipe
used as a Faraday cage show that the minimum attenuation
through the pipe is Lcage = 84 dB. Further, since the key-
ing device and the new node are placed next to each other,
the attenuation between them is LDM = 3 dB in our testing
environment. We assume that the eavesdropper may have an
antenna of gain 10 dB, which is typical of a cell-site antenna.

Key Reception at New Node. Thus, the received Signal-
to-Interference Ratio (SIR) of the sensor node is -24 dBm
-3 - (5 dBm-84) = 52 dB while the Signal-to-Noise Ratio
(SNR) is -24 dBm-3-(-106 dBm) = 79 dB. Note that the noise
level of -106 dBm is obtained from the thermal noise PSD
of -113 dBm/MHz [26] and the link bandwidth of 5 MHz.
Both are significantly more than the minimum SNR of 1 dB
required [7] for a packet error rate of 1%, so that the key
reception at the sensor is lossless.

Key Reception at Eavesdropper without Jamming. The
minimum SNR required to achieve channel capacity for
250 kbps over a 5 MHz channel (based on the specifica-
tions of the CC2420 chip) is given by 250 kbps = 5 MHz
× log2(1 + SNR). Thus, the required SNR is -15 dB. Since
channel capacity requires an ideal code, which is not present
in the CC2420 chip, this value of SNR is the most optimistic
value from the point of view of the eavesdropper.

We define RSe to be the eavesdropper’s required radio
sensitivity in order to overhear shielded messages, measured
in dBm. With thermal noise of -106 dBm, and assuming an
eavesdropper antenna gain of 10 dB, this implies that RSe

must be at least -106 dBm -10 = -116 dBm.

Assuming that the Faraday cage works perfectly, we de-
fine dmin to be the minimal distance between the keying de-
vice and eavesdropper, beyond which eavesdropping will

fail. RSe can be calculated using dmin by the free space loss
equation [26] as follows.

RSe = Pt −20log10

(

4πdmin

λ

)

−Lcage

Note that free-space propagation occurs over short dis-
tances, as in our scenario. Over short distances, there is no
fading. Further, if there is shadowing, it will only serve to in-
crease the attenuation. Since the carrier wavelength λ = 12
cm and we set RSe to be -116 dBm, we calculate dmin = 2.5
cm. In other words, in order for the eavesdropper to overhear
shielded messages, he must be within 2.5 cm of the keying
device.

If we relax our assumption and allow for leakage from the
Faraday cage, it is slightly easier for the attacker to eaves-
drop, as dmin increases from 2.5 cm to 19 cm. We arrive
at this conclusion based on the following calculation. First,
according to the Telos data sheet, the keying beacon senses
leakage from the Faraday cage if the signal level outside the
cage is above 90 dBm [23]. In that case, the Faraday cage
must have an attenuation of at least -24 dBm+90 dBm = 66
dB for the leakage to go undetected. Repeating the dmin cal-
culation with the reduced Lcage = 66 dB and all other vari-
ables unmodified, we find that dmin = 19 cm.

In summary, eavesdropping is not possible as long as the
Faraday cage functions properly and a 2.5 cm radius around
the keying apparatus is physically secure. Even if the Fara-
day cage leaks, an eavesdropper would not succeed as long
as a 19 cm radius around the Faraday cage is free of other
devices. While 19 cm is a small distance for inspection, we
should not reply on human operators to maintain constant
vigilance. As we will describe in the following section, jam-
ming precludes the exploitation of human error.

Key Reception at Eavesdropper with Jamming. With
a jammer (i.e., keying beacon) of power 5 dBm, even if we
assume the smaller attenuation of 66 dB of the cage, the SIR
at any point outside the cage will be smaller than -24 dBm -
66 - 5 dBm = -95 dB. This is substantially smaller than the
minimum SNR of -15 dB to achieve capacity. Thus, eaves-
dropping will not be possible. More importantly, this is true
even if the eavesdropper uses a high-gain antenna, since both
keying-signal as well as the jammer signal will be equally
amplified.

6 User Study
We conducted a user study to evaluate whether users

could successfully use our protocol for key deployment.

6.1 Methodology
Our protocol was designed to be simple and accessible to

a wide range of individuals. For the user study, we recruited
university students and staff who are not colorblind.1

We did not expect that users would have any prior knowl-
edge or experience with sensor nodes. We first described the

1Our implementation relies on users’ ability to distinguish be-
tween different colored LEDs. Most users will use the LED colors
for differentiation, but colorblind users could use the locations of lit
LEDs. Our test nodes were sheathed in bubble wrap for protection,
obscuring the LED locations.

Color of

lit LED on

Controller

Red

Green

Key exchange successful?

No

Key exchange successful?

Yes

Figure 12: Flowchart Provided with Sheet for Recording Re-

sults

nodes’ capabilities. We then introduced the concept of en-
cryption and the need for secure key deployment.

Each user was given a sheet with installation directions, a
sheet on which to record the results, and four nodes for key
deployment. The installation directions are shown in Fig-
ure 1. The sheet for recording results included the flowchart
in Figure 12. Of the four nodes, two ‘good’ nodes were con-
figured correctly for key deployment. The remaining two
nodes simulated a variety of errors and attacks:

1. From the user’s point of view, the keying beacon turns
red, and the new node behaves exactly as expected.
(None of the LEDs on the new node blinks). There
are several possible causes for this situation: the new
node is defective and failed to complete the key ex-
change process; the keying beacon failed to jam while
the shielded messages were exchanged; shielded mes-
sages leaked from the Faraday cage (because the Fara-
day cage was improperly closed, the user opened the
Faraday cage too early, or the Faraday cage itself is
leaky); or the keying device heard jamming signals dur-
ing key deployment.

2. From the user’s point of view, the keying beacon turns
red, but the new node’s green LED is also lit. This sit-
uation occurs if the new node is defective or malicious.
While unlikely, we included this scenario to confuse the
user with a conflicting signal.

For each of the four nodes, participants followed the in-
stallation directions and determined whether a key was suc-
cessfully deployed. The order of the nodes was randomly
assigned.

6.2 Results
Because of the simplicity of MIB, participants were able

to follow our directions with ease. Initially, many of the par-
ticipants were apprehensive about working with the sensor
nodes. Afterwards, several participants described the proto-
col as “simple,” “easy,” or even “self-evident.”

We tested twenty individuals, including undergraduate
students, graduate students, and staff members. Eight par-
ticipants were female; twelve were male. Participants’ ages
ranged from 18 to over 50. Of the twenty participants, nine-
teen correctly categorized the four nodes. The remaining
participant carelessly circled an incorrect option while rush-
ing to finish the study. Our results are summarized in Table 1.

Summary

Total number of participants 20

Number of motes tested by each participant 4

Total number of errors 1

Motes tested by each participant

Number of ‘good’ motes 2

Number of ‘bad’ motes 2

Errors

Number of false negatives (identifying an

unsuccessful key deployment as successful)

0

Number of false positives (identifying a

successful key deployment as unsuccessful)

1

Table 1: Summary of User Study Results

7 MIB for Multiple Nodes
Our user study demonstrated that people are able to fol-

low MIB’s instructions quickly and accurately. However, we
noticed that several participants fumbled with the ends of the
steel pipe. In addition, a few participants commented that it
would be tedious to configure many nodes in this manner.

As a next step, we extended MIB for key deployment on
multiple nodes. We placed the following constraints on the
extension:

1. From the user’s perspective, no additional work should
be required. Deployment for multiple nodes should be
the same as deployment for one node.

2. MIB should be able to handle an arbitrary number of
nodes.

3. It should be easy to deploy group keys or individual
keys. For the remainder of this paper, we focus on de-
ploying individual keys.

4. The Faraday cage should be easy to open and close.

To optimize the ergonomics of the Faraday cage, we de-
veloped the design shown in Figure 13, which was custom-
manufactured on a high-precision CNC machine. Compared
with the galvanized steel pipe, this container is much easier
to open and close. To open the container, the lid is simply
lifted off. To close the container, the lid is placed on the
body of the container. The weight of the lid ensures that the
container is sealed shut.

Figure 13: Bigger and Ergonomically-friendly Faraday Cage

This Faraday cage may resemble a storage container for baking

goods, but it is heavier, air-tight, and attenuates radio signals.

Placing multiple new nodes in the Faraday cage intro-
duces two significant challenges. First, the keying device
and the keying beacon need some way to determine when

Keying Device

New Nodes

Keying Beacon

Scale

Figure 14: MIB Setup for Multiple Nodes

The Faraday Cage fits multiple nodes and a scale. The keying de-

vice is attached to the scale. Weight is used to calculate the number

of new nodes.

the protocol has finished. In particular, the keying beacon
must jam and notify the user to open the Faraday cage at the
appropriate times. Times will vary, depending on the number
of nodes in the Faraday cage. The keying device also needs
to know when all the nodes have received their keys so that
it can generate and send the activation keys and validation
strings to the keying beacon. Thus, the keying device and
keying beacon must know how many new nodes are placed in
the Faraday cage. Second, the nodes must be counted with-
out user intervention. Users may miscount the number of
nodes – especially as the number of nodes increases.

MIB uses a scale to count the number of new nodes. The
number of nodes is calculated using the weight of one node.
(For example, each Telos mote weights approximately 60
grams.) A batch can only contain nodes of the same type.
The keying device is then attached to the scale to obtain the
reading. An illustration of the setup is shown in Figure 14.
Note that attaching the keying device to the scale prevents
one of the error scenarios we presented in Section 4, where
the user accidentally swaps the keying device and the key-
ing beacon. Since the keying device is physically attached to
the scale, we design the physical casing such that the keying
beacon cannot be connected to the scale.

On the protocol level, a few changes are required to sup-
port multiple nodes.

1. The keying device sends the most recent node count to
the keying beacon in the heartbeat message.

2. The keying beacon estimates the time needed for
shielded messages exchange and jams for the duration.

3. The keying device verifies that the number of respon-
sive nodes in the Faraday cage matches node count from
the scale. If these numbers do not match, the keying de-
vice aborts the protocol and returns an error.

4. The keying device assigns a MIB index to each node to
facilitate key assignment. (We assume that each node
receives a unique key. Of course, this could be changed
to a group key.)

Error

No longer hears

heartbeats Calculates time needed

to initialize n nodes and

jams radio frequency for

duration

Receives correct

{i, response
i
} from all

new nodes

R

G

B

Heartbeat* Shielded

Initialized

Reset

Activation

R

G

B
Did not jam

during key

exchange, wrong

response received,

or other error

R

G

B

R

G

B

R

G

B

Receives {k
1

, ...k
n
},

{response
1
, ...response

n
}, and

key exchange history from

keying device

Sends {i, k
i
} to each new

node

Figure 15: State Diagram for Keying Beacon: Multiple Nodes

* For multiple node setup, the heartbeat is extended to include the

node count from the scale.

No longer hears

heartbeats

Error
R

G

B

Heartbeat*
Reset

Shielded

Hello

R

G

B
R

G

B

Activation
R

G

B
Sends s rounds of

key information

to each of n new

nodes
Sends {k

1
, ...k

n
},

{response
1
, ...response

n
}, and

 key exchange history to

keying beacon

Hears keying beacon’s

heartbeat message

Hears more or less

than n nodes; or

other error

Sends error to

keying beacon

Broadcasts

Hello message

Shielded

Assignment

R

G

B

Assigns MIB index

1 n to each

node

Figure 16: State Diagram for Keying Device: Multiple Nodes

* For multiple node setup, the heartbeat is extended to include the

node count from the scale.

These modifications are reflected in Figures 15, 16, and
17. Because LEDs have limited feedback capability, the en-
tire batch of nodes must be discarded if an error occurs.

8 Discussion
8.1 Uses for MIB

Keys deployed in MIB can be used to bootstrap any other
key establishment mechanism that requires pre-installed
keys. For example, they can be used to securely down-
load a pseudo-random key pool used in random key pre-
distribution [6, 10, 11, 19, 25]. Alternatively, initial keys can
be used to bootstrap keys for SPINS, TinySec, ZigBee, or
MiniSec.

8.2 Variations on MIB
MIB implements key deployment over the wireless com-

munication channel. However, the protocol could be adapted
to use the sensors themselves. For example, a network com-
prised of light sensors could implement MIB using light as
the communication channel. Then, any solid, opaque con-
tainer takes the place of the Faraday cage; the function of

Uninitialized

Hears Hello message

from keying device

Receives s rounds of

key information

from keying device

Reset

Receives {i, k
i
}

from

keying beacon

Shielded

Assignment

R

G

B

R

G

B

Initialized
R

G

B

Activation
R

G

B

Shielded

Hello

R

G

B

Sends unique node ID M

Receives {M,

MIB index i}

Returns {i, response
i
}

Optional: Receives new key

{M, K
M

’ } from base station

Figure 17: State Diagram for New Node: Multiple Nodes

the Faraday cage changes from attenuating radio signals to
blocking the escape of light. The keying beacon could also
radiate light instead of jamming radio signals. Similarly,
MIB can be adapted for other modalities, such as acoustic
or infrared.

8.3 Objections to MIB

Isn’t the Faraday cage sufficient? Realistically, we can-
not expect a Faraday cage to be perfect; even the equipment
used in RF testing can only attenuate radio waves [8].

Thus, MIB relies on the Faraday cage to attenuate the
radio waves and takes additional measures to safeguard the
shielded messages.

Isn’t it unrealistic to assume that there will be no USB (or
other) hardware interface? Sensor networks will often
be deployed under extreme conditions, for applications such
as traffic monitoring [28], structural health monitoring [21],
or water quality monitoring [32]. A physical interface be-
comes a vulnerable point in the body of a sensor. Already,
some sensors are completely encased in hardened shells to
withstand harsh conditions [28]. Physical interfaces also
increase per-node manufacturing costs, particularly if they
need to be protected. From a manufacturer’s perspective, it
is undesirable to create an additional hardware interface that
is used only for key deployment.

What about factory-installed keys? There are three ma-
jor arguments against factory-installed keys:

1. Customers would have to be confident that attackers
could not access or tamper with the sensor nodes any-
where along the entire distribution chain.

2. Customers would have to trust the manufacturer to man-
age keys properly (e.g., the manufacturer does not keep
a copy of the keys, or nodes initialized for one customer
have not been accidentally delivered to another).

3. Manufacturers do not want to assume liability for key
management.

What if an attacker slipped in a malicious node for
“setup”? Earlier, we assumed that the new uninitialized
node is trusted. We now briefly discuss possible attacks and
countermeasures if we remove this assumption.

If a new uninitialized node is under control of the attacker,
key secrecy is compromised. The secrecy provided by the
shielded messages is eliminated. Furthermore, in multiple
node deployment, the malicious “new uninitialized node”
may eavesdrop on keys sent to other nodes.

To prevent such attacks, we use software attestation to
verify code integrity on all new nodes. Software attestation
techniques, such as SWATT [29], allow an external verifier
to examine code integrity on an untrusted computing device
without hardware extensions. SWATT employs a challenge-
response based verification function that computes a check-
sum over the code memory of the untrusted device. The ver-
ification function is constructed in such a way that if an at-
tacker modifies the expected code content, either the check-
sum response would be incorrect, or the execution time of
the verification procedure takes longer than expected.

When using MIB to deploy keys for batches of single
nodes, SWATT may be used as follows. The new uninitial-
ized node is the untrusted device. The keying device acts as
the verifier. Once the Faraday cage is closed and the keying
device and the new node identify each other, the keying de-
vice initiates SWATT by sending a challenge. After receiv-
ing the checksum response from the new node, the keying
device verifies the correctness of the checksum response and
the duration of execution. Note that the keying device must
know the specifications of the untrusted node’s hardware for
SWATT to be effective. If the new node passes verification,
key deployment continues. Otherwise, key deployment is
aborted, and an error is reported to the keying beacon.

Software attestation may also be used for batches of mul-
tiple nodes. Suppose one malicious node is hidden in a batch
of new nodes. Once it has been placed in the Faraday cage,
the malicious node has two options: remain silent or respond
to the keying device. If the node remains silent, its pres-
ence will be detected. Using the scale, the keying device will
know that there are n nodes in the Faraday cage and detect
when fewer than n nodes respond. If a malicious node re-
sponds to keying device, the keying device will run SWATT
on the node. SWATT will then detect the malicious code.
In both cases, the keying device will report that key setup
failed.

9 Comparison with Related Work
Researchers have proposed numerous sensor network key

deployment schemes, such as ZigBee [34], SPINS [24],
LEAP [33], Transitory Master Key [9], and random key pre-
distribution [6, 10, 11, 19, 25]. Unfortunately, all of these ap-
proaches rely on an unspecified secure mechanism to set up
the initial secret key in each sensor node.

Some exceptions are Shake Them Up [4], On-off Key-
ing [2], and Key Infection [5]. Like MIB, these sensor
network key establishment schemes do not rely on pre-
shared secrets; hence we will discuss them in detail in
this section. We will also compare MIB against out-of-
band-based approaches proposed for key setup in ubiquitous

M
e

s
s
a

g
e

-I
n

-a
-B

o
tt
le

R
e

s
u

rr
e

c
ti
n

g
D

u
c
k
lin

g
[3

1
]

T
a

lk
in

g
to

S
tr

a
n

g
e

rs
[1

]

S
e

e
in

g
-i
s
-B

e
lie

v
in

g
[2

2
]

O
n

-o
ff

K
e
y
in

g
[2

]

K
e
y

In
fe

c
ti
o

n
[5

]

S
h

a
k
e

T
h

e
m

U
p

[4
]

Security

Key secrecy Y Y - - - N N

Key authenticity Y Y Y Y N N Y

Ease-of-use

Demonstrative

identification

Y Y Y Y N N Y

Robust to user error Y Y Y Y Y Y N

Costs

No per-node extra

hardware

Y N N Y Y Y Y

No specialized setup

hardware

N Y Y N Y Y Y

No public key

cryptography

Y Y N N N Y N

Table 2: Comparison of Different Key Deployment Techniques

A ’-’ signifies that this property is not applicable.

computing settings: Resurrecting Duckling [31], Talking to
Strangers [1], and Seeing-is-Believing [22].

We will discuss each key deployment scheme with respect
to several relevant properties listed in Section 2.1: key se-
crecy, key authenticity, demonstrative identification, robust-
ness to user error, cost effectiveness, and no public key cryp-
tography. To compare cost effectiveness, we discuss two
properties: no per-node specialized hardware, and no spe-
cialized setup hardware. Table 2 summarizes our compari-
son.

Resurrecting Duckling sets up a secure shared key
through the out-of-band channel of physical contact [30,31].
Because the side channel is assumed to be secure, the key ex-
changed over this medium is secret and authentic. Unfortu-
nately, this scheme requires a specialized hardware interface
for physical contact.

Talking to Strangers relies on a location-limited channel,
such as audio or infrared, as an out-of-band channel to setup
a public key [1]. Like Resurrecting Duckling, this scheme
relies on specialized hardware on each device. In addition,
Talking to Strangers requires public key cryptography, which
is expensive for computationally constrained sensor nodes.

In Seeing-is-Believing, an installation device equipped
with a camera or a bar code reader reads a public key on each
device that is encoded as a 2D barcode [22]. Again, since the
side channel is assumed to be secure, the key exchanged over
this medium is authentic. Although Seeing-is-Believing does
not require special hardware per node, a setup device with
specialized hardware is needed. In addition, nodes perform
expensive asymmetric cryptographic operations.

In On-off Keying, the presence of an RF signal represents
a binary ‘1,’ while its absence represents a binary ‘0’ [2, 3].

Assuming that an attacker cannot cancel RF signals, the at-
tacker can only modify authentic messages by changing 0’s
to 1’s – but not the inverse. By carefully selecting the en-
coding scheme, On-off Keying ensures that the attacker is
unable to modify a packet during transmission. On-off key-
ing does not achieve key authenticity since it requires each
user to know the signal strength threshold that differentiates
between a ‘1’ and a ‘0.’ This value itself needs to be au-
thenticated, but the authors did not specify such a method.
In addition, since this scheme lacks feedback to the user, it
also does not achieve demonstrative identification. Finally,
On-off Keying requires public key cryptography.

Key Infection simply sends secret keys in the clear, as-
suming that an attacker arrives at a later point in time [5].
Designed for simplicity and cost effectiveness, this scheme
cannot defend against a determined adversary. If the attacker
is actually present during key deployment, she may eaves-
drop on the deployed key, violating key secrecy. An attacker
may also inject her own keys, violating key authenticity. The
lack of user feedback means demonstrative identification is
absent.

Shake Them Up [4] sets up shared keys between two
nodes by requiring the user to hold one in each hand and
shake them. These two nodes exchange identical packets,
and rely on the fact that the adversary cannot distinguish
between messages sent by either device. These two de-
vices, however, could be distinguished using radio finger-
printing [27]. Thus, key secrecy may be violated. Shake
Them Up is also not robust against user error. Tired after de-
ploying several nodes, a human technician may deploy nodes
without sufficient shaking.

Smart-Its Friends [13] and Are You with Me [17] are
two related schemes that use movement to establish a secret
key. In addition to the drawbacks of Shake Them Up, these
schemes require an accelerometer on each node to measure
movement. Because Shake Them Up makes one fewer as-
sumption than these schemes, Smart-Its Friends and Are You
with Me are not included in Table 2.

As illustrated in Table 2, MIB achieves all but one of the
listed properties. Key secrecy and authenticity are attained
because the five techniques described in Section 3.2.2 ensure
that an attacker may not eavesdrop or inject its own key onto
the new node. Demonstrative identification is achieved since
the user knows that the node in the Faraday cage is the node
which receives a key. MIB is robust to user error: any human
error (e.g., premature opening of the Faraday cage) results
in a failed deployment – rather than key compromise. Fur-
thermore, MIB only requires symmetric cryptographic oper-
ations.

MIB requires a special Faraday cage and key deployment
nodes with an additional USB interface. However, we argue
that MIB is still cost effective because it does not require
any specialized hardware per node. This tradeoff is a favor-
able one: one specialized Faraday cage and two deployment
nodes can be used to perform key deployment on many sen-
sor nodes. For large deployments, specialized setup hard-
ware is more economical than additional per-node hardware.

10 Conclusion
Prior sensor network security architectures assume that

communicating nodes possess an authenticated public key
or a shared secret key. The initial distribution of keys in a
secure fashion is vital to the security of a sensor network –
yet no viable approach has been proposed to date.

We explore the technical and human factors that make
initial key distribution challenging. For example, a Faraday
cage can only attenuate radio signals in the real world; it can-
not block signals completely. In addition, a protocol must be
easy for end users to execute correctly – and resistant to in-
evitable errors.

We propose Message-In-a-Bottle, a user-friendly proto-
col for key deployment in high-security environments. We
designed MIB with a combination of security, usability, and
economic properties to ensure its applicability to real-world
applications. The security properties of MIB include key
secrecy, key authenticity, and forward secrecy. The usabil-
ity of MIB has been validated by the low error rates in our
user study. The economic viability of MIB is based on using
the wireless channel for setup, avoiding additional per-node
costs for special setup hardware. These characteristics make
MIB a cost effective, usable, and secure solution for com-
modity sensor nodes.

11 Acknowledgments
We would like to thank Evan Gaustad, our shepherd

Richard Han, and our anonymous reviewers for their gen-
erous assistance. Also, we thank Jeff Potter for suggesting
the MIB name.

12 References
[1] D. Balfanz, D. Smetters, P. Stewart, and H. C. Wong.

Talking to strangers: Authentication in ad-hoc wireless
networks. In Symposium on Network and Distributed
Systems Security (NDSS), Feb. 2002.

[2] M. Cagalj, S. Capkun, and J.-P. Hubaux. Key agree-
ment in peer-to-peer wireless networks. Proceedings
of the IEEE (Special Issue on Security and Cryptogra-
phy), 94(2), 2006.

[3] M. Cagalj, S. Capkun, R. Rengaswamy, I. Tsigkogian-
nis, M. Srivastava, and J.-P. Hubaux. Integrity (I)
codes: Message integrity protection and authentication
over insecure channels. In IEEE Symposium on Secu-
rity and Privacy, May 2006.

[4] C. Castelluccia and P. Mutaf. Shake them up! a
movement-based pairing protocol for cpu-constrained
devices. In Proceedings of ACM/Usenix Mobisys,
2005.

[5] H. Chan, R. Anderson, and A. Perrig. Key infection:
Smart trust for smart dust. In Proceedings of IEEE
International Conference on Network Protocols, May
2004.

[6] H. Chan, A. Perrig, and D. Song. Random key predis-
tribution schemes for sensor networks. In IEEE Sym-
posium on Security and Privacy, May 2003.

[7] ChipCon Products from Texas Instrments. CC2420
Data Sheet.

[8] Concentric Technology Solutions. RF Shield Box.
http://www.rfshieldbox.com/RF Products.htm.

[9] J. Deng, C. Hartung, R. Han, and S. Mishra. A
practical study of transitory master key establishment
for wireless sensor networks. In Proceedings of
IEEE/CreateNet Conference on Security and Privacy
for Emerging Areas in Communication Networks (Se-
cureComm), 2005.

[10] W. Du, J. Deng, Y. S. Han, and P. K. Varshney. A
pairwise key pre-distribution scheme for wireless sen-
sor networks. In Proceedings of the 10th ACM Confer-
ence on Computer and Communication Security, pages
42–51, Oct. 2003.

[11] L. Eschenauer and V. D. Gligor. A key-management
scheme for distributed sensor networks. In Proceedings
of the 9th ACM Conference on Computer and Commu-
nication Security, pages 41–47, Nov. 2002.

[12] C. Hartung, R. Han, C. Seielstad, and S. Holbrook.
Firewxnet: A multitiered portable wireless system for
monitoring weather conditions in wildland fire envi-
ronments. In The Fourth International Conference on
Mobile Systems, Applications, and Services (MobiSys),
June 2006.

[13] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta,
M. Beigl, and H.-W. Gellersen. Smart-its friends: A
technique for users to easily establish connections be-
tween smart artefacts. In Proceedings of Ubicomp
2001, 2001.

[14] C. Karlof, N. Sastry, and D. Wagner. TinySec: A link
layer security architecture for wireless sensor networks.
In Proceedings of ACM Conference on Embedded Net-
worked Sensor Systems (SenSys), Nov. 2004.

[15] Y. W. Law, J. Doumen, and P. Hartel. Survey
and benchmark of block ciphers for wireless sensor
networks. ACM Transactions on Sensor Networks,
2(1):65–93, February 2006.

[16] A. K. Lenstra and E. R. Verheul. Selecting crypto-
graphic key sizes. Journal of Cryptology, 14(4):255–
293, 2001.

[17] J. Lester, B. Hannaford, and B. Gaetano. Are you with
me? - using accelerometers to determine if two devices
are carried by the same person. In Proceedings of Per-
vasive 2004, 2004.

[18] D. Liu and P. Ning. Establishing pairwise keys in dis-
tributed sensor networks. In Proceedings of the 10th
ACM Conference on Computer and Communication
Security, pages 52–61, Oct. 2003.

[19] D. Liu, P. Ning, and W. K. Du. Group-based key pre-
distribution in wireless sensor networks. In Proceed-
ings of WiSe, Apr. 2005.

[20] M. Luk, G. Mezzour, A. Perrig, and V. Gligor. Minisec:
A secure sensor network communication architecture.
In Proceedings of ACM and IEEE Conference on In-
formation Processing in Sensor Networks (IPSN), Apr.
2007.

[21] J. P. Lynch and K. Loh. A summary review of wire-
less sensors and sensor networks for structural health
monitoring. Shock and Vibration Digest, 38(2):91–128,
2005.

[22] J. McCune, A. Perrig, and M. K. Reiter. Seeing-Is-
Believing: Using camera phones for human-verifiable

authentication. In Proceedings of IEEE Symposium on
Security and Privacy, May 2005.

[23] Moteiv Corp. Telos Data Sheet.

[24] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D.
Tygar. SPINS: Security protocols for sensor networks.
Wireless Networks, 8(5):521–534, Sept. 2002.

[25] M. Ramjumar and N. Memon. An efficient key predis-
tribution scheme for ad hoc network security. In Pro-
ceedings of IEEE Journal of Selected Areas in Commu-
nications, Mar. 2005.

[26] T. Rappaport. Wireless Communications: Principles &
Practice. Prentice-Hall, 2001.

[27] K. B. Rasmussen and S. Capkun. Implications of radio
fingerprinting on the security of sensor networks. In
Proceedings of IEEE SecureComm, 2007.

[28] Sensys Networks. Components: VSN240 vehicle
sensor nodes. http://www.sensysnetworks.com/

vsn240.html.

[29] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.
Swatt:software-based attestation for embedded de-
vices. In Proceedings of IEEE Symposium on Security
and Privacy, May 2004.

[30] F. Stajano. The Resurrecting Duckling - What Next?
In Proceedings of Security Protocols Workshop 2000,
2000.

[31] F. Stajano and R. Anderson. The resurrecting duckling:
Security issues for ad-hoc wireless networks. In Se-
curity Protocols, 7th International Workshop. Springer
Verlag, 1999.

[32] YSI Environmental. Environmental products. http:

//www.ysi.com/index.html.

[33] S. Zhu, S. Setia, and S. Jajodia. Leap: efficient secu-
rity mechanisms for large-scale distributed sensor net-
works. In Proceedings of the 10th ACM Conference on
Computer and Communication Security, pages 62–72.
ACM Press, 2003.

[34] ZigBee Alliance. ZigBee Specification. Technical Re-
port Document 053474r06, Version 1.0, ZigBee Al-
liance, June 2005.

