
Pervasive Internet-Wide Low-Latency
Authentication

Cyrill Krähenbühl∗, Markus Legner†, Silvan Bitterli‡, and Adrian Perrig§
Department of Computer Science, ETH Zurich, Switzerland

Email: ∗cyrill.kraehenbuehl@inf.ethz.ch, †markus.legner@inf.ethz.ch, ‡silvanbi@student.ethz.ch, §adrian.perrig@inf.ethz.ch

Abstract—In a world with increasing simplicity to store,
transfer, and analyze large volumes of data, it becomes more
and more important that data confidentiality and integrity be
preserved in transit by default. Unfortunately, a large security
gap exists between unprotected or low-security communication,
such as opportunistic encryption and trust-on-first-use (TOFU)
security, and high-security communication, such as TLS using
server certificates or DNSSEC. Our goal is to reduce this gap
and achieve a base layer for authentication and secrecy that is
strictly better than TOFU security. We achieve this by designing
PILA, a novel authentication method with dynamic trust anchors,
which leverages irrefutable cryptographic proof of misbehavior to
incentivize benign behavior. We implement PILA extensions for
SSH, TLS, and DNS and show that the overhead for a typical
SSH and TLS connection establishment is negligible, and that
PILA only causes a marginal processing overhead of ∼100 µs
per DNS response at the endpoints.

I. INTRODUCTION

The revelations from the Snowden case have shown that
large-scale Internet wiretapping is indeed occuring. For ex-
ample, in June 2013 the GCHQ gained access to high-
bandwidth fiber-optic cables to collect vast quantities of In-
ternet traffic [31]. These incidents sparked not only the rise of
opportunistic encryption protocols such as TCPCrypt [5], but
also led to an increased deployment of TLS.

However, opportunistic encryption protocols, such as
TCPCrypt or Opportunistic Wireless Encryption (OWE) [20],
rely on a principle called trust-on-first-use (TOFU) [38] by
assuming that the initial messages of a protocol are legitimate.
SSH [40] is a TOFU protocol in the case when the other
endpoint’s public key is not pre-loaded and the public key
fingerprint is not verified during the initial connection [19].
Unfortunately, TOFU protocols only provide secrecy against
off-path and passive attackers but not against an active on-
path attacker, who can perform a man-in-the-middle (MitM)
attack. On the other hand, TOFU protocols are fast, easy to
implement, and do not rely on external entities.

For client–server communication in today’s Internet, there
is an increasing use of certificate-based authentication proto-
cols, which rely on certificate authorities (CA) in the TLS
public-key infrastructure (Web PKI), or DNS domain zones
in DANE [2]. As Let’s Encrypt [24] solved most deployment
issues of TLS by providing free and automated TLS server-
certificate delivery, the use of TLS increased significantly,
showing the desire for secure communication. However, TLS
has restricted usability when endpoints do not have CA
certificates; examples include communication modes other

than client–server communication, such as peer-to-peer com-
munication, or cases where setting up DNS entries for all
devices is infeasible, such as Internet-of-Things (IoT) settings.
Additionally, DNS resolvers, SSH servers, and IoT devices are
often identified by their IP address which precludes domain-
based authentication.

We propose pervasive Internet-wide low-latency
authentication (PILA), a system to reduce the gap between
TOFU security and strong authentication mechanisms (Web
PKI and DANE). The goal is to create a mechanism that is
orthogonal to existing strong authentication mechanisms and
not to replace them. While current TOFU mechanisms are
a big step towards secure communications by limiting the
adversary from the entire Internet to an on-path adversary,
this still constitutes a large attack surface: endpoints lack
control over their traffic’s path, and the Internet’s routing
system is vulnerable to IP prefix hijack attacks [10].

Therefore, in a first step, PILA restricts the adversary.
We observe that an autonomous system (AS) provides a
natural candidate to authenticate endpoints based on their IP
addresses, as the AS already offers IP connectivity to its
endpoints. PILA uses ASes in combination with the Resource
Public Key Infrastructure (RPKI) [27] to limit the adversary
to only the source and destination AS. PILA is incrementally
deployable and incurs no computational overhead for interme-
diate nodes outside the endpoints’s ASes.

In a second step, PILA provides accountability and proof in
case either AS misbehaves. This provides a strong disincentive
to attack, since after a MitM attack is revealed, the attacker is
pinpointed by the system. In comparison, in TOFU security,
even if a MitM attack is detected, any on-path entity could
have performed the attack. We can generalize this approach,
which we call trust amplification, to three principles:

I Crude Authentication. Endpoints are authenticated using
a crude, relatively low-security approach which reduces
the threat model to few entities.

II Accountability. Misbehaving entities can be detected
through cryptographic proof.

III Leverage. Endpoints have means to apply pressure on
misbehaving entities in the form of legal recourse, eco-
nomic detriment, or bad publicity.

The accountability of entities trusted in the crude authenti-
cation in combination with the leverage, which disincentivizes
misbehavior, inhibits coward attacks, i.e., attacks that are only

launched if the attack will not be detected [29]. In summary,
this paper makes the following contributions:

• We introduce an approach called trust amplification that
uses limited trust into a few entities, accountability, and
leverage to provide stronger security guarantees than
TOFU approaches.

• We describe PILA, an instantiation of trust amplification
using ASes as opportunistically trusted entities and RPKI
as global trust anchor to enable pervasive encryption and
authentication for all Internet communication.

• We design and implement PILA extensions for SSH,
TLS, and DNS. We evaluate their performance to show a
negligible overhead for a typical SSH and TLS connec-
tion establishment and a marginal per-packet processing
overhead of ∼100 µs for DNS.

II. PROBLEM DEFINITION

Our goal is to design a system for Internet-wide ubiquitous
authentication between endpoints with stronger security guar-
antees than a TOFU approach. By authenticating endpoints
through their IP addresses, the system is applicable to a large
number of services (e.g., authentication of services with fixed
IP addresses or devices without DNS names). On a similar
note, the system should not introduce significant latency and
computational overhead to allow a wide range of devices (e.g.,
resource-constrained IoT devices). In order to be deployed in a
network of the size of today’s Internet, the system has to scale
in terms of computation and network resources. Our goal is not
to replace existing, well-established authentication approaches,
such as TLS with server certificates or DNSSEC. We attempt
to improve the security guarantees of communication with
weak security properties, and provide a base layer of security.

A. Assumptions

First, we assume that there exists a global trust anchor,
i.e., a global PKI, agreed on by all entities, which provides
keys and certificates to ASes. For this, we will leverage RPKI,
which distributes resources in the form of AS numbers and
IP address ranges to ASes, see §III. Second, we assume that
participating ASes are able to authenticate their endpoints.
Third, endpoints must know which AS they reside in and
have access to an authentic version of the trust anchor. Fourth,
time synchronization with a precision in the order of several
minutes is essential for our certificate-based system with
certificate lifetimes of several hours.

B. Attacker Model

Analogous to the notion of an honest-but-curious (HBC)
attacker [33], we define an curious-but-cautious (CuBC) at-
tacker. We call an entity a CuBC attacker, if the entity wants to
read or modify traffic without being detected. Such an attacker
does not necessarily follow all protocol steps correctly (e.g.,
violates the protocol if it is advantageous), but only when they
are sure not to be detected. Entities desire undetectability to
prevent financial loss (e.g., loss of customers), legal actions,
or reduction in trust (e.g., bad publicity or removal from a

Trust Anchor Delegation Chain Resource Issuer AS

Fig. 1: RPKI trust anchor structure abstraction used throughout
this paper. Arrows indicate delegation through certificates.

pool of trusted entities). In terms of capabilities, we consider a
Dolev–Yao attacker, i.e., an attacker that can intercept, modify,
or inject packets but cannot break cryptography. The endpoints
performing the authentication and the global trust anchors
are assumed not to be compromised and to correctly follow
all protocols steps. Malicious or compromised global trust
anchors are relatively easy to detect, since there are only a few
global trust anchors that have to be monitored for equivocation.
If an endpoint does not follow the protocol correctly or reveals
its private key, authentic keys cannot be derived.

III. CONTROL-PLANE PUBLIC-KEY INFRASTRUCTURE

The trust-amplification model introduced in this work can
provide a baseline of security not just in the current Internet,
but also in next-generation Internet architectures that provide
an appropriate trust anchor. In particular, the Internet architec-
ture SCION [34] integrates well with our trust-amplification
model, since SCION introduces the concept of independent
isolation domains and a flexible PKI, in which each such
domain can choose its own roots of trust. This work, however,
focuses on the current Internet and RPKI as trust anchor.

RPKI distributes resources in the form of AS numbers and
IP address ranges. AS-number and IP-address resources can
be delegated using X.509 resource certificate extensions [30].
RPKI is hierarchically structured with the Internet Assigned
Numbers Authority (IANA) or regional Internet registries
(RIRs) as roots of trust, which delegate a subset of their
resources to local Internet registries (LIRs). To abstract from
different implementations, we assume a generalized trust-
anchor structure in Fig. 1 consisting of a trust anchor, a
possibly empty delegation chain, a resource issuer, and an AS.

RPKI has been standardized by the IETF in 2012. Initially,
there have been concerns about the misaligned incentives
of different actors, such as CDN providers, in the Internet
ecosystems [39]. However, a more recent measurement study
over the lifetime of RPKI in 2019 shows that after a gradual
start, RPKI deployment has seen a rapid increase in the last
two years [6]. This trend can be observed from the RPKI
monitor data as well [32]. As we show in §IV-C, PILA only
requires source and destination ASes to support RPKI. In
contrast, BGPsec requires all on-path ASes to support RPKI
and thus provides very limited benefits to early adopters. This
recent increase in RPKI deployment favors PILA as more
endpoints can profit from an initial PILA deployment. Also,
PILA provides additional incentive for ASes to deploy RPKI.

IV. TRUST AMPLIFICATION AND PILA

This Section first introduces the trust-amplification model,
and then describes PILA, an instantiation of trust amplification
based on RPKI and ASes as opportunistically trusted entities
providing IP-address-based authentication.

A. Trust-Amplification Model

Our authentication system builds on a trust-amplification
model, which is a certificate-based authentication model re-
lying on three key principles: crude authentication, account-
ability, and leverage. Trust amplification provides a generic
model to increase the security of a certificate-based authenti-
cation system indirectly by deterring misbehavior of involved
certificate-issuing entities. The meaning of misbehavior de-
pends on the actual system used and typically means equiv-
ocating by issuing conflicting certificates. Trust amplification
guarantees correct authentication if the certificate-issuing enti-
ties selected in crude authentication consist of CuBC attackers,
which only launch attacks that cannot be detected.

Crude Authentication. The certificate-issuing entities are
determined by the identity of the endpoint that requests
the certificate. The first step is to reduce this number of
certificate-issuing entities from all entities to a small subset.
Such a reduction is only meaningful if the certificate-issuing
entities are not omnipotent, i.e., cannot issue certificates for
arbitrary identifiers. Ideally, the entities manage disjoint sets of
identifiers which reduces the certificate-issuing entities for an
endpoint to a single entity. In the trust-amplification model,
the authenticating endpoint establishes a trust relation to a
certificate-issuing entity of the endpoint that is authenticated,
based on the following two principles.

Accountability. In order to increase trust into a certificate-
issuing entity, which might initially be untrusted, certificate-
issuing entities are held accountable for their actions. In
the trust-amplification model, this property is achieved by
generating irrefutable evidence that proves the misbehavior of
a certificate-issuing entity to a third party. Important properties
are resilience to slander (cannot forge false evidence) and
framing (cannot manipulate an entity to produce false evidence
itself), such that evidence is necessarily a result of improper
behavior of a certificate-issuing entity.

Leverage. As a third principle, misbehavior must be disin-
centivized. After detecting misbehavior of a certificate-issuing
entity M , other entities must have some form of leverage over
M . For endpoints that are issued certificates by M , leverage
could be economic detriments through loss of customers or
legal recourse. For other endpoints, leverage could be a global
or local trust rating of certificate-issuing entities based on
collected evidence of misbehavior.

Trust amplification is similar to certificate transparency
(CT) [26] in that both attempt to deter misbehavior by
providing cryptographic proof thereof. However, with trust
amplification, the power of each certificate-issuing entity is
restricted to a subset of identifiers and they do not have to
be trusted globally; this is in stark contrast to the omnipotent
highly-trusted certificate authorities in the Web PKI with CT.

B. PILA Overview

PILA provides IP-address-based authentication as an exten-
sion to existing protocols, such as TLS, SSH, or DNS(SEC).
PILA reduces the attack surface to the endpoints’s ASes, and
produces proof of equivocating ASes performing MitM attacks

on their endpoints. The underlying protocol—the protocol that
PILA extends to provide authentication for—must have (or
must be extended to have) the property that an entity can
authenticate itself using an X.509 certificate.

A PILA workflow where an initiator A authenticates a
responder B, works as follows. First, B’s AS obtains a resource
certificate for its AS number and IP addresses from RPKI and
issues a short-lived certificate to B for B’s public key and IP
address. B uses this certificate to, for example, authenticate
an SSH or TLS handshake or sign a DNS reply. A verifies
the authenticity of the handshake or signed reply using the
RPKI certificate chain. A also keeps track of the used AS and
endpoint certificates locally or adds them to an append-only
log to retain the irrefutable proof of misbehavior, which can be
detected through an out-of-band channel or an external auditor.

C. AS as Opportunistically Trusted Entity

In PILA, trust anchors are fully trusted entities similar to the
root key in DNSSEC, but endpoints mostly interact with less,
only opportunistically trusted entities. We propose to use ASes
as opportunistically trusted entities. ASes are not omnipotent,
as they operate on a subset of IP-address and AS-number
resources, and any misbehavior is cryptographically provable
through the issued PILA certificates. We can use ASes to
bootstrap connection establishment, and then increase the trust
placed into these ASes using trust amplification.

Each entity in the Internet is part of at least one AS,
which is under the control of a single administrative entity.
This facilitates providing a common service that authenticates
endpoints (e.g., using a challenge–response protocol or pre-
installed keys and certificates) and issues certificates. Another
advantage is the typically close relationship between an end-
point and its AS, which allows for a stronger leverage in
case of misbehavior. Since it is infeasible for an endpoint to
authenticate each AS by itself (there are ∼71 000 active ASes
according to the CIDR report [4]), RPKI is used as a trust
anchor to authenticate ASes. RPKI resource issuers assign
an AS a set of IP address prefixes that this AS is allowed
to originate. An AS then issues short-lived certificates for its
authorized IP address ranges.

Using ASes as opportunistically trusted entities promotes
an incremental deployment model of PILA since there is the
immediate benefit of endpoints within the AS being able to
authenticate themselves.

D. IP-Address-Based Authentication

An advantage of IP-address-based authentication is that
it could benefit all devices participating in Internet-wide
communication which need to be addressable through an
IP address. Endpoint certificates (CERTE) in PILA identify
endpoints by their public IP addresses instead of, e.g., the
DNS name as in the Web PKI. The certificates are represented
as X.509 resource certificates [23] in order to be compatible
with existing PKI technologies. X.509 resource certificates add
several extensions, most notably certificate policies [23] and
IP-address and AS-number resources [30], which authorize

subdomains to use these resources. Endpoint certificates are
issued by the AS of the endpoint and only for IP addresses
within the AS’s address range delegated by the resource issuer.

The chain of trust is constructed as follows: first, the
self-signed trust anchor issues a certificate to the resource
issuer (possibly with additional intermediate certificates in
the delegation chain); then the resource issuer issues a long-
lived certificate to the AS (CERTAS) and the AS issues a
short-lived certificate (CERTE) to an endpoint; finally, the
endpoint then uses the short-lived certificate to authenticate
its communication (e.g., SSH or TLS handshake or DNS
response). The verification starts from the trust anchor to the
endpoint certificate and includes AS-number and IP-address
validation for each certificate (an issued certificate must cover
a subset of the issuer certificate’s resources).

Endpoint Certificates. Endpoints request their certificate
(CERTE) from the certificate service of their ASes. An
endpoint certificate binds the public key of an endpoint to
a globally unique IP address owned by the AS. Endpoint
certificates are typically short-lived on the order of hours
to allow changing address assignments without the necessity
for revocation. In scenarios where a more dynamic address
allocation is desirable, certificates can be issued with lifetimes
on the order of minutes if the increase in certificate issuance
overhead is acceptable.

Additional Local Identifiers. In addition to the IP address,
endpoint certificates might contain other (AS-)local identifiers,
e.g., a username valid within the AS or a port range for which
this certificate is valid, see §IV-F. In order to enable seamless
transitions between short-lived certificates, an AS can issue
multiple certificates with overlapping validity times as long as
the public key and all identifiers are identical. An AS might
refuse to add a local identifier to a certificate to protect itself
against framing attacks if it cannot verify the correctness of
the endpoint’s claim of the identifier.

Anycast. Anycast can be used to run a service from
multiple locations in the network using a single IP address.
The locations of the service instances might reside in one or
multiple ASes. In the case that all locations are in different
ASes, the service at each location is independently issued
its endpoint certificate and has its own private key. Having
multiple certificates issued by different ASes for the same IP
address is not an issue in PILA since each AS uses its own
private key and certificate to issue the endpoint certificates and
AS misbehavior does not impact other (benign) ASes.

In the case that at least two service instances are located in
the same AS, the service owner has two options: (i) all service
instances can use the same endpoint certificate and share a
private key; or (ii) the service owner requests a single endpoint
certificate for this AS and issues separate certificates for each
service instance. The second solution reduces the impact of a
private-key compromise but requires the additional intermedi-
ate certificate to be sent during connection establishment.

Certificate Service

A NAT B

C1 = CERT(NAT, IPNAT)

C2 = CERT(A, IPNAT, PortsA)

IPNATIPA
MPILA, C1, C2

ASA

Fig. 2: The NAT device acts as opportunistically trusted entity.

E. Certificate Service

In order to support PILA, an AS needs to deploy a certificate
service that generates and distributes short-lived endpoint cer-
tificates (CERTE) and is able to authenticate endpoints within
the AS. In PILA, issuing endpoint certificates is an automatic
process similar to the Automatic Certificate Management
Environment (ACME) [3]. Endpoints are authenticated either
(1) with a challenge–response protocol, which requires setting
up an HTTP server on the client as in ACME [37] or (2)
based on a signature of the certificate signing request (CSR)
by the endpoint. While the challenge–response protocol is
automatic and does not require a pre-existing trust relation
between the certificate service and the endpoint, the signature-
based authentication allows managing certificates from entities
other than the endpoint. Additionally, ASes allow endpoints
to retrieve their certificate and possibly cached certificates of
other (frequently fetched) ASes. These are the corresponding
calls an endpoint can make:

• getEPCert(IP address, [local
identifier], public key) either returns a
short-lived certificate CERTE or an error message.

• getASCert(AS number or IP address)
resolves the IP address to the correct AS number if
necessary and returns the AS number together with the
AS certificate if it is cached. If the certificate is not
cached, the endpoint requests it either from the other
endpoint or the other endpoint’s AS.

F. NAT Devices

There are two issues for endpoints that reside behind NAT
devices. Since PILA relies on the fact that ASes can identify
endpoints by their IP addresses to distribute per-endpoint
certificates, a simple mapping of an IP address to a (single)
certificate is impossible. The second issue is that due to
the NAT device, both endpoints have a different view of
the opposite endpoint’s IP address, which breaks IP-address–
based authentication. To authenticate endpoints behind NAT
devices, endpoints need to be able to use the public IP
address of their NAT device as a globally unique identifier.
We present an approach for authenticating between endpoints
with intermediate NAT devices.

The NAT device requests an endpoint certificate (CERTE)
for itself (its public IP address) and acts as a trusted entity,
distributing certificates to its endpoints, as depicted in Fig. 2.
Endpoints then authenticate themselves by providing the NAT

device’s certificate (C1) in addition to their endpoint certificate
(C2) and the signed message (MPILA). This requires endpoints
to trust the NAT device in the same way as an AS, i.e., mis-
behavior by NAT devices becomes detectable. The certificates
issued to endpoints behind the NAT device have the same IP
address and additionally specify the outgoing port numbers
as a local identifier as described in §IV-D. This allows other
endpoints to authenticate an endpoint based on its public IP
address and external port number (e.g., an endpoint providing a
service on a specific port can request a certificate which covers
this port). Port numbers are encoded in an X.509 extension in
the same way as IP addresses in resource certificates [30].

Multiple sequential NAT devices are supported as well. Each
NAT device issues certificates for NAT devices within its local
network, which can in turn issue certificates for endpoints
or NAT devices. Each nested NAT device thus requires an
additional certificate. This isolates different hosts behind the
NAT device and thus simplifies detection of misbehavior if a
NAT device issues certificates with overlapping port number
ranges for different entities. IPv6 solves IPv4 address shortage,
one of the main reasons for the widespread deployment of
NAT devices. We expect that with a growing IPv6 adoption,
less NAT devices would be required and PILA deployment
would become easier.

G. Session Resumption

If the underlying protocol supports session resumption, end-
points can combine the session resumption with a PILA hand-
shake and derive the keying material of the new session from
both sources. TLS 1.3 [35], for example, supports combining
pre-shared key and certificate-based authentication to increase
the security of a session [22]. The derived keying material is
authentic if either the pre-shared key derived from previous
keying material or the keying material produced by the PILA
handshake is authentic and no secret values were leaked. Since
PILA reduces the attack surface to the endpoints’s ASes,
authenticated session resumption over different ASes increases
the number of ASes that an attacker has to compromise in
order to launch a successful undetected MitM attack.

H. Downgrade Prevention

Whenever an initiator communicates with an unknown
responder, an attacker might perform a downgrade attack to
reduce the security to a less secure protocol (e.g., TOFU
protocol). An attacker attempts to convince the initiator that a
responder’s AS does not support PILA or that the responder
does not allow a specific PILA-supported protocol.

AS Downgrade. AS downgrade is prevented by locally
keeping a regularly updated list at each AS containing all
PILA-enabled ASes with their certificate service addresses.
Endpoints then request certificates for a specific AS or all
ASes that originate a specific IP address from their local
certificate service, which responds with a signed list of the
AS certificates.

Endpoint Downgrade. An AS that supports PILA must
provide proof that a service at a given IP address does not

allow a specific PILA-supported protocol to assure a sending
endpoint that its communication is not being downgraded. An
endpoint sends a request including a PILA-supported protocol,
an IP address, and the current time as a timestamp. The
certificate service replies with a signed proof that contains the
hash of the request and a (possible empty) list of certificate
entries valid at the requested time. A certificate entry consists
of the hash of the certificate and its validity period. The
endpoint then verifies the signature and that the returned list
is empty before falling back to a non-PILA protocol.

While these approaches for both the AS and endpoint down-
grade prevention method work well and are easy to implement,
they have a large computational overhead due to the signature
operation necessary to create each proof. A more elaborate
approach that scales better to a large number of requests is
organizing AS and endpoint certificates in public append-only
logs as in certificate transparency. The AS certificate log must
provide a globally consistent view of all AS certificates, while
the endpoint certificate log can be implemented as a separate
log per AS. Each log is accompanied by a verifiable log-
backed map [15], which provides a verifiable key-value store
that can efficiently derive proofs of presence for a specific key-
value mapping and proofs of absence for non-existing keys.
The log and the log-backed map only require one signature
operation per maximum merge delay (MMD) regardless of
the number of requests. The log-backed maps allow endpoints
to fetch an AS certificate for an AS number and a list of
certificate entries from an 〈 IP-address, protocol 〉 tuple.

V. SECURITY ANALYSIS

The goal of PILA is to provide an initiator with an authentic
X.509 certificate of a responder, in the presence of an attacker
that can intercept, reorder, modify, and create arbitrary packets.
The underlying protocol uses this certificate to derive an
authentic key between the initiator and responder (session-
establishment protocol) or to verify the correctness of a
message signed by the responder (query–response protocol).
PILA provides the initiator with an authentic certificate if the
responder’s AS is honest or a CuBC attacker and the initiator,
responder, and global trust anchors are benign and none
of these entities are compromised. In mutual authentication,
both endpoints act as responders. The goal of an attacker
is to convince the initiator to accept a forged certificate by
performing a MitM attack, by downgrading to a non-PILA
connection, or by compromising a private key of a certificate
in the certificate chain. Additionally, we analyze attacks on
AS trust and denial-of-service (DoS) attacks.

MitM Attack. An attacker can perform a MitM attack to
impersonate an endpoint by providing a forged certificate to
the initiator. For protocols that establish secure sessions, this is
done by intercepting the handshake messages and simultane-
ously creating two separate connections with the initiator and
responder. For query–response protocols, the attacker modifies
the response and possibly the signature within the response.
If the endpoints resume sessions as described in §IV-G, an

attacker has to perform the attack on every session resumption
to be successful and stay undetected.

Local Responder-Side Attacker. Attackers in the responder’s
local network are easily detectable, since the responder can
query either the certificate service or the local NAT, see §IV-F,
and check for duplicate certificates for its identifiers.

Responder-Side NAT or AS Attacker. A malicious AS or
a malicious NAT device on the responder side cannot im-
mediately be detected. They do however create irrefutable
cryptographic proof of misbehavior in the form of conflicting
endpoint certificates valid at the same point in time. These
certificates can be stored locally or published on an append-
only log server and later be compared through an out-of-band
channel or audited by another entity.

Other Attackers. Other entities, such as a malicious AS
or NAT device on the initiator’s side or an attacker in the
initiator’s local network, cannot perform a MitM attack since
they cannot forge valid responder certificates.

Downgrade Attacks. An attacker may attempt to convince
the initiator connecting to an unknown responder that the
responder’s AS does not support PILA or that the responder
does not allow the PILA-supported protocol. These attacks are
prevented due to the mechanisms explained in §IV-H.

Private Key Compromise. The severity of a compromised
private key depends on the entity and the lifetime of the
certificate belonging to this key. Key compromises of entities
in the RPKI delegation chain are relatively easy to detect
if abused, since there would be ASes with multiple valid
certificates with different public keys, different AS numbers, or
different IP address ranges. AS key compromises are similarly
easy to detect but only allow forging signed PILA messages
within the compromised AS. Endpoint key compromises are
less severe, as endpoint certificates are short-lived.

Attacking AS Trust. Attackers might attempt to reduce
the trustworthiness of ASes. Slander, i.e., accusing a benign,
uncompromised AS of having issued incorrect certificates, is
not possible in PILA since an attacker does not possess the
AS’s private key and thus cannot forge certificates. An attacker
might try to frame an AS by requesting incorrect certificates.
Incorrect certificates could be certificates for IP addresses
already assigned by the AS or not within the control of the
AS or certificates with another endpoint’s local identifier. ASes
prevent such framing attacks by verifying the correctness of
an endpoint’s claim of identifiers as explained in §IV-D.

Resource-Exhaustion Attacks. Resource-exhaustion at-
tacks attempt to overwhelm computational, storage, or network
resources of an endpoint or certificate service. An AS deploy-
ing a certificate service can perform ingress filtering to limit
external DoS attacks and locate endpoints performing DoS
attacks in its own network. Endpoints can deploy typical DoS
countermeasures for transport or application layer protocols,
for example, DNS cookies [14].

VI. USE CASES

We present three use cases for PILA, which cover a remote
login protocol (SSH), a query–response protocol (DNS), and

Certificate Service

Client

Certificate Service

Server

2.c) GetASCert(S)

2.a) SSHPILA

2.b) SSH

3) GetProof(S)
1) GetEPCert(S,KS)

ASC ASS

Fig. 3: SSHPILA connection establishment.

a general session-establishment protocol (TLS).

A. SSH

The SSH protocol allows clients to establish an encrypted
and possibly authenticated session and open a terminal on a
remote machine. The SSH protocol is frequently used to con-
nect to machines identified by their IP address and thus is well
suited to use PILA as a baseline for security. After initially
connecting to a remote machine, SSH associates the machine’s
address and its public key, and thus all subsequent connections
are authentic if the initial connection was authentic. If a client
either pre-loads these associations on their machine or verifies
the fingerprint (hash of the remote machine’s public key) then
the authenticity of the initial connection is guaranteed. In
many cases, a client simply accepts the provided fingerprint
or fails to detect a difference between two long hexadecimal
fingerprints [19], [12]. In these cases, PILA mitigates attacks
by providing an association between IP addresses and public
keys of hosts in PILA-enabled ASes when connecting to a
remote machine from a client for the first time.

In SSHPILA, instead of directly authenticating a server by
its public key, servers are authenticated by their endpoint
certificates. This requires a slight change in the SSH handshake
message format. Instead of adding its public key to the final
SSH handshake message, a server adds its endpoint certificate
which contains the public key used during the SSH handshake.

Figure 3 shows the SSHPILA connection establishment with
dashed lines indicating situational or periodic operations.
The server periodically requests an endpoint certificate from
its AS’s certificate service (1) and includes it in the final
handshake message. The client initiates an SSHPILA handshake
(2.a) which might be dropped by a non-SSHPILA server.
Concurrently to this handshake, to reduce the latency, the client
initiates a regular SSH handshake in case the server does not
support SSHPILA (2.b) and fetches the server’s AS certificate
if it is not cached (2.c). When the final handshake message is
received, the client validates the received endpoint certificate
using its RPKI trust anchors and the server’s AS certificate.
If the SSHPILA handshake fails but the server’s AS supports
PILA, the client additionally requests an explicit proof that the
server does not support SSHPILA from the server’s AS (3). It is
important to note that the client does not complete the regular
handshake until the explicit proof is received to prevent leaking
information such as login credentials to a MitM attacker.

Question example.com

Additional
EDNS(0)
freshness

A
OPT
TXT

Additional
EDNS(0)
Certificates

OPT
TXT

Question example.comA
Answer X.X.X.XA

SIG Signature

Query
Reply

Fig. 4: DNS messages exchanged between client and its
recursive DNSPILA resolver. The columns depict the DNS
query section, resource record type, and resource record value.

B. DNS

In a large-scale survey by Chung et al. in 2017 [7], 88%
of all DNSSEC-enabled recursive DNS resolvers returned
supposedly DNSSEC-verified responses, without actually ver-
ifying the certificate chain. If the certificate chain from the
DNS root certificate is not verified before an entry is cached,
then DNSSEC does not provide any security and is vulnerable
to the same attacks as regular DNS, while providing a false
sense of security. The issue seems to be that the resolver is
not easily held accountable for the validity of the returned
DNSSEC entries. DNSPILA solves this issue by holding re-
solvers accountable for their DNSSEC responses. Auditors can
use the signed DNSPILA responses to prove recursive DNS
resolvers’s misbehavior (serving unverified DNSSEC-enabled
responses) by verifying the DNSSEC responses themselves.

DNSPILA. DNSPILA adds freshness to DNS queries and
returns signed DNS replies including necessary certificates as
shown in Fig. 4. DNS is a prime example of the benefits of
PILA as it is (1) unauthenticated, (2) interception and redirec-
tion of requests is widespread [28], and (3) DNS servers are
mostly identified by their IP addresses. It is important to note
that DNSPILA operates between the client and resolver, unlike
DNSSEC, where authoritative nameservers publish DNSSEC
entries which are distributed by resolvers. In comparison to
DNS over HTTPS (DoH) and DNS over TLS (DoT) which
provide secrecy and authenticity, DNSPILA provides authen-
ticity and non-repudiation. DNSPILA is thus to some extent
orthogonal to DoH and DoT and could be encapsulated within
DoH or DoT to additionally provide secrecy.

A client adds the following resource records (RR) to the
DNS query: An EDNS(0) RROPT [11] to allow payloads larger
than 512 B for transmitting the necessary certificates and a
TXT record (RRTXT) containing a random value to prevent
replay attacks. The server detects PILA support by checking
for a DNSPILA RRTXT. If DNSPILA authentication is requested,
the server adds an RRTXT with the required certificate (chain)
to the response. The server then adds the signature which is
calculated over both the query and response in the form of an
RRSIG record analogous to a SIG(0) [13] signature. The client
checks each field in the response and verifies the RRSIG using
the endpoint certificate.

Privacy. There is a privacy concern for disclosing malicious
DNS servers as it reveals the browsing behavior of a user.
A way to circumvent the privacy implications is by sending
a denouncing DNSPILA response to an auditor in a privacy-
preserving way, e.g., via TOR.

0 100 200 300 400 500 600 700

SSHPILA

SSH Fallback

Connection establishment time in ms

SSH PILA

Fig. 5: SSH connection establishment time in ms for successful
SSHPILA connections and connections that fall back to regular
SSH. The latency is split into the baseline latency of a regular
SSH connection establishment and the overhead of SSHPILA.

C. TLS

We define PILA for TLS (TLSPILA) as an example of a
secure session-establishment protocol. Our goal is to achieve a
baseline of security for persistent connections, which requires
authenticating services by default, regardless of whether the
endpoint is identified by an IP address or a DNS name. An
endpoint uses TLSPILA if neither a TLSA resource record nor
a Web PKI certificate is available and the destination endpoint
is identified via IP address.

In TLSPILA, TLS 1.3 is modified to use PILA endpoint
certificates instead of certificates signed by the Web PKI and
verify the IP address instead of the domain name of the oppo-
site endpoint. Apart from the handshake, TLSPILA is analogous
to SSHPILA except that since TLS requires a certificate, there
is no fallback mechanism and thus no GetProof request.

VII. EVALUATION

We created proof-of-concept implementations for SSHPILA,
TLSPILA, and DNSPILA and evaluate their latency, memory,
and processing overhead.

A. SSHPILA and TLSPILA

SSHPILA is implemented in golang and the client conforms
to the interface in the golang SSH library [18] but provides
PILA-specific configuration options. X.509 resource certifi-
cates are processed using the Cloudflare RPKI Validator Tools
and Libraries [8] and the server implementation is based on
the Glider Labs SSH library [25]. The implementation uses the
signed list approach to provide AS and endpoint downgrade
protection as described in §IV-H and allows both challenge–
response and signature-based endpoint-certificate issuance as
described in §IV-E. All measurements use the signature-
based endpoint-certificate issuance unless stated otherwise.
We simulate the RPKI environment by creating a self-signed
RPKI trust anchor and delegation chain certificates. The AS
certificates, analogous to RPKI certificates, use 2048 bit RSA
public keys, while endpoint certificates use 256 bit ed25519
public keys to reduce the size of certificates and signatures.
We evaluate the end-to-end latency in a realistic setting using
virtual machines located in two data centers. The client and
server together with their certificate service are located in
New York and Frankfurt, respectively. This leads to a 1 ms

TABLE I: Average processing times of SSHPILA operations in
ms at the client, server, and certificate service (CS).

Client Server CS

Handshake Overhead 0.8 0.1 -
GetEPCert - 1.0 17.0
GetASCert 4.3 - 8.3
GetProof 0.6 - 5.1

and 84 ms round-trip time (RTT) within and between the data
centers, respectively.

Figure 5 shows that the increase in SSH connection-
establishment time is less than 2% for successful SSHPILA
connections. If the client connects to a server that does
not support SSHPILA and must request a proof thereof, the
overhead is slightly larger (∼26%). For most users, such
latency overheads during the infrequent SSH connection es-
tablishments are negligible. The memory overhead compared
to regular SSH is below 620 kB.

Table I shows the processing overhead of the SSHPILA
handshake compared to a regular SSH handshake and of
requests from the endpoint to their own AS (Get*Cert) and
the destination AS (GetProof). The measurements for the
Get* requests to the certificate service exclude the processing
time of the network stack. The handshake overhead is less than
1 ms for both endpoints, which contributes only a fraction of
the experienced latency observed in the end-to-end evaluation
where network delays dominate the overhead. The processing
overhead for a client is small and does not pose an issue for
most clients, which only initiate few SSH connections.

On the server side, the overhead of requesting an endpoint
certificate is low and its amortized cost is further reduced by
only fetching the endpoint certificate once. The only additional
processing required during the actual handshake is replacing
the public key in the final handshake message with the end-
point certificate, increasing the size of the handshake message
by ∼ 600 B. Hence SSHPILA incurs virtually no overhead
compared to regular SSH at the server. For the certificate
service, the overhead per request is less than 10 ms except
for issuing the endpoint certificate, which is an infrequent
operation done once per certificate lifetime per endpoint. The
load on the certificate service could be reduced further by
caching AS and endpoint certificates and proofs at the client.

For GetEPCert, we evaluate the signature-based endpoint-
authentication approach. The challenge–response protocol
adds a small additional delay of two RTTs for the TCP and
HTTP request and small processing overhead for setting up
a minimal HTTP server on the client. This increases the
GetEPCert latency by < 4 ms.

For the TLSPILA implementation, the overhead of a hand-
shake is less than 700 µs on the client side and negligible on the
server side. Apart from the handshake, the remaining overhead
is the same as in SSHPILA except that GetProof is not used.

0 20 40 60 80 100 120

Server

Client

Average processing time in µs

DNS PILA ECDSA

Fig. 6: Average processing times for signing (server) and
verifying (client) DNSPILA responses excluding the network
stack. The processing is split into a general processing of DNS
responses (de- and encoding, domain lookup), PILA-related
processing excluding cryptographic operation, and ECDSA P-
256 signature creation (server) and verification (client).

B. DNSPILA

We implement DNSPILA on top of the well known DNS
library miekg [16]. In particular, we look at the performance
of both a DNSPILA client and server, as we want to ensure
the overhead of DNSPILA is acceptable even for resource-
constrained devices. Our implementation uses ECDSA P-
256 as a signature algorithm, which is used for SIG(0) [13]
resource record in the DNS library. Figure 6 shows the
overhead of our implementation for generating the DNSPILA
responses at the server and verifying them at the client. Using
a typical workstation processor, a DNSPILA response is created
and signed in 102 µs and verified in 119 µs.

For clients, even processing hundreds of responses leads to
a small overhead of tens of milliseconds. We expect that in
a more efficient implementation, which prevents unnecessary
memory allocations and packet copying, the cryptographic
operations would become the processing bottleneck. Servers
employing DNSPILA achieve high packet rates of ∼104 pkt/s on
a single core. By parallelizing signing operations on multiple
cores, the throughput can be increased further.

VIII. RELATED WORK

Anonymous key-exchange protocols do not rely on trusted
entities but authenticity is only guaranteed if the initial mes-
sage(s) were not tampered with, a principle called trust-on-
first-use (TOFU). Examples are TCPCrypt [5], Secure Shell
(SSH) (without verifying the authenticity of the public key),
and SMKEX [9] which uses multiple network paths to impede
tampering with the handshake.

Certificate-based protocols rely on entities as trust an-
chors to authenticate endpoints using cryptographic certifi-
cates. PILA belongs to this category since endpoints verify the
certificate chain from the RPKI trust anchor to the endpoint
certificates. The most widely used certificate-based protocol is
HTTPS, which uses TLS in combination with the Web PKI,
especially with the rise of Let’s Encrypt [24] providing auto-
mated and free creation TLS server certificates. DANE [21]
fixes the weakest-link security of the Web PKI by distributing
DNSSEC-authenticated TLSA DNS records that allow domain
owners to specify Web PKI policies.

Anonymity-based protocols exploit the fact that an attacker
cannot distinguish packets sent in an anonymity network
infrastructure with different sources or destinations. Dou-
bleCheck [1] retrieves self-signed certificates of the receiving
endpoint through different routes within the anonymity net-
work and detects MitM attacks if the attacker cannot intercept
all requests. In Plug-and-Play IP Security [17], a user detects
that an attacker is tampering with its traffic by periodically
sending packets to itself through the anonymity network.

PISKES [36], intended for DoS prevention, allows an
endpoint to efficiently derive a symmetric key to any other
endpoint in the Internet, which can then be used for first-packet
authentication. Similar to PILA, endpoints are identified by
their IP address and each participating AS provides a service
to fetch these keys. However, unlike PILA, PISKES can only
generate symmetric keys and ASes cannot be held accountable
to third parties for their actions. Thus, PISKES only provides
the first property, crude authentication, of trust amplification.

IX. CONCLUSION

PILA enables ubiquitous authentication for a wide range of
devices and provides significantly improved security properties
compared to TOFU approaches. This is achieved through the
trust-amplification model in combination with RPKI and IP-
address-based authentication. PILA can be used for session-
establishment (SSH and TLS) and query–response protocols
(DNS). Our proof-of-concept implementations show that PILA
can be implemented without significant performance cost with
an end-to-end latency increase of less than 2% for a regular
connection and less than 26% for a fallback connection in
the case of SSHPILA and a per-packet overhead of ∼100 µs
for DNSPILA. We believe that PILA can form a solid security
baseline for an abundance of applications in the absence of
strong authentication options.

X. ACKNOWLEDGMENTS

We gratefully acknowledge support from ETH, ZISC, and
the European Union’s Horizon 2020 research and innovation
programme under grant agreements No 825310 and 825322.

REFERENCES

[1] M. Alicherry and A. D. Keromytis. DoubleCheck: Multi-path ver-
ification against man-in-the-middle attacks. In IEEE Symposium on
Computers and Communications, 2009.

[2] R. Barnes. Use Cases and Requirements for DNS-Based Authentication
of Named Entities (DANE). RFC 6394, 2011.

[3] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten. Automatic
Certificate Management Environment (ACME). RFC 8555, 2019.

[4] T. Bates. CIDR report. www.cidr-report.org/as2.0/, March 2021.
[5] A. Bittau, M. Hamburg, M. Handley, D. Mazières, and D. Boneh. The

case for ubiquitous transport-level encryption. In USENIX Security
Symposium, 2010.

[6] T. Chung, E. Aben, T. Bruijnzeels, B. Chandrasekaran, D. Choffnes,
D. Levin, B. M. Maggs, A. Mislove, R. v. Rijswijk-Deij, J. Rula,
and N. Sullivan. RPKI is coming of age: A longitudinal study of
RPKI deployment and invalid route origins. In Internet Measurement
Conference, 2019.

[7] T. Chung, R. Van Rijswijk-Deij, B. Chandrasekaran, D. Choffnes,
D. Levin, B. M. Maggs, A. Mislove, and C. Wilson. A Longitudinal,
End-to-End View of the DNSSEC Ecosystem. In USENIX Security
Symposium, 2017.

[8] Cloudflare. Cloudflare RPKI validator tools and libraries. https://github.
com/cloudflare/cfrpki.

[9] S. Costea, M. O. Choudary, D. Gucea, B. Tackmann, and C. Raiciu. Se-
cure opportunistic multipath key exchange. In ACM SIGSAC Conference
on Computer and Communications Security, 2018.

[10] J. Cowie. The new threat: Targeted Internet traffic misdirection. https:
//dyn.com/blog/mitm-internet-hijacking, 2013.

[11] J. Damas, M. Graff, and P. Vixie. Extension Mechanisms for DNS
(EDNS(0)). RFC 6891, 2013.

[12] S. Dechand, D. Schürmann, K. Busse, Y. Acar, S. Fahl, and M. Smith.
An empirical study of textual key-fingerprint representations. In USENIX
Security Symposium, 2016.

[13] D. Eastlake, III. DNS Request and Transaction Signatures (SIG(0)s).
RFC 2931, 2000.

[14] D. Eastlake, III and M. Andrews. Domain Name System (DNS) Cookies.
RFC 7873, 2016.

[15] A. Eijdenberg, B. Laurie, and A. Cutter. Verifiable data
structures. https://github.com/google/trillian/blob/master/docs/papers/
VerifiableDataStructures.pdf, 2015.

[16] M. Gieben. DNS library in Go. https://github.com/miekg/dns.
[17] Y. Gilad and A. Herzberg. Plug-and-Play IP Security: Anonymity

Infrastructure Instead of PKI. ESORICS, 2013.
[18] Go contributors. Go cryptography. https://github.com/golang/crypto.
[19] P. Gutmann. Do users verify SSH keys? Login, 36, 2011.
[20] D. Harkins and W. Kumari. Opportunistic Wireless Encryption. RFC

8110, 2017.
[21] P. Hoffman and J. Schlyter. The DNS-Based Authentication of Named

Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC
6698, 2012.

[22] R. Housley. TLS 1.3 Extension for Certificate-Based Authentication
with an External Pre-Shared Key. RFC 8773, 2020.

[23] G. Huston, G. Michaelson, and R. Loomans. A Profile for X.509 PKIX
Resource Certificates. RFC 6487, 2012.

[24] ISRG. Let’s Encrypt. https://letsencrypt.org.
[25] G. Labs. Glider labs SSH. https://github.com/gliderlabs/ssh.
[26] B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. RFC

6962, 2013.
[27] M. Lepinski and S. Kent. An Infrastructure to Support Secure Internet

Routing. RFC 6480, 2012.
[28] B. Liu, C. Lu, H. Duan, Y. Liu, Z. Li, S. Hao, and M. Yang. Who is

answering my queries: Understanding and characterizing interception of
the DNS resolution path. In USENIX Security Symposium, 2018.

[29] B. Liu, J. T. Chiang, J. J. Haas, and Y.-C. Hu. Coward Attacks
in Vehicular Networks. ACM SIGMOBILE Mobile Computing and
Communications Review, 14(3), 2010.

[30] C. Lynn, S. Kent, and K. Seo. X.509 Extensions for IP Addresses and
AS Identifiers. RFC 3779, 2004.

[31] E. MacAskill, J. Borger, N. Hopkins, N. Davies, and J. Ball. GCHQ
taps fibre-optic cables for secret access to world’s communica-
tions. www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-
communications-nsa, 2013.

[32] NIST. RPKI Monitor. https://rpki-monitor.antd.nist.gov, March 2021.
[33] A. Paverd, A. Martin, and I. Brown. Modelling and Automatically

Analysing Privacy Properties for Honest-but-Curious Adversaries. Tech.
Rep., 2014.

[34] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat. SCION: A
Secure Internet Architecture. Springer Verlag, 2017.

[35] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, 2018.

[36] B. Rothenberger, D. Roos, M. Legner, and A. Perrig. PISKES: Pragmatic
Internet-scale key-establishment system. In ACM Asia Conference on
Computer and Communications Security, 2020.

[37] R. Shoemaker. Automated Certificate Management Environment
(ACME) IP Identifier Validation Extension. RFC 8738, 2020.

[38] D. Wendlandt, D. G. Andersen, and A. Perrig. Perspectives: Improving
SSH-style host authentication with multi-path probing. In Proceedings
of the USENIX Annual Technical Conference, June 2008.

[39] M. Wählisch, R. Schmidt, T. Schmidt, O. Maennel, S. Uhlig, and
G. Tyson. RiPKI: The tragic story of RPKI deployment in the web
ecosystem. 2015.

[40] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architec-
ture. RFC 4251, 2006.

