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ABSTRACT
We propose a security model for Vehicular Ad-hoc Networks
(VANETs) to distinguish spurious messages from legitimate
messages. In this paper, we explore the information avail-
able in a VANET environment to enable vehicles to filter out
malicious messages which are transmitted by a minority of
misbehaving vehicles. More specifically, we introduce a mes-
sage filtering model that leverages multiple complementary
sources of information to construct a multi-source detection
model such that drivers are only alerted after some fraction
of sources agree. Our filtering model is based on two main
components: a threshold curve and a Certainty of Event
(CoE) curve. A threshold curve implies the importance of
an event to a driver according to the relative position, and
a CoE curve represents the confidence level of the received
messages. An alert is triggered when the event certainty
surpasses a threshold. We analyze our model and provide
some initial simulation results to demonstrate the benefits.

Categories and Subject Descriptors: C.2.0 [Computer
– Communication Networks]: General – security and protec-
tion; C.2.1 [Computer – Communication Networks]: Net-
work Architecture and Design – Wireless communication
General Terms: Algorithms, Design, Security
Keywords: VANET, Misbehavior Detection

1. INTRODUCTION
Within the US, vehicular accidents result in over 34,000

deaths [12] and cost motorists 164.2 billion dollars a year [3].
A recent study found drivers stuck in traffic congestion in
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2007 waited for 4.2 billion hours and wasted 2.8 billion gal-
lons of fuel [19]. In the near future, vehicles will possess
On-Board Units (OBUs) which wirelessly communicate with
other OBUs or Road-Side Infrastructure (also called Road-
Side Units (RSUs)). Applications in such Vehicular Ad-
hoc Networks (VANETs) can improve roadway safety while
reducing congestion through real-time traffic management
[1]. However, security mechanisms are needed to prevent
malevolent behavior. For example, the Electronic Emer-
gency Brake Light (EEBL) application is meant to alert
drivers of rapidly decelerating nearby vehicles which may
not be visible (e.g., hidden from view by a large truck), re-
ducing the chance of multiple vehicle collisions. However, a
maliciously crafted EEBL message could cause a driver to
suddenly decelerate or swerve, causing a dangerous situation
or even an accident, that may not happen without VANET.
The proposed IEEE 1609.2 standard uses a public-key in-
frastructure and digitally signed messages to secure VANET
applications [11]. However, cryptography only enables origin
authentication of a message that could ultimately identify
a culprit only after an attack. Instead, a mechanism to de-
tect spurious messages during an event is needed to ensure
correct operation of applications, prevent VANET-induced
accidents, and facilitate the successful adoption of VANETs.

Our goal is to propose a model that enables OBUs to ac-
curately label VANET messages as legitimate or spurious.
This is an important challenge since spurious messages can
occur as a result of malevolence or a faulty sensor. Error-
free and tamper-proof sensors and hardware could prevent
the generation and distribution of spurious messages, but are
prohibitively expensive.1 Prior works have proposed misbe-
havior detection mechanisms for VANETs [6, 7, 8, 13, 14,
17], which individually leverage different sources of informa-
tion to detect a variety of attacks. In this work, we describe
a framework to combine these complementary sources as a
means to utilize all of the information available to OBUs to
corroborate the validity of a V2V message. Specifically, we
examine the following 6 sources of information:

1. Cryptographic Authentication: Does the message
include a valid digital signature and certificate?

2. Source Location: Is the sender in a valid and rele-
vant location?

3. Local Sensors: Do my local sensors support the alert?
4. Other Vehicles’ Messages: Do other vehicles’ mes-

sages support or contradict a given message?
5. Infrastructure Validation: Do RSUs with sensors

embedded in the road support the message?

1For example, the IBM-4764 (a high-security cryptographic
coprocessor) costs over $8,000 [10].



6. Sender Reputation: Did the sender previously broad-
cast spurious data?

In Section 3.2, we provide more detailed definitions and ex-
amples of the 6 sources. Our system combines the data
from various sources to calculate a Certainty of Event (CoE)
value. The OBU only notifies the driver if the CoE exceeds
a threshold, which varies with distance to provide faster no-
tification for nearby events while reducing the number of
alerts associated with far away events that are irrelevant to
the driver. Faster notification for nearby events is important
as it provides drivers with more time to respond.

Contributions. This work provides a framework for
VANET misbehavior detection that allows the combination
of different sources of information in a systematic fashion.
Rather than limiting ourselves to cryptography, local sen-
sors, or reputation alone, we investigate a holistic synthesis
that harmonizes different, possibly contradictory, sources
of information. Evaluating the CoE versus our proposed
threshold curve will dramatically reduce the number of spu-
rious driver alerts, even in environments without attackers.
We also present a theoretical analysis and a simulation-
based evaluation to provide guidelines on how to configure
the system and to demonstrate the benefits of the system.
Rather than being a complete solution for VANET misbe-
havior detection, our system provides a general framework
such that any future improvements to misbehavior detection
that leverage a given source of information could be“plugged
into”our system as a way to improve detection performance.

2. PROBLEM DEFINITION
In this section, we present a concise problem definition,

attacker model, assumptions, and the trust model.

2.1 Problem Definition
Given a road with a small but non-negligible fraction of

vehicles that transmit spurious messages which contain false
information (either intentionally or accidentally due to mal-
functioning units), we need to ensure that legitimate vehicles
can filter out such spurious messages with high probability.
In this paper, we introduce a message filtering model that
verifies the validity of a received message (it is outside the
scope of this work to distinguish whether a spurious mes-
sage is transmitted by a malicious node or a malfunctioning
node). We propose a filtering model that leverages multiple
sources of information and alerts the driver only after some
fraction of sources agree.

We will evaluate the fidelity of our message filtering model
along two dimensions:

1. efficacy of the filtering model based on the collision
percentage, the percentage of vehicles in a region which
are involved in a vehicular collision, and

2. the delay between when a message is received and
when the driver is alerted since delivering safety mes-
sages to drivers on time is critical.

2.2 Attacker Model
We consider active attackers who violate the integrity of

messages (i.e., attackers create bogus alerts, or suppress le-
gitimate messages). More specifically, attackers may inject
malicious messages announcing invalid driving safety infor-
mation and attempt to propagate bogus information to other
vehicles on roads. Such active attacks may encourage legiti-
mate drivers to change driving behavior; for example, legit-
imate drivers may slow down or decide to take alternative

paths if the bogus message announces that some hazardous
material is spilled on the road ahead. As a result, attack-
ers succeed in disrupting normal driving behavior, clearing
the road to lower congestion. Attackers may also suppress
legitimate alerts of critical safety information from further
propagation by simply dropping packets. This attack may
prevent legitimate drivers from being warned about some
critical safety information that they will encounter. Conse-
quently, these legitimate drivers may not have enough time
to properly react when they reach the relevant zone, and in
the worst case, attackers succeed in further exacerbating the
situation near the hazardous region.

We also address attackers that have compromised other
vehicles, and/or inject malicious messages from outside the
area of relevance: attackers who are not physically located
on the related roads, attackers who propagate malicious mes-
sages from the opposite direction, and attackers who are
approaching the related area.

We consider Denial of Service (DoS) attacks, such as jam-
ming, beyond the scope of this work.

2.3 Assumptions and Trust Model
In order to distinguish between spurious and legitimate

messages, we assume that:

• Vehicles communicate using the Dedicated Short Range
Communication (DSRC) technology.

• Vehicles adhere to the IEEE 1609.2 standard for VANET
security [11]. More specifically, a Public Key Infras-
tructure is available and all OBUs can authenticate
certificates to identify senders as valid VANET partic-
ipants and signatures to validate the message contents.

• Vehicles are equipped with minimal local sensors, e.g.,
thermometer, GPS, accelerometer, etc.

• A limited percentage of vehicles are equipped with ad-
vanced sensing equipment. For example, radar and/or
LIDAR equipment, which can independently detect
stopped or slowly moving vehicles, may be available
on some high-end vehicles.

• The majority of vehicles are honest, and malicious or
malfunctioning vehicles represent a small fraction of
the VANET population.

There may be roadside infrastructure, such as Road Side
Units (RSUs) deployed by trusted authorities, and vehicles
trust messages that RSUs generate. However, we do not
make a bold assumption that RSUs exist on roads. Instead,
we conjecture that RSUs will be deployed in the near future,
and be available for VANET. In the beginning, RSUs may
be deployed sparsely in general, probably with more RSUs
in urban areas due to greater vehicle density.

3. MISBEHAVIOR DETECTION MODEL
To ensure that a vehicle’s OBU delivers legitimate warn-

ings that announce critical driving conditions and prevent
drivers from being inconvenienced and disturbed by spurious
warnings, we propose a general model to distinguish invalid
messages from legitimate ones. Our model is based on a
multi-source filtering model; given 6 complementary sources
of information, we propose that an OBU tests the validity of
a received message. More specifically, the OBU of a vehicle
investigates a received message by aggregating the results
from all applicable sources (among 6 sources). Only when
the aggregated result indicates that the message is valid,
the OBU confirms that the received message is announcing
some real safety condition, and warns the driver. In Section
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Figure 1: Threshold and CoE curves. We chose the
direction of the x-axis to indicate a vehicle driving
from left to right, approaching the event positioned
at the 0 mark. A driver is alerted when the CoE
curve crosses the threshold.

3.1, we provide an overview of our detection protocol, and in
Section 3.2, we delineate 6 sources of filters in detail. In Sec-
tion 3.3, we describe how the results from the 6 sources are
combined to determine the validity of the received messages.

3.1 Overview
We propose an alert endorsement model that is based on

two main components: a threshold curve, and a CoE curve.
When vehicles exchange warning messages, it is critical that
a receiving vehicle determines the validity of incoming mes-
sages and only alert the driver once the system has deter-
mined that the messages are legitimate. We suggest that an
alert is triggered if the event certainty surpasses a threshold.
We now present an overview of the two main components.

Threshold Curve. The importance of an event to a
driver depends on the distance between the event and the
driver; a nearby event is more important to the driver (There
may be other factors that determine the importance of an
event, such as the vehicle’s current velocity, but in this work,
we only consider the distance as an initial suggestion for
deriving a threshold curve). Based on this observation, we
suggest a threshold curve considering three aspects:

• Delayed event announcement: we suggest a threshold
value that prevents an OBU from notifying the driver
too early when the event is far away from the driver.
Delayed announcements can also prevent invalid alerts
from unnecessarily impacting driver behavior.

• Low false positives: a high threshold value is desirable
to avoid accepting an invalid message. This is espe-
cially true when the corresponding event is far away.

• Low false negatives: a low threshold value is desirable
in order to prevent any legitimate message from be-
ing filtered out. This is especially true as the driver
approaches the corresponding event.

As a result, we suggest threshold values that diminish as
the driver approaches the event. Figure 1 shows a sample
threshold curve. Note that the threshold curve rises to in-
finity when the driver’s position matches the event location
since further alerts regarding the event at this location are
meaningless as the driver passes the event.

CoE Curve. It is challenging to evaluate whether a re-
ceived message reports a real critical event or not, unless the
event is within the driver’s vicinity. Hence, it is important

that an OBU collects and corroborates messages which warn
about a potential event. An interesting observation is that
all vehicles that observe a real event tend to send messages
to inform others that are approaching the event. Thus, an
OBU of a vehicle approaching the event will receive multi-
ple messages that either directly report the event or imply
some abrupt change in traffic condition. On the other hand,
if the reporting event is invalid, the OBU of a vehicle behind
the event does not receive as many messages as it would for
a real event since only malicious drivers will transmit such
spurious messages. As a result, the OBU can gain confi-
dence on the reported event’s validity based on the number
of valid messages received. We name the confidence of an
event as Certainty of Event (CoE). The CoE value increases
as the OBU approaches the real event since the number of
messages reporting that event increases, and the OBU alerts
the driver when the CoE curve crosses the threshold curve,
as shown in Figure 1. On the other hand, the CoE value
decreases as the OBU approaches a spurious event for the
following reason: as the number of messages reporting the
spurious alert does not increase, the alert is only useful for
a limited time period. Hence, the importance of the alert
decays over time. In this case, it is unlikely that the CoE
curve crosses the threshold curve, as shown in Figure 1, and
the OBU does not alert the driver.

Besides the number of other vehicles that report the same
event, there are multiple criteria that an OBU may consider
to determine the CoE value. We distinguish 6 complemen-
tary sources of inputs. An OBU considers each source to a
received message to verify if the message satisfies the condi-
tion of the source, and adjusts CoE value for each source.

3.2 6 Sources of Inputs for CoE
In this section, we delineate 6 complementary sources for

filtering in detail, and explain how each source is used to
validate the legitimacy of received messages.

Source 1: Cryptographic Authentication. A ve-
hicle’s OBU authenticates received messages using public
key cryptography in order to detect invalid safety messages.
With IEEE 1609.2 [11], which provides a Public Key In-
frastructure (PKI) for OBUs to authenticate messages, we
can ensure that each vehicle has exactly one valid certifi-
cate at a given time (e.g., no Sybil attacks are possible),
and receivers can use that certificate to authenticate any
received messages. Unfortunately, cryptographic authenti-
cation is insufficient by itself because an adversary may have
compromised the cryptographic keys of vehicles or may have
altered the inputs to a vehicle’s sensors.

Source 2: Geographic Location Validation. Vehicles
are only concerned about safety warnings related to where
the vehicle is headed (i.e., area of relevance) [17]. This im-
plies that OBUs only need to verify messages that are gen-
erated by other OBUs that are located within the area of
relevance. For example, a recipient can apply the Convoy
Member Authentication and the Vehicle Sequence Authen-
tication [17] to check whether senders are driving with and
in front of the recipient. Furthermore, OBUs can use the
senders’ previous location claims to detect malicious attack-
ers who announce messages from outside the area or rel-
evance. More specifically, the receiving OBUs may utilize
maps to investigate whether senders of the warning messages
are traveling on the roads as indicated in the messages.

Source 3: Local Sensors. Vehicles are manufactured
with various sensors, and OBUs may use data from those
sensors for verification purposes. For example, an OBU can
use a thermometer to invalidate a spurious message report-



ing icy road conditions. If the recipient vehicles are equipped
with special devices, such as radars, the OBUs of such ve-
hicles can also verify if the senders of the warning messages
indeed exist in the location as indicated in the messages.

Source 4: Responses from Other Vehicles. All ve-
hicles that are driving toward the security warning zone be-
have similarly when the message is valid. As a result, OBUs
can confirm the validity of the received messages by check-
ing how other vehicles respond as they approach the region.
For example, an OBU can detect that a message about the
existence of the debris is spurious if other vehicles near the
debris do not slow down but rather drive through the debris.

Source 5: RSU Validation. If RSUs are deployed along
the roads, RSUs can provide information on road conditions,
traffic patterns, etc. that OBUs may use to verify messages.
For example, an OBU can filter a malicious message that
reports congestion in an area while RSUs do not indicate
congestion in that area. An OBU can also deduce the valid-
ity of a message about traffic patterns, such as the sudden
hard braking, if RSUs indicate the existence of a tight curve
where vehicles tend to brake hard.

Source 6: Reputation.2 OBUs may infer the validity of
the received messages based on the reputation of the vehicles
that report such data. In other words, if OBU A has received
false information from some OBU B recently, then OBU A
may not trust what OBU B reports thereafter since there is
a high probability that OBU B may still lie or malfunction.
As a result, the negative reputation of OBU B may aid OBU
A to easily filter out its spurious messages.

3.3 Decision Making Procedure
In this section, we explain how an OBU determines the

validity of a received message. Essentially, an OBU tests
the received message based on the information from several
sources, as described in Section 3.2, and combines their out-
puts. When the combined output implies that the message
is relevant and legitimate, the OBU alerts the driver.

3.3.1 Prioritization of Sources
Several automotive applications that have been proposed

to enhance safety and convenience in vehicular networks [1],
and every application has different security and safety re-
quirements. Given the application diversity, only a subset
of our 6 sources may apply; consequently, OBUs may verify
received messages based on selected applicable sources only.
For example, a message for the Emergency Electronic Brake
Light (EEBL) application, where a vehicle braking hard
broadcasts a warning message, only relates to the message
authentication (Source 1), location of the sender (Source 2),
other vehicles’ responses (Source 4), and the previous inter-
action with the sender (Source 6). Local sensors and RSU
validation may not be applicable for EEBL events that are
out of range of the local radar.

In order to minimize computational power, OBUs may
prioritize the above 6 sources in specific orders based on
the application. Even with efficient authentication mecha-
nisms [9, 16], OBUs can further reduce computation if they
can avoid the process of any cryptographic authentication.
For example, a warning message of an icy road in the middle
of the summer can be ignored even before cryptographically
verifying the message. On the other hand, the same warning
message from a nearby RSU, which is deployed by trusted

2Various reputation systems are available to be incorporated
into our filtering model. Their technical feasibility is another
study which we do not address in this work.

authorities, can confirm that the road is indeed icy. Con-
sequently, for RHCN messages (where a vehicle detecting
a road hazard (e.g., fluid, ice, debris) notifies other vehi-
cles within the potentially affected region), we suggest that
OBUs apply all sources in the order of 5→2→1→3→6→4.
Note that such ordering is a suggestion to harmonize differ-
ent sources in a way to reduce the computational overhead,
but the prioritization of the ordering can be changed depend-
ing on design criteria. The same ordering of sources may
be applied for all event-driven applications whose purpose
is to notify drivers about the actual road incidences (e.g.,
EEBL, SVA (Stopped/Slow Vehicle Advisor), PCN (V2V
Post Crash Notification), and RFN (Road Feature Notifi-
cation). For periodic-routine applications that warn drivers
about potential collisions such as CCW (Cooperative Colli-
sion Warning) and CVW (Cooperative Violation Warning),
such ordering does not apply.

Moreover, depending on the applications, outputs from
certain sources may be more influential than those of other
sources in determining the validity of received messages.
For example, an OBU may consider RHCN messages from
RSUs to be more meaningful than those from nearby vehi-
cles because RSUs are governed by trusted authorities. This
implies that the OBU may place more weight on Source 5
(RHCNs from RSUs) than on Source 1 (cryptographic au-
thentication of RHCNs from nearby vehicles). Our frame-
work accommodates fully or partially trusted RSUs. In this
paper, we consider fully trusted RSUs.

3.3.2 Certainty of Received Messages
Determining the validity of a received message depends

on two variables: relative location of the event and the time
of the event. If an OBU receives a message about an event
that is closer to the OBU, then it may consider this message
to be more relevant for detection. For example, an OBU
would categorize nearby EEBL messages as more relevant
than more distant EEBL messages. Similarly, a recent mes-
sage is more relevant for detection than an aged one, because
the importance of an event decays over time.

We define CoE to represent the confidence level of an event
at a specific point in time. The confidence level is derived
by combining values of all outputs of applied sources, where
these applied sources are determined by the specific appli-
cation for the event. When the CoE value is greater than
some threshold (which is application-specific) at a specific
point of time, it alerts the driver.

We suggest two approaches for representing CoE: linear
and cumulative. We now describe each in detail.

Linear Approach. In the linear approach, the CoE value
for an event computed by vehicle vn is determined by the
alert messages input from other vehicles vi at the specific
time period regardless of the CoE values of other vehicles.
An OBU considers a received message for CoE calculation
only when the message is verified by Sources 1 and 2, and by
Sources 3 and/or 5 if they are available (i.e., these sources
act as pre-filters to remove obviously faulty data first). Then
a vehicle vn calculates the CoE for an event e as follows:

CoE(vn,e) =
X

i,j

l6(vi) · (αj · l4(vi)) (1)

where

- l6 is the reputation value of the reporting vehicle vi

where i 6= n (Source 6),
- l4 indicates the reception of alert messages from vehicle

vi (Source 4) (e.g., for an EEBL application, l4 = 1
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Figure 2: Comparison of linear and cumulative CoE.

for EEBL, RHCN, or SVA messages from vi and 0
otherwise), and

- αj is a weight based on the input message type j (e.g.,
αRHCN = 1.2, αEEBL = 0.5, etc.).

Cumulative Approach. People tend to trust some news
with higher confidence when they hear the same news from
others at the same time. Similarly, an alert on a certain
event is more trustworthy when it is reported by other ve-
hicles. As a result, the cumulative approach places greater
weight on an event that has been reported by preceding vehi-
cles with high confidence about that event themselves, thus
accumulating validity faster than the linear approach.

Unlike the linear approach, the cumulative approach re-
quires each OBU to keep track of not only l4(vi) generated by
a preceding vehicle vi for the same event, but also the alert
messages that vi received from others for the same event.
Similar to the linear approach, an OBU considers a received
message for CoE calculation only when the message is ver-
ified by Sources 1, 2, 3, and 5, and a vehicle vn calculates
the CoE for an event e as follows:

CoE(vn,e) =
X

i,j

l6(vi) · (αj · l
cum
4(vi)) (2)

where

- l6 and αj are the same as in the linear case,
- lcum

4(vi)
is the aggregated alert messages from vehicles vk

in front of vi and from vi itself (i.e., k ≤ i) as follows:

lcum
4(vi) =

X

k,j

αj · l4(vk) (3)

Consider vehicles vi−1 and vi driving in front of vn and
generating the same alert message (e.g., EEBL) (vi−1 is in
front of vi and generates the message first). When vn’s OBU
first receives EEBL from vehicle vi−1, the OBU increments
CoE(vn,EEBL) by lcum

4(vi−1), which includes the alert message

from vi−1 itself (l4(vi−1)). Within some short time τ , when
vn’s OBU receives another EEBL from vi containing lcum

4(vi)
,

the OBU increments CoE(vn,EEBL) by lcum
4(vi)

, which also in-

cludes vi−1’s alert message l4(vi−1) (see Equation 3). In
other words, vn incorporates vi−1’s alert message l4(vi) twice
for CoE calculation, increasing the weight of the messages.

Figure 2 shows linear and cumulative CoE graphs for a
correct event. In this case, the cumulative approach endorses
the alert faster than the linear approach.
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Figure 3: A complete data flow of endorsing an alert.

Threshold Function for CoE. Every CoE value is com-
pared with some predetermined threshold that depends on
the message deadline and the importance of events. The
permissible latency for message authentication and the data
origin properties vary widely between different safety appli-
cations. As a result, alerts may have different verification
deadlines. For example, an EEBL notification is generated
by a single vehicle and has a tight latency constraint, while
an RHCN message requires the aggregate of a large number
of vehicles and is not as time sensitive as the EEBL notifica-
tion. Along with the permissible latency, the importance of
events influences the threshold for determining the validity
of messages; messages that report severe safety conditions
must be distinguishable from those that do not report urgent
conditions. As a result, the threshold to endorse an urgent
safety alert may be tighter than the threshold to endorse a
moderate safety alert. Note that thresholds for each appli-
cation are predetermined by system designers/engineers.

Based on the CoE value and some predetermined thresh-
old as explained above, an alert is evaluated as legitimate
when the CoE exceeds the threshold, and is sent to the
driver’s attention. On the other hand, if the CoE does not
exceed the threshold before the event lifetime, the alert is
considered as fraudulent and is discarded. Figure 3 repre-
sents the complete data flow of endorsing an alert.

3.4 Discussion
In this section, we have proposed a general model to ad-

dress the issue of how an OBU can endorse an alert given
malicious vehicles. Our approach is based on a threshold
curve and a CoE curve that is derived from 6 complemen-
tary sources. Our intention is that this general model assists
other VANET research. In the following section, we theo-
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Figure 4: Vehicle topology for EEBL application.

retically analyze our model, and in Section 5, we instantiate
the model for the EEBL application. In Section 6, we show
how prior work fits into our model.

4. THEORETICAL ANALYSIS
The design of the CoE and threshold curves directly af-

fects the effectiveness and practicality of our model.In this
section, we theoretically derive more general requirements
and properties of the CoE and threshold curves.

4.1 Requirements of Curves for Correctness
When an event is indeed valid, we need to guarantee that

the CoE and the threshold curves intersect such that an alert
is raised (correctness) when the vehicle is at least within
the distance d∗ away from the event. In this case, the driver
has sufficient time to respond to the event (timeliness).
The sufficient conditions for achieving the correctness are
as follows: (1) The CoE value monotonically increases as
the vehicle approaches the event, (2) the threshold mono-
tonically decreases as the vehicle approaches the event, (3)
within the distance d∗ to the event, the CoE value should be
greater than the threshold value, and (4) when the distance
to the event is far away to be irrelevant, then the CoE value
should be smaller than the threshold value.

We now prove that our model can achieve these condi-
tions, thus guaranteeing correctness and timeliness.

4.2 Design of CoE and Threshold Curves
We consider the following scenario with an EEBL appli-

cation. Assume that a sequence of vehicles v0, v1, . . . , vn−1

is in front of vehicle vn and they are in vn’s radio range, as
Figure 4(a) shows. Let CoE(vn,EEBL) denote the CoE value
computed by vn. We introduce l4(vi) ∈ {0, 1} for vehicle
vi such that l4(vi) = 1 if vn receives an EEBL from vehicle
vi, otherwise l4(vi) = 0. The goal is to compute the local
CoE(vn,EEBL) for vn based on the received l4(vi)’s from the
other n vehicles in vn’s radio range. To simplify the anal-
ysis, we assume that the reputations of all vehicles are the
same (i.e., l6(vi) = 1). Using these assumptions, we next an-
alyze the local CoE values using the linear and cumulative
aggregation models.

Linear Approach. Equation 1 directly yields

CoE(vn,EEBL) =

n−1
X

i=0

l4(vi) (4)

which is linear with respect to the number of received noti-

fications from other vehicles. Therefore, given a valid event
(in which case vehicles v0, v1, . . . , vn−1 send their messages),
we have:

CoE(vn,EEBL) = O(n). (5)

Cumulative Approach. In this approach, each vehicle vi

individually computes lcum
4 (vi) which is the number of mes-

sages from preceding vehicles as well as its own alert if vi

itself validates the event. If vi confirms that the event is
valid, it will further propagate its local lcum

4 (vi). Eventu-
ally, vn will compute CoE(vn,EEBL) based on all received
lcum
4 (vi)’s, instead of the primitive l4(vi)’s. In our example
scenario, we have:

lcum
4 (vi) =

i
X

j=0

l4(vj)

CoE(vn,EEBL) =

n−1
X

i=0

lcum
4 (vi)

(6)

For example, suppose there is a valid event, and vehicles v0,
v2, . . ., vn−1 sequentially witness the event and believe it.
Then we have: lcum

4 (v0) = 1, lcum
4 (v1) = l4(v0) + l4(v1) =

2, lcum
4 (v2) = l4(v0)+l4(v1)+l4(v2) = 3, . . . , lcum

4 (vn−1) = n.
And finally we have: CoE(v1,EEBL) = 1, CoE(v2,EEBL) =
1 + 2, CoE(v3,EEBL) = 1 + 2 + 3, . . .. Therefore given a
valid event in which case vehicles v0, v2, . . . , vn−1 send their
messages, we have:

CoE(vn,EEBL) = 1 + 2 + . . . n = O(n2) (7)

Correctness and Timeliness. As a preliminary analysis,
we consider the given scenario where vehicles v0, v1, . . . , vn

are driving in the same lane in order. As vn drives toward
the event location (i.e., distance to the event location d is
decreasing), more vehicles in its radio range have already
driven past the event location and generated messages to
report the event. Therefore, the value of CoE(vn,EEBL) will
increase as the vehicle is approaching the event in both linear
and cumulative approaches. Correspondingly, we can also
select a curve for the threshold to satisfy the correctness
and timeliness requirements.

Resilience to Spurious and Suppressed Alerts. In the
benign case, CoE(vn,EEBL) increases faster in the cumula-
tive approach than in the linear approach; hence, the cumu-
lative approach generates an alert earlier (see Figure 2).

With the existence of the attackers sending bogus alerts,
the cumulative approach is vulnerable to false alerts (false
positives). Assume that there are M malicious vehicles
within the radio range of vn which collectively fabricate a
bogus event with distance dm to vn (where dm is outside
the visible range of vn), as shown in Figure 4(b). Suppose
the threshold value with distance dm is TT (dm). To cause
a false alert on vn, the number of malicious vehicles sending
bogus alerts required in the linear approach is:

CoE(vn,EEBL) > TT (dm) ⇒ O(M) > TT (dm)

⇒ M > O(TT (dm)) (8)

In the cumulative approach:

O(M2) > TT (dm) ⇒ M > O(
p

TT (dm)) (9)

As the above equations show, it requires fewer attackers to
cause a false alert in the cumulative approach compared to
the linear approach. On the other hand, with the presence



of attackers suppressing valid alerts, the linear approach is
more subject to false negatives since it requires receiving
more valid alerts to trigger a local alarm.

4.3 Relationship between CoE and Threshold
As explained in the previous section, a certain number

of malicious vehicles can inject a false alert to a victim vn.
In some applications, once the alert is raised on vn, it may
automatically generate and further propagate its own alert.
In this case, there exists a potential possibility of cascad-
ing the false alert propagation: once vn is convinced and
propagates its own message, a vehicle vn+1 following vn can
receive m+1 messages (m from the malicious attackers and
one from vn). Though vn+1 is farther away from the claimed
event location (thus holds a higher threshold value), it also
computes a higher CoE value since there are now m + 1
messages. We denote the increase of the threshold on vehi-
cle vn+1 as ∆TT and the increase of the CoE value on vn+1

as ∆CoE . Clearly, when ∆TT < ∆CoE , a false alert will be
raised at vn+1 (and maybe so forth for vn+2, vn+3, . . .), thus
cascading the propagation of the false alert. To prevent this,
we desire:

∆TT > ∆CoE (10)

This equation indicates the following guideline: The curve
of the threshold should have a larger derivative in distance
d than that of the CoE curve in the number of received
messages n.
Summary. In this section, we have formalized the gen-
eral requirements for the CoE and threshold curves and
presented an in-depth analysis of the linear and cumula-
tive approaches for computing CoE values with respect to
correctness, timeliness, and resilience to spurious messages.
Based on our analysis, we show that 1) both the linear and
cumulative approaches can achieve correctness; 2) the cu-
mulative approach has better timeliness since it can reach
the threshold faster; and 3) the linear approach has better
resilience to spurious messages. Finally, we also derive the
relationship between the CoE curve and the threshold curve.
After exploring these design trade-offs and requirements, we
anticipate that these theoretical insights can help guide the
practical design of the CoE and threshold curves.

5. SIMULATION
We simulate our system using ns-2 to demonstrate the use

of our model when applied to EEBL. As a preliminary work,
the main goal of the simulation is to select and tune the
parameters of the filters and to demonstrate their impact.
We quantify the impact of EEBL by measuring the collision
percentage, defined as the fraction of the 100 vehicles that
are involved in a collision [21]. We also measure the delay
associated with the filters, the false positive rate, and the
false negative rate.

5.1 Simulation Environment
We simulate a straight stretch of a road with a single

lane and inject 100 vehicles. These vehicles travel along
the road at 25 m/s periodically sending VANET messages
and decelerate in response to hitting other objects or seeing
other vehicles decelerating. The delay between when a driver
sees the preceding vehicle decelerate and begins to decelerate
herself depends whether the OBU alerted the driver.

Vehicle inter-arrival time is sampled from an exponential
distribution [2] skewed to have a lower inter-arrival time cut-
off of 0.7sec (otherwise spacing between the 5m long vehicles
is unrealistically small).

Every 0.1sec each vehicle sends out a wireless message.
The message contains information regarding the location
and the velocity of the vehicle, and includes EEBL data only
when the deceleration of the vehicle is greater than zero.

Vehicles only decelerate when they hit another vehicle or
object or when the preceding vehicle is decelerating. When
vehicles collide (i.e., the distance between the center of two
vehicles is less that or equal to the length of a vehicle), the
deceleration value depends on how rigid the collision is (i.e.,
how much distance a vehicle is allowed to move before com-
ing to a complete stop, assuming that the vehicle is traveling
at a speed of 25m/s). We assume three possible cases:

1. A vehicle collides into a perfectly static target (e.g., a
wall). We assume that the vehicle can move a quar-
ter of its length (1.25m) before coming to rest. The
deceleration is 250m/s2.

2. A vehicle collides into a partially yielding target (e.g.,
another stationary vehicle jammed against a wall). We
assume the vehicle can move half of its length (2.5m)
before coming to rest. The deceleration is 125m/s2.

3. A vehicle collides into a yielding target (e.g., another
vehicle on brake). We assume that the vehicle can
move the distance equal to its length (5m) before com-
ing to rest. The deceleration is 60m/s2.

When a driver sees the preceding vehicle braking, the de-
celeration of a vehicle becomes a constant (8m/s2) after the
driver reaction time.

The reaction time is the delay from when a driver wit-
nesses the preceding vehicle begins to decelerate to when
the driver begins to apply the brakes. In our simulation sce-
narios, we assume that a driver requires a reaction time of
1sec when he has not seen an EEBL alert. We assume that
after the driver is warned with an EEBL alert, the driver
reaction time is reduced to 0.5sec [4].

5.2 Attack Scenarios
We simulate 3 scenarios:

• Case 1: No malicious vehicles are present,
• Case 2: Malicious vehicles are present that send out fake

EEBL messages even when they are not decelerating,
• Case 3: Malicious vehicles are present that do not send

out EEBL messages even when they are decelerating.

In real life, a combination of Cases 2 and 3 is possible,
but for evaluation purposes we consider each of the cases
separately as they tend to counter the effects of one another
when they occur together. We assume 2 attackers in both
Cases 2 and 3 and place them at the beginning of the ve-
hicle train to assess their effects on the following vehicles.
We choose 2 attackers to test collusion for Case 2; a sin-
gle malicious vehicle that sends a spurious message can be
easily filtered out, but with two colluding vehicles, filtering
malicious messages becomes more challenging.

5.3 Measurement Metrics
We assume a linear threshold curve for evaluation pur-

poses with two degrees of freedom: the slope and the inter-
cept. The intercept (i.e., the value of the threshold curve at
distance 0) is based on the assumption that a single EEBL
suffices to exceed the threshold if two vehicles are apart by a
minimum possible distance (i.e., the length of a single vehi-
cle) without any collision. Consequently, the threshold curve
is defined as y = m · x + c, where m is a slope, c is an in-
tercept, and x is the distance from the closest vehicle which
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reports an EEBL. We can select c for a particular value of
m as follows:

c = 1 − m · dmin (11)

where dmin is the length of a vehicle equal to 5 meters.
To measure the delay induced by the filters, we record

three values: the instant at which a vehicle receives the very
first EEBL, the time duration from this instant to trigger
an alert, and the distance from that vehicle. A false positive

occurs when a vehicle delivers an alert to the driver due to
a fake EEBL message. A false negative occurs when the ve-
hicle receives an EEBL message first, but the driver is never
alerted and decelerates due to other external factors besides
EEBL (e.g., an observable collision or a visual reaction to
the braking of the immediately preceding vehicle). The rate
for each is the fraction of the time such an error occurs.

To measure the collision percentage, we first vary m; we
choose a value for m which is as big as possible but which
still gives a value of collision percentage comparable to the
case without our filtering model. We call this value of m
the operating point and measure the delay for the chosen
operating point. We also measure the effect of the vehicle
inter-arrival time on the collision percentage.

5.4 Simulation Results and Discussion
In this section, we describe the simulation results from

a number of different experiments. We evaluate the perfor-
mance of EEBL with and without our misbehavior detection
model using EEBL messages and suggest the parameters for
the threshold curve.

Experiment 1. In order to measure the effectiveness of
EEBL messages before applying our filtering model, we set
up an experiment to compare the collision percentages with
and without EEBL. Basically, we set the foremost vehicle to
collide into a static target at some point of time and measure
the resulting collision percentage. We vary the inter-arrival
time among vehicles and repeat the simulation 50 times for
each inter-arrival time value to average out any noise in the
observation. The average of all the runs is the resulting
collision percentage as shown in Figure 5.

We observe that without EEBL, the collision percent-
age ranges from 92% to 54% as inter-arrival times increases
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(b) Case 1 with cumulative CoE
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Figure 7: Delay from Filtering Model.



from 0.7 to 3 seconds, respectively. When EEBL messages
are broadcast, the collision percentage is very low (2∼6%)
throughout the range of inter-arrival times. This low colli-
sion percentage implies that EEBL messages help mitigate
human reaction delays by informing every vehicle in the
radio range about the braking. We also observe that the
collision percentage drops as the mean inter-arrival rate in-
creases, which is intuitive since we expect fewer collisions at
a given average speed as the vehicle density decreases. Thus,
for the following experiments we keep the inter-arrival rate
as 0.7sec to evaluate the worst-case behavior.

Experiment 2. In this experiment, we insert our fil-
tering model into the EEBL framework. As mentioned in
Section 5.3, we measure the collision percentage for both
linear and cumulative CoE curves given a linear threshold
curve and derive desirable m values for two CoE curves. The
variation of collision percentage for different slope values of
m is plotted in Figure 6. As shown in Figure 6, both linear
and cumulative cases present 3 phases: an initial rise in col-
lision percentage, followed by a flat portion, followed by a
further rise. We would like to increase the slope of the curve
(i.e., proportional to m) as much as possible without sig-
nificantly increasing the collision percentage, choosing the
highest slope point on the flat portion, to reduce alerts for
far away events. Thus, we choose m = 0.016 for the lin-
ear and m = 0.032 for the cumulative approach. The delay
induced by our filtering model for Case 1 (no malicious ve-
hicles) under the linear CoE curve and the cumulative CoE
curve using m = 0.016 are shown in Figures 7(a) and 7(b).
Similarly, the delay results for Case 3 (malicious vehicles do
not send out EEBL messages) under the linear and cumula-
tive CoE curves using m = 0.032 are shown in Figures 7(c)
and 7(d). Figures 8(a) and 8(b) show the false positive rate
from Case 2 and false negative rate from Case 1 among 100
vehicles. The slopes for the linear and cumulative models
deliver low false positive and false negative rates.

Based on the delay plots in Figure 7, we can infer that
the delay due to our filtering model increases as the distance
from the closest reported EEBL increases. This is a direct
consequence of the threshold curve. The rate of rise of the
delay with distance is greater in the linear CoE model than
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in the cumulative CoE model because in the latter case we
have a quadratic accumulation of alerts for a linear rise in
threshold, which leads to comparatively lower delay values
for higher distances.

Experiment 3. Based on the values of m from Experi-
ment 2, we derive the values for c based on Equation 11 and
Figure 9 for both linear and cumulative CoE approaches in
Cases 1-3. We also plot the graphs for the case without
our filtering models for Cases 1 and 3 in the same figure for
comparison purpose.

There is a tension between minimizing false positives and
false negatives. We conjecture that people would start ig-
noring VANET alerts when they sparsely reflect the real
events. Therefore, reducing the number of false alerts is
important such that drivers fully pay attention to the real
alerts. In our simulation, we have engineered the filtering
mechanism to mitigate attackers who craft spurious EEBL
messages (Case 2), resulting in 0 collision given fake EEBLs.
As a consequence, our filter discards legitimate EEBL mes-
sages and prevents fewer accidents in the other cases. How-
ever, Figure 9 shows that the presence of our filtering model
does not lead to a significant increase in collision percentage
(fewer than 3 collisions among 100 vehicles) for both linear
and cumulative models throughout the inter-arrival range.
The increase in collision due to our model is slightly higher
in Case 3 because the threshold curve is more sensitive to at-
tackers that fail to report they are braking compared to the
scenario where an alert is raised on the first heard EEBL.
However, this increase is still limited to fewer than 3 colli-
sions per 100 vehicles. We leave it as a future work to find
the optimal balance between security and functionality.

6. RELATED WORK
A number of researchers have examined misbehavior de-

tection and prevention in VANETs, but often focus on lim-
ited sources of information for the message validation.This
work represents an attempt to combine the different sources
available to an OBU and to systematize the decision process.
In this section, we discuss how prior works relate to each of
our 6 sources or the synthesis of different information.

In addition to the IEEE standard [11], researchers have
proposed more efficient authentication mechanisms [9, 16]
or privacy preserving key management [13, 18]. Such work
can provide the cryptographic verification for Source 1.



Localization of an OBU within VANETs has received lim-
ited attention. Golle et al. [8] introduce a framework to
detect and correct incorrect location claims or claims of
fake vehicles in VANETs. The approach relies on individual
nodes using their local sensor data coupled with a model
of nominal VANET operation, and sharing this information
with nearby vehicles. This approach allows a vehicle to ver-
ify an OBU’s location (Source 2) using local sensors (Source
3) and reports from other vehicles (Source 4). Studer et al.
also explore the authentication of the physical location and
movement of vehicles [17]. Their approach leverages time of
flight of VANET messages and continued presence to deter-
mine the position and direction of travel of other OBUs.

Reports from other vehicles (Source 4) help provide “data
centric trust” [5, 14, 20] in VANETs. These works examine
the data in messages from multiple vehicles and calculate
how likely an event is based on reports from all of the ve-
hicles in a region. Raya et al. [14] propose that vehicles
in this framework use a decision logic system like Dempster-
Shafer, Bayesian inference, or voting to integrate the related
reports much like our CoE. However, their work assumes ve-
hicles leave radio range rapidly, removing any use of reputa-
tions (Source 6), and ignore information from local sensors
(Source 3) or verification of a location claim (Source 2).

Ghosh et al. [6, 7] and Schmidt et al. [15] construct rep-
utation models for other vehicles (Source 6) based on the
claims from sending vehicles, a model of normal behavior,
and data from local sensors (Source 3), which provide a form
of ground truth. In such work, an OBU determines whether
or not a safety message was spurious by analyzing how the
driver behaves in response to the event. For example, the
OBU will consider a PCN (Post-Crash Notification) invalid
if the vehicle subsequently drives through the claimed crash
site. Such techniques help an OBU determine the truth
about a notification and assign reputations to other vehi-
cles (Source 6), but fail to provide any kind of misbehavior
filtering while the driver is approaching an event.

7. CONCLUSION
Researchers have accomplished much progress over the

past decade to secure VANETs. Misbehavior detection ap-
pears to be the final major problem that needs to be solved.
Unfortunately, misbehavior detection appears fundamentally
impossible to address, because ultimately we cannot deter-
mine the true root cause for an alert message: the alert may
be legitimate even though highly unlikely (e.g., a truck could
have dropped ice on the road in summer), the sensor of the
vehicle may be malfunctioning, or an attacker may have cre-
ated the malicious alert. Fortunately, we can leverage the
assumptions that the majority of vehicles are not malicious,
and that multiple vehicles observe the same event. Conse-
quently, a vehicle can combine several information sources
to corroborate the validity of the alert. In this paper, we
present a basic framework, which we found to be useful when
we applied it to misbehavior detection for EEBL messages.
We anticipate that other researchers can leverage our model
to address misbehavior detection in other applications.
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