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ABSTRACT
Recent trends in public-key infrastructure research explore the trade-
off between decreased trust in certificate authorities (CAs), the level
of security achieved, the communication overhead (bandwidth and
latency) for setting up a secure connection (e.g., verified via SSL/
TLS), and the availability with respect to verifiability of public key
information. In this paper, we propose TKI as a new public-key
validation infrastructure, where we reduce the level of trust in any
CA and increase the security by achieving increased robustness in
the case of CA key compromise. Compared to other proposals,
we reduce the communication overhead associated with certificate
validation during the existing SSL/TLS connection handshake and
provide site owners with an optional time window to review poten-
tially malicious key changes. Our design deters CA misbehavior
by using a public log that records all certificate events, thereby en-
abling CAs’ accountability for their actions. TKI will help reduce
the trust in the hundreds of currently trusted CAs, reduce exposure
to CA compromise, and enhance the security of SSL/TLS connec-
tion establishment.

1. INTRODUCTION
Secure connection establishment on the Internet through SSL

and TLS has been a tremendous success, as it is globally used for
practically all secure web-based communication. Given that the
security of the majority of network-based financial or commercial
transactions relies on SSL/TLS, one would hope that its security is
commensurate with its proliferation and importance.
Unfortunately, numerous attack vectors against SSL/TLS exist

and recently several high-profile attacks have demonstrated its vul-
nerability in practice. The main weakness lies in the fact that cur-
rent browsers trust hundreds of root Certificate Authority (CA) cer-
tificates, and a security breach of a single CA can compromise the
security of sites protected by any one of the other CAs, powerfully
illustrating the concept of weakest-link security. In fact, a mali-
ciously issued certificate for a site can be used by an adversary
to mount man-in-the-middle attacks on connections to that site. To
demonstrate the large extent of the SSL universe in which the weak-
est link could occur, EFF’s SSL Observatory reports that Microsoft
IE and Mozilla Firefox trust 1482 different CA public keys held by
651 organizations located throughout the world [17].
An often-advanced but unjustified argument is that since CAs are

in the business of managing cryptographic keys, they have secure
processes in place to protect their keys. Regrettably, recent events
have highlighted the inability of many CAs to keep their keys and
certificate issuance processes secure. We list a few high-profile
cases:

• VeriSign issued two false Microsoft ActiveX certificates in Jan-

uary 2001 [24]: “According to Microsoft, someone posing as a
Microsoft employee tricked VeriSign, which hands out so-called
digital signatures, into issuing the two certificates in the software
giant’s name on Jan. 30 and Jan. 31.”

• According to a U.S. Securities and Exchange Commission (SEC)
filing in October 2011, VeriSign was hacked successfully and re-
peatedly, in 2010 [27], potentially enabling attackers to imper-
sonate any online entities.

• In March 2011, in an attack on a Comodo reseller, fake certifi-
cates were issued for: mail.google.com, www.google.com, lo-
gin.yahoo.com, login.skype.com, addons.mozilla.org, and login.
live.com [15, 29]. Comodo suggested that the attack originated
from an Iranian IP address.

• In August 2011, news broke that DigiNotar, a Dutch CA, im-
properly issued a certificate for all Google domains to an exter-
nal party [32]. It was claimed that as many as 250 false certifi-
cates for an unknown number of domains were released. It was
reported that these certificates were used by the Iranian govern-
ment to spy on Iranian citizens’ communications with Google
email during the month of August 2011.

• For the Stuxnet malware, two Taiwanese CAs’ private keys were
compromised, which the Stuxnet developers used to sign their
malware [18].

Not all CA vulnerabilities become public; for example, without
the SEC filing, the VeriSign breach may have been concealed [27].
Also, DigiNotar’s problem was noticed only because a vigilant user
posted the issue to a Gmail help forum.1 Thus, an even larger num-
ber of CA-breaches may have occurred.
These examples demonstrate that CA breaches can result in real-

world attacks. Besides CA-based attacks, SSL/TLS has other vul-
nerabilities, for example the fact that users will click through browser
warnings in case of self-signed certificates [16]. In Syria, such an
attack was used to mount a man-in-the-middle attack against Face-
book [14], supposedly by the Syrian Telecom Ministry.
Addressing these problems is very challenging, as several seem-

ingly conflicting requirements need to be satisfied. On one hand,
adversarial events such as CA private key compromise or domain
private key compromise need to be addressed. On the other hand,
legitimate events such as switching to different CAs or key re-
creation after private key loss need to be supported. For example,
legitimate re-creation of a key pair and certificate after private-key
loss may appear to be an impersonation attempt. Also, legitimately
switching to a new CA to cease using a compromised CA that signs
fraudulent certificates may also appear as a security problem in-
stead of a solution. Hence, we aim to create a certificate infras-
tructure that can prevent adversarial attacks yet gracefully handle
1http://productforums.google.com/forum/#!category-topic/gmail/
share-and-discuss-with-others/3J3r2JqFNTw



legitimate key and certificate management events.
We combine several key observations to address these challenges.

The first observation is that by letting a domain define which CAs
it trusts, we can greatly reduce the immense trust base of the cur-
rent PKI, where hundreds of global organizations need to be trusted
without any tangible evidence of trustworthiness [9, 12, 19]. Next,
we leverage globally visible directories (known as public log servers)
that enable public integrity validation for directory information.
Such public validation provides accountability for CA’s actions,
and thus creates a deterrent against fraudulent CA activities. Fi-
nally, we observe that unplanned key changes are relatively infre-
quent, and we thus admit a domain-selectable time period for inter-
ested parties to review keys that change due to a private key loss or
compromise of a domain.
To evaluate the security, availability, and efficiency of our public-

key validation infrastructures and to enable comparison between
different systems, we propose a set of new metrics. Specifically,
we propose Duration of Compromise (DoC), Duration of Unavail-
ability (DoU), and several efficiency metrics. The DoC metrics
provide insight into the security of a system, measuring the impact
of a compromise or loss of various credentials, such as the private
key of CAs or domains. The DoU metrics measure availability,
again depending on various events such as key compromise or loss.
Finally, the efficiency metrics measure the overhead of operating
the public-key validation infrastructure and the overhead of secure
session establishment. We present these metrics in detail in Sec-
tion 9.
We find that based on these metrics, currently proposed public-

key validation infrastructures are inadequate, as they suffer from
excessive DoC or DoU, or have unacceptable performance impact.
In this paper, we propose the TKI (short for Transparent Key In-
tegrity) system to address these challenges.

2. PROBLEM DEFINITION
The core problem we aim to address is the design of a new public

key validation infrastructure that reduces the amount of trust placed
in any one infrastructure component (e.g., CA), yet reduces the sys-
tem’s attack surface and single points of failure. Additional goals
are efficiency, and incentives for deployment for all associated par-
ties. In this section, we first describe a list of desired properties,
followed by assumptions, and the adversary model. Detailed met-
rics for evaluation are described in Section 9.

2.1 Desired Properties

• Checks and balances: The infrastructure should limit trust in
any single party. Also, limited trust should be distributed over
multiple parties to prevent a single point of failure. Furthermore,
multiple parties should be able to monitor each other to detect
misbehavior.

• Brief compromise period: Given the compromise of a private
key of any trusted party, the time during which an attacker can
successfully attack a legitimate client should be brief. This in-
cludes the compromise of CAs, public log servers, or domains.

• Brief unavailability period: After various events (benign or ad-
versarial), the time during which a legitimate client (who is not
under an attack) cannot verify a domain’s certificate should be
brief. This includes when a domain’s certificate is newly regis-
tered or updated, and when the CAs’, log servers’, and domains’
private keys are compromised.

• Trust agility: Users can decide which entities they trust to form
their root of trust, and they can modify their trust decisions at any
time [25]. Furthermore, such changes should be made without

undue delay. We extend this notion of trust agility to domains,
enabling domains to select their roots of trust and to modify their
trust decisions at any time.

• Privacy: Clients should not reveal which entity/server they es-
tablish an SSL/TLS connection to any party other than the server.

• Efficiency: One of the most important efficiency requirements is
to avoid increasing the latency of a SSL/TLS connection estab-
lishment – in particular, avoiding any additional round-trips to
external servers. Moreover, no additional infrastructure servers
should be needed.

2.2 Assumptions
In our approach of checks and balances, some trusted public en-

tities continuously validate public log servers’ operation and pub-
lish/disseminate any misbehavior. We thus assume that these trusted
entities do not collude with CAs or public log servers. In the con-
text of the current Internet, the Electronic Frontier Foundation may
be one entity that would play the role of a validator. Such valida-
tors exhibit the property of security of the strongest link, because
as long as a single verifier is correct, misbehavior will be detected
and publicly disseminated.
We assume that browsers store the authentic public keys of root

CAs and the authentic public keys of public log servers.

2.3 Adversary Model
We consider an adversary whose main goal is to impersonate a

victim web site that is using HTTPS. To achieve this goal, the ad-
versary may compromise some CAs and log servers that the victim
trusts. An adversary may be able to temporarily gain control of
some trusted CAs and log servers, but can gain long-term control
of untrusted CAs and public log servers. Gaining control means
access to private signing keys.

3. BACKGROUND
Two main families of proposals to reduce trust in CAs exist that

are related to our design: 1) certificate observatories, 2) timeline
servers that provide public visibility into all certificate operations.
We briefly provide an overview of these approaches.

3.1 Certificate Observatories
The first type to reduce the trust in CAs and prevent many of

the attacks discussed in Section 1 is to create a public repository
of SSL/TLS server certificates, and enable browsers to compare
the key they have received (presumably from the server) with the
observation of the observatory which is received over an integrity-
protected connection. This integrity-protected connection is set up
by embedding a root public key of the observatory system into the
client, creating a PKI just to authenticate the relatively small num-
ber of observatory nodes.
Perspectives. The Perspectives system [3, 34] has globally dis-
tributed notary servers that contact known SSL / TLS servers once
a day to fetch the current server’s certificate. These notary servers
then store the history of observed certificates and support queries
into their database. Perspectives offers a Firefox plugin, which
contacts a random subset of notary servers after an HTTPS con-
nection is opened, to compare the notary certificate observations
with the received certificate. A configurable policy decides if the
received certificate is presumed valid.
Convergence. Convergence [1] enhances Perspectives in several
dimensions, most notably providing privacy for certificate lookups
by including a two-step onion routing approach, where the first
Convergence server redirects the query to a second server, and the
second server responds (the first server knows the identity of the



querier, but not the web site queried, and the second server only
knows the query but not the querier).
Certificate Catalog. Google Certificate Catalog [2] is a similar
approach implemented in the Chrome browser, however, not yet
enabled. It is a database of observed certificates, that can be queried
through DNS requests.
SSLObservatory. EFF’s SSLObservatory [17] also collects global
certificate information. However, it does not support any online
queries, as far as we are aware of.
Discussion. The main advantage of these certificate observatories
is that server operators need not be aware of this approach. Hence,
no additional steps are necessary on their part. The approach even
works to validate self-signed certificates. These systems are also
effective to prevent numerous CA-based attacks, for example, all
the attacks in Iran and Syria would have been prevented, as the
illegitimate certificates would have been detected as different from
the legitimate server certificates.
The main disadvantage of these systems is that they require addi-

tional connections to query the observatories, resulting in higher la-
tency for establishing an HTTPS connection, and thus reduce over-
all performance whenever HTTPS connections need to be set up
frequently. A major disadvantage is a period of unavailability for
new certificates and when certificates change. However, this can be
remedied with a scheme where a new certificate is offered ahead
of time to the observation servers, but this approach negates one of
the main advantages of these systems in that they do not require
assistance from the server operators.

3.2 Certificate Log Servers
Sovereign Keys [13] and Certificate Transparency [22, 23] are

two recent proposals that suggest a public log to record all certifi-
cate transactions.
Sovereign Keys. In the Sovereign Keys model, timeline servers act
similar to timestamping servers [20], where certificate owners reg-
ister their certificates and obtain a non-repudiable statement that
their certificate has been added to the read-only and append-only
log. The property achieved is that the first registration of a cer-
tificate binds the key to the domain name, preventing any subse-
quent registrations for the same name. Only the legitimate owner
of the certificate has the private key, enabling revocation and re-
registration of the name with a new public key.
The browser can contact the timeline server to inspect if the re-

ceived server certificate is indeed the correct certificate registered
in the timeline server’s log. More specifically, the browser requests
all events within a time period pertaining to the server whose certifi-
cate is to be validated. Certificate correctness means that the cur-
rent certificate has not been revoked and can be derived through
a chain of authorized key updates from the first registered certifi-
cate. To reduce the load on the timeline servers, distributed mirror
servers store a copy of the timeline server database and provide
more efficient information dissemination.
Certificate Transparency. In Certificate Transparency [22, 23],
the authors construct an append-only log by using an append-only
Merkle hash tree structure, enabling efficient validation of each cer-
tificate that was added to the log. The general approach is similar
to Sovereign Keys described above, but several details differ as we
describe below and in Section 9.
Discussion. The main advantage of these approaches is that they
prevent the attacks mentioned in the introduction. For example,
compelled certificates are simply invalid in this framework, as the
legitimate owner did not approve the newly generated key.
Unfortunately, these approaches have some shortcomings. For

Sovereign keys, the browser needs to query a mirror server to down-
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Figure 1: TKI certificate registration process. This figure de-
picts A.com registering a certificate (signed by two CAs) to a
single ILS, but the domain can acquire multiple certificates
from multiple CAs and register to multiple ILSs. Dashed ar-
rows represent occasional communications.
load the server’s certificate history, increasing latency, decreasing
availability, and sacrificing privacy. Consequently, the mirror servers
need to be high-performance, as their latency directly affects the
speed at which the SSL/TLS server certificate can be validated. In
Certificate Transparency, the audit proof (i.e., proof of including
the certificate in the log) is combined with the certificate.
Amajor disadvantage of both schemes is that a compromised pri-

vate domain key cannot be easily revoked as the audit proof contin-
ues to be valid until (1) the log server publishes the new log entry,
and (2) the client validates that there has been an update to the key
since the log entry (which can be challenging in case of Certificate
Transparency as the adversary can keep replaying the old certificate
validation information). In Section 9, we discuss these systems in
more detail.

4. TKI: Transparent Key Integrity
Before we describe the details of TKI, we first provide a high-

level overview.

4.1 Overview
The main entities in our system are as follows.

• ADomain (server) represents a named entity with a public/private
key pair that clients contact to establish secure connections with.

• A Client (browser) is an entity that establishes SSL/TLS con-
nections with domains (servers).

• A Certification Agency (CA) is similar to a current certificate
authority that certifies domains’ public keys, but “agency” in-
stead of “authority” indicates that CAs are not absolute authori-
ties any more in TKI.

• In addition to current systems, Integrity Log Server (ILS) Op-
erators (ILSO) are Internet services that operate Integrity Log
Servers (ILSs) that log domains’ certificates and make them pub-
licly available. Each ILS maintains an Integrity Tree, which
is a hash tree of all the registered certificates in lexicographic
order.All ILS operations (i.e., log data entries such as registra-
tion, updates, and revocation) are digitally signed. We envision
large ISPs or widely available Internet-based corporations such
as Amazon or Google to operate ILSs.

• Validators are entities that monitor ILS operations, by down-
loading the entire ILS data structure and performing consistency
checks. Consistency checks include validation that certificate
updates follow the certificate policy or that certificates do not
suddenly disappear from the log. Non-governmental Internet
governance organizations, such as the EFF, would likely serve as
a validator. In the case of ILSO misbehavior, validators can dis-
seminate incriminating information without requiring their own



authentication information, since ILSO misbehavior is self-auth-
enticating due to non-repudiation of ILSO/CA/domain signatures.

Figure 1 depicts an overview of our TKI architecture. Alice owns
domain A.com and wants to obtain a TKI-protected certificate, as
she wants to protect herself against compromise of the CAs that
signed her certificate and other rogue CAs, and protect her clients
against compelled certificates. To define the security properties that
she intends to achieve for her domain, Alice defines CAs and ILSOs
that she trusts, the minimum number of CA signatures that she rec-
ommends her clients for validation, rules for certificate revocation,
replacement, updates, etc. Alice includes these parameters with her
public key and contacts more than the minimum number of trusted
CAs (according to her security policy) to sign her certificate. She
then registers the certificate with concatenated CA signatures with
one or multiple ILSs. Each ILS adds A.com to its database, by plac-
ing it in the Integrity Tree. The ILS then re-computes hash values
over all stored certificates for updated verification information.
Alice now supplements her certificate with the verification infor-

mation that she downloads from every ILS, and sends it to browsers
that connect to her web site via HTTPS. For certificate validation,
the browser uses the trusted root-CA certificates as in current prac-
tice, and uses the pre-installed ILS public key(s) on her browser to
validate ILS information.
Before trusting the ILS information received from Alice, the

client browser occasionally checks with validators to confirm that
the current root hash values of the ILSs are valid.

4.2 TKI Details
We discuss the details of TKI based on the following stages: cer-

tificate creation, CA signature acquisition, ILS registration, browser-
based validation, ILS tree update, certificate update, certificate re-
vocation and recovery.
Certificate creation. TKI certificates contain several extensions
over standard X.509 certificates and feature the following addi-
tional fields:

• Trusted CAs (CA_LIST): This field contains a list of trusted
CAs for creating a new certificate.

• Trusted ILSs (ILS_LIST):This field contains a list of trusted
ILSs where the certificate is registered.

• ILS validation proof timeout (ILS_TIMEOUT):This field
indicates how long an ILS proof is acceptable to the browser after
the proof creation time. The tradeoff is between efficiency, avail-
ability, and robustness. A long timeout requires fewer queries to
the ILS for an updated proof, but increases the amount of time
until a certificate can be revoked. This parameter typically varies
from one hour to one day.

• Minimum number of CAs to generate a TKI certific-
ate (CA_MIN): This field indicates the number of CA signa-
tures required to initially register a certificate to ILS and to up-
date a certificate, typically set to 1 or 2.

• Threshold number of CAs for certificate re-estab-
lishment (CA_TH): This field indicates the minimum number
of CA signatures needed to re-establish a certificate in case of
a lost private key. In other words, this parameter indicates the
number of different CA signatures that can activate the new key
for the domain which lost its key. An adversary can register a
certificate to an ILS for a domain who is unaware of TKI, and se-
lect CA_TH to be high such that the domain can never revoke the
adversary’s certificate. To prevent such an attack, we set CA_TH
= CA_MIN + 1.

• Cool-off period for an unlinked certificate (COP_
UNLINKED): This field indicates the minimum cool-off period
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Figure 2: TKI Integrity Tree structure.
for a new certificate that is not linked to the old certificate (i.e.,
the new public key is not signed by the previous private key of
the domain). In TKI, registering a new certificate does not au-
tomatically validate it: in case a previous certificate is present,
TKI enforces a “cool-off” period until the new certificate be-
comes valid which is to replace the previous certificate. This
enables protection against an adversary who quickly registers a
new key following a CA compromise, as the legitimate owner
can revoke the new certificate during the cool-off period. An at-
tacker can register a new key for a domain that is unaware of TKI
and set COP_UNLINKED to be high to prevent the domain owner
from re-acquiring the ILS entry. To prevent such an attack, an
upper bound exists for COP_UNLINKED (e.g., 7 days).

• Cool-off period for a certificate from an untrus-
ted CA (COP_UNTRUSTED): This field indicates the minimum
cool-off period for a new certificate that is signed by a CA that
is not in CA_LIST. In case of a lost or compromised private key,
an attacker can acquire a certificate signed by some CA (that the
domain owner does not trust), and this parameter provides time
to enable the legitimate owner to revoke the bogus certificate.
We recommend that COP_UNTRUSTED is defined to be longer
than COP_UNLINKED. For similar reasons as for COP_UNLINKED,
COP_UNTRUSTED has an upper bound (e.g., 10 days).

CA signature acquisition. After creating a certificate with TKI
extensions, the domain contacts the CA_MIN number of CAs from
CA_LIST to acquire CA signatures. In TKI, the combination of all
the CAs’ signatures validates the domain’s TKI-certificate. Hence,
care must be taken to include all the CAs’ serial numbers and time-
stamps, and the X.509 standard will need to be amended to enable
such multi-signatures.
ILS registration. The domain then contacts one or more of the
trusted ILSs (from ILS_LIST) to register the TKI-certificate.
The ILS data structure to store TKI-certificates is based on a bi-

nary hash tree, and we call it Integrity Tree, as depicted in Figure 2.
All TKI-certificates are placed at the leaf nodes of the binary hash
tree, sorted in lexicographic order. TKI uses a sorted hash tree as
opposed to a linear list as in previous work [13] for the following
reasons:

1) The hash tree efficiently represents the current state of all dis-
tinct names, and its height only depends on the number of dif-
ferent entries but not on time (i.e., it does not grow taller with
revocations/re-establishments, thus removing a source of DoS).

2) The height is logarithmic in the number of entries. Hence, a
validation of any leaf node can be efficiently represented based
on an authenticated root node and a logarithmic number of nodes
to re-compute the root node from the leaf node.

3) The sorting enables quick verification of the absence of an entry,
whereas in a linear list, the entire list needs to be searched.

As depicted in Figure 2, the Integrity Tree enables independent
validators to check the integrity of the entire data structure. The



Is A.com a new entry
in ILS?

|Σ| ≥ CA_MIN?
Y Y All CAs from

CA_LIST?

Y

N(A.com exists in ILS)

Is new key signed by
old key?

Y

N

|Σ| ≥ CA_TH?

N

Registration fails

N

Registration fails

Y All signed CAs from
CA_LIST?

Y

N

Wait for cool-off period
(COP_UNTRUSTED)

N

Wait for cool-off period
(COP_UNLINKED)

Register at next update time
and send ILS confirmation

A.com requests to register its TKI certificate  

Figure 3: Flowchart of ILS certificate registration, update, re-
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add the certificates. Σ stands for the CA signatures that A.com
obtained.

hash chaining of the trees enables temporal re-construction of all
operations, similar to a timestamping service or the timeline server
data structure [13].
When adding a new TKI-certificate, the ILS first verifies whether

an entry already exists in the Integrity Tree for the same domain
name. If the name is indeed new, the ILS schedules the TKI-
certificate to be added to the Integrity Tree. The ILS creates a
confirmation of the successful addition through a digital signature
with its private key, and returns it to the domain. The domain can
use this ILS confirmation to start using the new certificate for a
limited time, until the ILS generates the next Integrity Tree which
will include the new certificate on a leaf node. Figure 3 depicts the
certificate registration process.
ILS update period (ILS_UP) is the interval between two tree

updates; at every ILS_UP, an ILS finalizes and commits the next
Integrity Tree. At this point, the domain contacts the ILS to re-
quest the signed root node ({Root}K−1

ILS
) and the hash tree verifica-

tion nodes (h) that are needed to validate its certificate as depicted
in Figure 2, where ILS_UP is set to one hour. In practice, ILS_UP
is set to one or two hours, to enable quick certificate revocation.
ILS verification information is combined with the TKI-certificate
to enable client browsers to validate the ILS information without
the need to contact an ILS during connection setup.
Browser-based validation. The browser receives the ILS infor-
mation together with the server/domain’s TKI-certificate during the
second phase of the SSL/TLS protocol. The CA signatures are val-
idated using the browser’s CA root certificates, and the ILS infor-
mation is validated using the ILS public keys stored in the browser.
The ILS_TIMEOUT field in the TKI-certificate is validated to ensure
that the ILS information is sufficiently recent depending on the do-
main’s preferences specified in the certificate.
A potential security vulnerability is due to incremental deploy-

ment: if browsers validate the ILS information only in TKI-certificates
then no security would be gained since an adversary could simply
create a traditional certificate without the TKI extensions. Conse-
quently, browsers will need to contact trusted ILS servers for tradi-
tional certificates to prevent such attacks. In the absence of an ILS
response, the browser needs to abort the connection. While this
adds considerable latency to connection setup and reduces avail-
ability, it actually represents a positive incentive for TKI deploy-
ment: an ILS-registered certificate will result in a considerably
faster connection setup.
ILS tree update. Periodically at a well-specified time, the ILS up-

dates its Integrity Tree by purging TKI-certificates that have been
revoked or expired without renewal. The ILS also activates certifi-
cates that have passed their cool-off periods.
We envision update intervals of an hour up to a day. Hourly up-

dates enable more fine-grained certificate revocation but increase
overhead, as servers/domains need to frequently query the new
signed root value to ensure that their name remains unchanged.
Certificate update. Before a TKI-certificate expires, the domain
creates a new private key, and requests the trusted CAs in CA_LIST
to sign the new new key. The domain also signs the new key with
its previous private key. After gathering CA_MIN number of CA
signatures, the domain combines all signatures and other relevant
information into a TKI-certificate. The domain then sends the TKI-
certificate with an update request to the ILS, which will readily
accept the new TKI-certificate since it is signed with the domain’s
old key and the update request is signed by both new and old keys.
(Requiring a signature with the new key confirms possession of
the new private key.) There is no cool-off period in this case, and
the new TKI-certificate is added when the ILS finalizes the next
Integrity Tree. Hence, the new key can be readily used.
Certificate revocation and recovery. In case a key needs to be
prematurely removed, a certificate revocation message needs to be
sent to the ILS. Either the private key corresponding to the certifi-
cate’s public key is used to sign the revocation message, or a special
revocation key can be used, for which the public key is included in
the certificate. The point of using a different revocation key could
speed up recovery for the case where the main private key is com-
promised, as a shorter cool-off period can be used if the new public
key would be signed by the revocation key.
The cool-off periods (COP_UNLINKED, COP_UNTRUSTED) in the

TKI-certificate specify the amount of time that needs to elapse be-
fore the new certificate becomes active. In case of private key com-
promise (and potentially private revocation key compromise), the
COP_UNLINKED and COP_UNTRUSTED values enable the legitimate
owner to react and revoke a fraudulent certificate that was poten-
tially registered by the adversary.
Since some domains may not have the best key secrecy and avail-

ability practices in place, we need to consider the case of catas-
trophic key compromise and loss when only the adversary is in
possession of all secrets. In that case, we need recovery mecha-
nisms where the legitimate owner can re-gain control of its domain.
By contacting CA_TH number of CAs and obtaining signatures on
a fresh key, the legitimate owner can eventually re-gain control.
However, the adversary will be able to use the key until a valid
revocation message arrives.
Figure 3 depicts the ILS checks for certificate registration, up-

date, revocation and recovery.

4.3 Checks and Balances among Parties
In this section, we describe how TKI achieves checks and bal-

ances among CAs, ILSs, validators, domain owners, and clients to
reduce trust and prevent misbehavior by any party. Figure 4 illus-
trates what each party monitors and how each party reports.
Validation by CAs. Once the domain owner acquires signatures
from trusted CAs for the certificate, the CAs monitor the ILS for
any malicious changes in the domain’s ILS entry. If the ILS makes
a potentially invalid update (e.g., updated certificate without any
of the trusted CAs’ signatures), the CAs immediately inform the
domain owner.
Validation by validators. Validators maintain a list of revoked
ILSs that are detected for misbehavior possibly due to compromise.
Validators disseminate the revoked ILSs, especially to the domain
owners who are registered to those revoked ILSs, in which case the
domain owners attempt to register with other valid ILSs. Thanks to
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Figure 4: Checks and balances among TKI entities. In TKI,
each entity monitors other entity for misbehavior detection and
reports to other entities.
the fact that all ILS operations are signed, the validator can easily
demonstrate misbehavior in case the signed records are inconsistent
with the ILS’s state. In the absence of a compromised ILS private
key, a validator cannot perform a slander attack, as it cannot forge
signatures that would incriminate the ILS for malicious behavior.
Validation by domain owners. Prior to initial registration of a cer-
tificate to an ILS, the domain first ensures that a CA has not created
a bogus certificate for that domain by checking the ILS as follows:
the domain owner queries the ILS for entries that can be close to
itself once added to the Integrity Tree (e.g., E.com can query for
the directly preceding and succeeding entries for its domain to en-
sure that no unaccounted certificates are registered at that location
of the tree. After confirming that no entry exists for the domain, the
domain owner registers the new certificate to the ILS.
The domain owner can occasionally query for the leaf nodes that

are adjacent to its certificate in the Integrity Tree to ensure that there
is no equivocation in the ILS. Equivocation is detected if the ILS
uses two different hash tree roots for two different replies. This
behavior can be easily detected if the domain keeps track of the
received hash-tree root values. If any equivocation is found, the
domain owner contacts the validators to blacklist the ILS.
Validation by clients. A client browser occasionally checks with
validators to see if the information received from the ILS server is
valid. For this, the validator distributes the observed integrity tree
root value for each ILS. If the client’s obtained ILS integrity tree
root value is inconsistent, it will inform the validator and ignore that
ILS server. The validator can then use that information to blacklist
the ILS.

5. SECURITY ANALYSIS
In this paper, we provide an informal analysis of the TKI archi-

tecture. The formal analysis is presented in an extended version of
this paper.
The main security property we aim to achieve is the prevention

of successful impersonation of a victim server. More concretely,
given a domain S with a certificate CS, an adversary M attempts to
impersonate S to a client C during the SSL/TLS connection estab-
lishment. The attack succeeds if C has a connection with M while
believing that the connection is with S.
We assume that S uses a TKI-certificate, and that C uses a TKI-

enabled browser. We show that TKI is resilient against attackers
that compromise different entities’ keys.
M compromises S’s private key. Assuming that S detects the com-
promise, it can immediately revoke the key. However, M can use
the key during the ILS_TIMEOUT period, as specified in the TKI-
certificate. This timeout is typically selected on the order of the
ILS’s Integrity Tree update period. Thus, if the update period is

one hour, the timeout may be selected at 2 hours. Shorter revoca-
tion times could be achieved through an online validation protocol
such as OCSP or Sovereign Keys, however, paying dearly in terms
of latency and practicality [8].
To re-instantiate a key after compromise, there is unfortunately

an unavailability period (COP_UNLINKED as specified in the certifi-
cate) in case the domain lost access to its private key. However, if
the domain owner still has access to the private key, it can obtain
trusted CA signatures for its new key, sign it with its old key, and
immediately obtain an ILS confirmation that will enable use of the
new key.
M compromises CAs’ private keys. As long as fewer than the
CA_TH number of keys of trusted CAs in CA_LIST are compro-
mised, there is no impact on browsers who contact the trusted ILSs.
The CA_LIST evicts untrusted CAs from the set of potential weak
links. Given a small well-selected list of trusted CAs, it is highly
unlikely that more than a threshold number are compromised.
Even in case more than the CA_TH number of CAs are compro-

mised, a newly registered key will have to cool off during the pro-
longed period (CA_UNLINKED) as the fraudulent certificate is not
linked to the previous one (as we assume that S’s private key was
not compromised in this case). Such an extended time should leave
sufficient time for S to detect and react to the impersonation at-
tempt, without suffering any compromise (thanks to trusted CAs
who watch out for ILS entry changes). If S’s private key was
compromised in addition, M can impersonate S during the entire
CA_UNLINKED period. However, this case is exceedingly unlikely,
as several well-selected CAs and the domain’s private key all need
to be compromised at the same time.
An adversary can also contact a different ILS to register a TKI-

certificate for a victim domain whose TKI-certificate is already reg-
istered at a legitimate ILS. For example, an attacker can contact a
Pakistan-ILS to register a forged citibank.com TKI-certificate.
Since ILSs coordinate to cross-verify that a domain name is only
registered with a single, consistent TKI-certificate, such an attack
becomes visible. Furthermore, validators will detect such inconsis-
tencies with high probability.
M compromises ILSs’ private keys. M can create a different In-
tegrity Tree for a compromised ILS. In this case, two different In-
tegrity Tree root values are active in a given time period. If M suc-
ceeds at completely suppressing the legitimate ILS, then the valida-
tors detect if a certificate was replaced without the proper revoca-
tion and certificate re-issuance policy as specified in S’s certificate.
If M attempts to perform equivocation (i.e., create a shadow In-

tegrity Tree with malicious entries and then answer queries from
either tree depending on the querier), then clients and validators
can readily detect this since the ILS would have signed two differ-
ent root values for different Integrity Trees in a given time period,
which is a visibly malicious action. The non-repudiation of the
signature enables incrimination without permitting slander attacks.
The fact that the Integrity Tree root value prevents equivocation

even helps in the case when M compromises CAs’ private keys in
addition to the ILS’s. If M attempts to re-register a new key, S
will immediately detect this behavior (as we discuss in Section 4.2)
and raise an alarm. If M attempts to provide different answers to
S’s queries, it would need to create different Integrity Trees within
one time period, which can be detected as described in the previous
paragraph.
Another attack forM would be to attempt to create two different

entries for S.com at different places in the Integrity Tree, one for
the legitimate S.com and the other for a fraudulent S.com. In this
scenario, M would provide the legitimate response to S’s queries,
and a fraudulent certificate for other queries. Fortunately, this case



is easily detectable by the validators, as the leaf nodes would not
be in sorted order. Placing the two leaf nodes next to each other
will be detected by S, when it also queries for the leaf nodes that
are adjacent to its certificate in the Integrity Tree.
Another case is whereM misuses the ILS’s compromised private

key to sign the ILS registration confirmation. As we describe in
Section 4, such a confirmation would enable a freshly generated
and initially registered TKI-certificate to be immediately used and
trusted by TKI-enabled browsers (without contacting any ILSs).
During the entire lifetime of a name, such an ILS confirmation can
only be used during the initial period of registration, in practice
for only one hour out of a multi-year lifetime. It would be thus
highly suspicious if such a confirmation were used with names that
are already part of the ILS trees: the browser could thus report the
suspicious certificate to validators, as it is clear from the browser
history that the site was accessed in the past over HTTPS.

6. DISCUSSION
TKI vs. CA. One may question about TKI’s difference from cur-
rent Certificate Authorities. The main differences are that all ILS
operations are public and that compelled certificates can be easily
detected. CAs in TKI have strong accountability for their actions,
which cannot be circumvented. Consequently, trust in individual
CAs is greatly reduced in TKI.
Censorship resilience. Corporations/governments may want to
eavesdrop on all employees/citizens’ communication. More specif-
ically, corporations/governments can set up their own CA and ILS
that create fake certificates. In such a case, users can opt out by
installing legitimate CAs and ILSs as roots of trust.
Absence of ILS information. Similar to EV certificates [10], ab-
sence of ILS information may not raise any suspicions. To prevent
an attack where a non-TKI certificate is used to attack a domain
that is using a TKI-certificate, we require browsers to contact ILSs
to validate the absence of TKI information. Note that no additional
latency is required for deploying sites, since they provide the ILS
information during the SSL handshake; only legacy domains and
attackers have additional latency. Hence, this additional latency
provides a positive incentive for deployment.
Furthermore, ILSs can cooperate to provide proofs of non-existence

as follows: given that site E.com maintains the TKI-information
with ILS j that browsers do not trust as much as ILS1, ..., ILSi, these
trusted ILSs can provide the absence proof for E.com by providing
the authenticated Integrity Tree leaf nodes before and after the point
where E.com would be located at (since all the nodes are sorted in
lexicographic order).
In some legitimate environments, ILSs may not be reachable, for

example paywalls at airports or hotels do not permit any external
connections until the user has authenticated, paid, or accepted the
terms of service. A challenge then is: how can the browser verify
the non-TKI certificate of the paywall service without access to the
ILSs? In this case, geographically-linked certificates [21] can be
used, or the paywall obtains a TKI-certificate.
Globally consistent registration. Ideally, all global ILSs coordi-
nate registration and provide one global name space, preventing the
same name to be registered at different ILSs with different certifi-
cates. However, global coordination is cumbersome to implement
in practice, and we can achieve global consistency by detecting and
resolving short-term inconsistencies.2 An example of an inconsis-
2In any case, ILSs could implement a minimal validation that the same domain name
has not already been registered elsewhere. In particular, if the registration originates
from an entity outside the legal region of the domain owner, or was signed by CAs
outside the legal region of the domain owner, then the TKI-certificate can be listed but
become valid only after a cool-off period.

tency is where a rogue CA issues a bogus certificate for A.com,
presumably the CA and the requester of A.com are in a different le-
gal region from the legitimate owner of A.com preventing the con-
flict to be locally resolved through legal means. In such cases of
inconsistent registrations, the CAs local to the registered name of
A.com obtain precedence in determining the correct certificate. If
the foreign ILS does not unregister the conflicting entry, it loses its
credibility and will be subsequently ignored. It is the task of the
validators to document, store, and disseminate such incriminating
ILS information.
To detect inconsistent registrations, validators can inspect the

global ILSs and inform domain owners in case of inconsistent reg-
istrations (i.e., registrations with a different public key). In addi-
tion, CAs can offer a service to their clients to watch over potential
misuse or inconsistencies of their domain name. Finally, domains
themselves can also inspect ILSs’ operations and detect misbehav-
ior. Since all CA and ILS operations are non-repudiable (since
every operation is digitally signed), misbehavior does not need to
be further authenticated by validators, CAs, or domains. Conse-
quently, slander attacks that plague reputation systems are averted.
Usability. Prior work has shown that users ignore and click through
certificate warnings [33]. However, TKI can identify real attacks
and completely block users from proceeding without an option to
click through.

7. REALIZATION IN PRACTICE
To demonstrate the feasibility of TKI in a real-world setting, we

built a prototype as a proof-of-concept system. For testing, we cre-
ated a CA with OpenSSL. We pre-installed the CA and ILS root
certificates on our servers and clients. We implemented an ILS
server in Python that maintains a TKI Integrity Tree. The Integrity
Tree node hashes were computed with SHA-256, and the root node
was signed with RSA-2048. We used Coordinated Universal Time
(UTC) to define precedence for domain to key mappings and to au-
dit timeline integrity.3 We configured a stock Nginx HTTP server
to serve our TKI-certificates, which are basically X.509 certificates
with custom TKI extension fields (described in Section 4.2). We
implemented our TKI client in the Chromium web browser.
ILS proof stapling. To deliver fresh ILS proofs for TKI-certificates
to clients, we explored the following options. One option is to let
CAs embed the ILS proof in the certificate itself, by inserting it into
a certificate extension. However, once the certificate file is updated
with a time-bounded ILS proof, the hash of the updated certifi-
cate would not match the original certificate recorded in the ILS
Integrity Tree. To avoid this issue, another option is to let servers
send the ILS proofs over the TLS handshake, utilizing a TLS ex-
tension. An alternative is to provide the ILS proof in a separate
dummy certificate, appended to the leaf of the server’s certificate
chain. In our prototype, we sent ILS proofs via TLS extensions,
given that Nginx currently supports the TLS Certificate Sta-
tus Request extension (primarily used for OCSP stapling). This
allows our server to deliver ILS proofs as a stapled response over
the TLS handshake to clients without modifying Nginx. The server
could use a side-loaded script to periodically fetch fresh ILS proofs
and load them into Nginx. We modified the Chromium browser to
extract the embedded ILS proofs via the TLS Certificate Sta-
tus Request extension, and validate the ILS proofs.
Performance cost. TKI induces no round trip latencies (no ex-
tra network requests) to the TLS handshake. However, TKI in-
creases the TLS handshake message size by roughly a kilobyte due

3UTC is a well-known, independent external reference, and in theory, many synchro-
nization problems should reduce to accurate timekeeping.



to ILS proof stapling (assuming millions of domain names reg-
istered to the ILS). The ILS proof is composed from the follow-
ing constituents: a list of authentication node hashes (32 bytes per
node), a timestamp (4 bytes), and a root node signature (256 bytes).
Further, the server’s certificate size is slightly increased (by roughly
40 bytes) due to the additional custom X.509 extension.
We measured the client validation processing time in Chromium

on a machine with 2.26 GHz dual-core CPU and 4 GB RAM, tested
with a million domains registered to ILS. The overall TKI pro-
cessing time averaged 990 µs (median = 936 µs). Specifically,
the RSA verification step averaged 880 µs (median = 831 µs),
while the Merkle verification step only averaged 95 µs (median
= 87 µs). The overall TKI processing time is relatively small, es-
pecially compared to other approaches, such as Perspectives and
Sovereign Keys that require several network round-trips to commu-
nicate with servers.4 Another advantage of using Integrity Trees
that are relatively infrequently updated means that RSA verifica-
tions on the client side are amortized, as we envision that many do-
mains will use the same set of ILSs, hence the root of the Integrity
Tree will remain the same for numerous sites. Consequently, clients
mostly only perform efficient hash tree verifications and only rarely
perform signature verifications.

8. RELATEDWORK
Several proposals have been made to provide a web of trust for

SSL, such as Monkeysphere Web-of-Trust for SSL [4], the EFF’s
SSL observatory [17], and Certificate Patrol [5]. These proposals
make it easy to detect key changes, but it is difficult to distinguish
legitimate key changes from attacks.
Langley et al. [6] implemented a public key pinning mechanism

in Google Chrome. The browser vendor maintains a list of trust-
worthy public key(s) associated with each site. Public key pinning
provides similar security benefits to TKI by preventing certificates
signed by rogue CA from being accepted by the browser. Typi-
cally the keys of trusted CAs are pinned, allowing for an orderly
transition from one certificate to the next. To address the scalabil-
ity challenges of a browser vendor maintained database, the Public
Key Pinning Extension for HTTP [7] generalizes this mechanism
to an HTTP header that allows a server to declare the keys that can
be used in the future for that domain name. Choosing a pin dura-
tion that is too long risks a lengthy period of unavailability for the
site. Furthermore, if the user is visiting the site for the first time
on a device or the pin has expired, no protection is provided. By
contrast, TKI provides protection on the first visit to the site.
Marlinspike and Perrin propose Trust Assertions for Certificate

Keys (TACK) which pins public keys generated by the domain
owners themselves [26]. More specifically, a server generates a
TACK key pair, and use the TACK private key to sign the TLS pub-
lic key. The TACK public key and the signature form the TACK,
which clients can see in the TLS extension field, and clients “pin”
the domain’s TACK public key after observing the consistent TACK
multiple times. Although TACK aims at removing complete trust in
CAs, TACK relies on frequent visit patterns by clients to pin the do-
main’s public key, resulting in long initial unavailability period for
every server. Furthermore, if a certificate becomes compromised
and the pin is still inactive, the client must delete the observed
TACK information. In contrast, TKI provides no initial unavail-
ability period for any servers, providing protection on the first visit
to the server.
Huang et al. propose short-lived certificates [8] in conjunction

4A previous study indicates that round-trip latencies for OCSP lookups cost a mean
of 497 ms with a median of 291 ms in real-world deployments [31].

with browser vendor maintained Certificate Revocation Lists (CRLs)
to mitigate the impact of key compromise. Servers provide certifi-
cates with a short validity lifetime and update them from the CA
on a daily basis. Short-lived certificates provide similar security
benefits to OCSP while eliminating the need for an online check
during the HTTPS handshake. However, unlike TKI, they rely on
browser vendors to somehow detect certificates that are issued by
compromised CAs and block them using a browser vendor main-
tained blacklist.
DNS-based Authentication of Named Entities (DANE) securely

binds certificates with domain names using Domain Name System
Security Extensions (DNSSEC), enabling domain holders to assert
certificates without reference to CAs [12]. However, the security of
DANE heavily relies on the security of DNS operators.
In the following section, we perform an in-depth comparison of

all the closely related certificate validation infrastructures.

9. THEORETICAL COMPARISON
In this section, we compare TKI with other proposals with re-

spect to security, availability, and efficiency metrics. One of the
contributions of this paper is to establish a set of metrics for com-
parison, which we present in the following subsection.

9.1 Evaluation Metrics for Comparison
Security metrics. The main security metric is Duration of Com-
promise (DoC): given the compromise of a private key,5 for how
long can a domain be impersonated? This metric can be specified
into the following:

• DoC after a trusted CA’s private key compromise: This case also
covers compelled certificates [30].

• DoC after untrusted CA’s private key compromise: This case is
important for TKI, where a domain defines trusted and untrusted
CAs.

• DoC after trusted public log server’s private key compromise: To
avoid a proliferation of cases, we do not consider untrusted log
server’s private key compromise, as it is a strictly weaker attack
scenario.

• DoC after domain’s private key compromise: This metric mea-
sures the DoC, for how long an adversary can misuse the cap-
tured private key. We define the DoC as the duration of when a
key is revoked or the domain bootstraps a new key which invali-
dates the old key, whichever is earlier.

Security guarantees of new systems can sometimes be circum-
vented due to required compatibility issues with legacy systems.
For example, Extended Validation (EV) certificates or OCSP in-
formation in a certificate are both optional extensions, and their
absence does not raise any suspicions. Therefore, even if an entity
obtains an EV certificate and uses OCSP, an adversary can still ob-
tain a fraudulent non-EV certificate without OCSP extensions that
will enable MitM attacks. To measure the security of public key
validation infrastructures during incremental deployment, we pro-
pose the following metric:

• Protection during incremental deployment: This is a binary mea-
sure to characterize whether any security is offered while com-
patibility with legacy systems needs to be ensured.

Finally, we measure privacy of client requests.

• Connection privacy: information about a client is not leaked to
entities other than the contacted domain.

5In a private key compromise, the key is disclosed to the adversary. Depending on the
attack, the legitimate owner may still possess the key.



Table 1: Comparison of different public-key validation infrastructures based on the security, availability, and efficiency metrics.
Entries in bold red font indicate major disadvantages of the corresponding scheme. Server∗ stands for the ILS, DNS, Notary, or
OCSP responder server, depending on which scheme is used. ΔU corresponds to the public log servers’ update interval, which is in
practice on the order of one hour. Section 9.2 describes our methodology for filling in the entries.
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Security
Trusted CA compromise (compelled certificate) DoC days days days days N/A hours 0 0 0 0
Untrusted CA key compromise DoC days days days 0 N/A 0 0 0 0 0
Trusted Server∗ key compromise DoC N/A 0 N/A N/A N/A days days days days hours
Domain key compromise DoC hours min days days <month hours day min ∞ ILS_TIMEOUT
Protection during incremental deployment N/A N N Y N N Y Y Y Y
Connection privacy Y N Y Y Y Y N/Y/Y N Y Y
Availability
Initial registration DoU 0 0 0 0 days hours days 0 ΔU 0
Planned key update DoU 0 0 0 0 days hours 0 0 ΔU 0
Unplanned key update DoU 0 0 0 0 days hours days 0 ΔU ΔU
CA compromise DoU days days days days N/A days 0 0 0 0
Server∗ compromise DoU days days N/A N/A N/A days days days days up to 1 day
Domain compromise DoU min min min min <month hours days 0 ΔU COP_UNLINKED
Efficiency
Number of additional servers required 0 O(C) O(D) 0 0 0 O(C) O(C) O(D) O(D)
Additional latency for SSL/TLS connection setup 0 RTT 0 0 0 0 RTT RTT 0 0
Additional bandwidth for SSL/TLS connection setup 0 0.1KB 0 0 0.1KB 0.1KB 10KB 1KB 1KB 1KB

Availability Metrics. The main availability metric we use is Dura-
tion of Unavailability (DoU) of a domain’s certificate after various
system events. The shorter the DoU, the more available the system.
We do not consider DDoS attacks in this paper; thus, we assume
the general availability of all servers and communication networks.

• DoU after initial registration: This metric measures the time du-
ration until the registered certificate becomes valid.

• DoU after planned key update: This metric measures the dura-
tion when an updated key becomes valid, which was planned to
replace the current key.

• DoU after unplanned key update: In case of unplanned events
such as losing a domain’s private and backup keys, this metric
measures the time duration when the updated key becomes valid.

• DoU after trusted CA’s private key compromise: After a trusted
CA’s key becomes compromised, a domain’s certificate may also
become invalid. This metric measures the time to acquire a new
certificate using the CA’s new key.

• DoU after a trusted log server’s private key compromise: A log
server’s public key compromise leads to invalid log entries. This
metric measures the time to recover a log server’s private key.

• DoU after domain’s private key compromise: This metric mea-
sures the time until the domain’s certificate becomes available
with a new private key.

Efficiency Metrics. Below is a list of metrics to measure the effi-
ciency of certificate infrastructures:

• Number of additional servers required: This metric measures
howmany additional infrastructure servers are required, expressed
as an order in the number of new connections established. For
example, ifC connections are established toD different domains,
would we requireO(C)+O(D) additional servers,O(D), or even
O(1)?

• Additional latency to establish a secure connection: Compared
to standard SSL/TLS, what additional latency would be required
for a secure connection with the proposed scheme?

• Communication overhead: This metric measures the additional
network overhead incurred for establishing a secure connection.

In addition, we will evaluate schemes based on their ability for
domains to select their trust perimeter (with respect to CAs and

public log servers), as well as providing flexibility for certificate
policies, such as specification to achieve different tradeoffs between
availability and security metrics as defined above.

9.2 Comparison of Approaches
Based on our metrics, Table 1 compares TKI with the following

proposals: CA + CRL [11], CA + OCSP [28], Short-Lived Certifi-
cates (SLC) [8], Key Pinning [6], TACK [26], DANE [12], Perspec-
tives (P) [34], Convergence (C) [1], Certificate Catalog (CC) [2],
Sovereign Keys (SK) [13], and Certificate Transparency (CT) [23].
We now discuss the methodology we used to fill in the table. For

many of the catastrophic failures, such as compromise of a trusted
CA or ILS private key, we assume that a software update is required
to revoke the old key and setup a new key. We assume that such a
software update is secure, and can be completed within a few days
for most users.
Security. For the “Trusted CA compromise (compelled certifi-
cate) DoC” metric, we assume that it will take days to push out
a CA root certificate revocation message through a browser update,
which was the method used to revoke DigiNotar’s certificate after
the compromise [32]. While some browsers use CRLs to revoke
CA keys (e.g., Google Chrome), most browsers still require a soft-
ware update. OCSP unfortunately does not help in this case, since
the CA does not use OCSP to validate the root certificates. Simi-
larly in the case of SLC and DANE, a browser update is required
to revoke the CA key. Also in the case of Key Pinning, a browser
update is required to remove the pin. Since P/C/CC, and TACK do
not rely on CAs, the DoC is 0. Audit-log based schemes also pro-
tect from this case, preventing even a trusted CA from registering
a new bogus certificate (the security analysis in Section 5 presents
this case in more detail for TKI).
For the following properties, we explain the metrics in a less

verbose manner. For the “Untrusted CA key compromise DoC”
metric, the impact is less than in the previous case. In particular for
DANE, the adversary cannot impersonate the domain which was
possible in the trusted case.
For the “Trusted Server key compromise DoC,” we consider that

the ILS/DNS/Notary/OCSP responder server’s private key is com-
promised, resulting in a severe disruption for several approaches.
Since no additional third parties exist in CA + CRL, SLC, and Key



Pinning, this case is N/A for those schemes. Since a compromised
OCSP server’s private key does not enable creation of a fake key,
DoC is 0. On the other hand, if the TACK key is compromised, re-
covery can take up to 30 days, depending on the domain’s parame-
ter setting. In the case of a compromised notary key in P/C/CC, we
assume that a software update would require days to be fully de-
ployed, during which time attacks are feasible. SK and CT would
also require a software update, requiring days for full deployment.
In TKI, a validator can detect ILS misbehavior and disseminate the
incriminating information, which may last on the order of hours to
reach the majority of clients.
For the “Domain key compromise DoC” metric, we assume that

browsers download CRLs every few hours; thus, the DoC for CA +
CRL is on the order of hours. For SLC, it may take a few days for
the certificate to expire. In TACK, it may require up to a month to
have clients switch to a new key. For DANE, it may require hours
until DNS entries time out and get replaced by new entries with
the updated key information. In P/C/CC, depending on the client
configuration, it can take days for an updated key to be consistently
observed. Although the online validation of SK revocation is very
fast, CT will require more time since stale validation information
may be served by the adversary. For TKI, validation information is
valid during domain-selected time ILS_TIMEOUT, which is on the
order of several hours to one day, until the key is revoked.
For “Protection during incremental deployment,” OCSP, and SLC

offer no security, since an adversary can create a legacy certificate
without any of these extensions which clients would accept. In
TACK, a rollback to a compromised certificate attack is possible at
the onset, when the TACK pin is not yet set up. For DANE, DNS
responses may be rolled back to non-signed DNS replies. P/C/CC,
SK, CT, and TKI all perform an online lookup for the case of a
legacy certificate, which will reveal the legacy certificate.
“Connection privacy” is not provided by OCSP, Perspectives,

and SK, as the client performs an online lookup for each certifi-
cate. Convergence uses a blinding step during lookup, and Certifi-
cate Catalog’s lookup via DNS hides client information.
Availability. “Initial registration DoU” requires several days for
TACK and P/C/CC to confidently learn a new entry. In DANE, the
current DNS entry needs to time out for the updated DNS entry to
become available, which we estimate to take hours in the common
case. CT requires the log server to update the tree, which we denote
with ΔU , which corresponds to the ILS_UP for TKI (we assume that
both CT and TKI use the same log update period).
For “Planned key update DoU,” we consider an optimization we

discuss in Section 3, where domains pre-register a key with the
notary servers, thus avoiding activation latency. For CT and TKI,
ΔU may be required until a key update becomes active.
For “Unplanned key update DoU,” we assume that P/C/CC use

a configured policy where a key has to have been consistently ob-
served for several days for clients to trust the key.
For “CA compromise DoU” and “Server compromise DoU,” we

assume that several days are required to recover and roll out new
root keys. In key pinning, we assume that one day is required to
push out a new software version with a new key. “Domain compro-
mise DoU” indicates the delay required to register a new key.
Efficiency. For the metric “Number of additional servers required,”
we specify D for the number of domains and C for the number of
connections established per day. For example, O(D) indicates that
the number of additional servers needs to be proportional to the
number of domains.
For the metric “Additional latency for SSL/TLS connection setup,”

we denote a round-trip time to a server by RTT, which includes
server processing time. Since P / C / CC, SK, and OCSP also in-

volve additional external connections, they can have a significant
time overhead.
For “Additional bandwidth for SSL/TLS connection setup,” we

list the order of magnitude of additional bandwidth required to set
up an SSL/TLS connection. For the case of SK, CT, and TKI, we
assume that extra signatures are on the order of 256 Bytes, hash tree
values are on the order of 32 Bytes, and that a hash tree has about
30 levels, resulting in about 2 KBytes of additional information,
which is on the order of 1KB as listed in the table.

9.3 Observations
As is evident from Table 1, all the newer Certificate Validation

Infrastructures handle the case of untrusted CAs or CA key com-
promise, dramatically increasing the security over the current cer-
tificate validation infrastructure.
For practical deployment, it is critical that the SSL/TLS connec-

tion establishment does not incur any additional latency. Conse-
quently, the additional RTT incurred by OCSP, P/C/CC, and SK
is problematic. Moreover, any system requiring O(C) additional
server infrastructure load is likely to incur excessive cost. Perform-
ing an online per-connection lookup to an external server also chal-
lenges privacy, as it may leak information about the connection to
a third-party server.
Another important factor is that certificates become immediately

usable after initial registration. However, CT, TACK, and P/C/CC
do not support this feature.
Overall, CT and TKI emerge with many desirable features. Since

(1) the overhead of TKI is lower due to the different hash tree struc-
ture, (2) TKI allows immediate use of initially registered certifi-
cates, and (3) TKI can rapidly validate the absence of an entry, TKI
provides a more efficient solution in practice.

10. CONCLUSION
Protecting current PKIs against CA root key compromises is be-

coming a topic of critical importance, as the weakest-link security
model of the current PKI system is clearly too weak to provide
meaningful security for critical web communication.
We observe that a public integrity log offers a promising ap-

proach to prevent the attacks we have recently witnessed. Unfor-
tunately, proposed log-based approaches suffer from several draw-
backs that hamper adoption.
With real-world adoption in mind, we propose TKI, a new ap-

proach that offers flexibility for entities to select a security policy
for their certificates, enabling a tradeoff between availability and
security. TKI also provides tangible deployment incentives that we
anticipate will drive adoption. In addition, TKI provides a useful
point in the design space towards a more trustworthy public key
validation architecture.
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