
Communication-Efficient Group Key Agreement

Yongdae Kim
Dept. of Information and Computer Science
University of California Irvine
kyongdae@ics.uci.edu

Adrian Perrig
Computer Science Division
University of California Berkeley
perrig@cs.berkeley.edu

Gene Tsudik
Dept. of Information and Computer Science
University of California Irvine
gts@ics.uci.edu

Abstract Traditionally, research in secure group key agreement focuses on min-
imizing the computational overhead for cryptographic operations, and
minimizing the communication overhead and the number of protocol
rounds is of secondary concern.

The dramatic increase in computation power that we witnessed dur-
ing the past years exposed network delay in WANs as the primary culprit
for a negative performance impact on key agreement protocols.

The majority of previously proposed protocols optimize the crypto-
graphic overhead of the protocol. However, high WAN delay negatively
impacts their efficiency.

The goal of this work is to construct a new protocol that trades off
computation with communication efficiency. We resurrect a key agree-
ment protocol previously proposed by Steer et al. We extend it to han-
dle dynamic groups and network failures such as network partitions and
merges. The resulting protocol suite is provably secure against passive
adversaries and provides key independence, i.e. a passive adversary who
knows any proper subset of group keys cannot discover any other group
key not included in the subset. Furthermore, the protocol is simple,
fault-tolerant, and well-suited for high-delay wide area network.

Keywords: Peer group key agreement, fault-tolerant protocol

1

2

1. INTRODUCTION
The proliferation of applications, protocols and services that rely

on group communication prompts the need for group-oriented secu-
rity mechanisms (in addition to the traditional requirements of fault-
tolerance, scalability, and reliability). Current group-oriented applica-
tions include IP telephony, video conferencing, collaborative workspaces,
interactive chats and multi-user games. The security requirements of
these applications are fairly typical, e.g., confidentiality, data integrity,
authentication and access control. These are achieved through some
form of group key management.

The peer nature of many group applications results in certain unique
properties and requirements. First, every member in a peer group is
both a sender and a receiver. Second, peer groups tend to be small,
with fewer than a hundred members. Also, peer groups have no hierar-
chy and all members enjoy the same status. Therefore, solutions that
assign greater importance to some group members are undesirable, since
privileged members might behave maliciously; they are also attractive
targets of attacks. This essentially rules out the traditional key distri-
bution paradigm as it calls for higher trust in the group member who
generates and distributes keys. Finally, since all networks are prone to
faults and congestion, any subset of group members must be prepared
to function as a group in its own right. In other words, if a network par-
tition splits the members into multiple subgroups, each subgroup must
quickly recover and continue to function independently.

In the last two decades a lot of research has been conducted with the
aim of minimizing cryptographic overhead in security protocols. It has
been long held as an incontrovertible fact that heavy-weight computation
– such as large number arithmetic which is the basis of many modern
cryptographic algorithms – is the greatest burden imposed by security
protocols. We believe that, although this has been the case in the past,
rapid advances in computing have resulted in drastic improvements in
large-number arithmetic computations. For example, three years ago,
a top-of-the-line RISC workstation performed a 512-bit modular expo-
nentiation in around 24 ms. Today, an 850 Mhz Pentium III PC (priced
at 1/5-th of the old RISC workstation) performs the same operation in
under 1 ms.

In contrast, communication latency has not improved appreciably.
Network devices and communication lines have become significantly
faster and cheaper. However, the communication (especially via the
Internet) has become both accessible and affordable which resulted in
drastic increase in the demand for network bandwidth. Consequently,

Communication-Efficient Group Key Agreement 3

the explosion in the number of users and their devices often causes net-
work congestion and outages. Moreover, while computation power and
bandwidth are increasing, network delay is still faced with a fundamental
limit dictated by the speed of light.

The bottleneck shift from computation to communication latency
leads us to start looking at cryptographic protocols in a different light:
allowing more liberal use of cryptographic operations while attempting
to reduce the communication overhead. The latter includes both round
and message complexity. Communication overhead is especially relevant
in a peer group setting since group members can be spread throughout
a large network, e.g., the global Internet.

We consider a protocol suggested by Steer et al. in 1988 [SSDW88],
one of the first group key agreement protocols. Their protocol is based
on the Diffie-Hellman key exchange and assumes the formation of a se-
cure static group. We extend their protocol to deal with dynamic
groups and network failures. This protocol – referred to as STR here-
after – was neglected due to its heavy computation and communication
requirements: O(n) communication rounds and O(n) cryptographic op-
erations are necessary to establish a shared key in a group of n members.
However, we extend STR and construct new communication-efficient
protocols that support dynamic groups. More concretely, we construct
an entire group key management protocol suite, that is particularly ef-
ficient in a WAN environment where moderate to high network delays
dominate. An extended version of this paper that provides more detail
of our algorithms and security is available from the authors.

2. RELIABLE GROUP COMMUNICATION
AND GROUP KEY AGREEMENT

In this section, we set the stage for the rest of the paper with a brief
overview of the notable features of reliable group communication and
group key agreement.

2.1. RELIABLE GROUP COMMUNICATION
SEMANTICS

Many modern collaborative and distributed applications require a re-
liable group communication platform. Current reliable group communi-
cation toolkits generally provide one (or both) of two strong group com-
munication semantics: Extended Virtual Synchrony (EVS) [MAMSA94]
and View Synchrony (VS) [FLS97]. Both semantics guarantee that: 1)
group members see the same set of messages between two sequential
group membership events, and, 2) the sender’s requested message order

4

(e.g., FIFO, Causal, or Total) is preserved. VS offers a stricter guarantee
than EVS: Messages are delivered to all recipients in the same member-
ship as viewed by the sender application when it originally sent the
message. In the context of this paper we require the underlying group
communication to provide VS. However, we stress that VS is needed for
the sake of fault-tolerance and robustness; the security of our protocols
is in no way affected by the lack of VS. More details on the interac-
tion of key agreement protocols and reliable group communication are
addressed in [AAH+00].

2.2. COMMUNICATION DELAY
Due to the reliable group communication platform, network delay is

amplified by the necessary acknowledgments between the group mem-
bers. The speed of light puts a lower bound on the minimum network
delay. For example, a laser pulse that travels through a fiber takes ≈ 10
ms between New York and San Francisco, ≈ 21 ms between Paris and
San Francisco, and ≈ 40 ms from London to Sydney. In practice the
networks today are slower than the lower bound by about a factor of 4
(due to switching overhead, etc.).

To put this into perspective, an 850MHz Pentium III PC performs a
single 512-bit modular exponentiation (one of the most expensive, but
most basic public key primitives) in under 1 ms. Moreover, the speed of
computers continue to increase. Comparing this with the WAN network
delay, it is clear that reducing the number of communication rounds is
much more important in the long run for an efficient group key agreement
scheme than reducing the computation overhead.

2.3. GROUP KEY AGREEMENT
A comprehensive group key agreement solution must handle adjust-

ments to group secrets subsequent to all membership change operations
in the underlying group communication system. The following member-
ship changes are considered:
Join occurs when a prospective member wants to join a group.
Leave occurs when a member wants to leave (or is forced to leave) a
group. There might be different reasons for member deletion such as
voluntary leave, involuntary disconnect or forced expulsion.
Partition occurs when a group is split into smaller groups. A group
partition can take place for several reasons, two of which are fairly com-
mon:

Network failure – this occurs when a network event causes disconnec-
tivity within the group. Consequently, a group is split into fragments.

Communication-Efficient Group Key Agreement 5

Explicit partition – this occurs when the application decides to split
the group into multiple components or simply exclude multiple members
at once.
Merge occurs when two or more groups merge to form a single group:

Network fault heal – this occurs when a network event causes previ-
ously disconnected network partitions to reconnect.

Explicit merge – this occurs when the application decides to merge
multiple pre-existing groups into a single group.

At first glance, events such as network partitions and fault heals might
appear infrequent and dealing with them might seem to be a purely
academic exercise. In practice, however, such events are common owing
to network misconfigurations and router failures. In addition, in mobile
ad hoc (and other wireless) networks, partitions are both common and
expected. Moser et al. present compelling arguments in support of these
claims [MAMSA94]. Hence, dealing with group partitions and merges is
a crucial component of group key agreement.

3. CRYPTOGRAPHIC PROPERTIES
In this section we summarize the desired properties for a secure group

key agreement protocol. Following the model of [KPT00], we define six
such properties:

Weak Backward Secrecy guarantees that previously used group keys
must not be discovered by new group members.

Weak Forward Secrecy guarantees that new keys must remain out of
reach of former group members.

Group Key Secrecy guarantees that it is computationally infeasible
for a passive adversary to discover any group key.

Forward Secrecy (Not to be confused with Perfect Forward Secrecy
or PFS) guarantees that a passive adversary who knows a contiguous
subset of old group keys cannot discover subsequent group keys.

Backward Secrecy guarantees that a passive adversary who knows a
contiguous subset of group keys cannot discover preceding group keys.

Key Independence guarantees that a passive adversary who knows any
proper subset of group keys cannot discover any other group key.

The relationship among the properties is intuitive. The first two (often
typically called Forward and Backward Secrecy in the literature) are
different from the others in the sense that the adversary is assumed to be
a current or a former group member. The other properties additionally
include the cases of inadvertently leaked or otherwise compromised group
keys. Forward and Backward Secrecy is a stronger condition than Weak
Forward and Backward Secrecy. Either of Backward or Forward Secrecy

6

subsumes Group Key Secrecy and Key Independence subsumes the rest.
Finally, the combination of Backward and Forward Secrecy yields Key
Independence.

In this paper we do not assume key authentication as part of the group
key management protocols. All communication channels are public but
authentic. The latter means that all messages are digitally signed by the
sender using some sufficiently strong public key signature method such
as DSA or RSA. All receivers are required to verify signatures on all
received messages. Since no other long-term secrets or keys are used, we
are not concerned with Perfect Forward Secrecy (PFS) as it is achieved
trivially.

4. PROTOCOLS
We now describe the protocols that make up the STR key management

suite: join, leave, merge, and partition. All protocols share a common
framework with the following features:

Each group member contributes an equal share to the group key; this
share is kept secret by each group member.

The group key is computed as a function of all current group members’
shares.

As the group grows, new members’ shares are factored into the group
key while remaining members’ shares stay unchanged.

As the group shrinks, departing members’ shares are removed from
the new group key and at least one remaining member changes its share.

All protocol messages are signed by the sender, i.e., we assume an
authenticated broadcast channel.

Before describing the protocols in detail, we review the basic STR key
agreement protocol and the notation used in the rest of the paper.

4.1. NOTATION
We use the following notation:

n,N number of protocol parties (group members)
i, j group member indices: i, j ∈ {1, . . . , N}
Mi i-th group member; i ∈ {1, . . . , N}
ri Mi’s session random (secret key of leaf node Mi)
bri Mi’s blinded session random, i.e. αri mod p
kj secret key shared among M1...Mj

bkj blinded kj , i.e. αkj mod p
p large prime number
α exponentiation base

Communication-Efficient Group Key Agreement 7

Tree-specific notation
N〈j〉 Tree node j
IN〈l〉 Internal tree node at level l
LN〈i〉 Leaf node associated with member Mi

T〈i〉 Tree of member Mi

BT〈i〉 Tree of member Mi including all of its blinded keys

k ,bk

M M
1 2

r , br
2 2

2 2

k ,bk

M
3

r , br
3 3

3 3

k

M

r , br
4 4

4

4

r /k , br / bk
1 11 1

IN

LN
LN

LN

LN

IN

IN

IN<1>

<1>
<2>

<2>

<3>

<4>

<4>

<3>

Figure 1 Notation for STR

Figure 1 shows an example of an STR key tree. The tree has two types
of nodes: leaf and internal. Each leaf node is associated with a specific
group member. An internal node IN〈i〉 always has two children: another
(lower) internal node IN〈i−1〉 and a leaf node LN〈i+1〉. The exception
is IN〈1〉 which is also a leaf node corresponding to M1. (Note that,
consequently, r1 = k1.)

Each leaf node LN〈i〉 has a session random ri chosen and kept secret
by Mi. The blinded version thereof is bri = αri mod p.

Every internal node IN〈j〉 has an associated secret key kj and a public
blinded key bkj = αkj mod p. The secret key ki (i > 1) is the result of
a Diffie-Hellman key agreement between the node’s two children. (k1 is
an exception and is equivalent to ri.) ki (i > 1) is computed recursively
as follows:

ki = (bki−1)ri mod p = (bri)ki−1 mod p = αriki−1 mod p if i > 1.

The group key in Figure 1 is the key associated with the root node:

k4 = αr4α
r3α

r2r1

We note that the root (group) key is never used directly for the pur-
poses of encryption, authentication or integrity. Instead, such sub-keys
are derived from the root key, e.g., by applying a cryptographically se-
cure hash function to the root key. All blinded keys bki are assumed to
be public.

The basic key agreement protocol is as follows. We assume that all
members know the structure of the key tree and their initial position

8

within the tree. (It is simple to have an ordering that uniquely deter-
mines the location of each member in a key tree.) Furthermore, each
member knows its session random and the blinded session randoms of
all other members. The two members M1 and M2 can first compute the
group key corresponding to IN〈2〉. M1 computes:

k2 = (br2)r1 mod p = αr1r2 mod p, bk2 = αk2 mod p
k3 = (br3)k2 mod p, bk3 = αk3 mod p
. . .
kN = (brN)kN−1 mod p

Next, M1 broadcasts all blinded keys bki with 1 ≤ i ≤ N − 1. Armed
with this message, every member then computes kN as follows. (As
mentioned above, members M1 and M2 derive the group key without
additional broadcasts.) Any Mi (with i > 2) knows its session random
ri and bki−1 from the broadcast message. Hence, it can derive ki =
bki−1

ri mod p. It can then compute all remaining keys recursively up to
the group key from the public blinded session randoms: ki = bri+1

ki mod
p (i ≤ N).

Following every membership change, all members independently up-
date the key tree. Since we assume that the underlying group commu-
nication system provides view synchrony (see Section 2.1), all members
who correctly execute the protocol recompute an identical key tree af-
ter any membership event. The following fact describes the minimal
requirement for a group member to compute the group key:

Remark 1. If all members know all blinded session randoms of all other
members, there exist at least two members who can compute the group
key.

Proof. This follows directly from the recursive definition of the group
key. In other words, both M1 and M2 (the member at the lowest leaf
nodes) can obtain the group key by computing pairwise keys recursively
and using blinded session randoms of other members.

Remark 2. Any member can compute the group key, if it knows: 1) its
own secret share, 2) the blinded key of its sibling subtree, and, 3) blinded
session randoms of members higher in the tree.

Proof. This also follows from the definition of the group key. To
compute the group key, member Mi needs 1) ri, 2) bki−1, and 3)
bri+1, bri+2, . . . , brN .

The protocols described below benefit from a special role (called
sponsor) assigned to a certain group member following each member-
ship change. A sponsor reduces communication overhead by performing

Communication-Efficient Group Key Agreement 9

”housekeeping” tasks that vary depending on the type of membership
change. The criteria for selecting a sponsor varies as described below.

4.2. MEMBER JOIN PROTOCOL
We assume the group has n users ({M1, . . . ,Mn}), when the group

communication system announces the arrival of a new member. Both the
new member and the prior group receive this notification simultaneously.
The new member Mn+1 broadcasts a join request message that contains
its own blinded key bkn+1. (which is the same as its blinded session
random brn+1) At the same time, the current group’s sponsor (Mn)
computes a blinded version of the current group key (bkn) and sends the
current tree BT〈n〉 to Mn+1 with all blinded keys and blinded session
randoms.

Next, each Mi first increments n = n+ 1 and creates a new root key
node IN〈n〉 with two children: the root node IN〈n−1〉 of the prior tree
T〈i〉 on the left and the new leaf node LN〈n〉 corresponding to the new
member on the right. Note that every member can compute the group
key (see Remark 2):

All existing members only need the new member’s blinded session
random

The new member needs the blinded group key of the prior group
In a join operation, the sponsor is always the topmost leaf node, i.e.,

the most recent member in the current group.
As described, the join protocol takes one communication round and

two cryptographic operations to compute the new group key (one before
the message exchange and one after.)

The join protocol provides backward secrecy since a new member is
only given a blinded key of the existing group. However, the protocol
does not provide key independence since knowledge of a group key used
before the join can be used to compute the group key used after the
join. To remedy the situation, we can modify the protocol to require
the sponsor to change its session random and the corresponding blinded
value, brn.

4.3. MEMBER LEAVE PROTOCOL
We again have a group of n members when a member Md (d ≤ n)

leaves the group. If d > 1, the sponsor Ms is the leaf node directly below
the leaving member, i.e., Md−1. Otherwise, the sponsor is M2. Upon
hearing about the leave event from the group communication system,
each remaining member updates its key tree by deleting the nodes LN〈d〉
corresponding to Md and its parent node IN〈d〉. The nodes above the

10

leaving node are also renumbered. The former sibling IN〈d−1〉 of Md is
promoted to replace (former) Md’s parent. The sponsor Ms selects a
new secret session random, computes all keys (and blinded keys) up to
the root, and broadcasts BT〈s〉 to the group. This information allows all
members to recompute the new group key.

In summary, the leave protocol takes one communication round and
involves a single broadcast. The cryptographic cost varies depending on
two factors: 1) the position of the departed member, and 2) the position
of the remaining member who needs to compute the new key.

The total number of serial cryptographic operations in the leave pro-
tocol can be expressed as (assuming n is the original group size):

2(n− d) + 1 + (n− d) + 1 = 3n− 3d+ 2 when d > 2
3n− 7 when d = 1, 2
In the worst case, M1 or M2 leave the group. The cost for this leave

operation is equal to the leave of member M3, which is 3n − 7. The
average leave cost is 3n/2 + 2.

The leave protocol provides forward secrecy since a former member
cannot compute the new key owing to the sponsor’s changing the session
random. The protocol also provides key independence since knowledge
of the new key cannot be used to derive the previous keys; this is, again,
due to the sponsor refreshing its session random.

4.4. GROUP PARTITION PROTOCOL
A network fault can cause a partition of the group. To the remaining

members, this actually appears as a concurrent leave of multiple mem-
bers. With a minor modification, the leave protocol can handle multiple
leaving members in a single round. The only difference is the sponsor
selection. In case of a partition, the sponsor is the leaf node directly be-
low the lowest-numbered leaving member. (If M1 is the lowest-numbered
leaving member, the sponsor is the lowest-numbered surviving member.)

After deleting all leaving nodes, the sponsor Ms refreshes its session
random (key share), computes keys and blinded keys going up the tree
– as in the plain leave protocol – terminating with the computation of
αkn−1 mod p. It then broadcasts the updated key tree BT〈s〉 containing
only blinded values. Each member including Ms can now compute the
group key.

The computation and communication complexity of the partition pro-
tocol is identical to that of the leave protocol. The same holds for its
security properties.

Communication-Efficient Group Key Agreement 11

4.5. GROUP MERGE PROTOCOL
We now describe the STR merge protocol for two groups. (A more

general protocol for merging larger number of groups is a straight-
forward extension.) We assume that, as in the case of join, the com-
munication system simultaneously notifies all group members (in both
groups) about the merge event. Moreover, reliable group communication
toolkits typically include a list of all members that are about to merge in
the merge notification. More specifically, we require that each member
be able to distinguish between the group it was in from the group that it
is merging with. This assumption is not unreasonable, e.g, it is satisfied
in SPREAD [AAH+00].

It is natural to merge the smaller group onto the larger one, i.e., to
place a smaller tree directly on top of the larger one. If the two trees are
of the same size, we can use an unambiguous ordering to decide which
group joins which. (For example, compare the identifiers of the respec-
tive sponsors.) Consequently, the lowest-numbered leaf of the smaller
tree becomes the right child of a new intermediate node. The left child
of the new intermediate node is the root of the larger tree. Since the
respective trees are known a priori (before the key management starts),
all nodes can construct the new key tree before receiving or computing
any cryptographic information.

In the first round of the merge protocol, the two sponsors (topmost
members of each group) exchange their respective key trees containing all
blinded keys. The highest-numbered member of the larger tree becomes
the sponsor of the second round in the merge protocol. Using the blinded
session randoms of the other group, this sponsor computes every (key,
blinded key) pair upto the intermediate node just below the root node.
It then broadcasts the key tree with the blinded keys and blinded session
randoms to the other members. All members now have the complete set
of blinded keys, which allows them to compute the new group key. In
any case, the merge protocol runs in two communication rounds.

5. ROBUSTNESS

5.1. PROTOCOL UNIFICATION
Although described separately in the preceding sections, the four STR

operations: join, leave, merge and partition, actually represent different
expression of a single protocol. We justify this claim with an informal
argument below.

Obviously, join and leave are special cases of merge and partition, re-
spectively. It is less clear that merge and partition can be collapsed into

12

a single protocol, because in either case, the key tree changes and the re-
maining group members lack some number (sometimes none) of blinded
keys or blinded session randoms which prevents them from computing
the new root key. When a partition occurs, the remaining members re-
construct the tree where some blinded keys are missing. In case of a
merge, a shorter tree A is merged into a taller tree B. Any member
in B now can compute the group key since it knows blinded session ran-
dom of any member in A. The deepest member in A also can compute
the group key since it knows the blinded session random of any other
member in A and blinded group key of B. Using the broadcast message
any member now can compute the new group key.

We established that both partition and merge initially result in a new
key tree with a number of missing blinded keys. In case of merge, the
missing blinded keys can be distributed in two rounds. This is because
a sponsor in both of A and B broadcasts its own subtree including all
blinded keys. Any member in a given subtree can compute the new
root key after receiving both broadcasts. The case of partition is very
similar except that the missing blinded keys and the new group key can
be distributed in one round.

This apparent similarity between partition and merge allows us to
lump the protocols stemming from all membership events into a single,
unified protocol. The following figure shows the pseudocode.

receive msg (msg type = membership event)

construct new tree

while there are missing blinded keys

if (I can compute any missing keys and I am the sponsor)

compute missing blinded keys

broadcast new blinded keys

endif

receive msg (msg type = broadcast)

update current tree

endwhile

The incentive for this is threefold. First, unification allows us to
simplify the implementation and minimize its size. Second, the overall
security and correctness are easier to demonstrate with a single protocol.
Third, we can now claim that (with a slight modification) the STR
protocol is self-stabilizing and fault-tolerant as discussed below.

5.2. CASCADED EVENTS
Since network disruptions are random and unpredictable, it is natu-

ral to consider the possibility of so-called cascaded membership events.
In fact, cascaded events and their impact on group protocols are of-
ten considered in group communication literature, but, alas, frequently

Communication-Efficient Group Key Agreement 13

neglected in the security literature. Furthermore, the probability of a
cascaded event is much higher on a wide area network. A cascaded
event occurs when one membership change occurs while another is be-
ing handled. For example, a partition can occur while a prior partition
is processed, resulting in a cascade of size two.

We claim that the STR partition protocol is self-stabilizing, i.e., ro-
bust against cascaded network events. In general, self-stabilization is a
very desirable feature since lack thereof requires extensive and compli-
cated protocol ”coating” to either 1) shield the protocol from cascaded
events, or 2) harden it sufficiently to make the protocol robust with
respect to cascaded events (essentially, by making it re-entrant). The
latter is often very complicated and inefficient as seen from [AKNR+01].

The pseudocode for the self-stabilizing protocol is shown as below.

receive msg (msg type = membership event)

construct new tree

while there are missing blinded keys

if (I can compute any missing keys and I am the sponsor)

compute missing blinded keys

broadcast new blinded keys

endif

receive msg

if (msg type = broadcast) update current tree

else (msg type = membership event) construct new tree

endwhile

Based on view synchrony discussed in Section 2, we provide an infor-
mal proof that the above protocol terminates on any finite number of
consecutive cascaded events. Due to view synchrony, every member has
the same membership view. We can further assume that the ordering of
members in the group communication system is same as that of the key
tree. By Remark 1, at least a member, say Mi can compute the group
key if all of the blinded session randoms are known. All members can
then compute the group key using the broadcast message of the member
Mi by Remark 2.

Hence, it is enough to show that at least one member knows every
other member’s session random, eventually. In the above pseudocode,
the sponsor is the node below the lowest node whose blinded session
random is missing. Now, if a sponsor Ms cannot compute the group key
since some of the blinded keys are missing, it broadcasts the key tree
which includes every blinded session random and blinded keys Ms knows.
Then the sponsor of the next round will be the one who owns the missing
blinded session random. Note that every member will have strictly more
blinded session randoms and blinded keys as number of round increases.
Hence, as cascaded events stabilize in the group communication system,
the STR protocol also terminates.

14

6. DISCUSSION

6.1. SECURITY
The STR protocol suite and the structure of its group key form a

special case of the TGDH key agreement recently presented in [KPT00].
(The latter defines a more general tree-based Diffie-Hellman key agree-
ment.) As such, STR benefits from the provable security of TGDH
protocols. Briefly, in [KPT00] it is shown that group key secrecy is
reducible to the Decision Diffie-Hellman (DDH) problem [MvOV97].

However, the basic property of group key secrecy is not sufficient for
the security of the entire protocol suite. Recall the desired security
properties defined in Section 3. We will show that STR offers not only
group key secrecy but also weak forward and backward secrecy proper-
ties. Furthermore, we show that STR can provide key independence by
modifying the protocol slightly.

We now present an informal argument for weak forward and backward
secrecy.

The group key secrecy property implies that the group key cannot be
derived from the blinded keys alone. At least one secret key K is needed
to compute all secret keys from K up to the root key. Hence, we need to
show that the joining member M cannot obtain any keys of the previous
key tree. First, M picks its secret share r, blinds it and broadcasts αr as
part of its join request. Once M receives all blinded keys on its co-path,
it can compute all secret keys on its key path. Clearly, all these keys will
contain M ’s contribution (r); hence, they are independent of previous
secret keys on that path. Therefore, M cannot derive any previous keys.

Similarly, we argue that STR provides weak forward secrecy. When
a member M leaves the group, the rightmost member of the subtree
rooted at the sibling node changes its secret share. Then, M ’s leaf node
is deleted and its parent node is replaced with its sibling node. This
operation causes M ’s contribution to be removed from each key on M ’s
former key path. Hence, M only knows all blinded keys, and the group
key secrecy property prevents M from deriving the new group key.

As presented in Section 4, the STR protocols do not provide key
independence. This means that an active attacker who somehow acquires
a group key used before an additive event (join or merge) can use the
knowledge of that key to compute a newer key used after such an event.
The same does not hold for subtractive events (leave and partition) since
a sponsor always changes its session random following each such event.

The join and merge protocols can be modified slightly to provide key
independence as explained in the join and merge protocol: Upon each
join or merge event, a sponsor (both sponsors, in case of a merge) changes

Communication-Efficient Group Key Agreement 15

its session random and recomputes its blinded key before proceeding with
the rest of the protocol.

This simple change results in key independence since each membership
change is followed by at least one session random change. (Of course, we
assume that individual members are honest and do not leak their session
randoms to the adversary. This behavior can be regarded as equivalent
to revealing the group key.)

6.2. COMPLEXITY ANALYSIS
This section compares the computation and communication of

STR protocol to other recent group key agreement methods, Cliques
GDH.2 [STW00], Tree-Based Diffie-Hellman (TGDH) [KPT00], and
Burmester/Desmedt (BD) [BD94]. These protocols provide contribu-
tory group key agreement based on different extensions of the two-party
Diffie-Hellman key exchange. Moreover, they all support dynamic mem-
bership operations.

We consider the following costs:
Number of rounds: this affects serial communication delay. Total

number of messages: as the number of messages grows, the probability
of message loss or corruption is increased, and so is the delay.

Number of unicasts and broadcasts: a broadcast is much more expen-
sive operation than a unicast, since it requires many acknowledgments
within the group communication system.

Number of serial exponentiation: this is the main factor in the com-
putation overhead.

Robustness: Lack of robustness requires additional measures to
make the secure group communication system robust against cascaded
(nested) faults and membership events.

Table 1 shows a comparison of the current approaches for group key
management. The bold text refers to a parameter that severely slows
down the protocol in a WAN deployment, for which STR is best suited.

In Cliques GDH.2 protocol, the number of new members k is consid-
ered, since the merge cost depends on number of new members. The
cost for TGDH is the average value when the key tree is fully balanced.
The partition or leave cost for STR is computed on average, since it de-
pends on the depth of the lowest-numbered leaving member node. For
security reasons [STW00], BD always has to restart anew upon every
membership event.

As seen from the table, STR is minimal in communication on every
membership event. We showed in Section 5 that robustness in the STR
protocol is not only easier to implement than in other protocols, but it

16

also achieves higher robustness to network partitions. Cliques GDH.2 is
quite expensive protocol in wide area network, since: 1) it is hard or very
expensive to provide robustness against cascaded events [AKNR+01] and
2) communication cost for merge increases linearly as the number of new
members does. In TGDH, the partition protocol is expensive (relatively
slow) which may cause more cascaded faults and long delays to agree
on a key. The cost of BD is mostly acceptable but large number of
simultaneous broadcast messages can be problematic over a wide area
network.

Table 1 Protocol Comparison

Rounds Messages Ucast Bcast Exp. Robust

Cliques
J 2 2 1 1 2n

HardL/P 1 1 0 1 n
M k + 3 n + 2k + 1 n + 2k− 1 2 n+ 2k

TGDH
J/M 2 3 0 3 2 logn

EasyL 1 1 0 1 logn
P O(log n) O(log n) 0 O(log n) O(log n)

BD 2 2n 0 2n 3 Easy

STR
J 1 2 1 1 2

EasyL/P 1 1 0 1 3n
2 + 2

M 2 3 2 1 3k
J: Join, L: Leave, P: Partition, M: Merge, Ucast: Unicast, Bcast: Broadcast, Exp: Exponentiation

References
[AAH+00] Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru, T. Schlossna-

gle, J. Schultz, J. Stanton, and G. Tsudik. Secure group communication
in asynchronous networks with failures: Integration and experiments. In
ICDCS 2000, April 2000.

[AKNR+01] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton, and G. Tsudik.
Exploring robustness in group key agreement. In ICDCS 2001, 2001.

[BD94] M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key
Distribution System. In EUROCRYPT94, 1994.

[FLS97] A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a par-
tionable group communication service. In ACM PODC ’97, Santa Bar-
bara, CA, August 1997.

[KPT00] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant key agree-
ment for dynamic collaborative groups. In ACM CCS 2000, November
2000.

[MAMSA94] L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal. Extended virtual
synchrony. In ICDCS ’94, June 1994.

[MvOV97] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[SSDW88] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener. A secure audio
teleconference system. In CRYPTO ’88, 1988.

[STW00] M. Steiner, G. Tsudik, and M. Waidner. Cliques: A new approach to
group key agreement. IEEE TPDS, August 2000.

