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Abstract—The act of communication on the Internet inevitably
leaks information. In particular, network headers reveal infor-
mation (e.g., source address, flow information); yet, protecting
the header has proven challenging. Past research successfully
protected certain fields of the headers (e.g., source address), but
no proposal has attempted to eliminate flow information from the
header so that packets cannot be linked to flows; flow information
is systematically used to subvert privacy. Hence, we investigate
the following questions: Can we design an architecture that elim-
inates flow-packet linkability? Can we do so without imposing
impractical requirements on the network infrastructure?

Our proposed architecture is based on per-packet One Time
Address (OTA)—an address that a host uses to send or receive
exactly one packet. Furthermore, the architecture eliminates
any implicit (e.g., the standard five-tuple in TCP/UDP packets)
or explicit (e.g., flow identifier) flow information from packet
headers. Yet, the architecture allows the communicating hosts
to demultiplex seemingly unrelated packets to flows. We have
implemented the proposed architecture, and our evaluation shows
that it can satisfy today’s packet forwarding requirements.

I. INTRODUCTION

Every field of a packet leaks some information about the

communicating hosts! Adversaries ranging from WiFi stalkers

to state-level agencies systematically observe packet headers

and payloads in order to infer communication patterns and to

obtain communication contents [1–4].

Packet headers inherently leak information, since they are

the foundation to achieve communication. Persistent host in-

formation across flows (e.g., source and destination addresses)

is used to link flows to a common sender or a common

destination, drawing a profile of communication patterns.

The research community has proposed multiple solutions that

provide sender-flow unlinkability. For example, an ISP-wide

NAT can be used to masquerade the source address so that

an adversary cannot link flows from an ISP to a common

sender [5]. APIP completely removes the “source address”

from the network header in order to eliminate common source

information across flows [6].

Although these proposals are a step forward, packet headers

in these schemes still leak valuable information. Persistent

flow information across packets is used for more sophisticated

attacks. For example, state-level adversaries deanonymize ToR

sessions by correlating flows from the source to the ToR-entry

node with flows from the ToR-exit node to the destination

host [7–11]. Furthermore, an adversary can infer information

about the content of a flow (e.g., video or VoIP traffic) by

observing flow metadata (e.g., flow duration/size, and inter-

packet arrival times). These attacks become feasible since host

information remains the same among packets of the same flow.

In this paper, we introduce a stronger privacy property

that cannot be achieved by previous proposals—flow-packet

unlinkability: simply by observing packets of any number of

flows, the packets are no more and no less related to any flow

after the observation than they were before the observation. In

order to achieve this property, any flow-identifying information

must be eliminated from packet headers.

Our approach to achieve flow-packet unlinkability is

communication based on (disposable) One-Time Addresses

(OTAs): once an address has been used in the network header,

it is not re-used in subsequent packets. This means that source

addresses are not even re-used as destination addresses in

subsequent response packets.

Furthermore, we propose pervasive encryption with perfect

forward secrecy for all packet payloads. This step is necessary

to prevent leaked information at two levels: application-layer

information (e.g., cookies) that can be used to identify hosts

and link flows, and transport-layer information (e.g., explicit

flow identifiers) that is used on an end-to-end basis to demul-

tiplex packets.

Contributions. We propose a holistic architecture that pro-

vides strong privacy guarantees through flow-packet unlinka-

bility and data privacy. Our architecture builds on the prim-

itives of One-Time Addresses and pervasive encryption, and

addresses the following challenges:

• flow demultiplexing at the end hosts
• key management for pervasive network-layer encryption
• efficient OTA management

– secure and optimized OTA generation
– no per-OTA state in the network infrastructure.

Furthermore, we present a software-router prototype that

can forward up to 20M packets per second, and that can

saturate a capacity of 110 Gbps even on a commodity desktop

PC.

II. PROBLEM SETUP

A. Goals

The primary goal of our architecture is to provide privacy in

terms of flow-packet unlinkability. We explain this term by

building on a weaker privacy property.



The first step is host-flow unlinkability:1 simply by observ-

ing packets of any number of flows, the source(s) are no

more and no less related to a flow after the observation than

they were before the observation; similarly, the destination(s)

are no more and no less related after the observation than

they were before the observation. That is, an adversary cannot

determine if packets of two flows originate from the same host

(or are destined for the same host). To achieve this property,

source and destination addresses need to be different for every

flow, so that host-identifying information is not persistent

across different flows. Note that host-related information can

still be leaked at the granularity of the host’s AS, e.g., by

routing information or network topology: a packet can contain

information that identifies the destination AS, or the ISP of

a leaf AS naturally knows the source AS of all outgoing

packets—it is difficult to hide this information. Our proposal

also reveals flow information at the granularity of ASes.

The next step is flow-packet unlinkability: simply by observ-

ing packets of any number of flows, the packets are no more

and no less related after the observation than they were before

the observation. In other words, an adversary cannot determine

if two packets belong to the same flow. To achieve this

property, source(s)/destination(s) need to ensure that persistent

flow-identifying information (e.g., persistent host addresses or

flow identifiers) is not present across different packets.

The secondary goal of our architecture is to provide data

privacy. All the exchanged content between two communi-

cating hosts must be encrypted by default. To this end, the

architecture must facilitate key management and enable hosts

to negotiate cryptographic keys. Furthermore, the proposed

scheme should guarantee perfect-forward secrecy (PFS) [12]:

even if an adversary obtains all long-term keys of a host, he

cannot subvert data privacy of past communication.

B. Threat Model

We consider two classes of adversaries who attempt to subvert

our two goals, respectively.

The goal of the first adversary is to undermine flow-packet

unlinkability. To achieve his goal, the adversary can: i) observe

any packet in the network, including within the source and

destination ASes, ii) actively inject and change packets, and

iii) compromise any entity (e.g., cryptographic keys), except

for the source and destination ASes.

The goal of the second adversary is to undermine data

privacy by decrypting the payload of communicating hosts,

which reside in two different ASes. To achieve his goal, the

adversary can: i) observe any packet in the network, including

the source and destination ASes, and ii) compromise any entity

(e.g., cryptographic keys), including one of the two ASes.

However, we assume that the adversaries do not perform

side channel attacks (e.g., timing analysis); we believe side-

channel attacks should be handled in higher layers, e.g.,

transport layer (See Section VII for more detail.). We also

assume that the cryptographic primitives we use are secure:

1Host-flow unlinkability is a more generic privacy notion than sender-flow
unlinkability that refers to both the source and the destination hosts.
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Fig. 1: The infrastructure of an AS and the 3-layer structure of the
data plane that supports OTA-based communication.

signatures cannot be forged and encryptions cannot be broken.

III. OVERVIEW

Communication in our architecture is based on One-Time

Addresses (OTAs). OTAs are (disposable) addresses that are

issued by the Autonomous Systems (ASes) to their customer

hosts; and the hosts use their OTAs as either source or

destination addresses in their packets only once.

In our architecture, a host is uniquely identified by its AS

through a host identifier (HID). The AS forwards packets to

the host based on the HID, but the HID cannot be present in

the packet headers; an adversary would correlate packets to

the same host and subvert our privacy goal. Instead, hosts use

OTAs that can be linked to their HIDs in the packet headers.

Note that we do not impose restrictions on the form of HIDs;

e.g., it can be an IP address or the hash of a public key.

In order to achieve flow-packet unlinkability, each host uses

two pools of addresses: the first pool contains addresses that

are associated with itself and serve as source addresses, and

the second pool contains addresses of the communicating peer

and serve as destination addresses. When a host sends a packet,

it draws one address from each pool, to be used as a source

and as a destination address, respectively. The receiving host

follows the same procedure, without reusing any address from

the packet header. The AS of the destination host “somehow”

obtains the HID information from the destination one-time

address and forwards the packet to the correct host.

Furthermore, a host can instruct its peer to supply more

addresses when the address pool runs low, so that communi-

cation is not interrupted. Note that the exchanged addresses are

encrypted, so that an adversary cannot infer flow information

by observing address exchanges.

A. Design Space

The fundamental challenge we address is the following: Can

we generate addresses that are used once, but are valid routable

identifiers within an AS so that the intended recipient receives

the packet? In order to justify our design decisions, we

describe incremental solutions that draw a perimeter of the

design space.

In a straw-man approach, the host generates an OTA on

its own; and informs it to both his AS and peer host. Then,

the AS stores a binding between the OTA and the HID of

the host, so that it can forward an incoming packet with the

generated OTA as the destination address to the correct host.

Although this approach provides the desired property of flow-

packet unlinkability, it comes with impractical requirements:

per-packet state in the form of a mapping table from the OTA



to the HID. Furthermore, this state must be distributed to all

data-plane devices in the AS.

In order to reduce the impractical requirements, the host

can instead encrypt its HID. Specifically, a symmetric key

that is shared between all hosts and the AS can be used to

generate OTAs from HIDs. In order to route a packet to a

host, a forwarding device of the AS uses this shared key to

decrypt the ciphertext and obtain the HID of the incoming

packet; then it forwards the packet according to the HID. Since

only the decryption key must be distributed among the data-

plane devices in the AS, the state requirement is minimal.

However, this solution provides weak security properties: one

compromised host in an AS allows an adversary to compro-

mise privacy for all other hosts in the AS, since one key is

shared between all hosts and the AS.

To provide stronger security properties, a symmetric key is

shared between each host and its AS: the host encrypts its

HID with the symmetric key that it shares with the AS. When

an incoming packet arrives, a forwarding device decrypts the

ciphertext and obtains the HID. This approach introduces a

circular dependency: in order to decrypt the ciphertext, the

forwarding device must obtain (from the packet) a pointer

to the corresponding key that was used for the encryption.

However, including such a pointer in the packet breaks our

privacy goal, since it introduces persistent host-identifying

information across packets. In other words, the information

that we try to hide must be visible to derive the shared key

that was used for the encryption.

B. Key Concepts

Our approach overcomes the previously presented challenges

through the combination of two concepts.

First, we use symmetric-key cryptography to moderate the

excessive state requirements without sacrificing processing

efficiency (use of asymmetric cryptography would sacrifice

processing speed). Our evaluation (Section VI-A) shows that

per-packet symmetric-key cryptography is efficient even on

commodity machines.

Second, the AS—not the host—generates the OTAs, and

it does so on the communication path: the source transmits

its HID in the clear; then, the first-hop router—henceforth

called access router (AR)—generates an OTA based on the

HID of the host. The address is an encryption of the HID

using a symmetric encryption key that is known only to the

AS. When an incoming packet arrives, a forwarding device

uses the symmetric key to decrypt the OTA, extracts the HID,

and then forwards the packet to the destination.

Note that we obtain stricter security properties since the

symmetric key is shared only among the forwarding devices

in the AS, and not with the hosts of the AS. Furthermore,

all OTAs are generated using one key, thus avoiding the

circular dependency when obtaining this key from in-packet

information.

One-Time Addresses. OTAs are the basic building block to

achieve flow-packet unlinkability since they are used only

once. The use of OTAs achieves the following properties.

First, they serve as privacy-preserving addresses that protect

host identity. An OTA is meaningful only to the issuing AS

and opaque to all other entities. That is, only the issuing AS,

which already knows the identity of its customer, can identify

host identities from OTAs.

Second, they serve as building blocks to achieve flow-packet

unlinkability. Our architecture enables a host to use a different

source OTA for every outgoing packet; and to instruct its

communication peer to use a different destination OTA for

every returning packet. This scheme prevents an adversary

from relating packets to flows based on source and destination

addresses.

OTAs, by construction, are only routable within the issuing

AS, since they are opaque to any other entity. Hence, to

support inter-domain communication, packets must carry addi-

tional information about the source and destination ASes of the

source and destination OTAs. Therefore, OTAs are augmented

with AS Numbers (ASNs).

Adding ASN information into OTA fixes the size of the

anonymity set to the number of hosts in an AS. For large

ISPs with millions of customers, the size of the anonymity

set is sufficiently large [13]. In Section VII, we show how to

enlarge the anonymity set for small ISPs.

C. Architectural Components

We now describe the structure of the ASes and of the data

plane (Figure 1).

Autonomous Systems. ASes play an integral role in our

architecture, as they facilitate private communication for their

customers. First, ASes facilitate flow-packet unlinkability by

issuing OTAs to customer hosts. Second, ASes enable data

privacy by acting as Certificate Authorities. Specifically, ASes

issue certificates that bind OTAs to OTA-specific public keys.

The associated public keys are used by the communicating

hosts to negotiate shared symmetric keys that are used to

encrypt the communication data.

In order to provide the required functionalities, we consider

the following infrastructure components in an AS:

• Access Router (AR): connects hosts to the core network

of the hosting AS. Furthermore, the AR generates and

translates OTAs on behalf of its hosts.
• Border Router (BR): interconnects the core networks of

different ASes. It forwards: i) outgoing and transit inter-

domain traffic based on AS information in packet headers,

and ii) incoming intra-domain traffic based on host infor-

mation that is extracted from OTAs.
• Core Router (CR): forwards packets in the core network

of an AS, between ARs and BRs. It forwards traffic in the

same way as a BR.

Data Plane. We abstract the data plane into three layers, and

each layer uses different information to forward packets. At

the highest layer, the network is an interconnection of ASes

and packets are forwarded by border routers (BRs) using AS

information (e.g., ASNs).

Next, we divide the data plane of an AS network into the

core network and the access network. In the core network,

packet headers contain OTAs to offer privacy guarantees; but



HIDi Host identifier assigned to host Hi

F,FID1,FID2 Flow F identified as FID1 and FID2 by hosts H1 and H2,

respectively

OTA
j
Hi

jth OTA generated for host Hi

OTA
(N)
Hi

A list of N OTAs that are generated for host Hi

COTAi
Certificate for OTAi

kF Symmetric key for flow F between two hosts

kF−AS Symmetric key for flow F that is shared between two hosts and

their ASes

ktmp Symmetric key for flow F that is shared between two hosts and

the AS of the connection initiating host (see Section IV-D)

kASi
Symmetric key known among the infrastructure (e.g., routers)

within ASi

Ek(•)/E−1
k (•) Symmetric encryption/decryption of • with key k

K+
E ,K−

E Public, private key of entity E

{m}K− Message m and the signature generated using the private key K−

〈a → b|m〉 Packet with source and destination OTAs of a and b, respectively,

and payload of m

TABLE I: Summary of Symbols and Notation.

in the access network, packet headers contain the uniquely as-

signed HIDs of the hosts. We discuss the security implications

of our approach in Section VI-B.

IV. PROTOCOL DESIGN

We present in detail the required steps so that two hosts

(H1 and H2) can communicate; we present the steps in an

increasing order of complexity.

In our architecture, a flow F between two hosts H1 and H2

is identified as FID1 and FID2 by each host, respectively;

FIDs are used to demultiplex flows within a host, and each

host chooses its own FIDs. Table I summarizes the notation

that we use throughout the section.

A. Assumptions

• Every AS has a public key and a corresponding certificate;

and there is a public-key infrastructure (e.g., RPKI [14])

from which an entity can retrieve and verify AS-certificates.
• Communication in the access network is secure, i.e., packet

payloads are encrypted. For example, hosts can establish

IPsec sessions with their ARs.

B. OTA Structure

An OTA encodes the following information: 1) the HID of

the host to which the OTA is issued, and 2) the identifier of

the flow FID for which the OTA is issued. The FID points

to the flow-specific shared key that is used to encrypt the

communication data. This information is then encrypted using

the local secret key of the issuing AS (kAS); the resulting

ciphertext is an OTA (Equation 1).

OTA = EkAS
(HID,FID) (1)

Moreover, we require the encryption scheme to be CCA-

secure: if an adversary modifies the OTA of a packet, the

issuing AS will detect the modification and drop the packet.

To achieve CCA-security, note that a different OTA must be

produced for every invocation even if the same HID and FID

are provided. We describe CCA-secure OTA generation in

Section V.

Furthermore, an OTA is associated with a certificate that

binds the OTA of a host to a public key of the host; it is

issued by the host’s AS and serves two purposes. First, it

certifies that the host owns the OTA. Only the OTAs that

H1 (HID1) AR1 in AS1 AR2 in AS2 H2 (HID2)

1. msg = EkF
(DATA,data)

2. m1 = 〈DATA,FID1 ,OTA
j
H2

,msg〉

m1

3. OTAi
H1

= EkAS1
(HID1 ,FID1)

〈OTAi
H1

→ OTA
j
H2

|msg〉

4. HID2 ,FID2 = E−1
kAS2

(OTA
j
H2

)

5. m2 = 〈FID2 ,msg〉

m2

Fig. 2: Outgoing and incoming packet processing at Access Routers

are used for connection establishment (see Section IV-D)

require certificates; subsequent OTAs that are used for data

communication do not require certificates. Therefore, only a

few OTAs are associated with certificates. Second, the public

key in the certificate is used to generate keys that are used for

data encryption between the communicating hosts.

Specifically, an OTA certificate encodes the following in-

formation: 1) the OTA and 2) a public key (K+
OTA) that is used

to derive a symmetric encryption key for data communication.

The certificate-issuance protocol is described in Section IV-E.

C. Packet Forwarding

Our architecture splits the data plane of an AS into two

layers—the access network and the core network—with dif-

ferent forwarding mechanisms at each layer. We describe how

ARs and CRs forward packets assuming that end hosts have

established a connection.

Access Routers. Communication based on OTAs makes

packet demultiplexing challenging: the network header does

not include any flow-identifying information that would be

needed to demultiplex packets at the receiver. In our architec-

ture, ARs aid hosts in flow demultiplexing; we leverage ARs

as they are the first/last AS-infrastructure component on the

communication path.

Recall that a flow F is identified as FID1 and FID2 by the

two communicating hosts. When the source host H1 sends a

packet to the destination host H2 using an OTA of H2, the pre-

computed OTA encodes FID2 that is used by H2 to identify the

flow. ARs process outgoing and incoming packets differently

(Figure 2).

To send a packet to the destination host (H2), the source host

(H1) includes information that is necessary for its AR (AR1)

to generate the correct OTAs (Line 2). More specifically, H1

specifies the packet type (DATA) to indicate how AR1 should

handle the packet; the destination OTA (OTA
j
H2

); the flow

identifier (FID1) that is used by H1 to identify the flow; and

the payload (msg) that is encrypted using the shared key for the

flow (kF ). Although flow F is identified by different identifiers

for each host, there is one shared key kF for the flow.

When AR1 receives an outgoing packet, it performs the

following tasks: it generates an OTA using H1’s identifier

(HID1) and the FID1 in the packet (Line 3). Then using the

destination OTA (OTA
j
H2

) and the payload (msg), the router

constructs a packet and sends it to the core network.



When AR2 receives an incoming packet from the core

network, it performs the following tasks (Line 4-5): it extracts

from OTA
j
H2

the destination host identifier (HID2) and the flow

identifier (FID2) that H2 uses to identify the flow. Then, AR2

creates a packet that includes FID2 and the original message

(msg); finally, it sends the packet to the destination host.

Core Routers. CRs in source ASes forward packets to BRs

according to the destination ASN. CRs in destination ASes

forward packets in the core network based on the destination

OTAs in the packet headers. CRs do not perform address

translation, but must decrypt the OTA in the packet to forward

it based on the HID of the destination. This decryption is

necessary since the intra-domain routing protocol is based on

HIDs and since we do not want ASes to keep per-OTA state.

Hence, the CRs in AS2 perform a subset of the operations that

AR2 performs (Line 4).

D. End-to-end Communication

We have described how packets are forwarded and how

flows are demultiplexed, assuming that a connection has been

established. We now provide two missing pieces for fully func-

tional end-to-end communication: connection establishment

and address-pool exchange.

Connection Establishment. Connection establishment in-

cludes three main steps: 1) the initiating host authenticates

the listening host, 2) the hosts negotiate shared keys for data

encryption, and 3) each host informs the other of an OTA that

it can use for the next packet.

Initially, the listening host waits for incoming connections

similar to a traditional socket that is binded to a port. Consider

a listening host H2 that waits for packets with a specific FID

(e.g., FID′
2). The initiating host has obtained an OTA of the

listening host (e.g., through DNS), which contains FID′
2. The

destination accepts the connection and generates a new FID2

that will be used henceforth to identify the new flow.

The first objective of connection establishment, i.e., host

authentication, is achieved through the OTA certificates. The

OTAs of the listening host have corresponding certificates; the

certificates are issued by the AS of the host and certify that

an OTA is associated with a public key; the corresponding

private key is only known to the host. The public/private key

pairs are used to securely bootstrap communication and to

negotiate symmetric encryption keys.

Figure 3 describes connection establishment between two

hosts H1 and H2 that reside in domains AS1 and AS2, re-

spectively. We make the following two assumptions. First, H1

and H2 have received OTAs (OTA1
H1

and OTA2
H2

, respectively)

and certificates (COTA1
H1

and COTA2
H2

, respectively) from their

respective ASes. These OTAs are used as the source addresses

for connection establishment packets. Second, we assume that

H1 has obtained an OTA for H2 (OTA1
H2

) and the associated

certificate (COTA1
H2

), e.g., through DNS or an offline method.

Initially, H1 generates a temporary symmetric key ktmp

that is used to protect the first packet of the connection

establishment (Line 1). The symmetric key is supplied to

AR1 to encrypt a second OTA of the source (OTA2
H1

)—the

H1 (HID1) AR1 in AS1 AR2 in AS2 H2 (HID2)

- Uses FID1 for communication

- Has been issued the following prior to

communication:

OTA1
H1

= EkAS1
(HID1 ,FID1),COTA1

H1
- Has obtained the following prior to

communication:

C
OTA1

H2

= {OTA1
H2

,K+

OTA1
H2

}
K−

AS2

- Listens on FID′
2

for incoming packets

- Uses FID2 for communication

- Has been issued the following prior to

communication:

OTA1
H2

= EkAS2
(HID2 ,FID′

2
),C

OTA1
H2

OTA2
H2

= EkAS2
(HID2 ,FID2),COTA2

H2

1. ktmp = DH Ex(K+

OTA1
H2

,K−

OTA1
H1

)

2. m1 = 〈INIT1 ,FID1 ,OTA1
H2

,

ktmp ,C
OTA1

H1

〉

m1

3. OTA2
H1

= EkAS1
(HID1 ,FID1)

4. m2 = 〈Ektmp
(INIT1 ,FID1 ,OTA2

H1
),C

OTA1
H1

〉

〈OTA1
H1

→ OTA1
H2

|m2〉

5. HID2 ,FID′
2
= E−1

kAS2

(OTA1
H2

)

6. m3 = 〈FID′
2
,m2〉

m3

7. ktmp = DH Ex(K+

OTA1
H1

,K−

OTA1
H2

)

8. PS = DH Ex(K+

OTA1
H1

,K−

OTA2
H2

)

9. kF = PRFPS(“FID”)
10. kF−AS = PRFPS(“AS”)

11. m4 = 〈INIT2 ,FID2 ,OTA2
H1

,

kF−AS ,COTA2
H2

〉

m4

12. OTA3
H2

= EkAS2
(HID2 ,FID2)

13. m5 = 〈EkF−AS
(INIT2 ,FID2 ,OTA3

H2
),

C
OTA2

H2

〉

〈OTA2
H2

→ OTA2
H1

|m5〉

14. HID1 ,FID1 = E−1
kAS1

(OTA2
H1

)

15. m6 = 〈FID1 ,m5〉

m6

16. PS = DH Ex(K+

OTA2
H2

,K−

OTA1
H1

)

17. kF = PRFPS(“FID”)
18. kF−AS = PRFPS(“AS”)

Fig. 3: Connection establishment between two hosts.

OTA that will be used in H2’s reply packet back to the

source. Then H1 constructs a special connection-establishment

message (INIT1) for its AR. The message contains the FID1,

the destination’s OTA (OTA1
H2

), the symmetric key ktmp, and

the certificate of OTA1
H1

whose public key will be used to

generate symmetric keys for data encryption.

AR1 identifies that the incoming packet is used for connec-

tion establishment. First, AR1 generates an OTA that will be

used as the reply address (replyOTA) from H2. Then, AR1

constructs a message for H2 (Line 4), which includes the

reply address OTA2
H1

, encrypted with the symmetric key ktmp.

Additionally, AR1 includes the certificate (COTA1
H1

) of the OTA

(OTA1
H1

) that is used as the source address. This certificate is

to prevent a Man-in-the-Middle (MitM) attack by AS2, which

would compromise data privacy between the two hosts. AR1

sends the generated packet through the core network towards

H2. Then AR2 finally forwards the packet to H2 (Figure 2).

H2 verifies the signature of AS1 on COTA1
H1

and proceeds by



generating the symmetric key ktmp (Line 7) to decrypt message

m2. Then, H2 computes a pre-shared secret (PS) using the

public key K+
OTA2

H2

that is associated with OTA2
H2

(Line 8) and

derives a new symmetric key that is shared with H1 (Line

9). The new symmetric key (kF ) (instead of ktmp) is used to

guarantee data privacy; and we use this approach to provide

perfect-forward secrecy (more details in Section VI-B).

Furthermore, another symmetric key (kF−AS) is derived from

the pre-shared secret (Line 10). Unlike kF , kF−AS is also shared

with the ASes of H1 and H2, and is used to encrypt replyOTAs

that a host provides to its peer. We use different keys for

exchanging replyOTAs and for data privacy so that replyOTAs

are only known to the end-hosts and their ASes but data

communication between two end-hosts remains private even

from their ASes.

H2 constructs a special connection-establishment message

(INIT2) for his AR; the message contains the FID2, the

destination’s OTA (OTA2
H1

), the symmetric key (kF−AS), and

the certificate for the source OTA (COTA2
H2

).

AR2 identifies that the incoming packet is used for connec-

tion establishment. Then, it generates an OTA to be used as a

reply address by H1 (OTA3
H2

); the reply address is encrypted

with the symmetric key kF−AS. AR2 sends the generated packet

through the core network towards H1. AR1 intercepts the

packet and forwards it as specified in Figure 2.

Finally, H1 generates the symmetric keys kF and kF−AS

using the public key in COTA2
H2

. Then, it obtains OTA3
H2

by

decrypting m5 using kF−AS.

Address Pool Creation. During connection establishment,

each packet carries two OTAs of the source; one that serves

as a source address and one that serves as a reply address.

Now, we describe a protocol that enables a host to inform its

peer of valid OTAs that can be used as destination addresses in

subsequent packets. This protocol is necessary since in practice

there is not a one-to-one correspondence between exchanged

packets; a host may send a burst of packets and therefore it

needs a sufficient number of OTAs of its peer.

Figure 4 shows the procedure that enables a host (H1) to

request replyOTAs from its peer (H2). H1 creates a request by

specifying a special packet type (OTA_REQ) and the number N

of OTAs to obtain from H2 (Line 1-2). Then, H1 is forwarded

to H2 in the same way as data packets (Figure 2).

H2 creates a reply packet (OTA_REP), which will be

processed by AR2 (Line 6). The packet informs AR2 about

the number of replyOTAs to be generated and the encryption

key (kF−AS) that will be used to encrypt the replyOTAs. AR2

generates N replyOTAs (Line 8), encrypts them (Line 9), and

sends the packet to H1.

The communication overhead between two hosts can be

reduced by merging connection establishment and replyOTA

generation. Specifically, when H2 accepts a connection, it can

instruct AR2 to generate and attach multiple replyOTAs instead

of one. With this approach H1 does not have to request OTAs

right after connection establishment.

H1 (HID1) AR1 in AS1 AR2 in AS2 H2 (HID2)

1. msg = EkFID
(OTA_REQ,N)

2. m1 = 〈OTA_REQ,FID1 ,OTA
j
H2

,msg〉

m1

3. OTAi
H1

= EkAS1
(HID1 ,FID1)

〈OTAi
H1

→ OTA
j
H2

|msg〉

4. HID2 ,FID2 = E−1
kAS2

(OTA
j
H2

)

5. m2 = 〈FID2 ,msg〉

m2

6. m3 = 〈OTA_REP,FID2 ,

OTAk
H1

,N,kF−AS〉

m3

7. OTAl
H2

= EkAS2
(HID2 ,FID2)

8. OTA
(N)
H2

= EkAS2
(HID2 ,FID2) (N times)

9. m4 = 〈EkF−AS
(OTA_REP,N,OTA

(N)
H2

)〉

〈OTAl
H2

→ OTAk
H1

|m4〉

10. HID1 ,FID1 = E−1
kAS1

(OTAk
H1

)

11. m5 = 〈FID1 ,m4〉

m5

Fig. 4: Procedure for ReplyOTA request and reply.

E. Additional Functionalities

We describe two procedures that we have omitted so far.

Communication Recovery. End-to-end communication, as

described so far, may result in a deadlock under certain cir-

cumstances. For example, a host may deplete its address pool

of replyOTAs and the replyOTA requests may get dropped.

Therefore, a recovery procedure is necessary.

The communication-recovery procedure is similar to con-

nection establishment with one important difference: the host

that initiates the recovery (e.g., H1) must inform its peer

(H2) of which flow to resume, but since FIDs are chosen

independently, H1 must send FID2 as the FID to be resumed.

Note that we explicitly included this information in connection

establishment (Line 4 and Line 13 in Figure 3) so that both

hosts know each other’s FIDs.

Certificate Issuance. The majority of OTAs are generated

on the fly during end-to-end communication. However, a

few OTAs must be generated proactively as the associated

certificates are used for authentication and key negotiation

during connection establishment.

We describe a certificate-issuance procedure that is used to

generate OTA-certificatesThe host generates a public/private

key pair (K+,K−) and submits K+ and an FID to its AR.

The AR issues a certificate that contains the OTA, which is

generated based on the HID and FID, and the K+. Note that

K− is never disclosed to the host’s AS, which helps protecting

data privacy even from the provider AS.

V. IMPLEMENTATION

We describe the implementation of our main components.

One-Time Address. An OTA contains a host identifier (HID)

and a flow identifier (FID), as Equation 1 specifies. We use 4

bytes for the HID, similar to IPv4. We also use 4 bytes for the
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Fig. 5: Specifications.

FID, which are sufficient to uniquely identify all concurrent

flows that a host would maintain at any given time.

We need a CCA-secure OTA generation procedure, as

mentioned in Section IV-B. To this end, we use authen-

ticated encryption and specifically the “Encrypt-then-MAC”

approach [15]. An OTA is computed as follows: first, a nonce

is encrypted to generate random bits, which are then used to

encrypt the HID and FID (CipherText). The nonce is a random

value that can be used only once (for a given key) and ensures

that a new OTA is generated even for the same (HID,FID) pair.

Then, an authentication tag (AuthTag) is computed using the

CipherText, nonce, and AS information as the input. We use

a CBC-MAC to compute the AuthTag. Note that two different

keys are used for encryption (k′AS) and authentication (k′′AS);

and they are derived from the AS key, kAS.

OTA generation and decryption must be efficient since these

operations are performed for every packet. Therefore, we have

engineered the OTA structure for AES processing, since AES

operations have widespread hardware support. That is, the

symmetric encryption and CBC-MAC are both based on AES.

Packet Header. Figure 5b shows the packet header that we

use in our implementation. The header contains the source

and destination OTAs and the packet length that indicates the

size of the packet. The replyOTA is not visible in the header;

instead it is encrypted in the payload.

We use authenticated encryption to encrypt the payload

between the communicating hosts and therefore the header

contains an initialization vector and an authentication tag.

Similar to IPSec [16], we use 8 bytes and 16 bytes for these

fields. The total size of the header is 82 bytes.

Access Router. Access Routers are the main component of

our architecture. They are responsible for generating and

decrypting OTAs and issuing certificates.

ARs perform symmetric-key cryptographic operations to

translate from HIDs and FIDs to OTAs and vice versa. We

use hardware support (Intel AES-NI) in order to optimize these

operations and guarantee a high forwarding performance.

Furthermore, ARs perform public-key cryptographic oper-

ations in order to issue certificates for OTAs (Section IV-E).

For the public-key operations, we use the ed25519 signature

scheme [17] and the ed25519 SUPERCOP REF10 implemen-

tation [18] for its high performance and short key size (32

bytes) and signatures (64 bytes).

Access Network. For our implementation, we assume that the

communication between the host and the access router is based

on IP, and that IPSec is used to secure the communication.

Among the supported encryption schemes in IPSec [16, 19],

we use Galois/Counter Mode (GCM) based on AES because

of its efficiency. More specifically, we use the AES-GCM im-

plementation in the OpenSSL library since it takes advantage

of AES-NI to accelerate encryption and decryption operations.

End Host. A host generates a Diffie-Hellman public/private

key pair (K+,K−) that is used to negotiate a symmetric key

for data encryption during connection establishment (Sec-

tion IV-D). In addition, K+ becomes part of the certificate

that is issued by the host’s AS. We use curve25519 [20] to

generate DH value pairs and use elliptic curve Diffie-Hellman

(ECDH) for symmetric key negotiation.

VI. EVALUATION

We present our performance evaluation and describe the secu-

rity properties of OTA-based communication.

A. Performance

We mainly focus on the performance of the AR, since it is

the entity that performs all the critical functionalities that are

necessary; CRs perform only a subset of this functionality.

Specifically, our evaluation answers the following questions:

• Q1: How fast can ARs generate OTAs (with certificates)?
• Q2: How fast can ARs forward data packets?
• Q3: How many connection establishments per second can

ARs support?

Methodology. For our evaluation, we need the following

information about today’s Internet: the size of access networks

(in number of hosts) and common traffic patterns in an access

network, i.e., the packet rate at which hosts send/receive

packets and the flow-generation rate. Due to the wide range

in which these parameters can be set, we use the following

conservative estimates:

• Size of Access Networks. In a study for CDN deployment

in ISPs [21], the authors identified 1,478 distinct users over

a span of 42 days; thus, we assume a typical access network

with 1,500 hosts.
• Packet-Generation Rate. We use the pricing plan of AT&T

to estimate the packet rate that a user generates. For heavy

Internet users, AT&T allows up to 1 TB of data every

month.2 Using the minimum packet size (64 bytes), i.e.,

the highest possible packet rate, we compute a packet rate

of 6,000 packets-per-second (pps) by an individual host and

an aggregate packet rate of 9 ·106 pps by 1,500 hosts.
• Flow Generation Rate. We use the CAIDA Anonymized

Internet Traces Dataset [22] to estimate the flow genera-

tion rate. More specifically, we analyze a 1-hour packet

trace (Equinix-Chicago monitor from 1 pm to 2 pm on

17/12/2015) and we identify a peak flow rate of 13,645

flows-per-second. Note that this number is an over-estimate

for our purpose for two reasons: first, the flow generation

rate should be considerably lower than the flow rate; and

second, the flow generation rate at an access network with

1,500 hosts will be much lower than the rate of a backbone

link of a Tier-1 ISP.

We use the following settings across all our measurements:

2https://goo.gl/cxgwi3
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Fig. 6: Data packet processing rate by an Access Router.

• Communication in the access network is encrypted using

IPSec based on AES-GCM. The AR maintains shared keys

for each of the hosts in the access network; in total 1,500

symmetric keys are stored. We create a hash table that stores

the host address (HID) as the key and the corresponding

shared key as the value.
• We use a commodity desktop machine equipped with an

Intel i5-3470 processor and 16 GB of DDR3 RAM.

Q1: OTA and Certificate Generation. We evaluate the

efficiency of OTA (Figure 5a) and certificate generation. We

generate 107 OTAs and their certificates and report the average

generation time. On average, it takes 62 ns to generate an OTA;

63 ns to decrypt an OTA; 50.3 µs to generate an OTA and

an associated certificate. The result shows that OTAs can be

generated very efficiently. Although certificate generation is

slower, they are only needed for communication establishment

and can be generated in advance.

Q2: Data Packet Forwarding. In Section IV-C, we described

data packet forwarding at ARs. Specifically, for outgoing

packets to the core network, the AR: 1) decrypts the message

using the shared key with the sending host since the commu-

nication in the access network is encrypted, and 2) generates

a OTA using the host’s HID and FID in the message (m1 in

Figure 2). For incoming packets from the core network, the

AR: 1) decrypts the destination OTA in the packet to obtain

the HID and FID information, and 2) encrypts the FID and

the payload of the incoming packet using the shared key with

the destination host.

We measure the forwarding rate of an AR for six packet

sizes: 96 bytes,3 128 bytes, 256 bytes, 512 bytes, 1024 bytes,

and 1518 bytes. We run one million tests for each packet size

and report the average.

Figure 6 shows the packet processing performance only

for outgoing packets; the performance is the same for in-

coming packets, since the computation overhead of symmetric

encryption and decryption are similar. The x-axis shows the

packet size and the y-axis shows the processing performance in

Million-packets-per-second (Mpps). The red-dotted line shows

the number of packets that would be generated in an access

network with 1,500 hosts that have a monthly data allowance

of 1 TB. The solid blue line shows the packet processing rate

by the AR. The result shows that for all but the two smallest

packet sizes, the AR satisfies the processing requirement.

CRs need to be able to forward packets at much higher

rate than ARs since CRs process packets from multiple ARs.

396 bytes is the smallest packet size in OTA; a 96-byte packet consists of
an Ethernet header (14 bytes) and a OTA header (82 bytes).
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Fig. 7: Communication establishment packet processing rate by an
Access Router.

Fortunately, CRs perform fewer operations on packets than

ARs—they only need to decrypt destination OTAs to identify

destination HIDs, enabling CRs to forward packets at higher

rate. To evaluate the packet performance of a CRs, we assume

that there are 2 million end-hosts in an AS. That is, the CR

contains a routing table with 2 million entries, where each

entry consists of an HID and an outgoing port number as

the key and the corresponding value, respectively. We report

the average forwarding performance of a CR forwarding one

million packets. Our evaluation shows that a CR forwards 96-

byte and 1518-byte packets at 20.3 Mpps (15.6 Gbps) and

9.1 Mpps (110 Gbps), respectively. The performance results

demonstrate that our approach is lightweight and can be

implemented even on commodity machines.

Q3: Connection Establishment Processing. ARs perform

different tasks during connection establishment: The AR that

serves the initiating host, processes INIT1 messages (Lines 3-

4, Figure 3), and the AR that serves the listening host processes

INIT2 messages (Lines 12-13, Figure 3). We only evaluate

INIT2 messages since the processing overhead for INIT2

messages is strictly greater than that for INIT1 messages.

We generate 106 packets and report the average. Further-

more, we consider the case that the listening host replies to

the initiating one with a number of N replyOTAs; we vary N

from 5 to 50 in increments of 5 OTAs.

Figure 7 shows the packet processing performance by an

AR. The red dotted line shows the peak flow rate that we ob-

served in the Equinix-Chicago monitor; and the blue solid line

with ‘x’ markers shows the packet processing rate for INIT2

packets. The result shows a decrease in packet processing rate

as the number of replyOTAs increase. In addition, the result

shows that ARs can process connection establishment packets

at a higher rate than the observed maximum flow rate on a

backbone link.

B. Security

Compromising Data Privacy. In order to compromise data

privacy, an adversary must obtain a shared key between two

communicating hosts; we consider two attack scenarios.

First, we consider a MitM attack, in which the adversary

impersonates a host to its peer. This attack is possible only

if the adversary compromises both ASes, since the two hosts

perform mutual authentication using each other’s certificates

that are issued by the corresponding ASes. Our threat model

does not consider the compromise of two ASes, hence the

attack is not possible in our setting.

Second, we consider an adversary that has captured the



long-term key(s) of the host(s). Our architecture provides

perfect forward secrecy (PFS), so that the adversary cannot

decrypt the previous sessions, although it can decrypt the

ongoing sessions. PFS is achieved since OTAs and their

certificates are used once and disposed afterwards; thus the

symmetric encryption key is not reused in subsequent com-

munication sessions.

Compromising Flow-Packet Unlinkability. Since OTAs can-

not be linked, packets cannot be linked to compromise flow-

packet unlinkability. However, an adversary that eavesdrops

on traffic in the access network compromises flow-packet

unlinkability within the access network since packet headers

carry HIDs. This results from the fact that OTAs are put in

the packets by ARs and not the hosts themselves. An alternate

approach is that hosts prefetch all OTAs that they will use in

subsequent connections. However, this approach introduces a

prohibitive bandwidth overhead, since for all outgoing packets,

the host must have proactively sent another packet(s) to obtain

OTA(s). We decided to place OTA generation on the commu-

nication path, sacrificing privacy for bandwidth overhead. We

consider this a rational price to pay since the size of an access

network is relatively small.

There is one exceptional case where an OTA may be used

more than once: OTAs of public servers that register their

addresses with a DNS server. This is a practical constraint

since DNS cannot be updated with new OTAs for every

connection of a server. However, only the destination OTA of

the connection establishment is reused, which does not allow

an adversary to link subsequent packets to flows.

VII. DISCUSSION

Traffic Engineering. Eliminating flow information from

packet headers directly affects traffic engineering, which con-

sequently may have adverse effects especially for TCP per-

formance; TCP performance is highly dependent on packet

reordering. Therefore, many network devices are designed

to minimize packet reordering by forwarding based on flow

information in the network header (e.g., per-flow ECMP).

We do not argue that all communication sessions should be

based on OTAs. Instead, we argue that the network should

provide the building blocks to achieve flow-packet unlinkabil-

ity, so that applications with strict privacy requirements can

use it. Specifically, we envision an architecture that enables

hosts to decide on the performance-privacy trade-off,4 i.e., an

architecture with tunable privacy properties.

Architecture with Tunable Privacy. We envision an architec-

ture that provides privacy at two different layers: the network

layer and the transport layer. The network layer should pro-

vide the building blocks to achieve basic privacy properties.

Specifically, the architecture should enable users to decide

how the network assigns their addresses: applications with

strict privacy requirements could use OTAs; applications with

stricter performance requirements could use per-flow addresses

in order to minimize packet reordering. Furthermore, the

architecture should facilitate key management for ubiquitous

4We are not the first to make this claim [23].

encryption: applications with higher privacy requirements can

encrypt all data above the network header.

The transport layer should provide resilience against more

sophisticated attacks (e.g., side-channel attacks). The appli-

cation can decide on a “secure transport” protocol to use,

according to its needs. For example, a privacy-sensitive ap-

plication may use a transport protocol that pads all packets to

a constant size and/or changes inter-packet timings to protect

from side-channel attacks; an application without strict privacy

requirements can fall back to traditional TCP.

Enlarging Anonymity Set for Source Hosts. Source OTAs

are never used when routing packets, yet they identify a host

at the granularity of its AS; the anonymity set becomes the

size of the AS. The reason to reveal the source OTA in the

packet is to support network troubleshooting: an entity in the

network (e.g., router) may send a message (e.g., ICMP) back

to the source.

We consider the following challenge: how can we hide

the source OTA without sacrificing network troubleshooting?

To this end, we define a third party that is responsible for

identifying source ASes from source OTAs and forwarding

ICMP messages to the source ASes. Then, we re-design the

source OTA so that only the third party can correctly identify

the source AS from source OTA.

In our design, we assume that each AS shares a symmetric

key with the third party. Then, the source OTAs are modified

as follows. First, the address of the third party is used in place

of the source ASN. Second, we split the AuthTag in OTAs into

two 4-byte MACs, MAC1 and MAC2, which are computed in

an onion-style. MAC1 is computed identically as the AuthTag

in Figure 5a, but only the first four bytes are used. Then,

MAC2 is computed using the inputs of MAC1 and MAC1 itself

as the inputs; the shared symmetric key with the third party

is used for the MAC computation. Note that the source OTAs

still contain the HID and FID information, since the source

AS needs to deliver the ICMP message to the correct host.

Incremental Deployability. Communication based on OTAs

can be used between a pair of deploying ASes, regardless of

the deployment by transit ASes. Furthermore, a deploying AS

does not need to completely modify its network—the AS needs

to install gateway(s) and modify its access routers that serve

the customers that are interested in using our architecture.

Deploying ASes interpret the fields in OTAs as follows: they

place the IPv4 addresses of the gateways in the ASN field and

place the IPv4 addresses of the hosts in the HID field.

Then, communication based on OTAs is realized using a

series of three IPv4 tunnels: a tunnel between an AR and

a gateway in the source AS, a tunnel between gateways in

the source and destination ASes, and a tunnel between the

gateway and an AR in the destination AS. For the first and

second tunnels, the source AR and gateway determine the

addresses for the other end-points of the tunnel using the

ASN information in source and destination OTAs, respectively.

For the third tunnel, the destination gateway determines the

address of the destination host by decrypting the destination

OTA to obtain the destination HID.



This deployment approach has a privacy implication—

within an AS, the address of the host is visible as the IP tunnel

headers contain hosts’ addresses; hence, it is not possible to

guarantee flow-packet unlinkability against an adversary who

observes packets within the AS. However, as host addresses

are not visible in the second tunnel (where a packet is for-

warded across multiple ASes), an adversary that can eavesdrop

on packets anywhere but within the source and destination

ASes cannot link packets to flows. Moreover, once an AS

fully deploys our architecture (i.e., all routers forward packets

based on OTAs), this privacy implication disappears.

VIII. RELATED WORK

Han et al. propose a pseudonym-based architecture that

provides sender-application unlinkability [24]. Each user is

provided with a pool of pseudonyms and can then decide

how to use them: a single pseudonym for all applications

or a separate pseudonym for each application. Similar to our

approach, pseudonyms are encrypted tokens using the AS’s

key. However, the achieved privacy property is weaker than

flow-packet unlinkability. Furthermore, the proposal does not

specify the security properties of a pseudonym (e.g., CCA-

security), which may leave space for an adversary to obtain

the corresponding plaintexts, i.e., HIDs.

Raghavan et al. propose AS-wide NATs to mask the identi-

fies of individual hosts [5]. APIP proposes the removal of the

source address in the packet headers to prevent sender-flow

correlation [6]. Both proposals provide sender-flow unlinka-

bility. However, flow-packet unlinkability cannot be achieved

due to flow-identifying information across packets. Further-

more, APIP claims data privacy, but does not describe key

management, which by itself is a challenging problem.

Tcpcrypt [25] and MinimaLT [26] focus on pervasive

encryption; however, both proposals fall short of providing

sender-flow unlinkability. In Tcpcrypt only the TCP payload

is encrypted. In MinimaLT, a tunnel identifier in packet head-

ers leaks information: two packets with two different tunnel

identifiers do not belong to the same sender.

IX. CONCLUSION

Designing an architecture that supports flow-packet unlinka-

bility comes with many challenges. We have taken on these

challenges and have proposed an architecture based on per-

packet One Time Addresses (OTAs) that are used only once

to send or receive packets. OTAs are designed so that ASes

can efficiently generate them and do not need to maintain per-

OTA state, and such that routers can efficiently process OTAs

to meet today’s packet forwarding requirements.

Future Work. The current Internet is too rigid to support di-

verse privacy requirements of the users. This paper shows that

it is feasible to design an architecture that accommodates the

needs of privacy-sensitive users. Using this work as a stepping

stone, our future work is to explore a flexible architecture that

enables users to select among diverse privacy features.
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