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Abstract—In today’s Internet, the security of data transfers
largely depends on the forwarding path: on-path adversaries
can launch powerful attacks against the confidentiality, integrity,
and availability of Internet communication. Moreover, current
routing protocols give little path control to end hosts; at best, a
multi-homed host can choose the first hop of the forwarding
path. In short, communicating hosts are facing the problem
that they need to trust the entities which forward their packets
but can barely choose the forwarding path. Recent research in
networking has shown that path-aware network architectures can
give the sender control over the path selection while increasing
the overall efficiency and security of the network. Still, only
half of the trust problem is solved: in these architectures, path
selection is up to the sender’s judgment, even though the sender
and the receiver have the same vital interest in choosing the
forwarding path for their communication. In this paper, we
introduce consent routing, a new routing paradigm in which
the consent of both the sender and the receiver is required
prior to using a forwarding path. The novelty of consent routing
is to make path selection a cooperative process between the
distributed communicating parties, enabling new opportunities
for security and trust, e.g., mitigation of surveillance, censorship,
and traffic analysis. Our implementation shows that consent
routing is feasible in practice and can be incrementally deployed
without changes to the underlying network architecture.

I. INTRODUCTION

The reliability of heterogeneous distributed systems is chal-
lenged by the dynamic routing of today’s Internet, e.g., the
IP prefix hijacking in Border Gateway Protocol (BGP) allows
an autonomous system (AS) to illegitimately reroute and
then intercept traffic [7], [10]. In recent years, many new,
so-called path-aware network (PAN) architectures have been
proposed [8], [17], [30], [38], [42] as an improvement over
today’s BGP-based Internet, allowing the sender of a packet
to choose among a set of forwarding paths. In such a network,
the packet source is able to forward the packet on the “safest”,
most trusted path, or more generally on the path that best suits
the sender’s purpose.

Yet, our main observation is that this is not sufficient.
Ideally, a forwarding path should suit the sender’s and the
receiver’s purpose. If sender and receiver have the same needs
and trust the same network paths, then every sender-chosen
path will be appropriate. In the opposite case, a forwarding
path chosen by the sender could raise security concerns on
the receiver side if it traverses countries or nodes that are not
trusted by the receiver. The goal of routing should therefore
be to forward packets on a path that is trusted and accepted
by both communicating hosts, if such a path exists.

Consent routing is the instantiation of this idea: before using
a given forwarding path, both sender and receiver must provide

their respective consent. By introducing this notion of consent
routing, we are the first to raise and address the need to base
routing decisions on the trust assumptions, and more generally
on the needs of both communicating hosts.

Our CONPASS protocol allows two hosts s and t to achieve
consent routing in a path-aware network by exchanging se-
lected forwarding paths and their respective consent for using
those paths. In simplified terms, the protocol works as follows:
the protocol initiator (s) takes all available forwarding paths
between s and t, and sends to the protocol responder (usually
t) those paths that s consents to use; t also filters the received
paths with its own consent logic and returns the resulting paths
to s. After the protocol run, s and t both know the common
set of accepted forwarding paths; and given that s and t are
in a path-aware network, they can from now on select such a
path for sending packets between them.

The main challenges for designing a consent routing mech-
anism are (i) to keep the overhead prior to and during
communication low and, at the same time, (ii) to preserve
the confidentiality of every host’s consent logic, which may
contain sensitive information such as the network nodes or
countries to avoid. In the CONPASS protocol, both challenges
are addressed simultaneously. On the one hand, the trust
assumptions and constraints that make up a host’s consent
logic are never explicitly shared. On the other hand, routing
overhead is significantly reduced by not giving consent to all
possible end-to-end paths but to path segments, shorter and
combinable building blocks of end-to-end paths.

We provide an implementation of CONPASS and evaluate
its performance to demonstrate the practical viability and
scalability of consent routing. The measurements within a
realistic network topology show that the average latency
overhead of running the CONPASS protocol—needed once
when connecting with a host for the first time—amounts
to 20–180 ms (given an RTT ≤ 25 ms), where only 20–
65 ms are actual processing overhead, the remaining delay
of up to 115 ms comes from the additional TCP and TLS
handshakes. The traffic overhead generated by a protocol run
is also comparatively low, for a realistic network size less
than 1/24 of the amount of data that is downloaded from a
medium-sized website on first contact.

This paper makes the following contributions:

• We address the necessity of making routing decisions that
suit the needs of both communicating peers by requiring
their respective consent before using a path. We present
this concept under the name consent routing.
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Figure 1. Sample network topology between an international humanitarian
organization and an interlocutor, exhibiting heterogeneous trust assumptions.

• We propose CONPASS, an application-layer protocol that
allows two path-aware hosts to exchange consent for
forwarding paths, as a possible consent routing approach.

• We provide an open-source implementation of CONPASS
running on top of an existing path-aware architecture and
show that consent routing is feasible in practice.

II. PROBLEM DEFINITION

Through a case study, we explore the dynamics of heteroge-
neous trust assumptions in long-distance Internet connections.
We summarize the desired properties of such connections in
a concept called consent routing and derive the main require-
ments for routing approaches that implement this concept.

A. Case Study

Consider an international humanitarian organization (IHO)
that seeks the confidential bilateral dialogue with parties in
armed conflicts and other situations of violence [26]. When
face-to-face meetings are not possible, Internet-based voice
or video calls between IHO staff and representatives of the
interlocutor offer a viable alternative as long as both parties
trust that the communication channel does not leak confidential
information to an adversarial third party and is not subject to
censorship attempts inside the network.

Figure 1 shows the network topology between the IHO’s
AS-level network S and the interlocutor’s network T in a fictive
communication scenario. Network packets can be sent over
one of three possible paths: S-A-T, S-B-C-T, or S-D-T. In our
scenario, the ASes are generally trusted by both parties, with
two exceptions: since the IHO does not enjoy legal immunity
in AS A’s country, it tries to avoid the path through A. AS D,
on the other hand, is known to cooperate with one of the
interlocutor’s enemies, hence the interlocutor does not trust D
nor any path on which D lies. As a consequence, the only
network path that is trusted by both entities is S-B-C-T.

Current inter-domain routing protocols are in general unable
to select the forwarding path S-B-C-T that is fully trusted
by both communication endpoints. In absence of particular
incentives, BGP selects one of the shorter paths S-A-T and
S-D-T, violating either the IHO’s or the interlocutor’s trust
model. Since both paths are equally likely, neither the IHO nor
the interlocutor can have trust in the communication between
them. A path-aware networking approach as in SCION [42]
improves over BGP in that the source’s trust model can steer
the path selection. Whenever source and destination have the
same trust assumptions, unilaterally trusted paths are also
bilaterally trusted. Yet in our example, the trust assumptions

are heterogeneous. Assuming that each party sends out packets
on the shortest trusted path, the IHO would send packets over
S-D-T and the interlocutor over S-A-T, leading to a situation
that violates each receiver’s path requirements.

If as a consequence the IHO and its interlocutor fail in
establishing a confidential communication channel over a
trusted Internet path, it is not due to the absence of such paths
but to the lack of support from current routing schemes.

B. Consent Routing

The case study illustrates the need for more sophisticated
routing approaches that take into account the trust assumptions
(and possibly other constraints) of both the source and des-
tination such that a bilaterally trusted and accepted network
path is used for communication, if such a path exists.

At its core, routing is about the management of forwarding
paths between individual hosts in a network. It is a decision-
making process to determine the sequence of network nodes
(i.e., routers) through which data packets will pass from one
host to another. An important aspect of routing mechanisms is
to define who can be part of this process and how the decision
is reached. In this paper, we introduce the term consent routing
as the notion for routing approaches where both the source
and the destination are involved in the routing process and
can consent to the usage of particular forwarding paths. In our
definition of consent routing, we consider unidirectional paths,
which is a more general concept than bidirectional paths.
Definition. To define consent routing more formally, we let P
be the available set of paths from a source s to a destination t,
and let Ps→ and P→t be the subsets of P that respectively have
the consent of s and t:

Ps→ := {p ∈ P | s consents to send over p},
P→t := {p ∈ P | t consents to receive over p}.

Furthermore, let Ps→t be the paths that are in Ps→ as well as
in P→t and thus have the consent of both s and t:

Ps→t := Ps→ ∩ P→t.

A routing scheme forwarding traffic from s to t over a network
path p is a consent routing scheme if Ps→t 6= ∅ implies that
p ∈ Ps→t. We then call p a consent-routed path.

C. Requirements

Apart from the functional requirements given by the defini-
tion above, a consent routing mechanism should also address
the following non-functional requirements:
Security and Reliability. The routing mechanism needs to
work reliably. In particular, the routing should not be sus-
ceptible to adversarial manipulation, and an off-path attacker
should be unable to disrupt the routing process.
Confidentiality of Consent Logic. The logic according to
which a host grants or denies consent to forwarding paths
may contain sensitive information, including the host’s trust
assumptions. The routing system should therefore minimize
the amount of such information that is intentionally shared or
unintentionally leaked.



Low Communication Overhead. Finding a consent-routed
path should require minimal latency and traffic overhead.
Scalability. The system should scale with the network size,
both in terms of the number and length of network paths.
Incremental Deployment. Deploying the routing mechanism
should require little changes to existing network infrastructure
and yield added value for early adopters.

III. BACKGROUND AND DEFINITIONS

CONPASS can be used to achieve consent routing on top of
path-aware network architectures, which are a type of source
routing system. It can also leverage the fact that some path-
aware architectures construct end-to-end paths from smaller
segments, to be more performant in those architectures.
Source routing is a routing technique in which the sender
of a packet determines how the packet is forwarded to the
destination; the sender explicitly lists a sequence of nodes
or processing instructions in the packet header such that the
router at each hop forwards the packet according to the next
node’s address or by executing the given instruction. It has
been used in various routing schemes [13], [15], [16], [21],
[34], including IPv4 with the Loose and Strict Source Routing
options [3] and IPv6 with the Routing Header extension [12].
Path-aware networking architectures are a special case of
source routing architectures, suitable for inter-domain routing.
In source routing, there is no general rule on how the sender
determines the forwarding path. In a PAN architecture, net-
work endpoints cannot create arbitrary paths; they need to
choose between AS-level network paths made available to
them through their network providers. This ensures that the
chosen network paths comply with the routing policies of the
intermediate ASes. Furthermore, the notion of packet-carried
forwarding state instructs the data plane to forward packets
along the chosen network path. Various PAN architectures
have been developed in recent years, including Pathlet Rout-
ing [17], NIRA [38], SCION [42], and Route Bazaar [8].
Path segments are fragments of network paths that sources
in PAN architectures concatenate into end-to-end paths. In-
tuitively, path segments are flexible and policy-compliant
building blocks that network providers make available to hosts
and from which a large number of paths can be constructed.
The concept of path segments appears in many path-aware
architectures, sometimes under other names. In NIRA, paths
are built from two segment types, so-called uphill-segments
and downhill-segments [38], such that the number of end-to-
end paths is quadratic in the number of segments. Similarly,
in SCION, there are up-segments and down-segments, likely
connected through a third segment type, core-segments [29].
The number of possible paths is therefore at most cubic in the
number of segments. In Pathlet Routing, segments are called
pathlets and paths can be freely constructed from any number
of segments, leading to a potentially exponential number of
paths [17]. Path segments reduce redundant path information
while providing a large number of paths to end hosts.

IV. THE CONPASS PROTOCOL

This section describes the design of CONPASS (Consent
Negotiation over Path Segments), a simple yet extensible
protocol that allows two parties to negotiate a set of path
segments that have the consent of both parties.

A. Overview

Objectives. The principal goal of CONPASS is to allow a
source host s and a destination host t to negotiate a set of
path segments on which both s and t consent to respectively
send and receive packets. After the protocol run, the source s
knows which of the exchanged path segments are accepted by
the destination t and vice versa.

A secondary goal of CONPASS is to allow extending the
protocol with new functionality, including the transport of
segment metadata, delegating the consent exchange to other
hosts, or cryptographically signing the consent per-segment as
a proof-of-consent.
Participants. The CONPASS protocol follows a simple
request–response scheme with two participants: the initiator
and the responder. In most cases, the initiator role corresponds
to the source host and the responder role to the destination
host; the responder role is, however, more flexible and can be
delegated to a different host (see Sections IV-C and VII).
Communication Flow. CONPASS achieves consent routing for
two hosts s and t in a PAN architecture as follows:

1) The source s knows a set Σ of path segments available
towards the destination t and establishes a secure and
reliable channel with t, e.g., over TCP/QUIC with TLS.

2) As the protocol initiator, s sends t the set Σs→ ⊆ Σ of
segments to which s consents, over the secure channel.

3) As the protocol responder, t receives Σs→ and responds
with Σs→t, the segment subset of Σs→ to which t also
consents, over the same secure connection.

4) s receives the set of segments Σs→t and uses them to
construct all possible end-to-end paths Ps→t from s to
t that have the consent of both s and t. Now s can use
one of these consent-routed paths p ∈ Ps→t to reach t.

It is important to note that the communication between s and
t uses consent-routed paths only after the protocol run. The
paths used for the consent negotiation are chosen unilaterally.

B. Detailed Design

CONPASS is a generic protocol that can be used on top of
any PAN architecture. Consequently, parts of the design need
to be defined and implemented specifically for the underlying
network architecture. For the sake of generality, the protocol
design presented in this section remains on a generic level.
Protocol Messages. There are two types of protocol messages,
REQUEST and RESPONSE, sent by the initiator and responder,
respectively. They have a similar structure:

REQUEST := (s ‖ t ‖ σ1 ‖ · · · ‖ σm), (1)
RESPONSE := (σm+1 ‖ · · · ‖ σm+n), (2)

where s and t are the source and destination nodes of the
desired communication, and σ denotes a path segment; note
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Figure 2. Network topology containing four path segments: σ1, σ2, σ3, σ4.
A fifth segment, σ5, is composed of σ1 and σ4.

that less important fields like the protocol version or the
payload length are omitted for brevity. The representation of
s, t, and σ depends on the network layer; for example, in
the case of inter-domain routing, s and t are the respective
identifiers of the source and destination ASes, and the path
segments represent sequences of AS-level hops.

A path segment σ can be defined in one of two ways: as a
literal, listing the sequence of network hops that constitute the
segment, or as a composition, listing adjacent segments that
are concatenated into a larger segment. Both segment types
are illustrated in Figure 2; segments σ1 through σ4 are best
described as segment literals (e.g., σ1 := S-A-C) while σ5 can
be described simply as a composition of σ1 and σ4. The main
idea of segment compositions is thus to allow the efficient
re-use of segment literals. More formally,

σ := (TYPE ‖ CONSENT ‖ VAL1 ‖ · · · ‖ VAL`), (3)

VALi :=

{
HOPi if TYPE = “literal”,
SEGIDXi if TYPE = “composition”.

(4)

Each segment is a list of values VALi. In a segment literal,
VALi denotes the i-th network hop HOPi, e.g., VAL2 = A in
the segment literal σ1 from Figure 2. As mentioned, the format
of HOPi varies depending on the network layer. In a segment
composition, VALi denotes the index of the i-th subsegment
SEGIDXi, in the order of appearance in the protocol messages.
Assuming that σ1 through σ4 are already specified in this
order, we would have VAL2 = 4 in the segment composition
σ5 from Figure 2 since σ5’s second subsegment is σ4. To avoid
cyclic dependencies, a segment composition can only contain
subsegments that appeared earlier in the protocol messages.
In other terms, for any SEGIDX contained in a segment
composition σk, it must hold that SEGIDX ∈ {1, . . . , k − 1}.
In particular, a segment composition in the RESPONSE can
refer to a subsegment that appeared in the REQUEST.

Every path segment contains a boolean flag CONSENT; if
CONSENT is “accept” (true), the segment has the message
creator’s consent. Otherwise, if the value is “deny” (false),
the segment is not accepted on its own but is—directly or
transitively—part of a larger segment that is accepted. Thus,
hosts can allow only certain combinations of path segments.

In principle, all path segment can be expressed as a literal,
but in many cases, this is inefficient. If the responder wants to
acknowledge its consent of a path segment sent by the initiator,
the responder does not need to include the whole path segment
as a literal in the response. Instead, the responder can include
a segment composition with a single segment index referring
to the accepted path segment. Also, if multiple path segments

Algorithm 1: Consent negotiation from the initiator’s perspective
over initial path segments σ̂1, . . . , σ̂k between s and t. φ is the
initiator’s path segment filter.

Data: φ, s, t, σ̂1, . . . , σ̂k

Result: σ̃1, . . . , σ̃`

1 begin
2 σ1, . . . , σm ← filter σ̂1, . . . , σ̂k with φ
3 send REQUEST to responder according to Eq. 1
4 get RESPONSE from responder according to Eq. 2
5 σ̃1, . . . , σ̃` ← filter σm+1, . . . , σm+n with φ
6 end

contain the same subsequence of network hops, it can be more
efficient to extract this sequence to a separate segment literal
than to repeat the same sequence in multiple literals.
Initiator Role. When a host s wants to communicate with a
host t over a consent-routed path, it first runs the CONPASS
protocol with t. The initiator s establishes a secure and reliable
connection with the responder t and then performs the steps
outlined in Algorithm 1. For this, the initiator is assumed to
know an initial set of path segments σ̂1, . . . , σ̂k from s to t.
In a PAN architecture, this assumption holds since hosts are
provided with a set of path segments that are available.

The path segments are filtered by the initiator a first time
before exchanging the protocol messages, mainly because the
responder would otherwise not be able to know all path seg-
ments that have bilateral consent. This is especially important
if the subsequent communication uses a transport protocol with
support for asymmetric unidirectional flows, such as Multiflow
QUIC [11], where both communicating endpoints can choose
the network paths for their outgoing flows independently.

After receiving the path segments filtered by the responder,
the initiator filters these path segments a second time. In most
cases, the second filtering has no effect since σm+1, . . . , σm+n

are usually a subset of the segments σ1, . . . , σm, which are
accepted by the initiator. In exceptional cases, however, the
responder might include new segments in its response; the
initiator then needs to execute a second filtering to remove the
unwanted new segments. The primary reason for this would
be an information asymmetry where the responder is aware of
path segments that are unknown to the initiator (Section VII).
Responder Role. In a planned consent-routed communication
between s and t, the role of the responder in CONPASS could
be taken either by t itself or by a host that runs the protocol on
behalf of t. Delegating the responder role to a different host
can be useful for many reasons, such as to reduce the latency
overhead by bringing the responder closer to the initiator
(responder delegation is further discussed in Sections IV-C
and VII). Once a secure and reliable connection is established,
the responder runs as described in Algorithm 2.

The only task of the responder is to filter the path segments
received in the initiator’s REQUEST message, and to respond
with the segments that also have the responder’s consent. The
responder is in principle allowed to furthermore include new
segments in its response, yet this is only useful if some path
segments are known to the responder but not to the initiator.



Algorithm 2: Consent negotiation from the responder’s perspective.
ϕ is the responder’s path segment filter.

Data: ϕ
1 begin
2 get REQUEST from initiator according to Eq. 1
3 σm+1, . . . , σm+n ← filter σ1, . . . , σm with ϕ
4 send RESPONSE to initiator according to Eq. 2
5 end

Consent Logic. Both protocol participants are free to use
any kind of internal logic for giving consent to certain path
segments and for denying it to others. We suggest that trust as-
sumptions should be taken into account, but many other factors
can be considered when making this decision; participants can,
amongst others, incorporate territorial considerations, e.g., data
protection laws/surveillance apparatus in different countries, or
knowledge about the security posture of ISPs, e.g., excluding
ISPs whose routers have been more vulnerable to attacks.

Even though the consent logic is arbitrary, we can dis-
tinguish two fundamental approaches: taking into account
either local or global path properties. This distinction is useful
because the number and size of the exchanged path segments
heavily depend on the approach. Examples of local path prop-
erties are the trust in a particular network node, the maximum
bandwidth of a link, or the MTU on a path segment. These
are properties that can directly disqualify a path segment.
If a host’s consent logic is exclusively based on local path
properties, it can filter all path segments by individually
dropping those who do not satisfy the requirements. Hence,
filtering based on local path properties is very efficient.

On the other hand, for global path properties it matters
how the path segments are composed into end-to-end paths.
Examples are the minimum RTT, the path length in number of
hops, or allowed hop sequences. If such a property is part of
a host’s consent logic, it is in general not possible to give
consent to individual path segments; only combinations of
segments into end-to-end paths can be validated against the
requirements. In such a case, it is necessary to enumerate all
possible end-to-end paths from the given path segments (using
segment compositions as an efficient representation), and to
then filter these paths according to the consent logic.

With this in mind, a segment filter taking as input a set of
segments Σ might not just output a subset of Σ. In general, it
outputs a subset of Σ∗, of all allowed segment compositions
using segments from Σ.
Path Enumeration. In the following cases, the enumeration of
end-to-end paths between s and t from a set of path segments
is necessary: before filtering—if the host’s consent logic takes
into account global path properties—and after the protocol
run, when the initiator wants to create a forwarding path for
the planned communication, based on the bilaterally accepted
path segments. In both cases, the procedure is the same and
follows a small set of simple rules:

1) Every valid end-to-end path starts with s and ends with t,
hence the first segment in a path must start with s and

the last segment must end with t.
2) Two path segments σ1, σ2 can only be concatenated if

they are adjacent, that is, if the last hop of σ1 is the
same as the first hop of σ2.

3) Paths must not contain loops. More specifically, every
network hop may appear at most once in a path.

If G is a directed multigraph in which every edge (u, v) cor-
responds to a path segment in the network topology with first
hop u and last hop v, then the path enumeration problem from
above is reduced to the problem of compiling s-t simple paths
in G, a problem that has been studied before [41]. While path
enumeration is a computationally hard problem in general—
the number of end-to-end paths is potentially exponential in
the number of segments—it can be solved efficiently in certain
PAN architectures. In SCION, for example, there is a limited
number of path segments and end-to-end paths consist of at
most three successive segments [29], which yields a cubic
number of end-to-end paths and a cubic runtime complexity
in the worst case. Path-aware networks that do not have such
a limit for the length of end-to-end paths should implement
appropriate safeguards as discussed in Section V.

C. Protocol Extensions

While the CONPASS protocol is very simple at its core, one
of the protocol’s objectives is also to provide extensibility fea-
tures that enable new use cases. This extensibility is achieved
through two types of option fields: per-message option fields,
included once in the message header, and per-segment option
fields, included in every segment description. These two option
field types are distinct but share the same format, as defined in
Equation 8. For clarity, they have been omitted in the previous
protocol message definitions; now we redefine the protocol
messages with per-message options,

REQUEST := (s ‖ t ‖ OPTS ‖ σ1 ‖ · · · ‖ σm), (5)
RESPONSE := (OPTS ‖ σm+1 ‖ · · · ‖ σm+n), (6)

and the path segments with per-segment options,

σ := (TYPE ‖ CONSENT ‖ OPTS ‖ VAL1 ‖ · · · ‖ VAL`), (7)

where each option consists of a code and an option payload,

OPTS := (CODE1 ‖ OPT1 ‖ · · · ‖ CODEk ‖ OPTk). (8)

For compatibility reasons, hosts should simply ignore the
option payload after an unknown option code.

In the remainder of this section, we discuss possible CON-
PASS extensions and their use cases.
Error Signaling. The base protocol does not foresee a mech-
anism for the responder to signal errors to the initiator, for
example due to malformed segments in the REQUEST mes-
sage. Such a mechanism can easily be implemented through
a per-message option, where the option payload contains an
error code as well as an optional error message.
Responder Delegation. If the CONPASS protocol is run to
establish a consent-routed forwarding path between two hosts
s and t, the responder can be t itself but it can also be a



designated CONPASS server that runs the protocol on behalf
of t (and other hosts). Such servers could be deployed at the
Internet edge and run CONPASS as a service with the consent
logic of the host that is targeted by the initiator.

The problem that could be solved with a protocol extension
is how the delegated responder knows which destination the
initiator wants to connect with and whose consent logic
needs to be applied. Although t is specified in the REQUEST
message, its value is only meaningful on the network-layer
(e.g., for inter-domain routing, s and t would represent ASes
and not individual hosts). A per-message option field in the
REQUEST message can specify more precise information like
the target IP address and even the target service’s port number.
Segment Metadata. If the underlying network provides end
hosts not only with path segments but also with some metadata
about these segments, like minimum latency or maximum
bandwidth, then the per-segment option fields can be used by
the initiator to transmit these metadata to the responder. The
metadata would allow the responder to apply a more sophisti-
cated consent logic, also accepting or denying segments based
on other properties than the mere hop sequence.
Network Capabilities. For every accepted path segment, the
responder could add a “proof-of-consent” signature or MAC,
as a cryptographic attestation that the initiator is currently
authorized to send packets from source s to destination t
using this path segment. In a capability-based network ar-
chitecture [39], t would check this short-term authorization,
stamped on the packet by s, and drop packets that were sent
over an unauthorized network path. Such a system can be used
to enforce the receiver’s consent.
Segment Prioritization. In the current CONPASS protocol,
routing decisions are binary—in the sense that a path segment
either has the host’s consent or it does not. While this
information is essential in the current definition of consent
routing, protocol participants may want to further prioritize
the accepted path segments. Using a per-segment option, it is
possible to specify a utility value for individual path segments
from which the utility of an end-to-end path can be derived.

V. SECURITY ANALYSIS

Adversary Model. For the security analysis of the CONPASS
protocol, we assume a full Dolev-Yao adversary [14]. In
particular, the adversary can view, modify, drop, inject, and
replay traffic on all paths between source and destination but
cannot break cryptography.
Transport Security. If protocol messages are sent unen-
crypted and unauthenticated, they can be read, modified, and
spoofed by the adversary. In particular, the adversary can
manipulate the consent negotiation and thus change the routing
to its own advantage. CONPASS must therefore be run over a
secure transport layer, such as TLS-encrypted QUIC or TCP,
and the responder must be authenticated to the initiator.
Confidentiality of Consent Logic. The adversary may want to
gain insights about a host’s consent logic, including sensitive
information like which parts of the network are deemed
trustworthy by this host.

A straightforward way for the adversary to gain such
information from a CONPASS responder r is to initiate one or
more protocol runs with r and observe which path segments
are accepted by r. Since the trust assumptions are never
shared explicitly, the adversary can only guess the responder’s
filtering rules based on the accepted path segments. If a host
does not want to run the protocol as a responder with arbitrary
and potentially adversarial initiators, it can require the initiator
to authenticate itself and thus exercise access control. In a
more passive attack, the adversary can use the same strategy
to gain information about an initiator’s logic if that host is
running the protocol with the adversary.

By monitoring and analyzing (encrypted) CONPASS traffic,
the adversary can also derive some information about the pro-
tocol participants’ consent logic, without participating in the
protocol itself. From the amount of data respectively sent by
initiator and responder, the adversary can guess the percentage
of available path segments that were accepted by both peers.
After observing many negotiations of the same host with peers
at different locations inside the network, the adversary could
potentially infer which path segments are accepted by this
host and which ones are not. If preventing such analysis is
important, the protocol messages can be padded to a standard
maximum size using a per-message option field.

Finally, in a network where consent routing is standard, a
Dolev-Yao adversary can simply observe which network paths
are used by which hosts, and infer that these paths are likely
composed from path segments that have both communicating
endpoints’ consent. The ability for on-path adversaries to make
such inferences is inherent to consent routing and a trade-off
that needs to be accepted. In a weaker adversary model where
the adversary is not present on the consent-routed paths, traffic
analysis is no longer possible.
Network-Level DoS. Even though the adversary cannot read,
modify, or spoof encrypted and authenticated communication
in our model, it can simply prevent two protocol participants
from communicating by dropping all their packets. Such an
attack can only be mitigated when assuming end-host path
control; in that case, the initiator restarts the protocol over
a new forwarding path until a path is chosen that is not
controlled by the adversary.
Application-Level DoS. Carefully crafted protocol messages
can lead to a denial-of-service condition at the host receiving
the message. An infinite recursion or loop could be provoked
by creating cyclic dependencies through segment composi-
tions. The simplest example is where a segment composition
references itself as a subsegment. The mitigation for this is
to only allow references in segment compositions to those
segments that appeared before the referencing segment in the
order of transmission, as described in Section IV-B. This re-
quirement must be checked by every protocol participant when
receiving a protocol message. Similarly, the implementation of
the path enumeration must not assume that the directed path
segments form an acyclic graph. Otherwise, even a simple path
segment that starts and ends with the same hop could trigger
an infinite loop or recursion at the host enumerating the paths.
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The path enumeration must also be guarded against inputs
that could lead to a large computational overhead. Consider
a topology: for n ≥ 1, let v0, . . . , vn be n + 1 nodes such
that v0 = s, vn = t, and there are two distinct segments
between each pair of nodes (vi, vi+1), i ∈ {0, . . . , n − 1}.
In this example, there are 2n segments that can be combined
into 2n end-to-end paths. Without any precautions, such an
input would trigger exponential runtime and memory usage
during path enumeration. We see two possible solutions to
this problem: (a) the maximum path length n (in terms of
segments) is bounded by a small constant, either by design
of the PAN architecture (e.g., in SCION n = 3 and in
NIRA n = 2) or through an artificial bound, and the path
enumeration disregards possible end-to-end paths that would
contain more than n subsegments. Or, (b) the implementation
stops enumerating after a small enough number of paths; a
constant number of paths can be enumerated in linear time
using depth-first search.

VI. IMPLEMENTATION AND EVALUATION

In this section, we present and evaluate our CONPASS imple-
mentation (available online under https://github.com/mblarer/
conpass). We measure the communication overhead of CON-
PASS and evaluate its scalability.

A. Implementation and Measurement Setup

To show the feasibility of consent routing in practice, we
have instantiated the CONPASS protocol for one of the current
path-aware network architectures and created an implementa-
tion written in Go. The network architecture of our choice
is SCION since it comes with a mature and open-source
codebase [1] and with real-world deployments [23], [24].
Protocol Instantiation. CONPASS is a generic protocol that
needs to be adapted to the underlying PAN architecture. In par-
ticular, the values s, t, and HOP in REQUEST and RESPONSE
messages (see Equations 4, 5, and 6) need to be defined in
more detail. Since SCION is an inter-domain routing archi-
tecture, SCION paths contain AS-level hops and therefore, s,
t, and HOP represent SCION ASes. More precisely, each hop
consists of a four-tuple (ISD, AS, INGRESS, EGRESS), where
ISD is the identifier of the hop’s SCION isolation domain, AS

is the hop’s AS identifier, and INGRESS/EGRESS represent the
border routers’ identifiers at the ingress/egress points of the
AS. Since s is the source AS, it does not specify INGRESS,
and the destination AS t does not specify EGRESS. The same
holds for the first and last hops of every segment.
Consent Logic. Our implementation allows applications to
define arbitrary consent logic for the filtering of path segments
but also integrates with SCION’s path policy language [35].
For the evaluation, we compare two representative segment
filters whose runtime complexity for filtering one path segment
is linear in the number of hops. The “local filter” is based on
a local path property, a denylist of untrusted hops, and does
not require path enumeration; the “global filter” is based on a
global path property, enforcing a certain sequence of hops, and
therefore requires enumerating end-to-end paths, as explained
in Section IV-B. Clearly, the user-defined consent logic could
be arbitrarily more complex than the filters in our evaluation;
however, filters with linear complexity in the number of hops
per segment should be sufficient in most cases.
Message Transport. Our current implementation is compat-
ible with any transport mechanism that provides a reliable,
in-order byte stream. In particular, we can use the CONPASS
protocol to negotiate consent for SCION paths over an IP
connection. For security reasons, CONPASS should run over a
secure transport protocol. In our evaluation, we therefore use
the quic-go package for QUIC [9], [20] and crypto/tls
from the Go standard library for TLS over TCP [31].
Measurement Setup. All measurements were done on a
commodity machine with 16 GB RAM and an Intel Core i7
1.80 GHz quad-core processor (8 cores with hyperthreading).

B. Latency Overhead

The latency overhead of CONPASS is the additional delay
until a new connection can be established over a consent-
routed path, compared to the delay of plain SCION. In order to
realistically evaluate this latency overhead, we have deployed
CONPASS on three AWS virtual machines (in the responder
role), each at a different data center location, as well as on
our local testing machine (initiator and responder roles); this
setup is a realistic reproduction of a CDN-based approach in
which the consent negotiation is brought closer to the initiator



through responder delegation. The RTT over IP between the
CONPASS initiator on our machine and the different responders
is 0 ms locally, and 17/24/25 ms for the three AWS VMs.
All measurements have been done with SCION path segments
taken from the SCIONLab testbed [24].

Figure 3 shows the latency overhead of the consent negotia-
tion with four different configurations, as a function of the RTT
between CONPASS initiator and responder. The overhead is
measured separately for QUIC and TLS (over TCP). The other
part of the configuration is whether initiator and responder
use the local filter or the global filter. The measurements
are averaged using segments from the same source AS to
27 different destination ASes in the SCIONLab topology [2]
and over six repetitions per destination AS, i.e., over more
than 160 runs in total.

For RTT values up to 25 ms, we measure an average latency
overhead of 20–180 ms. The benchmarks also show that the
actual processing overhead (i.e., the overhead when initiator
and responder run on the same host with zero RTT) is only
20–65 ms. The remaining delay of up to 115 ms is incurred by
the transport layer (including TCP and TLS handshakes; QUIC
also uses the TLS 1.3 handshake) and therefore depends on
both the transport protocol and the RTT between initiator and
responder. Our implementation currently does not use TLS’
0-RTT session resumption feature, which could further reduce
the latency in a real-life deployment. Section VII discusses
possible strategies to deal with this latency overhead.

C. Traffic Overhead and Scalability

We now evaluate the overhead of additional traffic generated
by the CONPASS protocol, as well as the scalability of our
implementation, with respect to the number of available path
segments and the number of hops in each segment, and
assuming the worst network topology possible. The topology
represents an inter-domain network where hops are ASes.
Worst-Case Network Topology. In our worst-case network
topology, a fixed number of path segments yields a maximum
number of paths when enumerating the end-to-end paths,
as occurs when applying a path filter based on global path
properties. For the following measurements, we consider the
SCION’s path length, n = 3 [29]. To reproduce the business
relationships of today’s Internet, we assume that there are
three segment types: “up”-segments starting at the source AS,
where all pairs of successive ASes along the segments are in
a customer-provider relationship, “core”-segments, where con-
secutive ASes are in a peering relationship at the core of the
Internet, and “down”-segments to the destination AS, where
ASes are in a provider-customer relationship. To parametrize
our topology, we define k as the number of segments of
each type, and ` as the number of AS-level hops on each
path segment. In total, the network topology contains 3k path
segments, from which k3 end-to-end paths can be constructed.
Different architectures have different limits for the number
and length of segments that are provided to end hosts; in
SCION, end hosts are provided with up to k = 10 segments
of each type, and end-to-end paths are at most 64 AS-level

Table I
WORST-CASE SIZE OF THE RESPONSE MESSAGE IN KB, FOR DIFFERENT

NUMBERS OF SEGMENTS k PER SEGMENT-TYPE, AND FOR DIFFERENT
PATH FILTER TYPES OF THE INITIATOR (I) AND RESPONDER (R). THE

RESPONSE SIZE IS INDEPENDENT OF THE SEGMENT LENGTH `.

RESPONSE size [KB] k = 5 k = 10 k = 15
I: local filter, R: local filter 0.11 0.20 0.29
I: local filter, R: global filter 1.27 10.0 33.8
I: global filter 0.77 6.02 20.3

hops long [36]. The length of an end-to-end path is 3` − 2,
therefore we consider path segments of length ` ≤ 22 hops.
Traffic Overhead. Consent routing, if achieved through the
CONPASS protocol, does not limit the goodput of actual
data flows since the consent negotiation happens before the
communication, and the packet structure is unchanged. What
we call traffic overhead here is the amount of data that is
exchanged between a CONPASS initiator and responder.

Figure 4 shows how the worst-case size of a REQUEST
message depends on the length of individual segments, on
the number of segments, and on whether the client filters
the path segments based on local or global properties. In the
latter case, the client enumerates all possible end-to-end paths,
which leads to an increased overhead, especially with growing
k. The worst-case RESPONSE sizes, depending on k and on
the path filters used, are given in Table I. These sizes are
independent of the segment length ` since the responder can
reference segments from the request in the response instead
of repeating every segment and its hops.

Even with k = 15, i.e., a larger value for k than what is used
in SCION, the added sizes of the REQUEST and RESPONSE
messages do not exceed 85 KB. In comparison, according to
the HTTP Archive page weight report [5], half of the websites
in September 2021 required browsers to download more than
2100 KB of resources (e.g., HTML, CSS, JavaScript, images)
with an empty cache, and over 98 percent of the websites
required more than 85 KB. We can conclude that in most cases,
the consent negotiation on a network with k = 15 generates
less traffic than visiting a website for the first time, and less
than 1/24 of the traffic in the case of a medium-sized website.
Scalability. We also evaluate how well the consent negotiation
scales with larger networks, in terms of the number k of seg-
ments per segment type, and in terms of the segment length `,
which corresponds to the number of hops per segment. To this
end, we measure the worst-case throughput of the CONPASS
responder in answered requests per second under these various
conditions, also repeating the measurements for filters that
require path enumeration (global filters) and filters that do
not (local filters). All benchmarks were done on our local test
machine with 8 parallel threads for the responder. The results
of these measurements are shown in Figure 5.

The throughput measurements at the CONPASS responder
indicate that the consent negotiation scales well with the
segment length `. For all measured configurations, an eleven-
fold increase in the segment length (from 2 to 22) reduces
the throughput by a factor less than 3. The negotiation also



scales with respect to the number k of segments per segment
type. In the benchmarks with filters that do not require path
enumeration, a three-fold increase of k (from 5 to 15) reduces
the throughput by less than 1.6 times. In the benchmarks where
path enumeration is required by the filters, the same increase of
k leads to 27 times more end-to-end paths and to a throughput
reduction by a factor less than 7.

An important insight from these measurements is that the
properties on which segment filters rely make a significant
difference in the performance of the system. Global properties
such as path latency or path length require all possible end-to-
end paths to be constructed and lower the performance of the
system. Whenever possible, the path filters should therefore be
limited to using only local path properties such as maximum
bandwidth, or trust in particular ASes.

VII. DISCUSSION

Management of Latency Overhead. It is possible and rec-
ommended to cache the negotiated paths after every consent
negotiation. This eliminates the need to renegotiate later when
connecting with the same host again. However, when two hosts
connect for the first time and the CONPASS protocol is run
beforehand, the start of the communication is delayed by up
to a few hundred milliseconds, depending on the RTT between
CONPASS initiator and responder. According to the use case,
there are different ways to deal with this latency overhead:
• In the following cases, the latency overhead can simply be

accepted: (i) if the additional overhead of the CONPASS
protocol is negligible compared to the total duration of the
communication (e.g., large file transfers, video streaming,
VoIP calls), (ii) if the protocol responder knows better
how to choose good paths for the given service or
application (e.g., a web service where large-bandwidth
paths are more beneficial than low-latency paths), (iii) if
the bilateral trust in the communication is more important
than the fast connection setup.

• If connections with new and unknown hosts need to be
established as fast as possible (e.g., in web browsing) and
the first contact can be done over a path solely chosen by
the sender, the overhead can be avoided as follows: the
communication and the consent negotiation are started
in parallel; once the consent negotiation is finished, the
communication is moved to a consent-routed path.

• If the actual communication is required to start on a
consent-routed path but the latency overhead for that is
deemed too high, the remaining option is to reduce the
overhead. Since the RTT between a CONPASS initiator
and responder has a big impact on the latency over-
head, the most viable strategy is to move the CONPASS
responder closer to the initiator. This could be done
following an edge-computing approach where the target
host delegates the consent negotiation to a dedicated and
replicated CONPASS server using the protocol extension
for responder delegation (see Section IV-C).

Resolution of Consent Disagreement. Consent routing is a
meaningful concept as long as there is at least one path that

has the consent of both communicating hosts. If such a path is
not found after running CONPASS, different use cases might
favor different resolution strategies: if the initiator can ease
its constraints, it may re-run the protocol with more accepted
path segments this time; or, if the responder is not strict about
its consent logic, it may always accept at least one path that
is “as acceptable as possible”. If both hosts see more value
in adhering to their path requirements than in communicating,
they may as well decide not to connect at all.
Recovery from Path Failures. Routing mechanisms are
expected to be resilient to path failures, for example, due to
broken links or offline routers. In a PAN architecture, hosts can
immediately switch to a new path once the path failure has
been detected. In order to enable the same with consent-routed
paths, CONPASS allows hosts to find not just one end-to-end
path that respects their respective consent logic but all n paths
that do so. This means that after one of these paths has failed,
there are potentially n− 1 other consent-routed paths that can
replace it. If all negotiated paths happen to fail at once, hosts
can use the same resolution strategy as in the case of consent
disagreement and renegotiate if needed.
Hidden Paths. In some cases, the CONPASS responder might
be aware of path segments that are unknown to the initiator,
and include them in its response. In SCION, so-called hidden
paths are made from such path segments and used as a DoS
defense on the network level. More precisely, hidden paths in
SCION contain down-segments that are not publicly registered
by the destination AS and that require packets to be specially
authenticated. Unauthenticated packets are dropped before
even reaching the destination. One challenge of hidden paths
in SCION is their distribution to end hosts. If the responder is
part of the AS infrastructure and reachable through a normal
SCION path, the CONPASS protocol can serve as a way
to solve this distribution problem. The hidden path can be
included in the CONPASS response, and the authenticators can
be added through a dedicated per-segment option field.
CONPASS over VPN or TLS. TLS encryption is robust, but
sophisticated (e.g., nation-state) attackers can perform traffic
analysis on encrypted communication, analyzing communica-
tion time, frequency, and size. VPN is also vulnerable to blind
in/on-path attackers, who can infer communication over VPN
and inject packets [37]. TLS and VPNs benefit from CONPASS,
which enforces packet routing over the most trusted paths,
avoids in/on-path attackers, and complicates traffic analysis.
Traffic Engineering. The CONPASS protocol allows a host to
adapt its consent logic to the host with whom it is negotiating
and can therefore be used for traffic engineering. If a server is
experiencing a large number of incoming connections, it can
use the protocol to steer different hosts to different network
paths and hence do load-balancing on the network. Moreover,
a server with different types of customers can provide each
customer type with a different set of paths. For example,
paying customers could get paths with lower latency or higher
bandwidth than non-paying customers.
Responder Delegation and Discovery. Section IV-C de-
scribes a CONPASS extension that can be used by responders



to run the consent negotiation on behalf of other hosts. This
responder delegation allows for more flexible and efficient
deployments; for example, a company hosts a designated
CONPASS server in its network that acts as the delegated
responder for all company servers; or, a global web service
delegates the consent negotiation to a trusted content delivery
network (CDN), which is deployed at the edge of the Internet
and whose proximity with potential clients reduces the latency
overhead for the negotiation. While the CONPASS extension
solves the problem of informing the delegated responder about
the service that the initiator wants to connect with, two
additional challenges need to be addressed: (i) how the target
service delegates the responder role and (ii) how the initiator
knows where to find the delegated responder.

Depending on the use case, the arrangement for setting
up responder delegation could be made differently. If the
delegated responder is under the same administrative control
as the target host, a network administrator can do the con-
figuration work. Otherwise, responder delegation could also
be offered as a service by cloud providers or CDNs and
purchased online. Apart from any contractual work, setting
up responder delegation requires the target host or service
to authenticate itself to the authority behind the delegated
responder, similar to how hosts authenticate themselves to
a certification authority with the ACME protocol [6]. This
prevents malicious actors from delegating consent negotiation
for destination addresses that they do not own. The second
part of the setup is the registration of the target service’s
consent logic at the delegated responder, for example through
a domain-specific language [35] in which common constraints
and requirements for path segments can be expressed.

A host wishing to negotiate paths for a connection with
host t should be able to learn the delegated responder’s
network address by the same means as it learns t’s network
address. If it is through name resolution, then the DNS SRV
record [18] can be used to register and resolve the address of
the delegated CONPASS responder for a given domain.
Incremental Deployment. CONPASS is designed as an
application-layer protocol for hosts in path-aware networks. As
such, it can be deployed without any changes to the underlying
networking architecture. The protocol is more likely to be used
as part of applications that benefit from particular paths rather
than as a separate service because every application might
use CONPASS in a different way, depending on the use case.
In a path-aware network architecture, such applications can
leverage the consent negotiation to offer users more control
over the paths on which they want to receive data. Server
applications can benefit from the possibility to do traffic engi-
neering by offering different paths to different clients, which
balances the load on different network paths and eventually
also benefits the clients. Overall, path-aware applications that
adopt the CONPASS protocol are more attractive for their users
since they enable the use of communication paths that are
bilaterally trusted and benefit both communicating parties.
Future Work. Finding more secure, efficient, and privacy-
preserving ways to achieve consent routing remains an open

research problem. This paper proposes a first approach where
two communicating hosts in a path-aware network negotiate
a set of bilaterally accepted path segments. Destination hosts
can delegate this negotiation to a third party, but this currently
requires them to share their consent logic with the third
party. Trusted execution environments such as Intel SGX-
based enclaves [4] could further improve this approach by
allowing hosts to delegate the consent negotiation to the third
party without revealing their consent logic.

VIII. RELATED WORK

BGP routes inter-domain traffic between autonomous sys-
tems in the backbone of today’s Internet. Despite its prevalent
use to this day, BGP is lacking adequate security mecha-
nisms, which makes it prone to BGP hijacking attacks like
SICO [7], and other attacks that rely on BGP poisoning,
such as the Maestro attack [27]. There have been vari-
ous attempts to improve the security of BGP, including S-
BGP [22], soBGP [28], SPV [19], and BGPsec [25], none
of which has seen wide deployment. Other research has
focused on improving the performance of BGP-based inter-
domain routing through performance-aware traffic engineering
architectures such as Espresso [40], Edge Fabric [32], [33],
and ARROW [43].

As an alternative to BGP’s dynamic routing, path-aware
network architectures have emerged, including Platypus [30],
NIRA [38], Pathlet Routing [17], and SCION [42]. While such
architectures can fundamentally solve many of the security
problems that exist with BGP routing, they can also achieve
high efficiency and allow packet senders to select forwarding
paths. Route Bazaar [8] applies ideas from path-aware net-
working but remains backwards-compatible using BGP.

The concept of consent routing, presented in this paper, is
in line with the aforementioned efforts to improve the security
of Internet routing and its utility to end hosts. We build upon
this idea but go one step further: from unilateral path decisions
made by the sender, to bilateral path decisions made by the
sender and the receiver. Thus we expand the benefits of end-
host path selection to both communicating hosts, offering the
ability to receive packets over trusted forwarding paths.

IX. CONCLUSION

Path-aware network architectures have demonstrated their
ability to increase both the security and the efficiency of
the Internet with end-host path selection. A major benefit of
enabling path control for end hosts is that they can choose
the safest and most appropriate route for packets according to
their trust assumptions and needs. However, in the path-aware
architectures proposed so far, this is only true for the sender of
a packet. The receiver’s trust assumptions and needs are still
not taken into account and may be violated by the sender’s
path selection. The consent routing paradigm proposed in this
paper addresses this shortcoming and suggests that packet
senders and receivers should both be part of the routing
process. With our design and implementation of the CONPASS
protocol, we have demonstrated that consent routing on top of



a path-aware Internet is feasible without modifications to the
underlying architecture. The CONPASS protocol allows hosts
to exchange bilaterally acceptable forwarding paths—it opens
up new possibilities such as host-based traffic engineering on
the public Internet—and paves the way for more trust and
acceptance in future Internet communication.
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