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Abstract—As mobile ad hoc network applications are de-
ployed, security emerges as a central requirement. In this paper,
we introduce the wormhole attack, a severe attack in ad hoc
networks that is particularly challenging to defend against. The
wormhole attack is possible even if the attacker has not compro-
mised any hosts, and even if all communication provides authen-
ticity and confidentiality. In the wormhole attack, an attacker
records packets (or bits) at one location in the network, tunnels
them (possibly selectively) to another location, and retransmits
them there into the network. The wormhole attack can form
a serious threat in wireless networks, especially against many
ad hoc network routing protocols and location-based wireless
security systems. For example, most existing ad hoc network
routing protocols, without some mechanism to defend against
the wormhole attack, would be unable to find routes longer than
one or two hops, severely disrupting communication. We present
a general mechanism, called packet leashes, for detecting and thus
defending against wormhole attacks, and we present a specific
protocol, called TIK, that implements leashes. We also discuss
topology-based wormhole detection, and show that it is impossible
for these approaches to detect some wormhole topologies.

Index Terms—Ad hoc networks, computer network security,
computer networks, tunneling, wireless LAN, wormhole, packet
leash, TIK.

I. INTRODUCTION

The promise of mobile ad hoc networks to solve challeng-
ing real-world problems continues to attract attention from
industrial and academic research projects. Applications are
emerging and widespread adoption is on the horizon. Most
previous ad hoc networking research has focused on prob-
lems such as routing and communication, assuming a trusted
environment. However, many applications run in untrusted
environments and require secure communication and routing.
Applications that may require secure communications include
emergency response operations, military or police networks,
and safety-critical business operations such as oil drilling
platforms or mining operations. For example, in emergency
response operations such as after a natural disaster like a flood,
tornado, hurricane, or earthquake, ad hoc networks could be
used for real-time safety feedback; regular communication
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networks may be damaged, so emergency rescue teams might
rely upon ad hoc networks for communication.
In this paper, we define a particularly challenging attack

to defend against, which we call a wormhole attack, and
we present a new, general mechanism for detecting and thus
defending against wormhole attacks. In this attack, an attacker
records a packet, or individual bits from a packet, at one loca-
tion in the network, tunnels the packet (possibly selectively) to
another location, and replays it there. We introduce the general
mechanism of packet leashes to detect wormhole attacks, and
we present two types of leashes: geographic leashes and tem-
poral leashes. We design an efficient authentication protocol,
called TIK, for use with temporal leashes. We also analyze
other detection approaches, such as topology-based wormhole
detection [40], [31], and show that topology-based detection
cannot detect some wormholes. We focus our discussion in
this paper on wireless ad hoc networks, but our results are
applicable more broadly to other types of networks, such as
wireless LANs and cellular networks.
Section II of this paper presents the wormhole attack and

discusses how the wormhole attack can be used against ad hoc
network routing protocols. In Section III, we present our
assumptions. Section IV presents leashes and discusses a
general approach for detecting wormholes. Section V discusses
temporal leashes in detail and presents the TIK protocol
for instant wireless broadcast authentication, and Section VI
provides an evaluation of TIK and packet leashes, as well as
other techniques for wormhole detection. Section VII discusses
related work, and Section VIII presents our conclusions.

II. PROBLEM STATEMENT

In a wormhole attack, an attacker receives packets at one
point in the network, “tunnels” them to another point in the
network, and then replays them into the network from that
point. For tunneled distances longer than the normal wireless
transmission range of a single hop, it is simple for the attacker
to make the tunneled packet arrive with better metric than a
normal multihop route, for example through use of a single
long-range directional wireless link or through a direct wired
link to a colluding attacker. It is also possible for the attacker to
forward each bit over the wormhole directly, without waiting
for an entire packet to be received before beginning to tunnel
the bits of the packet, in order to minimize delay introduced by
the wormhole. Due to the nature of wireless transmission, the
attacker can create a wormhole even for packets not addressed
to itself, since it can overhear them in wireless transmission
and tunnel them to the colluding attacker at the opposite end
of the wormhole.
If the attacker performs this tunneling honestly and reliably,

no harm is done; the attacker actually provides a useful
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service in connecting the network more efficiently. However,
the wormhole puts the attacker in a very powerful position
relative to other nodes in the network, and the attacker could
exploit this position in a variety of ways. The attack can also
still be performed even if the network communication provides
confidentiality and authenticity, and even if the attacker has
no cryptographic keys. Furthermore, the attacker is invisible
at higher layers; unlike a malicious node in a routing protocol,
which can often easily be named, the presence of the wormhole
and the two colluding attackers at either endpoint of the
wormhole are not visible in the route.
The wormhole attack is particularly dangerous against many

ad hoc network routing protocols in which the nodes that
hear a packet transmission directly from some node con-
sider themselves to be in range of (and thus a neighbor of)
that node. For example, when used against an on-demand
routing protocol such as DSR [16], [17] or AODV [27], a
powerful application of the wormhole attack can be mounted
by tunneling each ROUTE REQUEST packet directly to the
destination target node of the REQUEST. When the destination
node’s neighbors hear this REQUEST packet, they will follow
normal routing protocol processing to rebroadcast that copy
of the REQUEST and then discard without processing all other
received ROUTE REQUEST packets originating from this same
Route Discovery. This attack thus prevents any routes other
than through the wormhole from being discovered, and if the
attacker is near the initiator of the Route Discovery, this attack
can even prevent routes more than two hops long from being
discovered. Possible ways for the attacker to then exploit the
wormhole include discarding rather than forwarding all data
packets, thereby creating a permanent Denial-of-Service attack
(no other route to the destination can be discovered as long
as the attacker maintains the wormhole for ROUTE REQUEST
packets), or selectively discarding or modifying certain data
packets.
The neighbor discovery mechanisms of periodic (proac-

tive) routing protocols such as DSDV [26], OLSR [33], and
TBRPF [5] rely heavily on the reception of broadcast packets
as a means for neighbor detection, and are also extremely
vulnerable to this attack. For example, OLSR and TBRPF use
HELLO packets for neighbor detection, so if an attacker tunnels
through a wormhole to a colluding attacker near node B all
HELLO packets transmitted by node A, and likewise tunnels
back to the first attacker all HELLO packets transmitted by
B, then A and B will believe that they are neighbors, which
would cause the routing protocol to fail to find routes when
they are not actually neighbors.
For DSDV, if each routing advertisement sent by node A or

node B were tunneled through a wormhole between colluding
attackers near these nodes, as described above, then A and B
would believe that they were neighbors. If A and B, however,
were not within wireless transmission range of each other,
they would be unable to communicate. Furthermore, if the
best existing route from A to B were at least 2n + 2 hops
long, then any node within n hops of A would be unable
to communicate with B, and any node within n hops of B
would be unable to communicate with A. Otherwise, suppose
C were within n hops of A, but had a valid route to B. Since

A advertises a metric of 1 route to B, C would hear a metric
n+1 route to B. C will use that route if it is not within n+1
hops of B, in which case there would be an n-hop route from
A to C, and a route of length n+1 from C to B, contradicting
the premise that the best real route from A to B is at least
2n + 2 hops long.
In each of these protocols, the wormhole can be used to

attract ad hoc network traffic, and can use this position to
eavesdrop on traffic, maliciously drop packets, or to perform
man-in-the-middle attacks against protocols used in the net-
work. The wormhole attack is also dangerous in other types of
wireless networks and applications. One example is any wire-
less access control system that is based on physical proximity,
such as wireless car keys, or proximity and token based access
control systems for PCs [8], [20]. In such systems, an attacker
could relay the authentication exchanges to gain unauthorized
access.

III. ASSUMPTIONS, NOTATION, AND ATTACKER MODEL

The acronym “MAC” may in general stand for “Medium
Access Control” protocol or “Message Authentication Code.”
To avoid confusion, we use “MAC” in this paper to refer to
the network Medium Access Control protocol at the link layer,
and we use “HMAC” to refer to a message authentication code
used for authentication (HMAC is a particular instance of a
message authentication code [4]).
For reasons such as differences in wireless interference,

transmit power, or antenna operation, links between nodes in a
wireless network may at times successfully work in only one
direction; such a unidirectional wireless link between between
two nodes A and B might allow A to send packets to B
but not for B to send packets to A. In many cases, however,
wireless links are able to operate as bidirectional links. A
MAC protocol generally is designed to support operation
over unidirectional links or is designed only for bidirectional
links; the introduction of our TIK protocol does not affect the
capability of the MAC protocol to operate over unidirectional
links.
Security attacks on the wireless network’s physical layer

are beyond the scope of this paper. Spread spectrum has
been studied as a mechanism for securing the physical layer
against jamming [30]. Denial-of-Service (DoS) attacks against
MAC layer protocols are also beyond the scope of this paper;
MAC layer protocols that do not employ some form of carrier
sense, such as pure ALOHA and Slotted ALOHA [1], are
less vulnerable to DoS attacks, although they tend to use the
channel less efficiently.
We assume that the adversary can place nodes at arbitrary

places in the network, and that these nodes are connected
through a communication channel that is unobservable by
other nodes, but follows the laws of physics (i.e., messages
cannot travel faster than the speed of light). We assume that
network nodes are not compromised, but we discuss in Sec-
tion VI-B potential attacks if network nodes are compromised.
We assume that the wireless network may drop, corrupt,

duplicate, or reorder packets. We also assume that the MAC
layer contains some level of redundancy to detect randomly



3

corrupted packets; however, this mechanism is not designed
to replace cryptographic authentication mechanisms.
We assume that nodes in the network may be resource

constrained. Thus, in providing for wormhole detection, we
use efficient symmetric cryptography, rather than relying on
expensive asymmetric cryptographic operations. Especially
on CPU-limited devices, symmetric cryptographic operations
(such as block ciphers and hash functions) are three to four
orders of magnitude faster than asymmetric cryptographic
operations (such as digital signatures).
We assume that a node can obtain an authenticated key for

any other node. Like public keys in systems using asymmetric
cryptography, these keys in our protocol TIK (Section V) are
public values (once disclosed), although TIK uses only sym-
metric (not asymmetric) cryptography. A traditional approach
to this authenticated key distribution problem is to build on
a public key system for key distribution; a trusted entity can
sign public-key certificates for each node, and the nodes can
then use their public-key to sign a new (symmetric) key being
distributed for use in TIK. Zhou and Haas [42] propose such
a public key infrastructure; Hubaux, Buttyán, and Čapkun
bootstrap trust relationships from PGP-like certificates without
relying on a trusted public key infrastructure [15]; Kong
et al [22] propose asymmetric mechanisms for threshold signa-
tures for certificates. Alternatively, a trusted node can securely
distribute an authenticated TIK key using only symmetric-key
cryptography [29] or non-cryptographic approaches [37].

IV. DETECTING WORMHOLE ATTACKS
In this section, we introduce the notion of a packet leash as

a general mechanism for detecting and thus defending against
wormhole attacks. A leash is any information that is added to
a packet designed to restrict the packet’s maximum allowed
transmission distance. Leashes are designed to protect against
wormholes over a single wireless transmission; when packets
are sent over multiple hops, each transmission requires the
use of a new leash. We distinguish between geographical
leashes and temporal leashes. A geographical leash ensures
that the recipient of the packet is within a certain distance
from the sender. A temporal leash ensures that the packet has
an upper bound on its lifetime, which restricts the maximum
travel distance, since the packet can travel at most at the speed
of light. Either type of leash can prevent the wormhole attack,
because it allows the receiver of a packet to detect if the packet
traveled further than the leash allows.

A. Geographical Leashes
To construct a geographical leash, in general, each node

must know its own location, and all nodes must have loosely
synchronized clocks. When sending a packet, the sending node
includes in the packet its own location, ps, and the time at
which it sent the packet, ts; when receiving a packet, the
receiving node compares these values to its own location, pr,
and the time at which it received the packet, tr. If the clocks
of the sender and receiver are synchronized to within ±∆,
and ν is an upper bound on the velocity of any node, then the
receiver can compute an upper bound on the distance between

the sender and itself, dsr . Specifically, based on the timestamp
ts in the packet, the local receive time tr, the maximum
relative error in location information δ, and the locations of
the receiver pr and the sender ps, then dsr can be bounded by
dsr ≤ ||ps − pr||+ 2ν · (tr − ts + ∆) + δ. A standard digital
signature scheme or other authentication technique can be used
to enable a receiver to authenticate the location and timestamp
in the received packet. This approach is similar to [10].
In certain circumstances, bounding the distance between the

sender and receiver, dsr , cannot prevent wormhole attacks;
for example, when obstacles prevent communication between
two nodes that would otherwise be in transmission range, a
distance-based scheme would still allow wormholes between
the sender and receiver. A network that uses location infor-
mation to create a geographical leash could control even these
kinds of wormholes. To accomplish this, each node would have
a radio propagation model. A receiver could verify that every
possible location of the sender (a δ + ν(tr − ts + 2∆) radius
around ps) can reach every possible location of the receiver
(a δ + ν(tr − ts + 2∆) radius around pr).

B. Temporal Leashes

To construct a temporal leash, in general, all nodes must
have tightly synchronized clocks, such that maximum differ-
ence between any two nodes’ clocks is ∆. The value of the
parameter ∆ must be known by all nodes in the network,
and for temporal leashes, generally must be on the order of
a few microseconds or even hundreds of nanoseconds. This
level of time synchronization can be achieved now with off-
the-shelf hardware based on LORAN-C [24], WWVB [25],
GPS [7], [39], or on-chip atomic clocks currently under
development at NIST [21]; although such hardware is not
currently a common part of wireless network nodes, it can
be deployed in networks today and is expected to become
more widely utilized in future systems at reduced expense,
size, weight, and power consumption. Although our general
requirement for time synchronization is indeed a restriction
on the applicability of temporal leashes, for applications that
require defense against the wormhole attack, this requirement
is justified due to the seriousness of the attack and its potential
disruption of the intended functioning of the network.
To use temporal leashes, when sending a packet, the sending

node includes in the packet the time at which it sent the packet,
ts; when receiving a packet, the receiving node compares this
value to the time at which it received the packet, tr. The
receiver is thus able to detect if the packet traveled too far,
based on the claimed transmission time and the speed of light.
Alternatively, a temporal leash can be constructed by instead
including in the packet an expiration time, after which the
receiver should not accept the packet; based on the allowed
maximum transmission distance and the speed of light, the
sender sets this expiration time in the packet as an offset from
the time at which it sends the packet. As with a geographical
leash, a regular digital signature scheme or other authentication
technique can be used to allow a receiver to authenticate a
timestamp or expiration time in the received packet.
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C. Discussion

An advantage of geographical leashes over temporal leashes
is that the time synchronization can be much looser. Another
advantage of using geographical leashes in conjunction with a
signature scheme (i.e., a signature providing non-repudiation),
is that an attacker can be caught if it pretends to reside
at multiple locations. This use of non-repudiation was also
proposed by Sirois and Kent [36]. When a legitimate node
overhears the attacker claiming to be in different locations
that would only be possible if the attacker could travel at a
velocity above the maximum node velocity ν, the legitimate
node can use the signed locations to convince other legitimate
nodes that the attacker is malicious.
We define δ′(t) to be a bound on the maximum relative

position error when any node determines its own location twice
within a period of time t. By definition, δ′(t) ≤ 2δ. In addition,
when t is small, δ′(t) should be small, since the algorithm
a node uses to determine its location should be aware of
physical speed limits of that node. If some node claims to be at
locations p1 and p2 at times t1 and t2, respectively, that node
is an attacker if ||p2−p1||−δ′(|t2−t1|)

|t2−t1|
> ν. A legitimate node

detecting this from these two packets can also broadcast the
two packets to convince other nodes that the first node is in-
deed an attacker. Each node hearing these messages can check
the two signatures, verify the discrepancy in the information,
and rebroadcast the information if it has not previously done
so. To easily perform duplicate suppression in rebroadcasting
this information, each node can maintain a blacklist, with each
entry in the blacklist containing a node address and the time
at which that blacklist entry expires. When a node receives
a message showing an attacker’s behavior, it checks if that
attacker is already listed in its blacklist. If so, it updates the
expiration time on its current blacklist entry and discards the
new message; otherwise, it adds a new blacklist entry and
propagates the message.
A potential problem with leashes using a timestamp in the

packet is that in a contention-based MAC protocol, the sender
may not know the precise time at which it will transmit a
packet it is sending. For example, a sender using the IEEE
802.11 MAC protocol may not know the time a packet will
be transmitted until approximately one slot time (20 µs) prior
to transmission. Generating an inefficient digital signature,
such as RSA with a 1024-bit key, could take three orders
of magnitude more time than this slot time (on the order
of 10 ms). The sender, however, can use two approaches
to hide this signature generation latency: either increase the
minimum transmission unit to allow computation to overlap
with transmission, or use a more efficient signature scheme,
such as Schnorr’s signature [35], which enables efficient
signature generation after pre-processing.

V. TEMPORAL LEASHES AND THE TIK PROTOCOL

In this section, we discuss temporal leashes in more detail
and present the design and operation of our TIK protocol that
implements temporal leashes.

A. Temporal Leash Construction Details
We now discuss temporal leashes that are implemented with

a packet expiration time. We consider a sender who wants to
send a packet with a temporal leash, preventing the packet
from traveling further than distance L. (All nodes are time
synchronized up to a maximum time synchronization error∆.)
Thus, L > Lmin = ∆ · c, where c is the propagation speed
of our wireless signal (i.e., the speed of light in air, which is
very close to the speed of light in a vacuum). When the sender
sends the packet at local time ts, it needs to set the packet
expiration time to te = ts + L/c − ∆. When the receiver
receives the packet at local time tr, it further processes the
packet if the temporal leash has not expired (i.e., tr < te);
otherwise it drops the packet. This assumes that the packet
sending and receiving delay are negligible, such that the sender
can predict the precise sending time ts and the receiver can
immediately record tr when the first bit arrives (or derive tr

during reception since the bitrate of transmission is known).
The receiver needs a way to authenticate the expiration time

te, as otherwise an attacker could easily change that time
and wormhole the packet as far as it desires. Two traditional
approaches for authentication fail for this application:

• Symmetric message authentication codes require O(n2)
private keys to be established in a network of n nodes and
have high overhead when used for broadcast authentica-
tion, especially in dense networks, since one authenticator
must be included for each destination

• Digital signatures are usually based on computationally
expensive asymmetric cryptography; for example, the
popular 1024-bit RSA digital signature algorithm [34]
requires about 10 ms on an 800 MHz Pentium III
processor for signature generation.

Since many wireless applications rely heavily on broadcast
communication, and since setting up O(n2) keys is expensive,
we design the TIK protocol in Section V-C, based on a new
protocol for efficient broadcast authentication that simultane-
ously provides the functionality of a temporal leash.

B. Tree-Authenticated Values
The TIK protocol we present in Section V-C requires an

efficient mechanism for authenticating keys. In this section,
we discuss the efficient hash tree authentication mechanism.
1) Hash Tree: To authenticate the sequence of values

v0, v1, . . . , vw−1, we place these values at the leaf nodes of a
binary tree. (For simplicity, we assume a balanced binary tree,
so w is a power of 2.) We first “blind” all the values with
a one-way hash function H to prevent disclosing additional
values (as we will describe below), so v′

i = H(vi) for
each i. We then use the Merkle hash tree construction [23]
to commit to the values v′

0, . . . , v
′
w−1. Each internal node of

the binary tree is derived from its two child nodes. Consider
the derivation of the parent node mp from the left and right
child nodes, ml and mr, respectively: mp = H(ml || mr).
We compute each level of the tree recursively, from the leaf
nodes to the root node. Figure 1 shows this construction over
the eight values v0, v1, . . . , v7, with m01 = H(v′0 || v′1),
m03 = H(m01 || m23), and so on.
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Fig. 1. Merkle hash tree

The root value of the tree is used to authenticate all leaf
values. To authenticate a value vi, the sender discloses i, vi,
and all values necessary to verify the path up to the root of
the tree. For example, if a sender wants to authenticate key v2

in Figure 1, it includes the values v′
3, m01, m47 in the packet.

A receiver with an authentic root value m07 can then verify
that

H

[

H
[

m01 || H [ H [ v2 ] || v′3 ]
]

|| m47

]

equals the stored m07. If the verification is successful, the
receiver knows that v2 is authentic.
The extra v′

0, v
′
1, . . . , v

′
7 in Figure 1 are added to the tree

to avoid disclosing (in this example) the value v3 in order to
authenticate v2.
2) Hash Tree Optimization: In TIK, the depth of the hash

tree can be quite large: given a fixed time interval I , the tree is
of depth #log2(t/I)$, where t is the amount of time between
rekeying. For example, if the time interval is 11.5 µs and nodes
can be rekeyed once per day, then the tree is of depth 34. As
a result, storing the entire tree is impractical.
It is possible, however, to store only the upper layers of

the tree and to recompute the lower layers on demand. To
reconstruct a subtree of depth d requires 2d−1 applications of
the pseudo-random function (PRF) and 2d − 1 applications of
the hash function, but this technique saves a factor of 2d−1

in storage. This technique can also be further improved by
amortizing this calculation. Specifically, a node keeps two trees
of depth d: one that is fully computed and currently being
used, and one that is being filled in. Since a total of 2d−1 +
2d − 1 operations are required to fill in the tree, and the full
tree will be used for 2d−1 time intervals, the node needs to
perform only 3 operations per time interval, independent of
the size of the tree. For example, in the tree in Figure 1,
we may choose to recompute the m01, m23, m45, m67 values
on demand. Then we will store the m03, m47, m07 values.
During each time interval, we perform three operations; for
example, during the time interval in which v0 is used, we
recompute v2 and v3 using the pseudorandom function, and
compute v′

2 = H(v2). The next time interval, we compute
v′3 = H(v3) and m23 = H(v′2||v

′
3).

We can now compute the true calculation and storage cost
for the hash tree that we use in TIK. Let D be the depth of the
entire tree, and let d be the depth of the part of the tree that

is recomputed on demand. The initial computation of the tree
requires 2D−1 evaluations of the PRF, and 2D −1 evaluations
of the hash function. This initial computation can be done
offline and is not time-critical. To choose d, we consider the
value of d that minimizes the total storage needed for the tree.
Since total storage is given by 2D−d+1−1+2·(2d−1), storage
for the tree is minimized when

∂

∂d

(

2D−d+1 − 1 + 2d+1 − 2
)

= 0

(− ln 2)2D−d+1 + (ln 2)2d+1 = 0

2d+1 = 2D−d+1

d + 1 = D − d + 1 .

The optimal choice for d is D
2 , and the total storage require-

ment for the tree is 2#
D

2 $+1 + 2%
D

2 &+1 − 3. This represents a
storage requirement of just O(

√

t/I). For example, a tree of
depth 34 requires only 2.5 megabytes to store, much smaller
than the full tree size of 170 gigabytes; once the tree is
generated, it can be used at a cost of 3 operations per time
interval.
A similar approach can be taken for the generation of future

hash trees. That is, once a single hash tree has been generated,
each future hash tree can be generated while the current one
is used, for a cost of 3 hash functions per time interval plus
total storage space for the tree of 2#

D

2 $+1 + 2%
D

2 &+1 − 2.
Only the root of each new tree needs to be distributed, and as
mentioned in Section III, these values can be distributed us-
ing only symmetric-key cryptography [29], non-cryptographic
approaches [37], or by sending them using the current hash
tree for authentication.

C. TIK Protocol Description
Our TIK protocol implements temporal leashes and provides

efficient instant authentication for broadcast communication
in wireless networks. TIK stands for TESLA with Instant Key
disclosure, and is an extension of the TESLA broadcast au-
thentication protocol [28]. The intuition behind TIK is that the
packet transmission time can be significantly longer than the
time synchronization error. In these cases, the a receiver can
verify the TESLA security condition (that the corresponding
key has not yet been disclosed) as it receives the packet
(explained below); this fact allows the sender to disclose the
key in the same packet, thus motivating the protocol name
“TESLA with Instant Key disclosure.”
TIK implements a temporal leash and thus enables the

receiver to detect a wormhole attack. TIK is based on efficient
symmetric cryptographic primitives (a message authentication
code is a symmetric cryptographic primitive). TIK requires
accurate time synchronization between all communicating
parties, and requires each communicating node to know just
one public value for each sender node, thus enabling scalable
key distribution.
We now describe the different stages of the TIK protocol

in detail: sender setup, receiver bootstrapping, and sending
and verifying authenticated packets. The notation used in this
section is summarized in Table I.
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TABLE I
NOTATION USED IN TIK

F A pseudo-random function [11] selected by the sender
X A master secret key selected by the sender
Ki A key generated by the sender expiring at time Ti

Ti The expiration time for key Ki

I The key expiration interval Ti+1 − Ti

m The root of the Merkle tree computed over all Ki values
w The number of keys covered by a single Merkle tree
∆ The maximum time synchronization error between any two

network nodes
τ An upper bound on the travel time of a legitimate packet
r The maximum range traveled by a legitimate packet
c The speed of light
P A packet
tr An upper bound, relative to the sender’s clock, of the time that

the destination will receive the HMAC
M A message

1) Sender Setup: The sender uses a pseudo-random func-
tion (PRF [11]) F and a secret master key X to derive a
series of keys K0, K1, . . . , Kw, where Ki = FX (i). The
main advantage of this method of key generation is that the
sender can efficiently access the keys in any order. Assuming
the PRF is secure, it is computationally intractable for an
attacker to find the master secret key X , even if all keys
K0, K1, . . . , Kw−1 are known. Without the secret master key
X , it is computationally intractable for an attacker to derive a
key Ki that the sender has not yet disclosed. To construct the
PRF function F , we can use a pseudo-random permutation,
i.e., a block cipher [12], or a message authentication code,
such as HMAC [4].
The sender selects a key expiration interval I , and thus

determines a schedule with which each of its keys will expire.
Specifically, keyK0 expires at time T0, keyK1 expires at time
T1 = T0 + I , . . . , key Ki expires at time Ti = Ti−1 + I =
T0 + i · I .
The sender constructs the Merkle hash tree we describe

in Section V-B to commit to the keys K0, K1, . . . , Kw−1.
The root of the resulting hash tree is m0,w−1, or simply m.
The value m commits to all keys and is used to authenticate
any leaf key efficiently. As we describe in Section V-B, in a
hash tree with log2(w) levels, verification requires only log2 w
hash function computations (in the worst case, not consider-
ing buffering), and the authentication information consists of
log2 w values.
2) Receiver Bootstrapping: We assume that all nodes have

synchronized clocks with a maximum clock synchronization
error of ∆. We further assume that each receiver knows every
sender’s hash tree root m, and the associated parameters
T0 and I . This information is sufficient for the receiver to
authenticate any packets from the sender.
3) Sending and Verifying Authenticated Packets: To achieve

secure broadcast authentication, it must not be possible for
a receiver to forge authentication information for a packet.
When the sender sends a packet P , it estimates an upper bound
tr on the arrival time of the HMAC at the receiver. Based
on this arrival time, the sender picks a key Ki that will not
have expired when the receiver receives the packet’s HMAC
(Ti > tr + ∆). The sender attaches the HMAC to the packet,

computed using key Ki, and later discloses the key Ki itself,
along with the corresponding tree authentication values (as
discussed in Section V-B), after the key has expired.
Because of the time synchronization, the receiver can verify

after receiving the packet that the key Ki used to compute the
authentication has not yet been disclosed, since the receiver
knows the expiration time for each key and the sender only
discloses the key after it expires; thus, no attacker can know
Ki, and therefore if the packet authentication verifies correctly
once the receiver later receives the authentic key Ki, the
packet must have originated from the claimed sender. Even
another receiver could not have forged a new message with
a correct message authentication code, since only the sender
knew the key Ki at the time tr that the receiver received the
packet. After the key Ki expires at time Ti, the sender then
discloses key Ki (and the corresponding tree authentication
values); once the receiver gets the authentic key Ki, it can
authenticate all packets that carry a message authentication
code computed with Ki. This use of delayed key disclosure
and time synchronization for secure broadcast authentication
was also used by the TESLA protocol [28].
The above protocol has the drawback that message au-

thentication is delayed; the receiver must wait for the key
before it can authenticate the packet. We observe that we can
remove the authentication delay in an environment in which
the nodes are tightly time synchronized. In fact, the sender
can even disclose the key in the same packet that carries the
corresponding message authentication code.
Figure 2 shows the sending and receiving of a TIK packet.

The figure shows the sender’s and receiver’s timelines, which
may differ by a value of up to the maximum time synchro-
nization error ∆. The time ts here is the time at which the
sender S begins transmission of the packet, and time Ti is the
disclosure time for key Ki. The packet contains four parts: a
message authentication code (shown as HMAC in Figure 2), a
message payload (shown as M ), the tree authentication values
necessary to authenticate Ki (shown as T ), and the key used
to generate the message authentication code (shown as Ki).
The TIK packet is transmitted by S as

S → R : 〈HMACKi
(M), M, T, Ki〉 ,

where the destination R may be unicast or broadcast. After the
receiver R receives the HMAC value, it verifies that the sender
did not yet start sending the corresponding key Ki, based on
the time Ti and the synchronized clocks. If the sender did not
yet start sending Ki, the receiver verifies that the key Ki at
the end of the packet is authentic (using the hash tree root
m and the hash tree values T ), and then uses Ki to verify
the HMAC value in the packet. If all these verifications are
successful, the receiver accepts the packet as authentic.
The TIK protocol already provides protection against the

wormhole attack, since an attacker who retransmits the packet
will most likely delay it long enough that the receiver will
reject the packet because the corresponding key has already
expired and the sender may have disclosed it. However, we can
also add an explicit expiration timestamp to each packet for the
temporal leash, and use TIK as the authentication protocol. For
example, each packet could include a 64-bit timestamp with



7

PSfrag replacements

Ki

Ki

M

M

T

T

HMAC

HMAC

ts

≤ (ts + τ + ∆) ≤ (Ti − ∆)

Ti

Sender

Receiver

Time at Sender

Time at Receiver

Fig. 2. Timing of a packet in transmission using TIK

nanosecond resolution, allowing over 580 years of use starting
from the epoch. Since the entire packet is authenticated, the
timestamp is authenticated.
A policy could be set allowing the reception of packets for

which the perceived transmission delay, i.e., the arrival time
minus the sending timestamp, is less than some threshold. That
threshold could be chosen anywhere between τ−∆ and τ+∆,
where the more conservative approach of τ −∆ never allows
tunnels but rejects some valid packets, and the more liberal
approach of τ + ∆ never rejects valid packets, but may allow
tunneling of up to 2c∆ past the actual normal transmission
range.
With a GPS-disciplined clock [39], time synchronization to

within ∆ = 183 ns with probability 1−10−10 is possible. If a
transmitter has a 250 m range, the τ −∆ threshold accepts all
packets sent less than 140 m and some packets sent between
140 and 250 m; the τ + ∆ threshold accepts all packets sent
less than 250 m but allows tunneling of packets up to 110 m
beyond that distance.

D. MAC Layer Considerations
A TDMA MAC protocol may be able to choose the time

at which a frame begins transmission, so that the message
authentication code is sent by time Ti −

r
c − 2∆. In this case,

the minimum payload length is r
c

+ 2∆ times the bit rate of
transmission. For additional efficiency, different nodes should
have different key disclosure times, and the MAC layer should
provide each node with the MAC layer time slot it needs for
authenticated delivery.
As mentioned in Section V-C, a CSMA MAC protocol may

not be able to control that time at which a frame is sent
relative to the key disclosure times. In this case, the minimum
payload length needs to be chosen so that a key disclosure
time is guaranteed to occur somewhere during the packet’s
transmission. For example, if the network physical layer is
capable of a peak data rate of 100 Mbps and a range of 150 m,
and if the key disclosure interval is chosen to be 25 µs and
time synchronization is achieved to within 250 ns, then the
minimum packet size must be at least 325 bytes. However, if
each value in the hash tree is 80 bits long, and the depth of
the tree is 31, then the minimum payload size is just 15 bytes.

If a MAC protocol uses a Request-to-Send/Clear-to-Send
(RTS/CTS) frame handshake, the minimum packet size can be
reduced by carrying the message authentication code inside the
RTS frame. In this case, the frame exchange for transmitting
a data packet would be

A → B : 〈RTS,HMACKi
(M)〉

B → A : 〈CTS〉
A → B : 〈DATA, M, tree values, Ki〉 .

In particular, instead of having a minimum message size of
r
c

+ 2∆ + I times the transmission data rate, where I is the
duration of a time interval, the minimum message size is just
2∆+I−2tturn times the data rate, where tturn is the minimum
allowed time between receiving a control frame (i.e., the RTS
or CTS) and returning a corresponding frame (the CTS or
DATA frame, respectively). This minimum message length
includes the length of the CTS, DATA header, payload, and
hash tree values.

VI. EVALUATION

A. TIK Performance
To evaluate the suitability of our work for use in ad hoc

networks, we measured computational power and memory
currently available in mobile devices. To measure the number
of repeated hashes that can be computed per second, we
optimized the MD5 hash code from ISI [38] to achieve
maximum performance for repeated hashing.
Our optimized version performs 10 million hash function

evaluations in 7.544 s on a Pentium III running at 1 GHz,
representing a rate of 1.3 million hashes per second; the same
number of hashes using this implementation on a Compaq
iPAQ 3870 PocketPC running Linux took 45 s, representing a
rate of 222,000 hashes per second. Repetitive, simple functions
like hashes can also be efficiently implemented in hardware;
Helion Technology [13] claims a 20k gate ASIC core design
(a third the complexity of Bluetooth [3] and less than a third
the complexity of IEEE 802.11 [19]) capable of more than
1.9 million hashes per second and a Xilinx FPGA design using
1650 LUTs capable of 1 million hashes per second. In terms of
memory consumption, existing handheld devices, such as the



8

iPAQ 3870, come equipped with 32 MB of Flash and 64 MB
of RAM. Modern notebooks can generally be equipped with
hundreds of megabytes of RAM.
A high-end wireless LAN card such as the Proxim Harmony

802.11a [32] has a transmission range potentially as far as
250 m and data rate as high as 108 Mbps. With time synchro-
nization provided by a Trimble Thunderbolt GPS-Disciplined
Clock [39], the synchronization error can be as low as 183 ns
with probability 1−10−10. If authentic keys are re-established
every day, with a 20-byte minimum packet size and an 80-
bit message authentication code length, the tree has depth 33,
giving a minimum payload length of 350 bytes (a transmission
time of 25.9 µs) and a time interval of 24.7 µs. Assuming
that the node generates each new tree while it is using its
current tree, it requires 8 megabytes of storage and needs to
perform fewer than 243,000 operations per second to maintain
and generate trees. To authenticate a received packet, a node
needs to perform only 33 hash functions. To keep up with
link-speed, a node needs to verify a packet at most every
25.9 µs, thus requiring 1,273,000 hashes per second, for a total
computational requirement of 1,516,000 hashes per second.
This can be achieved today in hardware, either by placing
two MD5 units on a single FPGA, or with an ASIC. Many
laptops today are equipped with at least 1.2 GHz Pentium III
CPUs, which should also be able to perform 1.5 million hash
operations per second.
Current commodity wireless LAN products such as com-

monly used IEEE 802.11b cards [2] provide a transmission
data rate of 11 Mbps and a range of 250 m. Given the same
time synchronization, rekeying interval, minimum packet size,
and message authentication code length, the tree has depth 30,
giving a minimum payload length of 320 bytes (a transmission
time of 232 µs) and a time interval of 231.5 µs. Assuming that
the node generates each new tree while it is using its current
tree, it requires just 2.6 megabytes of storage and needs to
perform just 26,500 operations per second. To authenticate
a received packet, a node needs to perform only 30 hash
functions. Since any IP packet authenticated using TIK would
take at least 232 µs to transmit in this example, TIK can
authenticate packets at link-speed using just 13,000 hashes
per second, for a total of 39,500 hash functions per second,
which is well within the capability of an iPAQ, with 82.2% of
its CPU time to spare.
In a sensor network such as Hollar et al’s weC mote [18],

[41], nodes may only be able to achieve time synchronization
accurate to 1 s, have a 19.6 kbps link speed, and 20 m range.
In this case, the smallest packet that can be authenticated is
4900 bytes; since the weC mote does not have sufficient mem-
ory to store this packet, TIK is unusable in such a resource-
scarce system. Furthermore, the level of time synchronization
in this system is such that TIK could not provide a usable
wormhole detection system.

B. Security Analysis
Packet leashes provide a way for a sender and a receiver

to ensure that a wormhole attacker is not causing the signal
to propagate farther than the specified normal transmission

distance. When geographic leashes are used, nodes also detect
tunneling across obstacles such as mountains that are other-
wise impenetrable by radio. As with other cryptographic prim-
itives, a malicious receiver can refuse to check the leash, just
like a malicious receiver can refuse to check the authentication
on a packet. This may allow an attacker to tunnel a packet
to another attacker without detection; however, that second
attacker cannot then retransmit the packet as if it were the
original sender without then being detected.
A malicious sender can claim a false timestamp or location,

causing a legitimate receiver to have mistaken beliefs about
whether or not the packet was tunneled. When geographic
leashes are used in conjunction with digital signatures, nodes
may be able to detect a malicious node and spread that infor-
mation to other nodes, as discussed in Section IV-C. However,
this attack is equivalent to the malicious sender sharing its
keys with the wormhole attacker, allowing the sending side
of the wormhole to place appropriate timestamps or location
information on any packets sent by the malicious sender that
are then tunneled by the wormhole attacker. Moreover, if a
malicious or compromised node embeds a future timestamp
into the packet to extend its lifetime (in the case of temporal
leashes), neighboring nodes can detect such fraudulent packets
and blacklist the node.

C. Comparison Between Geographic and Temporal Leashes
Temporal leashes have the advantage of being highly effi-

cient, especially when used with TIK, as described in Sec-
tion V. Geographic leashes, on the other hand, require a more
general broadcast authentication mechanism, which may result
in increased computational and network overhead. Location
information also may require more bits to represent, further
increasing the network overhead.
Geographic leashes have the advantage that they can be used

in conjunction with a radio propagation model, thus allowing
them to detect tunnels through obstacles. Furthermore, geo-
graphic leashes do not require the tight time synchronization
that temporal leashes do. In particular, temporal leashes cannot
be used if the maximum range is less than c∆, where c is the
speed of light and ∆ is maximum clock synchronization error;
geographic leashes can be used until the maximum range is
less than 2ν∆, where ν is the maximum movement speed of
any node.
To evaluate the practicality of geographic leashes, we con-

sider a radio of range 300 m, maximum movement speed
of 50 m/s, a relative positioning error of 3 m, and time
synchronization error of 1 ms. Then tr − ts ≤ 2 ms, since the
propagation time is at most 1 ms and the time synchronization
error is at most 1 ms. Then dsr ≤ ||ps−pr||+100 m/s·2 ms+
3 m = ||ps−pr||+3.2 m. Since ||ps−pr|| could be as much as
3 m, the effective transmission range of the network interface
is reduced by at most 6.2 m.
To compare the effectiveness of geographic leashes and

temporal leashes, we compare the distance derived using each
approach: dsr ≤ ||ps−pr||+2ν ·(tr−ts+∆)+δ for geographic
leashes and dsr ≤ c · (tr − ts + ∆) for temporal leashes. We
use dmax

c
to denote the maximum propagation time. Then the
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Fig. 3. These two network topologies are not distinguishable by topology-
based wormhole detection, yet one contains a wormhole and the other does
not. The dotted line in the figure on the left represents the wormhole.

maximum error is bounded by δ + 2ν( dmax

c + 2∆) + δ =
2δ + 4ν∆ + 2ν dmax

c for geographic leashes, and by 2c∆ for
temporal leashes. Geographic leashes are then more effective
when δ < c∆ − 2ν∆ − ν

c
dmax. In general, ν is much

smaller than c. Given sufficient computing power and network
bandwidth, geographic leashes should be used when δ < c∆,
and temporal leashes should be used when δ ≥ c∆.

D. Security of Topology-Based Approaches
Several researchers [40], [31] have proposed a method to

detect wormholes by constructing a model of the network
topology based on inaccurate distance measurements between
neighbor nodes that can receive packets from each other (pos-
sibly through a wormhole); wormholes can then be visualized
in this topology by the anomalies they introduce, bending the
topology so that the nodes on either side of the wormhole
appear closer together. However, such topology-based ap-
proaches alone cannot detect all wormholes. For example, the
two network topologies in Figure 3 are indistinguishable, yet
one contains a wormhole and the other does not. In addition,
a wormhole that can decode packets can choose to tunnel only
traffic between two select nodes over a short distance; such
wormholes have a minimal impact on network topology and
may not be easily detected by such approaches.

VII. RELATED WORK

Hu and Evans propose to use directional antennas to de-
tect wormhole attacks [14]. Their approach uses a periodic
HELLO message to determine the direction to each neighbor.
When two nodes A and B wish to communicate, they find
a correctly-positioned verifier V which ensures that the di-
rections towards A and B are consistent. Their approach is
promising; however, it relies on perfectly aligned, completely
directional antennas, and cannot detect all wormhole instances,
especially those using more than one wormhole.
Wang et al note that the wormhole attack is potentially

more powerful when the attacker has compromised one or
more nodes. In particular, they distinguish between open,
half-open, and closed wormholes. In this paper we focus on
open wormholes, where the wormhole does not participate
in higher-layer protocols (such as routing). In a half-open
wormhole, one end of the wormhole participates in a higher-
layer protocol, and may attempt to conceal the existence of

the wormhole. Finally, in a closed wormhole, both ends of the
wormhole participate in the higher-layer protocol. Our mech-
anisms allow a higher-layer protocol to detect the presence of
open wormholes; additional mechanisms within that higher-
layer protocol are required in order to prevent use of half-open
and closed wormholes.
Radio Frequency (RF) watermarking [9] is another pos-

sible approach to providing the security described in this
paper. RF watermarking authenticates a wireless transmission
by modulating the RF waveform in a way known only to
authorized nodes. RF watermarking relies on keeping secret
the knowledge of which RF waveform parameters are being
modulated; furthermore, if that waveform is exactly captured
at the receiving end of the wormhole and exactly replicated at
the transmitting end of the wormhole, the signal level of the
resulting watermark is independent of the distance it was tun-
neled. In addition, since we are aware of no published specific
details, it is difficult to assess its security. If the radio hardware
is kept secret, such as through tamper-resistant modules, some
level of security can be provided against compromised nodes;
however, if the radio band in which communications are taking
place is known, then an attacker can attempt to tunnel the
entire signal from one location to another.
It may be possible to modify existing intrusion detection ap-

proaches to detect a wormhole attacker; since the packets sent
by the wormhole are identical to the packets sent by legitimate
nodes, such detection would more easily be achieved jointly
with hardware able to specify some sort of direction of arrival
information for received packets. To the best of our knowledge,
no work has been published regarding the possibility of using
intrusion detection systems specifically to detect wormhole
attackers.
Brands and Chaum [6] propose a three-way handshake

which bounds the distance between a node and a verifier by
measuring the round trip time between them. Our technique
is able to detect wormholes with only a single message, and
requires corrections for clock skew between the sender and
receiver.
TESLA generally chooses longer time intervals than TIK

does, in order to reduce the amount of computation needed to
authenticate a new key. As a result, TESLA is capable of func-
tioning with much looser time synchronization than is required
by TIK. Given a sufficient level of time synchronization, TIK
provides an advantage over hop-by-hop authentication with
TESLA, with respect to latency and packet overhead, but
it suffers with respect to byte overhead. In particular, since
TIK key disclosure always occurs in the same packet as the
data protected, packets can be verified instantly; with TESLA,
on the other hand, packets must wait, on average 1.5 time
intervals, which is especially significant when packets are
authenticated hop-by-hop, as may be required in a multi-hop
ad hoc network routing protocol.
Some Medium Access Control protocols also specify pri-

vacy and authenticity mechanisms. These mechanisms typ-
ically use one or more shared keys, allowing compromised
nodes to forge packets. Furthermore, to the best of our knowl-
edge, none of these mechanisms protect against wormhole
attacks.
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VIII. CONCLUSIONS

In this paper, we have introduced the wormhole attack, a
powerful attack that can have serious consequences on many
proposed ad hoc network routing protocols; the wormhole
attack may also be exploited in other types of networks and
applications, such as wireless access control systems based on
physical proximity. To detect and defend against the wormhole
attack, we introduced packet leashes, which may be either
geographic or temporal leashes, to restrict the maximum trans-
mission distance of a packet. Finally, to implement temporal
leashes, we presented the design and performance analysis of
a novel, efficient protocol, called TIK, which also provides
instant authentication of received packets.
TIK requires just n public keys in a network with n

nodes, and has relatively modest storage, per packet size,
and computation overheads. In particular, a node needs to
perform only between 3 and 6 hash function evaluations
per time interval to maintain up-to-date key information for
itself, and roughly 30 hash functions for each received packet.
With commodity hardware such as 11 Mbps wireless links,
TIK has computational and memory requirements that are
easily satisfiable today; 2.6 megabytes for hash tree storage
represents, for example, less than 3% of the standard memory
on an Compaq iPAQ 3870 with no external memory cards,
and since the StrongARM CPU on the iPAQ is capable of
performing 222,000 symmetric cryptographic operations per
second, TIK imposes no more than an 18% load on CPU time,
even when flooded with packets at the maximum speed of the
wireless network, and normally uses less CPU load than that
in normal operation.
When used in conjunction with precise timestamps and tight

clock synchronization, TIK can prevent wormhole attacks that
cause the signal to travel a distance longer than the nominal
range of the radio, or any other range that might be specified.
Sufficiently tight clock synchronization can be achieved in a
wireless LAN using commercial GPS receivers [39], and wire-
less MAN technology could be sufficiently time-synchronized
using either GPS or LORAN-C [24] radio signals.
A MAC layer protocol using TIK efficiently protects against

replay, spoofing, and wormhole attacks, and ensures strong
freshness. TIK is implementable with current technologies,
and does not require significant additional processing overhead
at the MAC layer, since the authentication of each packet can
be performed on the host CPU.
Our geographic leashes are less efficient than temporal

leashes, since they require broadcast authentication, but they
can be used in networks where precise time synchronization
is not easily achievable. The dominant factor in the usability
of geographic leashes is the ability to accurately measure
location; because node movement is very slow relative to the
speed of light, the effects of reduced time synchronization
accuracy are slight.

REFERENCES

[1] Norman Abramson. The ALOHA System—Another Alternative for
Computer Communications. In Proceedings of the Fall 1970 AFIPS
Computer Conference, pages 281–285, November 1970.

[2] Agere Systems Inc. Specification sheet for ORiNOCO World PC Card.
Allentown, PA. Available at ftp://ftp.orinocowireless.
com/pub/docs/ORINOCO/BROCHURES/US/World%20PC
%20Card%20US.pdf.

[3] ARC International. ARC releases BlueForm, a comprehensive so-
lution for Bluetooth systems on a chip. Press Release 6-04-01,
Elstree, United Kingdom. Available at http://www.arccores.
com/newsevents/PR/6-04-01-2.htm, June 4 2001.

[4] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions
for Message Authentication. In Advances in Cryptology – CRYPTO ’96,
edited by Neal Koblitz, volume 1109 of Lecture Notes in Computer
Science, pages 1–15. Springer-Verlag, Berlin Germany, 1996.

[5] Bhargav Bellur and Richard G. Ogier. A Reliable, Efficient Topology
Broadcast Protocol for Dynamic Networks. In Proceedings of the
Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM’99), pages 178–186, March 1999.

[6] Stefan Brands and David Chaum. Distance-Bounding Protocols. In
Workshop on the theory and application of cryptographic techniques on
Advances in cryptology (CRYPTO 1994), volume 839 of Lecture Notes
in Computer Science, pages 344–359. Springer-Verlag, August 1994.

[7] Tom Clark. Tom Clark’s Totally Accurate Clock FTP Site. Green-
belt, Maryland. Available at ftp://aleph.gsfc.nasa.gov/
GPS/totally.accurate.clock/.

[8] Mark Corner and Brian Noble. Zero-Interaction Authentication. In
Proceedings of the Eighth Annual International Conference on Mobile
Computing and Networking (MobiCom 2002), pages 1–11, September
2002.

[9] Defense Advanced Research Projects Agency. Frequently Asked Ques-
tions v4 for BAA 01-01, FCS Communications Technology. Washing-
ton, DC. Available at http://www.darpa.mil/ato/solicit/
baa01_01faqv4.doc, October 2000.

[10] Y. Desmedt. Major Security Problems with the “Unforgeable” (Feige-
)Fiat-Shamir Proofs of Identity and How to Overcome Them. In
Proceedings of the 6th worldwide computer congress on computer and
communications security and protection (SecuriCom 88), pages 147–
159, March 1998.

[11] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct
Random Functions. Journal of the ACM, 33(4):792–807, October 1986.

[12] Shafi Goldwasser and Mihir Bellare. Lecture Notes on Cryptography.
Summer Course “Cryptography and Computer Security” at MIT, 1996–
1999, August 1999.

[13] Helion Technology Ltd. High Performance Solutions in Silicon
— MD5 Core. Cambridge, England. Available at http://www.
heliontech.com/core5.htm.

[14] Lingxuan Hu and David Evans. Using Directional Antennas to Prevent
Wormhole Attacks. In Proceedings of the 2004 Symposium on Network
and Distributed Systems Security (NDSS 2004), February 2004.

[15] Jean-Pierre Hubaux, Levente Buttyán, and Srdjan Čapkun. The Quest
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